1
|
de Zawadzki A, Leeming DJ, Sanyal AJ, Anstee QM, Schattenberg JM, Friedman SL, Schuppan D, Karsdal MA. Hot and cold fibrosis: The role of serum biomarkers to assess immune mechanisms and ECM-cell interactions in human fibrosis. J Hepatol 2025:S0168-8278(25)00148-5. [PMID: 40056933 DOI: 10.1016/j.jhep.2025.02.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 05/24/2025]
Abstract
Fibrosis is a pathological condition characterised by excessive accumulation of extracellular matrix (ECM) components, particularly collagens, leading to tissue scarring and organ dysfunction. In fibrosis, an imbalance between collagen synthesis (fibrogenesis) and degradation (fibrolysis) results in the deposition of fibrillar collagens disrupting the structural integrity of the ECM and, consequently, tissue architecture. Fibrosis is associated with a wide range of chronic diseases, including cirrhosis, kidney fibrosis, pulmonary fibrosis, and autoimmune diseases. Recently, the concept of "hot" and "cold" fibrosis has emerged, referring to the immune status within fibrotic tissues and the nature of fibrogenic signalling. Hot fibrosis is characterised by active immune cell infiltration and inflammation, while cold fibrosis is associated with auto- and paracrine myofibroblast activation, immune cell exclusion and quiescence. In this article, we explore the relationship between hot and cold fibrosis, the role of various types of collagens and their biologically active fragments in modulating the immune system, and how serological ECM biomarkers can help improve our understanding of the disease-relevant interactions between immune and mesenchymal cells in fibrotic tissues. Additionally, we draw lessons from immuno-oncology research in solid tumours to shed light on potential strategies for fibrosis treatment and highlight the advantage of having a "hot fibrotic environment" to treat fibrosis by enhancing collagen degradation through modulation of the immune system.
Collapse
Affiliation(s)
| | - Diana J Leeming
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Jörn M Schattenberg
- Department of Internal Medicine II, Saarland University Medical Centre, Homburg, Germany
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Harvard Medical School, MA, USA
| | | |
Collapse
|
2
|
Huang WC, Li YC, Chen PX, Ma KSK, Wang LT. Mesenchymal stem cell therapy as a game-changer in liver diseases: review of current clinical trials. Stem Cell Res Ther 2025; 16:3. [PMID: 39762946 PMCID: PMC11705688 DOI: 10.1186/s13287-024-04127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic liver diseases, including cirrhosis and liver failure, remain formidable challenges due to their complex progression and limited therapeutic options. Mesenchymal stem cell (MSC) therapy has emerged as a game-changing approach, leveraging its potent immunomodulatory, anti-fibrotic, and regenerative capabilities, along with the ability to transdifferentiate into hepatocytes. This review delves into the latest advances in MSC-based treatments for chronic and end-stage liver diseases, as highlighted in current clinical trials. MSCs derived from bone marrow and umbilical cord have shown remarkable promise in reversing liver damage, improving liver function, and providing hope for patients who do not respond to conventional therapies. When administered through hepatic, portal, or peripheral veins, MSCs have significantly improved liver histology, reduced fibrosis, and restored functional capacity. Furthermore, MSC-derived materials, such as extracellular vesicles and exosomes, are emerging as cutting-edge tools for treating liver failure and mitigating post-transplant complications. While autologous MSC-derived hepatocytes hold promise for non-fatal cirrhosis, allogeneic MSCs are being applied in more severe conditions, including liver failure and transplantation cases. Despite these promising early outcomes, larger trials and long-term studies are essential to fully harness MSCs as a transformative, off-the-shelf alternative to liver transplantation, heralding a new era in regenerative liver therapies.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Laboratory of Clinical Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Chi Li
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan
| | - Pin-Xuan Chen
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan
| | - Kevin Sheng-Kai Ma
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-Tzu Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan.
- Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Zhi Y, Fan K, Liu S, Hu K, Zan X, Lin L, Yang Y, Gong X, Chen K, Tang L, Li L, Huang J, Zhang S, Zhang L. Deletion of GPR81 activates CREB/Smad7 pathway and alleviates liver fibrosis in mice. Mol Med 2024; 30:99. [PMID: 38982366 PMCID: PMC11234765 DOI: 10.1186/s10020-024-00867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-β1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-β1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS CCl4 exposure or TGF-β1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-β1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-β1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.
Collapse
Affiliation(s)
- Ying Zhi
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Kerui Fan
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Shuang Liu
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Kai Hu
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Xinyan Zan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Ling Lin
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Kun Chen
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Li Tang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China.
- Laboratory of Integrated Traditional and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China.
| |
Collapse
|
4
|
Wang Y, Liu K. Therapeutic potential of oleanolic acid in liver diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4537-4554. [PMID: 38294504 DOI: 10.1007/s00210-024-02959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Liver-associated diseases affect millions of individuals worldwide. In developed countries, the incidence of viral hepatitis is reducing due to advancements in disease prevention, diagnosis, and treatment. However, with improvements in living standards, the prevalence of metabolic liver diseases, such as non-alcoholic fatty liver disease and alcohol-related liver disease, is expected to increase; notably, this rise in the prevalence of metabolic liver disease can lead to the development of more severe liver diseases, including liver failure, cirrhosis, and liver cancer. The growing demand for natural alternative therapies for chronic diseases has highlighted the importance of studying the pharmacology of bioactive compounds in plants. One such compound is oleanolic acid (OA), a pentacyclic triterpenoid known for its antioxidant, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, anti-diabetic, cardioprotective, hepatoprotective, and anti-neurodegenerative properties. Recent studies have demonstrated that OA treatment can reduce the risk of pathological liver damage, ultimately alleviating liver dysregulation and restoring overall liver function. This review aims to explore the latest research on the biological effects of OA and its derivatives. Notably, it explores the mechanisms of action of these compounds in both in vitro and in vivo research models and, ultimately, highlights OA as a promising candidate for alternative therapies in the treatment and management of chronic liver disease.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Osna NA, Tikhanovich I, Ortega-Ribera M, Mueller S, Zheng C, Mueller J, Li S, Sakane S, Weber RCG, Kim HY, Lee W, Ganguly S, Kimura Y, Liu X, Dhar D, Diggle K, Brenner DA, Kisseleva T, Attal N, McKillop IH, Chokshi S, Mahato R, Rasineni K, Szabo G, Kharbanda KK. Alcohol-Associated Liver Disease Outcomes: Critical Mechanisms of Liver Injury Progression. Biomolecules 2024; 14:404. [PMID: 38672422 PMCID: PMC11048648 DOI: 10.3390/biom14040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a substantial cause of morbidity and mortality worldwide and represents a spectrum of liver injury beginning with hepatic steatosis (fatty liver) progressing to inflammation and culminating in cirrhosis. Multiple factors contribute to ALD progression and disease severity. Here, we overview several crucial mechanisms related to ALD end-stage outcome development, such as epigenetic changes, cell death, hemolysis, hepatic stellate cells activation, and hepatic fatty acid binding protein 4. Additionally, in this review, we also present two clinically relevant models using human precision-cut liver slices and hepatic organoids to examine ALD pathogenesis and progression.
Collapse
Affiliation(s)
- Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Martí Ortega-Ribera
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (M.O.-R.); (G.S.)
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
- Viscera AG Bauchmedizin, 83011 Bern, Switzerland
| | - Chaowen Zheng
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Johannes Mueller
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Siyuan Li
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Sadatsugu Sakane
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Raquel Carvalho Gontijo Weber
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Hyun Young Kim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Wonseok Lee
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Souradipta Ganguly
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Yusuke Kimura
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Xiao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Debanjan Dhar
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
| | - Karin Diggle
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Neha Attal
- Department of Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC 28203, USA; (N.A.); (I.H.M.)
| | - Iain H. McKillop
- Department of Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC 28203, USA; (N.A.); (I.H.M.)
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE59NT, UK;
- School of Microbial Sciences, King’s College, London SE59NT, UK
| | - Ram Mahato
- Department of Pharmaceutical Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA;
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68106, USA;
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (M.O.-R.); (G.S.)
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68106, USA;
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
7
|
Xue J, Jiang T, Humaerhan J, Wang M, Ning J, Zhao H, Aji T, Shao Y. Impact of Liver Sympathetic Nervous System on Liver Fibrosis and Regeneration After Bile Duct Ligation in Rats. J Mol Neurosci 2024; 74:4. [PMID: 38183518 DOI: 10.1007/s12031-023-02176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
The sympathetic nervous system (SNS) affects many functions of the body. SNS fibers regulate many aspects of liver function, repair, and regeneration. However, in the model of bile duct ligation (BDL) in rats, the kind of impact caused by the regulation of liver SNS on liver fibrosis and liver regeneration is unclear. The main research objective of this experiment is to examine the effect of SNS on liver fibrosis and liver regeneration. Twenty-four male Sprague-Dawley (SD) rats were assigned randomly to four groups. These groups included the sham surgery group (sham), model group (BDL), 6-hydroxydopamine group (BDL+6-OHDA), and spinal cord injury group (BDL+SCI). In the sham group, only exploratory laparotomy was performed without BDL. In the 6-OHDA group, 6-OHDA was used to remove sympathetic nerves after BDL. In the spinal cord injury group, rats underwent simultaneous BDL and spinal cord injury. After 3 weeks of feeding, four groups of rats were euthanized using high-dose anesthesia without pain. Moreover, liver tissue and blood were taken to detect liver fibrosis and regeneration indicators. After intraperitoneal injection of 6-OHDA into BDL rats, liver fibrosis indicators decreased. The administration of the injection effectively alleviated liver fibrosis and inhibited liver regeneration. However, after SCI surgery in BDL rats, liver fibrosis indicators increased. This resulted in exacerbating liver fibrosis and activating liver regeneration. The SNS plays a role in contributing to the liver injury process in the rat BDL model. Therefore, regulating the SNS may become a novel method for liver injury treatment.
Collapse
Affiliation(s)
- Junlong Xue
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Tiemin Jiang
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, The First Clinical Medical College of Xinjiang Medical University, Urumqi, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Jiayidaer Humaerhan
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Maolin Wang
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Jianghong Ning
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Hanyue Zhao
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Tuerganaili Aji
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, The First Clinical Medical College of Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- Xinjiang Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
8
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Elnagdy M, Wang Y, Rodriguez W, Zhang J, Bauer P, Wilkey DW, Merchant M, Pan J, Farooqui Z, Cannon R, Rai S, Maldonado C, Barve S, McClain CJ, Gobejishvili L. Increased expression of phosphodiesterase 4 in activated hepatic stellate cells promotes cytoskeleton remodeling and cell migration. J Pathol 2023; 261:361-371. [PMID: 37735782 PMCID: PMC10653049 DOI: 10.1002/path.6194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 07/30/2023] [Indexed: 09/23/2023]
Abstract
Activation and transdifferentiation of hepatic stellate cells (HSC) into migratory myofibroblasts is a key process in liver fibrogenesis. Cell migration requires an active remodeling of the cytoskeleton, which is a tightly regulated process coordinated by Rho-specific guanine nucleotide exchange factors (GEFs) and the Rho family of small GTPases. Rho-associated kinase (ROCK) promotes assembly of focal adhesions and actin stress fibers by regulating cytoskeleton organization. GEF exchange protein directly activated by cAMP 1 (EPAC1) has been implicated in modulating TGFβ1 and Rho signaling; however, its role in HSC migration has never been examined. The aim of this study was to evaluate the role of cAMP-degrading phosphodiesterase 4 (PDE4) enzymes in regulating EPAC1 signaling, HSC migration, and fibrogenesis. We show that PDE4 protein expression is increased in activated HSCs expressing alpha smooth muscle actin and active myosin light chain (MLC) in fibrotic tissues of human nonalcoholic steatohepatitis cirrhosis livers and mouse livers exposed to carbon tetrachloride. In human livers, TGFβ1 levels were highly correlated with PDE4 expression. TGFβ1 treatment of LX2 HSCs decreased levels of cAMP and EPAC1 and increased PDE4D expression. PDE4 specific inhibitor, rolipram, and an EPAC-specific agonist decreased TGFβ1-mediated cell migration in vitro. In vivo, targeted delivery of rolipram to the liver prevented fibrogenesis and collagen deposition and decreased the expression of several fibrosis-related genes, and HSC activation. Proteomic analysis of mouse liver tissues identified the regulation of actin cytoskeleton by the kinase effectors of Rho GTPases as a major pathway impacted by rolipram. Western blot analyses confirmed that PDE4 inhibition decreased active MLC and endothelin 1 levels, key proteins involved in cytoskeleton remodeling and contractility. The current study, for the first time, demonstrates that PDE4 enzymes are expressed in hepatic myofibroblasts and promote cytoskeleton remodeling and HSC migration. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mohamed Elnagdy
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Yali Wang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Walter Rodriguez
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - JingWen Zhang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Philip Bauer
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Daniel W. Wilkey
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Michael Merchant
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Jianmin Pan
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Zainab Farooqui
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Robert Cannon
- Department of Surgery, School of Medicine, University of Louisville, Kentucky, USA
| | - Shesh Rai
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Craig J. McClain
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
| |
Collapse
|
10
|
Zhao H, Zhu H, Zhang Y, Ding Y, Feng R, Li J, Ma T, Huang C. Lymphocyte-Specific Protein Tyrosine Kinase Contributes to Spontaneous Regression of Liver Fibrosis may by Interacting with Suppressor of Cytokine Signaling 1. Inflammation 2023; 46:1653-1669. [PMID: 37233920 DOI: 10.1007/s10753-023-01831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Quiescent hepatic stellate cells (qHSCs), converted to myofibroblasts, produce fibrous scars, which is an essential event during liver fibrogenesis. Clinical and experimental fibrosis undergo remarkable regression when the underlying etiological agent is removed. Some myofibroblasts revert to an inactive phenotype (iHSCs) during the regression of fibrosis. However, the mechanisms underlying HSC activation and reversal remain unclear. The present study demonstrated that the expression of lymphocyte-specific protein tyrosine kinase (LCK) was increased in fibrotic livers but decreased after spontaneous recovery in vivo and in vitro, which was correlated with the expression of α-smooth muscle actin (α-SMA) and type I collagen (COL-1). Further investigation indicated that specific knockdown of LCK by a recombination adeno-associated virus 9 (rAAV9) in C57BL/6 mice ameliorated liver fibrosis. Co-incubation of TGF-β1-induced HSC-T6 cells with LCK-siRNA inhibited cell proliferation and activation. Overexpression of LCK inhibited activated HSCs going to inactivated phenotype. Interestingly, we found that LCK may interact with suppressor of cytokine signaling 1 (SOCS1) and may influence the expression of p-JAK1 and p-STAT1/3. These data suggest that LCK may play a regulatory role in liver fibrosis by inhibiting SOCS1, indicating that LCK is a potential therapeutic target for liver fibrosis treatment.
Collapse
Affiliation(s)
- Huizi Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hong Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yuhao Ding
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Rui Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Sisto M, Lisi S. Towards a Unified Approach in Autoimmune Fibrotic Signalling Pathways. Int J Mol Sci 2023; 24:ijms24109060. [PMID: 37240405 DOI: 10.3390/ijms24109060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmunity is a chronic process resulting in inflammation, tissue damage, and subsequent tissue remodelling and organ fibrosis. In contrast to acute inflammatory reactions, pathogenic fibrosis typically results from the chronic inflammatory reactions characterizing autoimmune diseases. Despite having obvious aetiological and clinical outcome distinctions, most chronic autoimmune fibrotic disorders have in common a persistent and sustained production of growth factors, proteolytic enzymes, angiogenic factors, and fibrogenic cytokines, which together stimulate the deposition of connective tissue elements or epithelial to mesenchymal transformation (EMT) that progressively remodels and destroys normal tissue architecture leading to organ failure. Despite its enormous impact on human health, there are currently no approved treatments that directly target the molecular mechanisms of fibrosis. The primary goal of this review is to discuss the most recent identified mechanisms of chronic autoimmune diseases characterized by a fibrotic evolution with the aim to identify possible common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| |
Collapse
|
12
|
Zhao D, Xue C, Yang Y, Li J, Wang X, Chen Y, Zhang S, Chen Y, Duan Y, Yang X, Han J. Lack of Nogo-B expression ameliorates PPARγ deficiency-aggravated liver fibrosis by regulating TLR4-NF-κB-TNF-α axis and macrophage polarization. Biomed Pharmacother 2022; 153:113444. [DOI: 10.1016/j.biopha.2022.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
13
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Liu L, Wang P, Wang YS, Zhang YN, Li C, Yang ZY, Liu ZH, Zhan TZ, Xu J, Xia CM. MiR-130a-3p Alleviates Liver Fibrosis by Suppressing HSCs Activation and Skewing Macrophage to Ly6C lo Phenotype. Front Immunol 2021; 12:696069. [PMID: 34421906 PMCID: PMC8375151 DOI: 10.3389/fimmu.2021.696069] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
Emerging evidences have highlighted the crucial role of microRNAs (miRNAs) in the liver cirrhosis, but the relationship between miR-130a-3p and liver cirrhosis is not entirely clear. As we all know, schistosomiasis, as one of the zoonoses, can lead to liver cirrhosis when it advances. In this study, we investigated the biological functions of miR-130a-3p on the liver fibrosis of schistosomiasis in vivo and in vitro. The mice infected with Schistosoma japonicum (S. japonicum) were treated with lentivirus vector (LV)-miR-130a-3p by hydrodynamic injection through the tail vein. Our findings showed significantly decreased expression of miR-130a-3p both in the serum of patients with cirrhosis and in the liver of mice infected with S. japonicum. The results showed that LV-miR-130a-3p could effectively enter into the liver and alleviate liver granulomatous inflammation and collagen deposition. Simultaneously, LV-miR-130a-3p-promoted macrophages presented the Ly6Clo phenotype, concomitant with the decreased expression of the tissue inhibitor of metalloproteinases (TIMP) 1, and increased the expression of matrix metalloproteinase (MMP) 2, which contributed to the dissolution of collagen. Furthermore, overexpression of miR-130a-3p not only inhibited the activation and proliferation of hepatic stellate cells (HSCs) but also induced the apoptosis of HSCs. In addition, we also confirmed that miR-130a-3p enables to bind with mitogen-activated protein kinase (MAPK) 1 and transforming growth factor-beta receptors (TGFBR) 1 and TGFBR2 genes and inhibit the expressions of these genes. Our findings suggested that miR-130a-3p might represent as the potential candidate biomarker and therapeutic target for the prognosis identification and treatment of schistosomiasis liver fibrosis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Parasitology, Medical College of Soochow University, Suzhou, China
| | - Peng Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yun-Sheng Wang
- Department of Endocrinology, Second People’s Hospital of Hefei, Anhui, China
| | - Ya-Nan Zhang
- Department of Parasitology, Medical College of Soochow University, Suzhou, China
| | - Chen Li
- Department of Parasitology, Medical College of Soochow University, Suzhou, China
| | - Zi-Yin Yang
- Department of Parasitology, Medical College of Soochow University, Suzhou, China
| | - Zi-Hao Liu
- Department of Parasitology, Medical College of Soochow University, Suzhou, China
| | - Ting-Zheng Zhan
- Department of Parasitology, Guangxi Medical University, Nanning, China
| | - Jing Xu
- Department of Parasitology, Medical College of Soochow University, Suzhou, China
| | - Chao-Ming Xia
- Department of Parasitology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Rep 2021; 3:100316. [PMID: 34337369 PMCID: PMC8318926 DOI: 10.1016/j.jhepr.2021.100316] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Portal hypertension, defined as increased pressure in the portal vein, develops as a consequence of increased intrahepatic vascular resistance due to the dysregulation of liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), frequently arising from chronic liver diseases. Extrahepatic haemodynamic changes contribute to the aggravation of portal hypertension. The pathogenic complexity of portal hypertension and the unsuccessful translation of preclinical studies have impeded the development of effective therapeutics for patients with cirrhosis, while counteracting hepatic and extrahepatic mechanisms also pose a major obstacle to effective treatment. In this review article, we will discuss the following topics: i) cellular and molecular mechanisms of portal hypertension, focusing on dysregulation of LSECs, HSCs and hepatic microvascular thrombosis, as well as changes in the extrahepatic vasculature, since these are the major contributors to portal hypertension; ii) translational/clinical advances in our knowledge of portal hypertension; and iii) future directions.
Collapse
Key Words
- ACE2, angiogenesis-converting enzyme 2
- ACLF, acute-on-chronic liver failure
- AT1R, angiotensin II type I receptor
- CCL2, chemokine (C-C motif) ligand 2
- CCl4, carbon tetrachloride
- CLD, chronic liver disease
- CSPH, clinically significant portal hypertension
- Dll4, delta like canonical Notch ligand 4
- ECM, extracellular matrix
- EUS, endoscopic ultrasound
- FXR
- FXR, farnesoid X receptor
- HCC, hepatocellular carcinoma
- HRS, hepatorenal syndrome
- HSC
- HSCs, hepatic stellate cells
- HVPG, hepatic venous pressure gradient
- Hsp90, heat shock protein 90
- JAK2, Janus kinase 2
- KO, knockout
- LSEC
- LSEC, liver sinusoidal endothelial cells
- MLCP, myosin light-chain phosphatase
- NET, neutrophil extracellular trap
- NO
- NO, nitric oxide
- NSBB
- NSBBs, non-selective beta blockers
- PDE, phosphodiesterase
- PDGF, platelet-derived growth factor
- PIGF, placental growth factor
- PKG, cGMP-dependent protein kinase
- Rho-kinase
- TIPS
- TIPS, transjugular intrahepatic portosystemic shunt
- VCAM1, vascular cell adhesion molecule 1
- VEGF
- VEGF, vascular endothelial growth factor
- angiogenesis
- eNOS, endothelial nitric oxide synthase
- fibrosis
- liver stiffness
- statins
- β-Arr2, β-arrestin 2
- β1-AR, β1-adrenergic receptor
- β2-AR, β2-adrenergic receptor
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
- European Foundation for the Study of Chronic Liver Failure-EF Clif, Barcelona, Spain
| |
Collapse
|
16
|
Yang J, Xu C, Wu M, Wu Y, Jia X, Zhou C, Zhang X, Ge S, Li Z, Zhang L. MicroRNA-124 inhibits hepatic stellate cells inflammatory cytokines secretion by targeting IQGAP1 through NF-κB pathway. Int Immunopharmacol 2021; 95:107520. [PMID: 33743313 DOI: 10.1016/j.intimp.2021.107520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023]
Abstract
Liver fibrosis is a health concern that leads to organ failure mediated via production of inflammatory cytokines and fibrotic biomarkers. To date, there was no direct approved antifibrotic therapy, and current treatment was mainly the removal of the causative factor. Recent studies demonstrated that aberrant expression of miR-124 was involved in the progression of various liver diseases including hepatocellular carcinoma (HCC). However, whether miR-124 could function as a transcriptional regulator in the inflammatory cytokines secretion of liver fibrosis remains unclear. In this study, we demonstrated that the expression of miR-124 was downregulated in liver fibrosis tissues and TNF-α-induced LX-2 cells, concomitant with the upregulated expression of IQGAP1, suggesting that miR-124 and IQGAP1 might be associated with the development of inflammation in liver fibrosis. Therefore, we demonstrated that the overexpression of miR-124 and knockdown of IQGAP1 could lead to the downregulation of TNF-α, IL-1β and IL-6. While knockdown of miR-124 or overexpression of IQGAP1 showed reversed results. Moreover, dual luciferase reporter assays demonstrated that miR-124 specifically targeted the 3'-UTR of IQGAP1, and thus inhibited the expression of IQGAP1. Mechanistically, we found that the expression changes of miR-124 and IQGAP1 could be involved in inhibition or activation of NF-κB signaling pathway in response to TNF-α. In conclusion, these results indicated that miR-124 plays a crucial role in TNF-α-induced LX-2 cells via regulating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Changqing Xu
- The Third People's Hospital of Hefei (Hefei Third Clinical College of Anhui Medical University), Hefei, Anhui Province, China
| | - Maomao Wu
- Department of Pharmacy, Anhui Chest Hospital, Hefei, Anhui Province, China
| | - Ying Wu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaodi Jia
- Fujian Normal University, Fuzhou 350007, China
| | - Chang Zhou
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Xianzheng Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Shenglin Ge
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Zeng Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Sturny M, Anguenot L, Costa-Fraga FP, Bragina ME, Lima AM, da Silva RF, Fraga-Silva RA, Stergiopulos N. Apelin-13 Protects Corpus Cavernosum Against Fibrosis Induced by High-Fat Diet in an MMP-Dependent Mechanism. J Sex Med 2021; 18:875-888. [PMID: 33863684 DOI: 10.1016/j.jsxm.2021.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND An increased fibrosis of the corpora cavernosa is a prevalent process that underlies most cases of erectile dysfunction. Apelin, an endogenous circulating peptide, has been documented as an important effector on cardiovascular homeostasis, controlling vascular function and reducing fibrosis in multiple pathological conditions. Recently, initial studies have shown that Apelin, acting through the APJ receptor, also modulates penile erection, however, the role of this system on penile structure and intracorporal collagen remodeling has not been investigated yet. AIMS Here we sought to investigate the effect of chronic Apelin treatment on the corpus cavernosum structure of hyperchOlesterolemic mice. METHODS Apolipoprotein gene-deleted (ApoE-/-) mice were fed with a Western diet for 11 weeks and received Apelin-13 (2 mg/kg/day) or vehicle during the last 3 weeks. Penile samples were obtained for histological and biochemical analyses to assess the intracorporal collagen content and key proteins expression. Furthermore, the effect of Apelin-13 was evaluated in cultured NIH3T3 mouse fibroblasts stimulated with TGF-β. OUTCOME Local expression of Apelin-13 in mouse corpus cavernosum and its protective effect against fibrosis. RESULTS Apelin and APJ receptor were expressed (gene and protein) within the corpus cavernosum of ApoE-/- mice, indicating a local modulation of the Apelin system. Interestingly, 3 weeks of Apelin-13 treatment strongly reduced intracavernosal collagen content. In addition, Apelin-13 enhanced total matrix metalloproteinase (MMP) activity in the mice penis, which was associated with an increased protein expression of MMP-1, MMP-3, MMP-8, and MMP-9, while tissue inhibitor of metalloproteinase were unaltered. These beneficial actions were not associated with changes in nNOS or eNOS protein expression, intracavernosal reactive oxygen species content, or atherosclerotic plaque deposition. Additionally, in cultured fibroblast, Apelin-13 inhibited TGF-β-induced fibroblast to myofibroblast differentiation and collagen production, possibly through the activation of ERK1/2 kinase. CLINICAL TRANSLATION These results point out Apelin/APJ system as a potential target to treat intracavernosal fibrosis-related disorders. STRENGTH & LIMITATIONS These results provide the first evidence of the Apelin system's positive role on erectile tissue structure/remodeling. Nevertheless, additional functional study addressing erectile response would bring extended validation regarding the relevance of such effect. CONCLUSION These results suggest a local modulation of the Apelin system within the corpus cavernosum. Remarkably, Apelin-13 reduced intracavernosal fibrosis in hypercholesterolemic mice by: (i) enhancing MMPs expression and activity; and (ii) inhibiting fibroblast differentiation into myofibroblast. Altogether, these results suggest an essential protective role of Apelin, indicating Apelin/APJ system as a promising candidate for the development of fibrosis-associated erectile dysfunction treatments. Sturny M, Anguenot L Costa-Fraga FP, et al. Apelin-13 Protects Corpus Cavernosum Against Fibrosis Induced by High-Fat Diet in an MMP-Dependent Mechanism. J Sex Med 2021;18:875-888.
Collapse
Affiliation(s)
- Mikael Sturny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Léa Anguenot
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fabiana P Costa-Fraga
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maiia E Bragina
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Augusto Martins Lima
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rafaela F da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo A Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Nabil A, Uto K, Zahran F, Soliman R, Hassan AA, Elshemy MM, Ali IS, Ebara M, Shiha G. The Potential Safe Antifibrotic Effect of Stem Cell Conditioned Medium and Nilotinib Combined Therapy by Selective Elimination of Rat Activated HSCs. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6678913. [PMID: 33855079 PMCID: PMC8021473 DOI: 10.1155/2021/6678913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/13/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023]
Abstract
Hepatic fibrosis is a progressive disease with serious clinical complications that arise from abnormal propagation and activation of multiple inflammatory pathways. Nilotinib is an oral tyrosine kinase inhibitor with antifibrotic activity. Mesenchymal stem cells (MSCs) are blank cells and can differentiate into specific cell types. They have the potential to repair and regenerate cells. MSCs have a special paracrine fashion where they produce special exosomes, microvesicles, and cytokines like IL-6, transforming growth factor-beta (TGF-β), and HGF as well as hepatic stellate cell suppressors. This paracrine fashion can decrease collagen deposition, enhance antifibrotic, anti-inflammatory, and angiogenic activity in vitro and in vivo. In our study, the rat's hepatic stellate cells (HSCs) in addition to different normal cell lines were treated with Nilotinib alone and in combination with liver mesenchymal stem cells conditioned medium (LMSCs-CM) for 24 h. Mono and combined therapy antifibrotic and cytotoxicity effects were evaluated using different parameters including α-SMA, cytochrome c, P53 expression, collagen deposition, DNA content, oxidative stress parameters, cell viability, and apoptosis by flow cytometry analysis. Our results showed that Nilotinib and LMSCs-CM in combination had a significantly potent antifibrotic and anti-inflammatory effect on activated hepatic stellate cells than Nilotinib alone; otherwise, this combination showed the best safety with minimal cytotoxicity on different normal cell lines.
Collapse
Affiliation(s)
- Ahmed Nabil
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
- Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Koichiro Uto
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Faten Zahran
- Biochemistry Department, Faculty of Science, Zagazig University, Egypt
| | - Reham Soliman
- Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
- Tropical Medicine Department, Faculty of Medicine, Port Said University, Egypt
| | - Ayman A. Hassan
- Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | | | - Islam S. Ali
- Delta University for Science and Technology, Egypt
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Gamal Shiha
- Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
19
|
New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed Pharmacother 2021; 137:111326. [PMID: 33556870 DOI: 10.1016/j.biopha.2021.111326] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Over the years, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased year by year; however, due to its complicated pathogenesis, there is no effective treatment so far. It is reported that Cytochrome P450 2E1 (CYP2E1) plays an indispensable role in the development of NAFLD, and numerous studies have shown that flavonoids have a hepatoprotective effect and can exert a beneficial effect on NAFLD by regulating the activity of CYP2E1. Therefore, flavonoids may become effective drugs for the treatment of NAFLD in the future. This prompted us to review the research progress of the pathological mechanism of NAFLD and the impact of CYP2E1 activity changes during the pathological process, and to summarize the protective effect of flavonoids against CYP2E1 activity.
Collapse
|
20
|
Niederseer D, Wernly B, Aigner E, Stickel F, Datz C. NAFLD and Cardiovascular Diseases: Epidemiological, Mechanistic and Therapeutic Considerations. J Clin Med 2021; 10:467. [PMID: 33530440 PMCID: PMC7865665 DOI: 10.3390/jcm10030467] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Overwhelming evidence suggests an association of cardiovascular disease (CVD) with non-alcoholic fatty liver disease (NAFLD); however, the underlying mechanisms remain largely speculative. It is, however, likely that common mechanisms contribute to the development of CVD and NAFLD, with lifestyle factors such as smoking, sedentary lifestyle with poor nutrition habits and physical inactivity being major candidates. These behavioral factors, on a predisposing genetic background, trigger changes in gut microbiota, inflammation, dyslipidemia and oxidative stress, leading to metabolic syndrome, diabetes and obesity as well as atherosclerosis. Treatment options to counteract both the progression and development of CVD and NAFLD include lifestyle interventions, optimal medical therapy of comorbid conditions and, as final possibility, bariatric surgery. As no causal pharmacotherapy of NAFLD is available, further research is urgently needed to address the unmet need of a growing population with NAFLD and CVD.
Collapse
Affiliation(s)
- David Niederseer
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Bernhard Wernly
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care Medicine, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
- Center for Public Health and Healthcare Research, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Felix Stickel
- Department of Gastroenterology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria
| |
Collapse
|
21
|
Berumen J, Baglieri J, Kisseleva T, Mekeel K. Liver fibrosis: Pathophysiology and clinical implications. WIREs Mech Dis 2021; 13:e1499. [PMID: 32713091 PMCID: PMC9479486 DOI: 10.1002/wsbm.1499] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is a clinically significant finding that has major impacts on patient morbidity and mortality. The mechanism of fibrosis involves many different cellular pathways, but the major cell type involved appears to be hepatic stellate cells. Many liver diseases, including Hepatitis B, C, and fatty liver disease cause ongoing hepatocellular damage leading to liver fibrosis. No matter the cause of liver disease, liver-related mortality increases exponentially with increasing fibrosis. The progression to cirrhosis brings more dramatic mortality and higher incidence of hepatocellular carcinoma. Fibrosis can also affect outcomes following liver transplantation in adult and pediatric patients and require retransplantation. Drugs exist to treat Hepatitis B and C that reverse fibrosis in patients with those viral diseases, but there are currently no therapies to directly treat liver fibrosis. Several mouse models of chronic liver diseases have been successfully reversed using novel drug targets with current therapies focusing mostly on prevention of myofibroblast activation. Further research in these areas could lead to development of drugs to treat fibrosis, which will have invaluable impact on patient survival. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Jacopo Baglieri
- Department of Surgery, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | | | - Kristin Mekeel
- Department of Surgery, University of California, San Diego
| |
Collapse
|
22
|
Wang R, Zhang D, Tang D, Sun K, Peng J, Zhu W, Yin S, Wu Y. Amygdalin inhibits TGFβ1-induced activation of hepatic stellate cells (HSCs) in vitro and CCl 4-induced hepatic fibrosis in rats in vivo. Int Immunopharmacol 2021; 90:107151. [PMID: 33296784 DOI: 10.1016/j.intimp.2020.107151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The activation of hepatic stellate cells (HSCs) has been considered one of the major events in hepatic fibrosis. Amygdalin has been used to treat cancers and alleviate pain; however, its role and mechanism in HSC activation and hepatic fibrosis remain unclear. In the present study, transforming growth factor-beta 1 (TGF-β1) stimulated the activation of HSCs, as indicated by significantly increased alpha-smooth muscle actin (α-SMA), desmin, collagen I, and tissue inhibitor of metalloproteinase-1 (TIMP-1) protein levels. Amygdalin treatment dramatically suppressed TGF-β1-induced HSC proliferation and activation. Moreover, amygdalin treatment also reduced the TGF-β1-induced secretion of cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), platelet-derived growth factor (PDGF), and chemokine (C-C motif) ligand 2 (CCL2), as well as the phosphorylation of Smad2, Smad3, and p65. In the CCl4-stimulated liver fibrosis rat model, amygdalin treatment improved liver fibrosis and liver damage by reducing focal necrosis, collagen fiber accumulation, and the protein levels of α-SMA, desmin, collagen I, and TIMP-1 in hepatic tissue samples and reducing serum alanine transaminase (ALT) and aspartate transaminase (AST) levels. In conclusion, we demonstrated the suppressive effects of amygdalin in TGF-β1-induced HSC activation through modulating proliferation, fibrogenesis, and inflammation signaling in vitro and the antifibrotic effects of amygdalin in CCl4-stimulated hepatic fibrosis in rats in vivo.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Dong Zhang
- Department of Hepatology, Guangdong Hospital of Traditional Chinese Medicine in Zhuhai, Zhuhai, Guangdong 519015, China
| | - Dan Tang
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Kewei Sun
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Jianping Peng
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Wenfang Zhu
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Sihan Yin
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yunan Wu
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
23
|
Zhou IY, Tanabe KK, Fuchs BC, Caravan P. Collagen-targeted molecular imaging in diffuse liver diseases. Abdom Radiol (NY) 2020; 45:3545-3556. [PMID: 32737546 DOI: 10.1007/s00261-020-02677-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is a common pathway shared by all progressive chronic liver diseases (CLD) regardless of the underlying etiologies. With liver biopsy being the gold standard in assessing fibrosis degree, there is a large unmet clinical need to develop non-invasive imaging tools that can directly and repeatedly quantify fibrosis throughout the liver for a more accurate assessment of disease burden, progression, and treatment response. Type I collagen is a particularly attractive target for molecular imaging as its excessive deposition is specific to fibrosis, and it is present in concentrations suitable for many imaging modalities. Novel molecular MRI contrast agents designed to bind with collagen provide direct quantification of collagen deposition, which have been validated across animal species and liver injury models. Collagen-targeted molecular imaging probes hold great promise not only as a tool for initial staging and surveillance of fibrosis progression, but also as a marker of fibrosis regression in drug trials.
Collapse
Affiliation(s)
- Iris Y Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Harvard Medical School, 149 13th St, Boston, MA, 02129, USA
- Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.
- Harvard Medical School, 149 13th St, Boston, MA, 02129, USA.
- Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
24
|
Jiang C, Iwaisako K, Cong M, Diggle K, Hassanein T, Brenner DA, Kisseleva T. Traditional Chinese Medicine Fuzheng Huayu Prevents Development of Liver Fibrosis in Mice. ACTA ACUST UNITED AC 2020; 4:561-580. [PMID: 33210080 PMCID: PMC7671588 DOI: 10.26502/acbr.50170125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aim: To investigate the therapeutic effect of FZHY on hepatic fibrosis in mice and to determine the mechanism of its action. Methods: Wild type mice were subjected to toxic (carbon tetrachloride, CCl4) or cholestatic (bile duct ligation, BDL). Upon induction of liver fibrosis, mice were treated with FZHY (4.0g/kg, 2w, oral gavage) or vehicle (PBS). Livers were analyzed by Sirius Red staining, immunostaining and RT-PCR for profibrogenic and pro-inflammatory genes. The effect of FZHY on hepatocytes, inflammatory responses, activation of fibrogenic myofibroblasts, and ROS production was assessed. Results: FZHY strongly inhibited the development of CCl4- and BDL-induced liver fibrosis in mice. Liver fibrosis was significantly improved in FZHY-treated mice, as demonstrated by reduced content of hepatic hydroxyproline and Sirius Red positive area. Moreover, the number of SMA +and Desmin+ myofibroblasts was significantly reduced in the livers of FZHY-treated mice, and correlated with downregulation of the mRNA levels of α-SMA, collagen-α1(I), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), TGF-β1 and its receptor TGF-βRI, and platelet-derived growth factor-β (PDGF-β), suggesting that FZHY inhibits activation of fibrogenic myofibroblasts. Furthermore, administration of FZHY markedly decreased recruitment of F4/80+ inflammatory macrophages to the livers of CCl4- and BDL-injured mice, and this effect was associated with downregulation of monocyte chemoattractant protein-1(MCP-1) and macrophage inflammatory protein-1 (MIP-1) mRNA. In addition, the lipid peroxidation products 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) were reduced, demonstrating that treatment with FZHY can effectively block ROS production in livers of CCl4- and BDL-injured mice. Conclusions: Traditional Chinese Medicine FZHY has a variety of anti-fibrotic effects, including strong anti-oxidant, anti-inflammatory and anti-fibrotic effects on myeloid cells and hepatocytes. Although FZHY compound does not seem to directly affect HSCs, it regulates HSC activation via inhibition of macrophage recruitment to fibrotic liver.
Collapse
Affiliation(s)
- Chunyan Jiang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Min Cong
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Karin Diggle
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - David A Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
- Corresponding author: Tatiana Kisseleva, MD, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA,
| |
Collapse
|
25
|
Sun Y, Pan H, Shen S, Xia Z, Yu Z, Li C, Sun P, Xin C. Alisma Shugan Decoction (ASD) Ameliorates Hepatotoxicity and Associated Liver Dysfunction by Inhibiting Oxidative Stress and p65/Nrf2/JunD Signaling Dysregulation In Vivo. Med Sci Monit 2020; 26:e921738. [PMID: 32672153 PMCID: PMC7384331 DOI: 10.12659/msm.921738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Liver fibrosis, defined as the aberrant accumulation of extracellular matrix (ECM) proteins such as collagen in the liver, is a common feature of chronic liver disease, and often culminates in portal hypertension, liver cirrhosis, and hepatic failure. Though therapeutically manageable, fibrosis is not always successfully treated by conventional antifibrotic agents. While the traditional Chinese medicine (TCM) Alisma Shugan Decoction (ASD) has several health benefits, including anti-inflammation, anti-oxidation, and limitation of cardiovascular and respiratory disorders, it remains unclear if it has any hepato-protective potential. Material/Methods The present study examined the therapeutic effect of ASD in thioacetamide (TAA)-induced liver injury and fibrosis rat models. Results We demonstrated that 50 mg/kg ASD significantly reversed TAA-induced elevation of alanine or aspartate transaminase levels, elicited no dyscrasia, and conferred a 40% (p<0.01) or 20% (p<0.05) survival advantage, compared to rats treated with TAA or TAA+ASD, respectively. Treatment with ASD reversed TAA-induced liver injury and fibrogenesis via repression of α-SMA protein and reduction of the collagen area and fibrosis score. Concurrently, ASD markedly suppressed the mRNA expression of fibrogenic procollagen, ICAM-1, MMP2, MMP9, and MMP13, and production of TIMP-1, ICAM-1, CXCL7, or CD62L cytokine in rat liver injury models. Interestingly, ASD-elicited reduction of liver injury and fibrogenesis was mediated by dysregulated p65/NrF-2/JunD signaling, with a resultant 3.18-fold (p<0.05) increase in GSH/GSSH ratio, and a 3.61-fold (p<0.01) or 1.51-fold (p<0.01) reduction in the 4-hydroxynonenal and malondialdehyde (MDA) levels, respectively, indicating reduced oxidative stress in the ASD-treated rats, and suggesting an hepato-protective role for ASD. Conclusions In conclusion, the present study provides supplementary evidence of the therapeutic benefit of ASD as an efficient treatment option in cases of liver injury and fibrosis. Further large-cohort validation of these findings is warranted.
Collapse
Affiliation(s)
- Yunfeng Sun
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Honghua Pan
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Shenghui Shen
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Cardiology, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland)
| | - Zhongni Xia
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Zhongmin Yu
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - ChengLe Li
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Pingping Sun
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Chuanwei Xin
- Department of Pharmacy, Tongde Hospital Zhejiang Province, Hangzhou, Zhejiang, China (mainland).,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
26
|
Li X, Shao S, Li H, Bi Z, Zhang S, Wei Y, Bai J, Zhang R, Ma X, Ma B, Zhang L, Xie C, Ning W, Zhou H, Yang C. Byakangelicin protects against carbon tetrachloride-induced liver injury and fibrosis in mice. J Cell Mol Med 2020; 24:8623-8635. [PMID: 32643868 PMCID: PMC7412405 DOI: 10.1111/jcmm.15493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a disease caused by long-term damage that is related to a number of factors. The current research on the treatment of liver fibrosis mainly focuses on the activation of hepatic stellate cell, in addition to protecting liver cells. byakangelicin has certain anti-inflammatory ability, but its effect on liver fibrosis is unclear. This study aims to explore whether byakangelicin plays a role in the development of liver fibrosis and to explore its mechanism. We determined that byakangelicin has a certain ability to resist fibrosis and reduce liver cell damage in a model of carbon tetrachloride-induced liver fibrosis in mice. Thereafter, we performed further verification in vitro. The signalling pathways of two important pro-fibrotic cytokines, transforming growth factor-β and platelet-derived growth factor, were studied. Results showed that byakangelicin can inhibit related pathways. According to the hepatoprotective effect of byakangelicin observed in animal experiments, we studied the effect of byakangelicin on 4-HNE-induced hepatocyte (HepG2) apoptosis and explored its related pathways. The results showed that byakangelicin could attenuate 4-HNE-induced hepatocyte apoptosis via inhibiting ASK-1/JNK signalling. In conclusion, byakangelicin could improve carbon tetrachloride-induced liver fibrosis and liver injury by inhibiting hepatic stellate cell proliferation and activation and suppressing hepatocyte apoptosis.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuaibo Shao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shanshan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yiying Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jiakun Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ruotong Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoyang Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Bowei Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wen Ning
- College of Life Sciences, Nankai University, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
27
|
Hasby Saad MA, El-Anwar N. Bevacizumab as a potential anti-angiogenic therapy in schistosomiasis: A double-edged, but adjustable weapon. Parasite Immunol 2020; 42:e12724. [PMID: 32338371 DOI: 10.1111/pim.12724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
AIM Investigating the anti-angiogenic effect of bevacizumab on chronic schistosomiasis mansoni in a trial to hinder the Schistosome-induced angiogenesis and porto-systemic shunting complications. METHODS The immunohistochemical expression of CD34, VEGF-R1, PCNA and α-SMA (angiogenesis markers) was analysed in the lung, liver and gastrointestinal junctions of chronic S mansoni infected mice after intraperitoneal injection of bevacizumab. The effect of prolonged administration of bevacizumab with praziquantel was also assessed through parasitic load, protective index, granuloma and fibrous tissue evaluation. RESULTS A regression in the vascular activity and microvascular density was observed in the infected mice after receiving bevacizumab. They had a significantly less VEGF-R1, PCNA, CD-34 and α-SMA expression in comparison to the infected untreated mice. The least tissue egg count was reported in mice received bevacizumab for 6 weeks (Mean = 27 120). However, they had persistent liver granulomas, and massively amalgamated fibrosis. Interestingly, the least faecal egg and tissue worms counts (Mean = 112, 13.4), and the highest protection index (39.26) were reported in mice received bevacizumab for 3 weeks, with marked granuloma, and fibrous tissue resolution. CONCLUSIONS Bevacizumab has a promising protective effect against the Schistosoma-induced angiogenesis. As an adjuvant to praziquantel, it is important to adjust the appropriate duration of administration that achieves the best schistosomicidal effect without impeding granuloma and fibrous tissue resolution.
Collapse
Affiliation(s)
- Marwa A Hasby Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Gharbia Governorate, Egypt
| | - Noha El-Anwar
- Department of Pathology, Tanta University, Faculty of Medicine, Tanta, Egypt
| |
Collapse
|
28
|
Wilson DH, Jarman EJ, Mellin RP, Wilson ML, Waddell SH, Tsokkou P, Younger NT, Raven A, Bhalla SR, Noll ATR, Olde Damink SW, Schaap FG, Chen P, Bates DO, Banales JM, Dean CH, Henderson DJ, Sansom OJ, Kendall TJ, Boulter L. Non-canonical Wnt signalling regulates scarring in biliary disease via the planar cell polarity receptors. Nat Commun 2020; 11:445. [PMID: 31974352 PMCID: PMC6978415 DOI: 10.1038/s41467-020-14283-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
The number of patients diagnosed with chronic bile duct disease is increasing and in most cases these diseases result in chronic ductular scarring, necessitating liver transplantation. The formation of ductular scaring affects liver function; however, scar-generating portal fibroblasts also provide important instructive signals to promote the proliferation and differentiation of biliary epithelial cells. Therefore, understanding whether we can reduce scar formation while maintaining a pro-regenerative microenvironment will be essential in developing treatments for biliary disease. Here, we describe how regenerating biliary epithelial cells express Wnt-Planar Cell Polarity signalling components following bile duct injury and promote the formation of ductular scars by upregulating pro-fibrogenic cytokines and positively regulating collagen-deposition. Inhibiting the production of Wnt-ligands reduces the amount of scar formed around the bile duct, without reducing the development of the pro-regenerative microenvironment required for ductular regeneration, demonstrating that scarring and regeneration can be uncoupled in adult biliary disease and regeneration.
Collapse
Affiliation(s)
- D H Wilson
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - E J Jarman
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - R P Mellin
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
- Infectious Diseases and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - M L Wilson
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - S H Waddell
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - P Tsokkou
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - N T Younger
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - A Raven
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - S R Bhalla
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Centre for Cancer Science, Queen's Medical Centre, Nottingham, UK
| | - A T R Noll
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
| | - S W Olde Damink
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - F G Schaap
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - P Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - D O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Centre for Cancer Science, Queen's Medical Centre, Nottingham, UK
- COMPARE University of Birmingham and University of Nottingham Midlands, Birmingham, UK
| | - J M Banales
- Biodonostia HRI, CIBERehd, Ikerbasque, San Sebastian, Spain
| | - C H Dean
- National Heart and Lung Institute, Imperial College London, London, UK
| | - D J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - O J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - T J Kendall
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - L Boulter
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK.
| |
Collapse
|
29
|
Ryu H, Ahn SJ, Yoon JH, Lee JM. Inter-platform reproducibility of liver stiffness measured with two different point shear wave elastography techniques and 2-dimensional shear wave elastography using the comb-push technique. Ultrasonography 2019; 38:345-354. [PMID: 31500403 PMCID: PMC6769187 DOI: 10.14366/usg.19001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/13/2019] [Accepted: 03/23/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The purpose of this study was to compare the technical success rate and reliability of measurements made using three shear wave elastography (SWE) techniques and to assess the inter-platform reproducibility of the resultant liver stiffness measurements. METHODS This prospective study included 54 patients with liver disease. Liver stiffness (LS) measurements were obtained using 2-point SWE techniques (Virtual Touch Quantification and S-Shearwave) and 2-dimensional (2D) SWE, with transient elastography (TE) serving as the reference standard. The technical success rates and measurement reliability of the three techniques were compared. LS values measured using the three SWE techniques and TE were compared using Spearman correlation coefficients and 95% Bland-Altman limits of agreement. Intra-class correlation coefficients (ICC) were used to analyze the inter-platform reproducibility of LS measurements. RESULTS The three SWE techniques and TE showed similar technical success rates (P=0.682) but demonstrated significant differences in the reliability of LS measurements (P=0.006) and mean LS measurements (P<0.001). Despite strong correlations (r=0.73-0.94) between SWE systems, various degrees of inter-platform reproducibility (ICC, 0.58-0.92) were observed for the three SWE techniques. The best agreement was observed between S-Shearwave and TE (ICC, 0.92), and the worst agreement was observed between 2D-SWE and TE (ICC, 0.58). In the BlandAltman analysis, a tendency toward lower LS values with the three SWE techniques than with TE in patients with F3 and F4 disease was observed. CONCLUSION Significant inter-system variability was observed in LS measurements made using the three SWE techniques. Therefore, LS values measured using different SWE techniques should not be used interchangeably for longitudinal follow-up.
Collapse
Affiliation(s)
- Hwaseong Ryu
- Department of Radiology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Su Joa Ahn
- Department of Radiology, Gachon University Gil Medical Center, Incheon, Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
30
|
Lo Y, Sauve JP, Menzies SC, Steiner TS, Sly LM. Phosphatidylinositol 3-kinase p110δ drives intestinal fibrosis in SHIP deficiency. Mucosal Immunol 2019; 12:1187-1200. [PMID: 31358861 DOI: 10.1038/s41385-019-0191-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/23/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023]
Abstract
Crohn's disease is an immune-mediated disease characterized by inflammation along the gastrointestinal tract. Fibrosis requiring surgery occurs in one-third of people with Crohn's disease but there are no treatments for intestinal fibrosis. Mice deficient in the SH2 domain-containing inositolpolyphosphate 5'-phosphatase (SHIP), a negative regulator of phosphatidylinositol 3-kinase (PI3K) develop spontaneous Crohn's disease-like intestinal inflammation and arginase I (argI)-dependent fibrosis. ArgI is up-regulated in SHIP deficiency by PI3Kp110δ activity. Thus, we hypothesized that SHIP-deficient mice develop fibrosis due to increased PI3Kp110δ activity. In SHIP-deficient mice, genetic ablation or pharmacological inhibition of PI3Kp110δ activity reduced intestinal fibrosis, including muscle thickening, accumulation of vimentin+ mesenchymal cells, and collagen deposition. PI3Kp110δ deficiency or inhibition also reduced ileal inflammation in SHIP-deficient mice suggesting that PI3Kp110δ may contribute to inflammation. Targeting PI3Kp110δ activity may be an effective strategy to reduce intestinal fibrosis, and may be particularly effective in the subset of people with Crohn's disease, who have low SHIP activity.
Collapse
Affiliation(s)
- Young Lo
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jean Philippe Sauve
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Susan C Menzies
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Theodore S Steiner
- Division of Infectious Diseases, Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Moon SH, Lee CM, Park SH, Jin Nam M. Effects of hepatocyte growth factor gene-transfected mesenchymal stem cells on dimethylnitrosamine-induced liver fibrosis in rats. Growth Factors 2019; 37:105-119. [PMID: 31452434 DOI: 10.1080/08977194.2019.1652399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nowadays, transplantation of human mesenchymal stem cells (MSCs) has emerged as a potential cellular therapy for liver cirrhosis. Hepatocyte growth factor (HGF) plays an important role in the regeneration of the liver. The objective of the study was to investigate the therapeutic effect of HGF-transfected human umbilical cord blood-derived MSCs on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. HGF-transfected MSCs were transplanted into rats with DMN-induced liver fibrosis. H2O2-induced cytotoxicity, apoptosis and intracellular reactive oxygen species were reduced in HGF-transfected MSCs in HGF-transfected MSCs. Pro-apoptotic proteins, such as cleaved poly (ADP-ribose) polymerase and cleaved caspase-3, were decreased in HGF-transfected MSCs. Biochemical analysis showed that the levels of aspartate aminotransferase and alanine aminotransferase were decreased after transplantation of HGF-transfected MSCs in rat fibrosis. Trichrome staining showed that HGF-transfected MSCs reduced liver damage. Taken together, our study indicated that HGF-transfected MSCs have therapeutic effects on DMN-induced liver fibrosis in rats.
Collapse
Affiliation(s)
- Soung Hoon Moon
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - Chang Min Lee
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
- HanCell Inc, Seongnam, Republic of Korea
| |
Collapse
|
32
|
Alomar MY, Al-Attar AM. Effect of Basil Leaves Extract on Liver Fibrosis Induced by Thioacetamide in Male Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.478.485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Li J, Woolbright BL, Zhao W, Wang Y, Matye D, Hagenbuch B, Jaeschke H, Li T. Sortilin 1 Loss-of-Function Protects Against Cholestatic Liver Injury by Attenuating Hepatic Bile Acid Accumulation in Bile Duct Ligated Mice. Toxicol Sci 2019; 161:34-47. [PMID: 28453831 DOI: 10.1093/toxsci/kfx078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sortilin 1 (Sort1) is an intracellular trafficking receptor that mediates protein sorting in the endocytic or secretory pathways. Recent studies revealed a role of Sort1 in the regulation of cholesterol and bile acid (BA) metabolism. This study further investigated the role of Sort1 in modulating BA detoxification and cholestatic liver injury in bile duct ligated mice. We found that Sort1 knockout (KO) mice had attenuated liver injury 24 h after bile duct ligation (BDL), which was mainly attributed to less bile infarct formation. Sham-operated Sort1 KO mice had about 20% larger BA pool size than sham-operated wildtype (WT) mice, but 24 h after BDL Sort1 KO mice had significantly attenuated hepatic BA accumulation and smaller BA pool size. After 14 days BDL, Sort1 KO mice showed significantly lower hepatic BA concentration and reduced expression of inflammatory and fibrotic marker genes, but similar degree of liver fibrosis compared with WT mice. Unbiased quantitative proteomics revealed that Sort1 KO mice had increased hepatic BA sulfotransferase 2A1, but unaltered phase-I BA metabolizing cytochrome P450s or phase-III BA efflux transporters. Consistently, Sort1 KO mice showed elevated plasma sulfated taurocholate after BDL. Finally, we found that liver Sort1 was repressed after BDL, which may be due to BA activation of farnesoid x receptor. In conclusion, we report a role of Sort1 in the regulation of hepatic BA detoxification and cholestatic liver injury in mice. The mechanisms underlying increased hepatic BA elimination in Sort1 KO mice after BDL require further investigation.
Collapse
Affiliation(s)
- Jibiao Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Wen Zhao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - David Matye
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
34
|
Pan LX, Li LY, Zhou H, Cheng SQ, Liu YM, Lian PP, Li L, Wang LL, Rong SJ, Shen CP, Li J, Xu T. TMEM100 mediates inflammatory cytokines secretion in hepatic stellate cells and its mechanism research. Toxicol Lett 2019; 317:82-91. [PMID: 30639579 DOI: 10.1016/j.toxlet.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/31/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Recent studies have shown that Transmembrane protein 100 (TMEM100) is a gene at locus 17q32 encoding a 134-amino acid protein with two hypothetical transmembrane domainsa, and first identified as a transcript from the mouse genome. As a downstream target gene of bone morphogenetic protein (BMP)-activin receptor-like kinase 1 (ALK1) signaling, it was activated to participate in inducing arterial endothelium differentiation, maintaining vascular integrity, promoting cell apoptosis, inhibiting metastasis and proliferation of cancer cells. However, evidence for the function of TMEM100 in inflammation is still limited. In this study, we explore the role of TMEM100 in inflammatory cytokine secretion and the role of MAPK signaling pathways in tumor necrosis factor-alpha (TNF-α)-induced TMEM100 expression in LX-2 cells. We found that the expression of TMEM100 was decreased markedly in human liver fibrosis tissues, and its expression was also inhibited in LX-2 cells induced by TNF-α, suggesting that it might be associated with the development of inflammation. Therefore, we demonstrated that overexpression of TMEM100 by transfecting pEGFP-C2-TMEM100 could lead to the down-regulation of IL-1β and IL-6 secretion. Moreover, we found that expression changes of TMEM100 could be involved in inhibition or activation of MAPK signaling pathways accompanied with regulating phosphorylation levels of ERK and JNK protein in response to TNF-α. These results suggested that TMEM100 might play an important role in the secretion of inflammatory cytokines (IL-1β and IL-6) of LX-2 cells induced by TNF-α, and MAPK (ERK and JNK) signaling pathways might participate in its induction of expression.
Collapse
Affiliation(s)
- Lin-Xin Pan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Liang-Yun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Hong Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Cancer Hospital, West Branch of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Shu-Qi Cheng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yu-Min Liu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Pan-Pan Lian
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Li Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China; Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Le-le Wang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Shan-Jie Rong
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Chuan-Pu Shen
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
35
|
Argemi J, Bataller R. Identifying New Epigenetic Drivers of Liver Fibrosis. Cell Mol Gastroenterol Hepatol 2018; 7:237-238. [PMID: 30539791 PMCID: PMC6282870 DOI: 10.1016/j.jcmgh.2018.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/28/2022]
Affiliation(s)
| | - Ramon Bataller
- Correspondence Address correspondence to: Ramon Bataller, MD, Center for Liver Diseases, Pittsburgh Research Center, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
36
|
Sharawy MH, Abdel-Rahman N, Megahed N, El-Awady MS. Paclitaxel alleviates liver fibrosis induced by bile duct ligation in rats: Role of TGF-β1, IL-10 and c-Myc. Life Sci 2018; 211:245-251. [PMID: 30243650 DOI: 10.1016/j.lfs.2018.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/06/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
Abstract
Liver fibrosis is a global health issue that causes morbidity and mortality with no currently available treatment. It has been shown that low dose paclitaxel (PTX) can stabilize microtubules and inhibit the profibrotic transforming growth factor-beta 1 (TGF-β1) signaling pathway. In this study the effect of treatment with low dose PTX was examined using a model of cholestatic liver fibrosis. Bile-duct ligation (BDL) was induced in rats for 2 weeks then PTX (0.3 mg/kg/ip) was administered three times a week for 2 weeks. Administration of PTX ameliorated BDL-induced elevation in biomarkers of hepatocellular damage (alanine transaminase; ALT and aspartate transaminase; AST) and obstructive cholestatic injury (total bilirubin and gamma glutamyl transferase; γ-GT). PTX was able to correct the increase in liver weight to body weight ratio and the bile duct proliferation induced by BDL. Additionally, PTX treatment corrected the BDL-induced fibrosis of portal tracts, elevation of hydroxyproline content and increased alpha smooth muscle actin (α-SMA) mRNA and protein expression. This antifibrotic effect of PTX was further examined through its inhibitory effect on TGF-β1 mRNA and protein expression in addition to c-Myc mRNA expression. Furthermore, PTX rectified the BDL-induced decrease in interleukin-10 (IL-10) mRNA and protein expression. In conclusion, this study suggests that PTX at low dose has the potential to treat BDL-induced liver fibrosis in rats possibly through suppression of TGF-β1 and c-Myc and activation of IL-10 pathways.
Collapse
Affiliation(s)
- Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Nirmeen Megahed
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
37
|
Wahlang B, McClain C, Barve S, Gobejishvili L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 2018; 49:105-115. [PMID: 29902522 PMCID: PMC6445381 DOI: 10.1016/j.cellsig.2018.06.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.
Collapse
Affiliation(s)
- Banrida Wahlang
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA
| | - Craig McClain
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA; Robley Rex Louisville VAMC, Louisville, KY, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
38
|
Wei W, Jiang F, Liu XC, Su Q. TMEM9 mediates IL-6 and IL-1β secretion and is modulated by the Wnt pathway. Int Immunopharmacol 2018; 63:253-260. [PMID: 30119033 DOI: 10.1016/j.intimp.2018.07.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
Novel studies have shown that the Transmembrane protein 9 (TMEM9) gene is localized at 1q41 and encodes a protein consisting of 183 amino acids with an N-terminus containing many important domains. As a novel human transmembrane protein, TMEM9 is highly conserved in species from Caenorhabditis elegans to humans and is widely expressed in many tissues and cells. Moreover, TMEM9 may play an important role in intracellular transport and the growth of hepatoma cells. However, evidence for the function of TMEM9 in inflammation is still limited. We studied the expression of TMEM9 and its effect on cytokine secretion in tumor necrosis factor-alpha (TNF-α)-induced LX-2 cells. We proved that overexpression of TMEM9 by transfection with pEGFP-C2-TMEM9 may increase the expression of IL-6 and IL-1β in LX-2 cells. At the same time, knockdown of TMEM9 expression by transfection with a TMEM9-siRNA decreased IL-6 and IL-1β secretion in LX-2 cells. Additionally, our results proved that overexpression of TMEM9 enhanced the protein expression levels of the canonical Wnt/β-catenin accompanied by an upregulation of wnt2b, wnt3a and β-catenin protein levels in LX-2 cells treated with TNF-α. These results indicate that TMEM9 plays a significant role in TNF-α-enhanced cytokines (IL-6 and IL-1β) secretion in LX-2 cells and that the canonical Wnt/β-catenin signaling pathway is involved in the induction of these cytokine expressions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, The First People's Hospital of Huainan, Huainan 232007, China
| | - Fei Jiang
- Hefei institute for food and drug control, Hefei 230001, China
| | - Xiao-Chang Liu
- Department of Gastroenterology, The First Affiliate Hospital of Anhui Medical University, Jixi Road No 218, Hefei, Anhui Province, 230032, China.
| | - Qian Su
- Department of infectious diseases, The First Affiliate Hospital of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
39
|
Kabil SL. Beneficial effects of cilostazol on liver injury induced by common bile duct ligation in rats: Role of SIRT1 signaling pathway. Clin Exp Pharmacol Physiol 2018; 45:1341-1350. [DOI: 10.1111/1440-1681.13004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Soad L. Kabil
- Department of Pharmacology; Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
40
|
Effect of Curcumin and Gliotoxin on Rat Liver Myofibroblast Culture. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-017-0494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Auci DL, Egilmez NK, Dryden GW. Anti-Fibrotic Potential of All Trans Retinoic Acid in Inflammatory Bowel Disease. ACTA ACUST UNITED AC 2018; 6. [PMID: 30740522 DOI: 10.15226/2374-815x/6/3/001126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Nejat K Egilmez
- University of Louisville, Department of Microbiology and Immunology, Louisville, KY, USA
| | - Gerald W Dryden
- University of Louisville, Division of Gastroenterology, Hepatology, Nutrition Louisville, KY, USA
| |
Collapse
|
42
|
Sevilla P, Cirera A, Dotor J, Gil FJ, Galindo-Moreno P, Aparicio C. In vitro cell response on CP-Ti surfaces functionalized with TGF-β1 inhibitory peptides. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:73. [PMID: 29796827 DOI: 10.1007/s10856-018-6082-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Osseointegration of implants is conversely related to the generation of a fibrous tissue capsule around the implant by the host environment. Although TGF-β1 plays many roles in regeneration processes, it is the cytokine to be mostly associated to the production of fibrotic tissue and thus, its inhibition has demonstrated to be beneficial to prevent several fibrotic reactions. Surface biofunctionalization enables the immobilization of biologically active molecules on an implant surface to tailor the biological response of the host. Here, we studied in vitro biological effects of biofunctionalized CP-Ti surfaces with a TGF-β1 inhibitor peptide, P144. A reliable biofunctionalization process that tethers P144 peptides to commercially pure titanium was developed. Differentiation of human mesenchymal stem cells, osteoblasts and fibroblasts on P144-functionalized and control surfaces was assessed at the gene expression and protein production levels. Results showed that P144-functionalized surfaces reduced expression and production of fibrotic differentiation markers and increased osteoblastic differentiation markers. Therefore, biofunctionalization of surfaces with TGF-β1 inhibitor peptides are an alternative promising strategy for inducing osseointegration around medical devices and implants.
Collapse
Affiliation(s)
- Pablo Sevilla
- Escola Universitària Salesiana de Sarrià, Pg. Sant Joan Bosco 74, 08017,, Barcelona, Spain.
- Biomaterials, Biomechanics and Tissue Engineering group, Technical University of Catalonia, Pav. E, Av. Diagonal 647,, Barcelona, Spain.
| | - Andrea Cirera
- School of Dentistry, University of Granada, Campus Universitario de Cartuja, s/n, 18071,, Granada, Spain
| | | | - Francisco Javier Gil
- Biomaterials, Biomechanics and Tissue Engineering group, Technical University of Catalonia, Pav. E, Av. Diagonal 647,, Barcelona, Spain
- School of Dentistry, Universitat Internacional de Catalunya, C/ Inmaculada 22,, Barcelona, Spain
| | - Pablo Galindo-Moreno
- School of Dentistry, University of Granada, Campus Universitario de Cartuja, s/n, 18071,, Granada, Spain
| | - Conrado Aparicio
- Department of Restorative Sciences, MDRCBB-Minnesota Dental Research Center for Biomechanics and Biomaterials, University of Minnesota School of Dentistry, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minneapolis, MN, 55455,, USA
| |
Collapse
|
43
|
Andrographolide Ameliorates Liver Fibrosis in Mice: Involvement of TLR4/NF- κB and TGF- β1/Smad2 Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7808656. [PMID: 29743985 PMCID: PMC5878918 DOI: 10.1155/2018/7808656] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/03/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is characterized by activated hepatic stellate cells (HSC) and extracellular matrix accumulation. Blocking the activation of HSC and the inflammation response are two major effective therapeutic strategies for liver fibrosis. In addition to the long history of using andrographolide (Andro) for inflammatory disorders, we aimed at elucidating the pharmacological effects and potential mechanism of Andro on liver fibrosis. In this study, liver fibrosis was induced by carbon tetrachloride (CCl4) and the mice were intraperitoneally injected with Andro for 6 weeks. HSC cell line (LX-2) and primary HSC were also treated with Andro in vitro. Treatment of CCl4-induced mice with Andro decreased the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), Sirius red staining as well as the expression of α smooth muscle actin (α-SMA) and transforming growth factor- (TGF-) β1. Furthermore, the expression of Toll-like receptor (TLR)4 and NF-κB p50 was also inhibited by Andro. Additionally, in vitro data confirmed that Andro treatment not only attenuated the expression of profibrotic and proinflammatory factors but also blocked the TGF-β1/Smad2 and TLR4/NF-κB p50 pathways. These results demonstrate that Andro prevents liver inflammation and fibrosis, which is in correlation with the inhibition of the TGF-β1/Smad2 and TLR4/NF-κB p50 pathways, highlighting Andro as a potential therapeutic strategy for liver fibrosis.
Collapse
|
44
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Cong M, Jia J, Kisseleva T, Brenner DA. The Liver's Response to Injury. ZAKIM AND BOYER'S HEPATOLOGY 2018:77-83.e5. [DOI: 10.1016/b978-0-323-37591-7.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
46
|
TMEM88 mediates inflammatory cytokines secretion by regulating JNK/P38 and canonical Wnt/β-catenin signaling pathway in LX-2 cells. Inflammopharmacology 2017; 26:1339-1348. [DOI: 10.1007/s10787-017-0419-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
47
|
Yazdani S, Bansal R, Prakash J. Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Adv Drug Deliv Rev 2017; 121:101-116. [PMID: 28720422 DOI: 10.1016/j.addr.2017.07.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Myofibroblasts are the key players in extracellular matrix remodeling, a core phenomenon in numerous devastating fibrotic diseases. Not only in organ fibrosis, but also the pivotal role of myofibroblasts in tumor progression, invasion and metastasis has recently been highlighted. Myofibroblast targeting has gained tremendous attention in order to inhibit the progression of incurable fibrotic diseases, or to limit the myofibroblast-induced tumor progression and metastasis. In this review, we outline the origin of myofibroblasts, their general characteristics and functions during fibrosis progression in three major organs: liver, kidneys and lungs as well as in cancer. We will then discuss the state-of-the art drug targeting technologies to myofibroblasts in context of the above-mentioned organs and tumor microenvironment. The overall objective of this review is therefore to advance our understanding in drug targeting to myofibroblasts, and concurrently identify opportunities and challenges for designing new strategies to develop novel diagnostics and therapeutics against fibrosis and cancer.
Collapse
Affiliation(s)
- Saleh Yazdani
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; ScarTec Therapeutics BV, Enschede, The Netherlands.
| |
Collapse
|
48
|
Kamal S, Khan MA, Seth A, Cholankeril G, Gupta D, Singh U, Kamal F, Howden CW, Stave C, Nair S, Satapathy SK, Ahmed A. Beneficial Effects of Statins on the Rates of Hepatic Fibrosis, Hepatic Decompensation, and Mortality in Chronic Liver Disease: A Systematic Review and Meta-Analysis. Am J Gastroenterol 2017; 112:1495-1505. [PMID: 28585556 DOI: 10.1038/ajg.2017.170] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Statins may improve outcomes in patients with chronic liver disease (CLD). We conducted a systematic review and meta-analysis to evaluate the impact of statins in the setting of CLD. METHODS We searched several databases from inception to 17 October 2016 to identify comparative studies evaluating the role of statins in CLD. Outcomes of interest were the associations between statin use and progression of fibrosis, development of hepatic decompensation in cirrhosis, and mortality in CLD. Adjusted hazard ratios (HRs) were pooled and analyzed using a random effects model. Subgroup analyses were performed based on the method of detection for progression of hepatic fibrosis and quality of studies. RESULTS We included 10 studies (1 randomized controlled trial and 9 observational) with 259,453 patients (54,441 statin users and 205,012 nonusers). For progression of hepatic fibrosis, pooled HR (95% confidence interval) was 0.49 (0.39-0.62). On subgroup analysis of studies using ICD-9 (The International Classification of Diseases, Ninth Revision) coding and a second method to detect cirrhosis, pooled HR was 0.58 (0.51-0.65); pooled HR for studies using ICD-9 coding only was 0.36 (0.29-0.44). For progression of fibrosis in patients with hepatitis C virus (HCV) infection, pooled HR was 0.52 (0.37-0.73). For hepatic decompensation in cirrhosis, pooled HR was 0.54 (0.46-0.65). For mortality, pooled HR based on observational studies was 0.67 (0.46-0.98); in the randomized controlled trial, HR was 0.39 (0.15-0.99). However, the quality of evidence for these associations is low as most included studies were retrospective in nature and limited by residual confounding. CONCLUSIONS Statins may retard the progression of hepatic fibrosis, may prevent hepatic decompensation in cirrhosis, and may reduce all-cause mortality in patients with CLD. As the quality (certainty) of evidence is low, further studies are needed before statins can be routinely recommended.
Collapse
Affiliation(s)
- Sehrish Kamal
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Muhammad Ali Khan
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ankur Seth
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - George Cholankeril
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Deepansh Gupta
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Utkarsh Singh
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Faisal Kamal
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Colin W Howden
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christopher Stave
- Lane Medical Library, Stanford University, Stanford, California, USA
| | - Satheesh Nair
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sanjaya K Satapathy
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
49
|
Ma X, Sun D, Li C, Ying J, Yan Y. Statin use and virus-related cirrhosis: A systemic review and meta-analysis. Clin Res Hepatol Gastroenterol 2017; 41:533-542. [PMID: 28866088 DOI: 10.1016/j.clinre.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND/OBJECTIVES Liver cirrhosis and its complications are important factors contributing to mortality worldwide. Statin use is probably associated with lower risk of hepatic decompensation and mortality, but not with cirrhosis or fibrosis progression according to a recent systematic review. We aimed to evaluate the definite effects of statins on the risk of virus-related cirrhosis. METHODS We systematically searched four databases up to May 7, 2017, without language restriction. Studies were included if they evaluated and clearly defined exposure to statins, reported fibrosis progression, risk of cirrhosis in patients with chronic viral hepatitis or decompensation in cirrhotic patients, and reported relative risks (RRs) or odds ratios (ORs), or provided data for their estimation. Pooled RRs (or ORs) with 95% confidence intervals were calculated using the random-effects models irrespective of statistical heterogeneity assessed with the Cochran's Q statistic and I2 statistic. RESULTS Ten observational studies involving 12,3445 patients (8 cohort studies, n=12,1823; 1 nested case-control, n=1350; and 1 abstract, n=272) were included. Statin use was associated with a statistically significant 51% reduction in the risk of virus-related cirrhosis (pooled RRs, 0.49; 95% CI, 0.30-0.80; P=0.004), with substantial heterogeneity (I2=98.3%; P<0.001). Statin use was also associated with a 51% reduction in the risk of decompensation (pooled RRs, 0.49; 95% CI, 0.41-0.59; P<0.001), which was statistically significant, with no heterogeneity (I2=33.8%; P=0.210). CONCLUSIONS The meta-analysis showed that statin use was associated with a significantly reduced risk of virus-related cirrhosis and decompensation. However, these results should be interpreted with caution given the possibility of residual confounding. Large randomized controlled trials are warranted in future studies.
Collapse
Affiliation(s)
- Xiaosong Ma
- Department of Infection, People's Hospital of Xuyi, No. 28 Hongwu Road, Economic Development Zone, Xuyi, Jiangsu, PR China.
| | - Dehong Sun
- Department of Gastroenterology, People's Hospital of Xuyi, Xuyi, Jiangsu, PR China
| | - Chuansheng Li
- Department of Infection, People's Hospital of Xuyi, No. 28 Hongwu Road, Economic Development Zone, Xuyi, Jiangsu, PR China
| | - Jie Ying
- Department of Infection, People's Hospital of Xuyi, No. 28 Hongwu Road, Economic Development Zone, Xuyi, Jiangsu, PR China
| | - Youde Yan
- Department of Infection, the First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, PR China
| |
Collapse
|
50
|
Wang Y, Xiong J, Niu M, Chen X, Gao L, Wu Q, Zheng K, Xu K. Statins and the risk of cirrhosis in hepatitis B or C patients: a systematic review and dose-response meta-analysis of observational studies. Oncotarget 2017; 8:59666-59676. [PMID: 28938670 PMCID: PMC5601766 DOI: 10.18632/oncotarget.19611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B and hepatitis C are leading causes of chronic liver disease, particularly cirrhosis. Recently, several studies have observed that statins have an inverse relationship with cirrhosis in hepatitis B or C patients. However, no published meta-analysis studied the protective effect of statins on cirrhosis. Thus, we conducted a systematic review and meta-analysis of published observational studies to better understand the relationship between statins and the risk of cirrhosis. Relevant studies were identified by searching PubMed, EMBASE, and ISI Web of Science for articles published before April 2017. The Newcastle-Ottawa Scale was used to evaluate the quality of the included studies. Six cohort studies, including 38951 cases of cirrhosis in 263573 patients with hepatitis B or C, were identified to investigate the relationship between statins and the risk of cirrhosis. The Newcastle-Ottawa Scale scores for the included studies ranged from 6 to 9, with four high-quality studies and only two of medium quality. The use of statins was associated with a significant 42% reduction in the risk of cirrhosis, without obvious heterogeneity. In addition, this protective effect was more obvious in Asian countries. Moreover, dose-response analysis suggested each additional 50 cumulative defined daily doses (cDDD) of statins decreases the risk of cirrhosis by 11% (odds ratio [OR] = 0.89, 95% confidence interval [CI] = 0.86-0.93, p = 0.001). In summary, statin use is associated with a decreased incidence rate of cirrhosis and is most pronounced in Eastern countries but also in Western countries.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianping Xiong
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Chen
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Long Gao
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qirun Wu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kechuang Zheng
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ke Xu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|