1
|
Ma T, Rothschild J, Halabeya F, Zilman A, Milstein JN. Mechanics limits ecological diversity and promotes heterogeneity in confined bacterial communities. Proc Natl Acad Sci U S A 2024; 121:e2322321121. [PMID: 38728226 PMCID: PMC11098131 DOI: 10.1073/pnas.2322321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Jeremy Rothschild
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Faisal Halabeya
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Joshua N. Milstein
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| |
Collapse
|
2
|
Valiei A, Bryche JF, Canva M, Charette PG, Moraes C, Hill RJ, Tufenkji N. Effects of Surface Topography and Cellular Biomechanics on Nanopillar-Induced Bactericidal Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9614-9625. [PMID: 38378485 DOI: 10.1021/acsami.3c09552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Bacteria are mechanically resistant biological structures that can sustain physical stress. Experimental data, however, have shown that high-aspect-ratio nanopillars deform bacterial cells upon contact. If the deformation is sufficiently large, it lyses the bacterial cell wall, ultimately leading to cell death. This has prompted a novel strategy, known as mechano-bactericide technology, to fabricate antibacterial surfaces. Although adhesion forces were originally proposed as the driving force for mechano-bactericidal action, it has been recently shown that external forces, such as capillary forces arising from an air-water interface at bacterial surfaces, produce sufficient loads to rapidly kill bacteria on nanopillars. This discovery highlights the need to theoretically examine how bacteria respond to external loads and to ascertain the key factors. In this study, we developed a finite element model approximating bacteria as elastic shells filled with cytoplasmic fluid brought into contact with an individual nanopillar or nanopillar array. This model elucidates that bacterial killing caused by external forces on nanopillars is influenced by surface topography and cell biomechanical variables, including the density and arrangement of nanopillars, in addition to the cell wall thickness and elastic modulus. Considering that surface topography is an important design parameter, we performed experiments using nanopillar arrays with precisely controlled nanopillar diameters and spacing. Consistent with model predictions, these demonstrate that nanopillars with a larger spacing increase bacterial susceptibility to mechanical puncture. The results provide salient insights into mechano-bactericidal activity and identify key design parameters for implementing this technology.
Collapse
Affiliation(s)
- Amin Valiei
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Jean-François Bryche
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Michael Canva
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Paul G Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Québec H3A 0G4, Canada
| | - Reghan J Hill
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| |
Collapse
|
3
|
Sayed FAZ, Eissa NG, Shen Y, Hunstad DA, Wooley KL, Elsabahy M. Morphologic design of nanostructures for enhanced antimicrobial activity. J Nanobiotechnology 2022; 20:536. [PMID: 36539809 PMCID: PMC9768920 DOI: 10.1186/s12951-022-01733-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Despite significant progress in synthetic polymer chemistry and in control over tuning the structures and morphologies of nanoparticles, studies on morphologic design of nanomaterials for the purpose of optimizing antimicrobial activity have yielded mixed results. When designing antimicrobial materials, it is important to consider two distinctly different modes and mechanisms of activity-those that involve direct interactions with bacterial cells, and those that promote the entry of nanomaterials into infected host cells to gain access to intracellular pathogens. Antibacterial activity of nanoparticles may involve direct interactions with organisms and/or release of antibacterial cargo, and these activities depend on attractive interactions and contact areas between particles and bacterial or host cell surfaces, local curvature and dynamics of the particles, all of which are functions of nanoparticle shape. Bacteria may exist as spheres, rods, helices, or even in uncommon shapes (e.g., box- and star-shaped) and, furthermore, may transform into other morphologies along their lifespan. For bacteria that invade host cells, multivalent interactions are involved and are dependent upon bacterial size and shape. Therefore, mimicking bacterial shapes has been hypothesized to impact intracellular delivery of antimicrobial nanostructures. Indeed, designing complementarities between the shapes of microorganisms with nanoparticle platforms that are designed for antimicrobial delivery offers interesting new perspectives toward future nanomedicines. Some studies have reported improved antimicrobial activities with spherical shapes compared to non-spherical constructs, whereas other studies have reported higher activity for non-spherical structures (e.g., rod, discoid, cylinder, etc.). The shapes of nano- and microparticles have also been shown to impact their rates and extents of uptake by mammalian cells (macrophages, epithelial cells, and others). However, in most of these studies, nanoparticle morphology was not intentionally designed to mimic specific bacterial shape. Herein, the morphologic designs of nanoparticles that possess antimicrobial activities per se and those designed to deliver antimicrobial agent cargoes are reviewed. Furthermore, hypotheses beyond shape dependence and additional factors that help to explain apparent discrepancies among studies are highlighted.
Collapse
Affiliation(s)
- Fatma Al-Zahraa Sayed
- grid.507995.70000 0004 6073 8904School of Biotechnology, Science Academy, Badr University in Cairo, Badr City, Cairo, 11829 Egypt
| | - Noura G. Eissa
- grid.507995.70000 0004 6073 8904School of Biotechnology, Science Academy, Badr University in Cairo, Badr City, Cairo, 11829 Egypt ,grid.31451.320000 0001 2158 2757Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Yidan Shen
- grid.264756.40000 0004 4687 2082Departments of Chemistry, Materials Science and Engineering, and Chemical Engineering, Texas A&M University, College Station, TX 77842 USA
| | - David A. Hunstad
- grid.4367.60000 0001 2355 7002Departments of Pediatrics and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Karen L. Wooley
- grid.264756.40000 0004 4687 2082Departments of Chemistry, Materials Science and Engineering, and Chemical Engineering, Texas A&M University, College Station, TX 77842 USA
| | - Mahmoud Elsabahy
- grid.507995.70000 0004 6073 8904School of Biotechnology, Science Academy, Badr University in Cairo, Badr City, Cairo, 11829 Egypt ,grid.264756.40000 0004 4687 2082Departments of Chemistry, Materials Science and Engineering, and Chemical Engineering, Texas A&M University, College Station, TX 77842 USA ,grid.440875.a0000 0004 1765 2064Misr University for Science and Technology, 6th of October City, Cairo, 12566 Egypt
| |
Collapse
|
4
|
Weber A, Tyrakowski D, Toca-Herrera JL. Power Laws Describe Bacterial Viscoelasticity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15552-15558. [PMID: 36484724 PMCID: PMC9776528 DOI: 10.1021/acs.langmuir.2c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Bacterial cells survive in a wide range of different environments and actively tune their mechanical properties for purposes of growth, movement, division, and nutrition. In Gram-negative bacteria, the cell envelope with its outer membrane and peptidoglycan are the main determinants of mechanical properties and are common targets for the use of antibiotics. The study of bacterial mechanical properties has shown promise in elucidating a structure-function relationship in bacteria, connecting, shape, mechanics, and biochemistry. In this work, we study frequency and time-dependent viscoelastic properties of E. coli cells by atomic force microscopy (AFM). We perform force cycles, oscillatory microrheology, stress relaxation, and creep experiments, and use power law rheology models to fit the experimental results. All data sets could be fitted with the models and provided power law exponents of 0.01 to 0.1 while showing moduli in the range of a few MPa. We provide evidence for the interchangeability of the properties derived from these four different measurement approaches.
Collapse
|
5
|
Serbanescu D, Ojkic N, Banerjee S. Cellular resource allocation strategies for cell size and shape control in bacteria. FEBS J 2022; 289:7891-7906. [PMID: 34665933 PMCID: PMC9016100 DOI: 10.1111/febs.16234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Bacteria are highly adaptive microorganisms that thrive in a wide range of growth conditions via changes in cell morphologies and macromolecular composition. How bacterial morphologies are regulated in diverse environmental conditions is a long-standing question. Regulation of cell size and shape implies control mechanisms that couple the growth and division of bacteria to their cellular environment and macromolecular composition. In the past decade, simple quantitative laws have emerged that connect cell growth to proteomic composition and the nutrient availability. However, the relationships between cell size, shape, and growth physiology remain challenging to disentangle and unifying models are lacking. In this review, we focus on regulatory models of cell size control that reveal the connections between bacterial cell morphology and growth physiology. In particular, we discuss how changes in nutrient conditions and translational perturbations regulate the cell size, growth rate, and proteome composition. Integrating quantitative models with experimental data, we identify the physiological principles of bacterial size regulation, and discuss the optimization strategies of cellular resource allocation for size control.
Collapse
Affiliation(s)
- Diana Serbanescu
- Department of Physics and Astronomy, University College London, UK
| | - Nikola Ojkic
- Department of Physics and Astronomy, University College London, UK
| | | |
Collapse
|
6
|
Zhang H, Chen C, Yang J, Sun B, Lin J, Sun D. Effect of Culture Conditions on Cellulose Production by a Komagataeibacter Xylinus Strain. Macromol Biosci 2022; 22:e2100476. [PMID: 35143121 DOI: 10.1002/mabi.202100476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Indexed: 11/09/2022]
Abstract
Different fermentation conditions cause different shear forces, which have a great influence on BC synthesis. The shearing force activates the conversion of microbial cells to Cel- mutants, and the accumulation of water-soluble exopolysaccharides is also observed. A substrate competitive relationship between these two polysaccharides is found, which is significant in terms of the optimization of cellulose production in commercial processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heng Zhang
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chuntao Chen
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiazhi Yang
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bianjing Sun
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jianbin Lin
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
7
|
Pandur Ž, Dular M, Kostanjšek R, Stopar D. Bacterial cell wall material properties determine E. coli resistance to sonolysis. ULTRASONICS SONOCHEMISTRY 2022; 83:105919. [PMID: 35077964 PMCID: PMC8789596 DOI: 10.1016/j.ultsonch.2022.105919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 05/02/2023]
Abstract
The applications of bacterial sonolysis in industrial settings are plagued by the lack of the knowledge of the exact mechanism of action of sonication on bacterial cells, variable effectiveness of cavitation on bacteria, and inconsistent data of its efficiency. In this study we have systematically changed material properties of E. coli cells to probe the effect of different cell wall layers on bacterial resistance to ultrasonic irradiation (20 kHz, output power 6,73 W, horn type, 3 mm probe tip diameter, 1 ml sample volume). We have determined the rates of sonolysis decay for bacteria with compromised major capsular polymers, disrupted outer membrane, compromised peptidoglycan layer, spheroplasts, giant spheroplasts, and in bacteria with different cell physiology. The non-growing bacteria were 5-fold more resistant to sonolysis than growing bacteria. The most important bacterial cell wall structure that determined the outcome during sonication was peptidoglycan. If peptidoglycan was remodelled, weakened, or absent the cavitation was very efficient. Cells with removed peptidoglycan had sonolysis resistance equal to lipid vesicles and were extremely sensitive to sonolysis. The results suggest that bacterial physiological state as well as cell wall architecture are major determinants that influence the outcome of bacterial sonolysis.
Collapse
Affiliation(s)
- Žiga Pandur
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia; University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, SI-Slovenia
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, SI-Slovenia
| | - Rok Kostanjšek
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia
| | - David Stopar
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia.
| |
Collapse
|
8
|
Winkle JJ, Karamched BR, Bennett MR, Ott W, Josić K. Emergent spatiotemporal population dynamics with cell-length control of synthetic microbial consortia. PLoS Comput Biol 2021; 17:e1009381. [PMID: 34550968 PMCID: PMC8489724 DOI: 10.1371/journal.pcbi.1009381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
The increased complexity of synthetic microbial biocircuits highlights the need for distributed cell functionality due to concomitant increases in metabolic and regulatory burdens imposed on single-strain topologies. Distributed systems, however, introduce additional challenges since consortium composition and spatiotemporal dynamics of constituent strains must be robustly controlled to achieve desired circuit behaviors. Here, we address these challenges with a modeling-based investigation of emergent spatiotemporal population dynamics using cell-length control in monolayer, two-strain bacterial consortia. We demonstrate that with dynamic control of a strain's division length, nematic cell alignment in close-packed monolayers can be destabilized. We find that this destabilization confers an emergent, competitive advantage to smaller-length strains-but by mechanisms that differ depending on the spatial patterns of the population. We used complementary modeling approaches to elucidate underlying mechanisms: an agent-based model to simulate detailed mechanical and signaling interactions between the competing strains, and a reductive, stochastic lattice model to represent cell-cell interactions with a single rotational parameter. Our modeling suggests that spatial strain-fraction oscillations can be generated when cell-length control is coupled to quorum-sensing signaling in negative feedback topologies. Our research employs novel methods of population control and points the way to programming strain fraction dynamics in consortial synthetic biology.
Collapse
Affiliation(s)
- James J Winkle
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Bhargav R Karamched
- Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Matthew R Bennett
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - William Ott
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
9
|
Chaudhary R, Mishra S, Kota S, Misra H. Molecular interactions and their predictive roles in cell pole determination in bacteria. Crit Rev Microbiol 2021; 47:141-161. [PMID: 33423591 DOI: 10.1080/1040841x.2020.1857686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial cell cycle is divided into well-coordinated phases; chromosome duplication and segregation, cell elongation, septum formation, and cytokinesis. The temporal separation of these phases depends upon the growth rates and doubling time in different bacteria. The entire process of cell division starts with the assembly of divisome complex at mid-cell position followed by constriction of the cell wall and septum formation. In the mapping of mid-cell position for septum formation, the gradient of oscillating Min proteins across the poles plays a pivotal role in several bacteria genus. The cues in the cell that defines the poles and plane of cell division are not fully characterized in cocci. Recent studies have shed some lights on molecular interactions at the poles and the underlying mechanisms involved in pole determination in non-cocci. In this review, we have brought forth recent findings on these aspects together, which would suggest a model to explain the mechanisms of pole determination in rod shaped bacteria and could be extrapolated as a working model in cocci.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
10
|
Shao X, Sørensen MH, Xia X, Fang C, Hui TH, Chang RCC, Chu Z, Lin Y. Beading of injured axons driven by tension- and adhesion-regulated membrane shape instability. J R Soc Interface 2020; 17:20200331. [PMCID: PMC7423423 DOI: 10.1098/rsif.2020.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/13/2020] [Indexed: 08/14/2023] Open
Abstract
The formation of multiple beads along an injured axon will lead to blockage of axonal transport and eventually neuron death, and this has been widely recognized as a hallmark of nervous system degeneration. Nevertheless, the underlying mechanisms remain poorly understood. Here, we report a combined experimental and theoretical study to reveal key factors governing axon beading. Specifically, by transecting well-developed axons with a sharp atomic force microscope probe, significant beading of the axons was triggered. We showed that adhesion was not required for beading to occur, although when present strong axon–substrate attachments seemed to set the locations for bead formation. In addition, the beading wavelength, representing the average distance between beads, was found to correlate with the size and cytoskeleton integrity of axon, with a thinner axon or a disrupted actin cytoskeleton both leading to a shorter beading wavelength. A model was also developed to explain these observations which suggest that axon beading originates from the shape instability of the membrane and is driven by the release of work done by axonal tension as well as the reduction of membrane surface energy. The beading wavelength predicted from this theory was in good agreement with our experiments under various conditions. By elucidating the essential physics behind axon beading, the current study could enhance our understanding of how axonal injury and neurodegeneration progress as well as provide insights for the development of possible treatment strategies.
Collapse
Affiliation(s)
- Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China
| | - Maja Højvang Sørensen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xingyu Xia
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China
| | - Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China
| | - Tsz Hin Hui
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
11
|
Harper CE, Hernandez CJ. Cell biomechanics and mechanobiology in bacteria: Challenges and opportunities. APL Bioeng 2020; 4:021501. [PMID: 32266323 PMCID: PMC7113033 DOI: 10.1063/1.5135585] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Physical forces play a profound role in the survival and function of all known forms of life. Advances in cell biomechanics and mechanobiology have provided key insights into the physiology of eukaryotic organisms, but much less is known about the roles of physical forces in bacterial physiology. This review is an introduction to bacterial mechanics intended for persons familiar with cells and biomechanics in mammalian cells. Bacteria play a major role in human health, either as pathogens or as beneficial commensal organisms within the microbiome. Although bacteria have long been known to be sensitive to their mechanical environment, understanding the effects of physical forces on bacterial physiology has been limited by their small size (∼1 μm). However, advancements in micro- and nano-scale technologies over the past few years have increasingly made it possible to rigorously examine the mechanical stress and strain within individual bacteria. Here, we review the methods currently used to examine bacteria from a mechanical perspective, including the subcellular structures in bacteria and how they differ from those in mammalian cells, as well as micro- and nanomechanical approaches to studying bacteria, and studies showing the effects of physical forces on bacterial physiology. Recent findings indicate a large range in mechanical properties of bacteria and show that physical forces can have a profound effect on bacterial survival, growth, biofilm formation, and resistance to toxins and antibiotics. Advances in the field of bacterial biomechanics have the potential to lead to novel antibacterial strategies, biotechnology approaches, and applications in synthetic biology.
Collapse
Affiliation(s)
- Christine E. Harper
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
12
|
Garenne D, Noireaux V. Analysis of Cytoplasmic and Membrane Molecular Crowding in Genetically Programmed Synthetic Cells. Biomacromolecules 2020; 21:2808-2817. [DOI: 10.1021/acs.biomac.0c00513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Garenne
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods. Proc Natl Acad Sci U S A 2020; 117:1902-1909. [PMID: 31932440 DOI: 10.1073/pnas.1914656117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Executing gene circuits by cell-free transcription-translation into cell-sized compartments, such as liposomes, is one of the major bottom-up approaches to building minimal cells. The dynamic synthesis and proper self-assembly of macromolecular structures inside liposomes, the cytoskeleton in particular, stands as a central limitation to the development of cell analogs genetically programmed. In this work, we express the Escherichia coli gene mreB inside vesicles with bilayers made of lipid-polyethylene glycol (PEG). We demonstrate that two-dimensional molecular crowding, emulated by the PEG molecules at the lipid bilayer, is enough to promote the polymerization of the protein MreB at the inner membrane into a sturdy cytoskeleton capable of transforming spherical liposomes into elongated shapes, such as rod-like compartments. We quantitatively describe this mechanism with respect to the size of liposomes, lipid composition of the membrane, crowding at the membrane, and strength of MreB synthesis. So far unexplored, molecular crowding at the surface of synthetic cells emerges as an additional development with potential broad applications. The symmetry breaking observed could be an important step toward compartment self-reproduction.
Collapse
|
14
|
Nikler A, Radišić Biljak V, Čičak H, Marić N, Bejuk D, Poloni JAT, Simundic AM. Escherichia coli spheroplasts in a Croatian patient misclassified by two urine sediment analysers as erythrocytes: case report. Biochem Med (Zagreb) 2019; 29:030801. [PMID: 31624465 PMCID: PMC6784421 DOI: 10.11613/bm.2019.030801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/08/2019] [Indexed: 12/05/2022] Open
Abstract
Introduction It has already been reported that subinhibitory concentrations of β-lactam antibiotics can cause abnormal changes of bacterial forms, such as spheroplasts. Herein we report a case of Croatian male patient with Escherichia coli spheroplasts present in urine after treatment with tazobactam, on the tenth day of hospitalization. The aim of this report is to emphasize the inability of imaging based automated urine analysers to recognize some relatively uncommon forms of bacterial presentation in urine sediment. Materials and methods During routine urine analysis, unusual particles were observed in patient urine. Urine sediment was examined by two urine analysers: Atellica 1500 (Siemens, Germany) and Iris iQ200 (Beckman Coulter, USA). Additionally, urine was sent for culture testing to Microbiology department. Results Both urine analysers didn’t indicate presence of bacteria in urine sediment. Unusual particles observed on the tenth day were classified as erythrocytes by both instruments. Dipstick test showed blood trace and microscopic analysis revealed bacteria in urine. Urine culture was positive for Escherichia coli. Careful examination of urine sediment has confirmed that shapes present in urine were abnormal bacterial forms called spheroplasts. Conclusions Imaging based automated urine analysers are not able to recognize bacterial spheroplasts in urine sediment misclassifying it as erythrocytes. Microscopic examination remains the gold standard for urines with blood trace or negative blood, in which erythrocytes are reported by urine analyser in urine sediment. Failure to identify and follow up such cases may lead to inaccurate treatment decisions and puts patient safety at risk.
Collapse
Affiliation(s)
- Ana Nikler
- Department of Medical Laboratory Diagnostics, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Vanja Radišić Biljak
- Department of Medical Laboratory Diagnostics, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Helena Čičak
- Department of Medical Laboratory Diagnostics, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Nikolina Marić
- Department of Emergency and Intensive Medicine, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Danijela Bejuk
- Department of Clinical Microbiology and Hospital Infections, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Jose Antonio Tesser Poloni
- Carlos Franco Voegeli Clinical Analysis Laboratory, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil.,Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil.,Controllab, Rio de Janeiro, Brazil
| | - Ana-Maria Simundic
- Department of Medical Laboratory Diagnostics, University Hospital "Sveti Duh", Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
Mehrjou B, Mo S, Dehghan-Baniani D, Wang G, Qasim AM, Chu PK. Antibacterial and Cytocompatible Nanoengineered Silk-Based Materials for Orthopedic Implants and Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31605-31614. [PMID: 31385497 DOI: 10.1021/acsami.9b09066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many postsurgical complications stem from bacteria colony formation on the surface of implants, but the usage of antibiotic agents may cause antimicrobial resistance. Therefore, there is a strong demand for biocompatible materials with an intrinsic antibacterial resistance not requiring extraneous chemical agents. In this study, homogeneous nanocones were fabricated by oxygen plasma etching on the surface of natural, biocompatible Bombyx mori silk films. The new hydroxyl bonds formed on the surface of the nanopatterned film by plasma etching increased the surface energy by around 176%. This hydrophilic nanostructure reduced the bacterial attachment by more than 90% for both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and at the same time improved the proliferation of osteoblast cells by 30%. The nanoengineered substrate and pristine silk were cultured for 6 h with three different bacteria concentrations of 107, 105, and 103 CFU mL-1 and the cell proliferation on the nanopatterned samples was significantly higher due to limited bacteria attachment and prevention of biofilm formation. The concept and materials described here reveal a promising alternative to produce biomaterials with an inherent biocompatibility and bacterial resistance simultaneously to mitigate postsurgical infections and minimize the use of antibiotics.
Collapse
Affiliation(s)
- Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Shi Mo
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Dorsa Dehghan-Baniani
- Division of Biomedical Engineering, Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Sai Kung , Hong Kong
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Abdul Mateen Qasim
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| |
Collapse
|
16
|
Mateos-Gil P, Tarazona P, Vélez M. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. FEMS Microbiol Rev 2019; 43:73-87. [PMID: 30376053 DOI: 10.1093/femsre/fuy039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
The bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, self-aggregates into dynamic filaments and guides the assembly of the septal ring on the inner side of the membrane at midcell. This ring constricts the cell during division and is present in most bacteria. Despite exhaustive studies undertaken in the last 25 years after its discovery, we do not yet know the mechanism by which this GTP-dependent self-aggregating protein exerts force on the underlying membrane. This paper reviews recent experiments and theoretical models proposed to explain FtsZ filament dynamic assembly and force generation. It highlights how recent observations of single filaments on reconstituted model systems and computational modeling are contributing to develop new multiscale models that stress the importance of previously overlooked elements as monomer internal flexibility, filament twist and flexible anchoring to the cell membrane. These elements contribute to understand the rich behavior of these GTP consuming dynamic filaments on surfaces. The aim of this review is 2-fold: (1) to summarize recent multiscale models and their implications to understand the molecular mechanism of FtsZ assembly and force generation and (2) to update theoreticians with recent experimental results.
Collapse
Affiliation(s)
- Pablo Mateos-Gil
- Institute of Molecular Biology and Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece
| | - Pedro Tarazona
- Condensed Matter Physics Center (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica CSIC, c/ Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
17
|
Shi H, Bratton BP, Gitai Z, Huang KC. How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction. Cell 2019. [PMID: 29522748 DOI: 10.1016/j.cell.2018.02.050] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell shape matters across the kingdoms of life, and cells have the remarkable capacity to define and maintain specific shapes and sizes. But how are the shapes of micron-sized cells determined from the coordinated activities of nanometer-sized proteins? Here, we review general principles that have surfaced through the study of rod-shaped bacterial growth. Imaging approaches have revealed that polymers of the actin homolog MreB play a central role. MreB both senses and changes cell shape, thereby generating a self-organizing feedback system for shape maintenance. At the molecular level, structural and computational studies indicate that MreB filaments exhibit tunable mechanical properties that explain their preference for certain geometries and orientations along the cylindrical cell body. We illustrate the regulatory landscape of rod-shape formation and the connectivity between cell shape, cell growth, and other aspects of cell physiology. These discoveries provide a framework for future investigations into the architecture and construction of microbes.
Collapse
Affiliation(s)
- Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin P Bratton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Be’er A, Ariel G. A statistical physics view of swarming bacteria. MOVEMENT ECOLOGY 2019; 7:9. [PMID: 30923619 PMCID: PMC6419441 DOI: 10.1186/s40462-019-0153-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/18/2019] [Indexed: 05/18/2023]
Abstract
Bacterial swarming is a collective mode of motion in which cells migrate rapidly over surfaces, forming dynamic patterns of whirls and jets. This review presents a physical point of view of swarming bacteria, with an emphasis on the statistical properties of the swarm dynamics as observed in experiments. The basic physical principles underlying the swarm and their relation to contemporary theories of collective motion and active matter are reviewed and discussed in the context of the biological properties of swarming cells. We suggest a paradigm according to which bacteria have optimized some of their physical properties as a strategy for rapid surface translocation. In other words, cells take advantage of favorable physics, enabling efficient expansion that enhances survival under harsh conditions.
Collapse
Affiliation(s)
- Avraham Be’er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel
| |
Collapse
|
19
|
Emergence of Escherichia coli critically buckled motile helices under stress. Proc Natl Acad Sci U S A 2018; 115:12979-12984. [PMID: 30498027 DOI: 10.1073/pnas.1809374115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria under external stress can reveal unexpected emergent phenotypes. We show that the intensely studied bacterium Escherichia coli can transform into long, highly motile helical filaments poized at a torsional buckling criticality when exposed to minimum inhibitory concentrations of several antibiotics. While the highly motile helices are physically either right- or left-handed, the motile helices always rotate with a right-handed angular velocity [Formula: see text], which points in the same direction as the translational velocity [Formula: see text] of the helix. Furthermore, these helical cells do not swim by a "run and tumble" but rather synchronously flip their spin [Formula: see text] and thus translational velocity-backing up rather than tumbling. By increasing the translational persistence length, these dynamics give rise to an effective diffusion coefficient up to 20 times that of a normal E. coli cell. Finally, we propose an evolutionary mechanism for this phenotype's emergence whereby the increased effective diffusivity provides a fitness advantage in allowing filamentous cells to more readily escape regions of high external stress.
Collapse
|
20
|
Julien JD, Boudaoud A. Elongation and shape changes in organisms with cell walls: A dialogue between experiments and models. ACTA ACUST UNITED AC 2018; 1:34-42. [PMID: 32743126 PMCID: PMC7388974 DOI: 10.1016/j.tcsw.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022]
Abstract
The generation of anisotropic shapes occurs during morphogenesis of almost all organisms. With the recent renewal of the interest in mechanical aspects of morphogenesis, it has become clear that mechanics contributes to anisotropic forms in a subtle interaction with various molecular actors. Here, we consider plants, fungi, oomycetes, and bacteria, and we review the mechanisms by which elongated shapes are generated and maintained. We focus on theoretical models of the interplay between growth and mechanics, in relation with experimental data, and discuss how models may help us improve our understanding of the underlying biological mechanisms.
Collapse
Affiliation(s)
- Jean-Daniel Julien
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 allée d'Italie, 69364 Lyon Cedex 07, France.,Laboratoire de Physique, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
21
|
Pende N, Wang J, Weber PM, Verheul J, Kuru E, Rittmann SKMR, Leisch N, VanNieuwenhze MS, Brun YV, den Blaauwen T, Bulgheresi S. Host-Polarized Cell Growth in Animal Symbionts. Curr Biol 2018; 28:1039-1051.e5. [PMID: 29576473 PMCID: PMC6611161 DOI: 10.1016/j.cub.2018.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/13/2017] [Accepted: 02/15/2018] [Indexed: 01/16/2023]
Abstract
To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog.
Collapse
Affiliation(s)
- Nika Pende
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Jinglan Wang
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Philipp M Weber
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Jolanda Verheul
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School NRB, 77 Avenue Louis Pasteur, Boston, MA, USA
| | - Simon K-M R Rittmann
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Nikolaus Leisch
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Silvia Bulgheresi
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Yap LW, Endres RG. A model of cell-wall dynamics during sporulation in Bacillus subtilis. SOFT MATTER 2017; 13:8089-8095. [PMID: 29057401 DOI: 10.1039/c7sm00818j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To survive starvation, Bacillus subtilis forms durable spores. After asymmetric cell division, the septum grows around the forespore in a process called engulfment, but the mechanism of force generation is unknown. Here, we derived a novel biophysical model for the dynamics of cell-wall remodeling during engulfment based on a balancing of dissipative, active, and mechanical forces. By plotting phase diagrams, we predict that sporulation is promoted by a line tension from the attachment of the septum to the outer cell wall, as well as by an imbalance in turgor pressures in the mother-cell and forespore compartments. We also predict that significant mother-cell growth hinders engulfment. Hence, relatively simple physical principles may guide this complex biological process.
Collapse
Affiliation(s)
- Li-Wei Yap
- Department of Life Sciences, Imperial College, London, UK.
| | | |
Collapse
|
23
|
Xie D. Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review. Front Bioeng Biotechnol 2017; 5:65. [PMID: 29090211 PMCID: PMC5650997 DOI: 10.3389/fbioe.2017.00065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
As one of the major biofuels to replace fossil fuel, biodiesel has now attracted more and more attention due to its advantages in higher energy density and overall less greenhouse gas generation. Biodiesel (fatty acid alkyl esters) is produced by chemically or enzymatically catalyzed transesterification of lipids from microbial cells, microalgae, oil crops, or animal fats. Currently, plant oils or waste cooking oils/fats remain the major source for biodiesel production via enzymatic route, but the production capacity is limited either by the uncertain supplement of plant oils or by the low or inconsistent quality of waste oils/fats. In the past decades, significant progresses have been made on synthesis of microalgae oils directly from CO2via a photosynthesis process, but the production cost from any current technologies is still too high to be commercialized due to microalgae’s slow growth rate on CO2, inefficiency in photo-bioreactors, lack of efficient contamination control methods, and high cost in downstream recovery. At the same time, many oleaginous microorganisms have been studied to produce lipids via the fatty acid synthesis pathway under aerobic fermentation conditions, among them one of the most studied is the non-conventional yeast, Yarrowia lipolytica, which is able to produce fatty acids at very high titer, rate, and yield from various economical substrates. This review summarizes the recent research progresses in both cellular and bioprocess engineering in Y. lipolytica to produce lipids at a low cost that may lead to commercial-scale biodiesel production. Specific technologies include the strain engineering for using various substrates, metabolic engineering in high-yield lipid synthesis, cell morphology study for efficient substrate uptake and product formation, free fatty acid formation and secretion for improved downstream recovery, and fermentation engineering for higher productivities and less operating cost. To further improve the economics of the microbial oil-based biodiesel, production of lipid-related or -derived high-value products are also discussed.
Collapse
Affiliation(s)
- Dongming Xie
- Massachusetts Biomanufacturing Center, Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
24
|
Quint DA, Gopinathan A, Grason GM. Shape Selection of Surface-Bound Helical Filaments: Biopolymers on Curved Membranes. Biophys J 2017; 111:1575-1585. [PMID: 27705779 DOI: 10.1016/j.bpj.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022] Open
Abstract
Motivated to understand the behavior of biological filaments interacting with membranes of various types, we employ a theoretical model for the shape and thermodynamics of intrinsically helical filaments bound to curved membranes. We show that filament-surface interactions lead to a host of nonuniform shape equilibria, in which filaments progressively unwind from their native twist with increasing surface interaction and surface curvature, ultimately adopting uniform-contact curved shapes. The latter effect is due to nonlinear coupling between elastic twist and bending of filaments on anisotropically curved surfaces such as the cylindrical surfaces considered here. Via a combination of numerical solutions and asymptotic analysis of shape equilibria, we show that filament conformations are critically sensitive to the surface curvature in both the strong- and weak-binding limits. These results suggest that local structure of membrane-bound chiral filaments is generically sensitive to the curvature radius of the surface to which it is bound, even when that radius is much larger than the filament's intrinsic pitch. Typical values of elastic parameters and interaction energies for several prokaryotic and eukaryotic filaments indicate that biopolymers are inherently very sensitive to the coupling between twist, interactions, and geometry and that this could be exploited for regulation of a variety of processes such as the targeted exertion of forces, signaling, and self-assembly in response to geometric cues including the local mean and Gaussian curvatures.
Collapse
Affiliation(s)
- David A Quint
- Department of Bioengineering, Stanford University, Stanford, California
| | - Ajay Gopinathan
- Department of Physics, University of California, Merced, Merced, California.
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts.
| |
Collapse
|
25
|
Abstract
We consider an important class of self-assembly problems, and using the formalism of stochastic thermodynamics, we derive a set of design principles for growing controlled assemblies far from equilibrium. The design principles constrain the set of configurations that can be obtained under nonequilibrium conditions. Our central result provides intuition for how equilibrium self-assembly landscapes are modified under finite nonequilibrium drive.
Collapse
|
26
|
Coltharp C, Xiao J. Beyond force generation: Why is a dynamic ring of FtsZ polymers essential for bacterial cytokinesis? Bioessays 2016; 39:1-11. [PMID: 28004447 DOI: 10.1002/bies.201600179] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We propose that the essential function of the most highly conserved protein in bacterial cytokinesis, FtsZ, is not to generate a mechanical force to drive cell division. Rather, we suggest that FtsZ acts as a signal-processing hub to coordinate cell wall synthesis at the division septum with a diverse array of cellular processes, ensuring that the cell divides smoothly at the correct time and place, and with the correct septum morphology. Here, we explore how the polymerization properties of FtsZ, which have been widely attributed to force generation, can also be advantageous in this signal processing role. We suggest mechanisms by which FtsZ senses and integrates both mechanical and biochemical signals, and conclude by proposing experiments to investigate how FtsZ contributes to the remarkable spatial and temporal precision of bacterial cytokinesis.
Collapse
Affiliation(s)
- Carla Coltharp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Ouzounov N, Nguyen JP, Bratton BP, Jacobowitz D, Gitai Z, Shaevitz JW. MreB Orientation Correlates with Cell Diameter in Escherichia coli. Biophys J 2016; 111:1035-43. [PMID: 27602731 PMCID: PMC5018124 DOI: 10.1016/j.bpj.2016.07.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022] Open
Abstract
Bacteria have remarkably robust cell shape control mechanisms. For example, cell diameter only varies by a few percent across a given population. The bacterial actin homolog, MreB, is necessary for establishment and maintenance of rod shape although the detailed properties of MreB that are important for shape control remained unknown. In this study, we perturb MreB in two ways: by treating cells with the polymerization-inhibiting drug A22 and by creating point mutants in mreB. These perturbations modify the steady-state diameter of cells over a wide range, from 790 ± 30 nm to 1700 ± 20 nm. To determine which properties of MreB are important for diameter control, we correlated structural characteristics of fluorescently tagged MreB polymers with cell diameter by simultaneously analyzing three-dimensional images of MreB and cell shape. Our results indicate that the helical pitch angle of MreB inversely correlates with the cell diameter of Escherichia coli. Other correlations between MreB and cell diameter are not found to be significant. These results demonstrate that the physical properties of MreB filaments are important for shape control and support a model in which MreB organizes the cell wall growth machinery to produce a chiral cell wall structure and dictate cell diameter.
Collapse
Affiliation(s)
- Nikolay Ouzounov
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Jeffrey P Nguyen
- Department of Physics, Princeton University, Princeton, New Jersey
| | - Benjamin P Bratton
- Department of Molecular Biology, Princeton University, Princeton, New Jersey; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - David Jacobowitz
- Department of Physics, Princeton University, Princeton, New Jersey
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Joshua W Shaevitz
- Department of Physics, Princeton University, Princeton, New Jersey; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
28
|
Comparative Analysis of UV Irradiation Effects on Escherichia coli and Pseudomonas aeruginosa Bacterial Cells Utilizing Biological and Computational Approaches. Cell Biochem Biophys 2016; 74:381-9. [DOI: 10.1007/s12013-016-0748-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/09/2016] [Indexed: 01/27/2023]
|
29
|
Ali O, Traas J. Force-Driven Polymerization and Turgor-Induced Wall Expansion. TRENDS IN PLANT SCIENCE 2016; 21:398-409. [PMID: 26895732 DOI: 10.1016/j.tplants.2016.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
While many molecular players involved in growth control have been identified in the past decades, it is often unknown how they mechanistically act to induce specific shape changes during development. Plant morphogenesis results from the turgor-induced yielding of the extracellular and load-bearing cell wall. Its mechanochemical equilibrium appears as a fundamental link between molecular growth regulation and the effective shape evolution of the tissue. We focus here on force-driven polymerization of the cell wall as a central process in growth control. We propose that mechanical forces facilitate the insertion of wall components, in particular pectins, a process that can be modulated through genetic regulation. We formalize this idea in a mathematical model, which we subsequently test with published experimental results.
Collapse
Affiliation(s)
- Olivier Ali
- Laboratoire de Reproduction et Développement des Plantes, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Institut National de la Recherche Agronomique (INRA) Centre National de la Recherche Scientifique (CNRS), Lyon, France; Virtual Plants INRIA Team, Unité Mixte de Recherche (UMR) Amélioration Génétique et Adaptation des Plantes (AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche en Informatique et en Automatique (INRIA), INRA, Montpellier, France.
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Institut National de la Recherche Agronomique (INRA) Centre National de la Recherche Scientifique (CNRS), Lyon, France.
| |
Collapse
|
30
|
Abstract
We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to describe the interplay between shape, growth and division in bacterial cells.
Collapse
|
31
|
In Vivo study of naturally deformed Escherichia coli bacteria. J Bioenerg Biomembr 2016; 48:281-91. [PMID: 27026097 DOI: 10.1007/s10863-016-9658-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
A combination of light-microscopy and image processing has been applied to study naturally deformed Escherichia coli under in vivo condition and at the order of sub-pixel high-resolution accuracy. To classify deflagellated non-dividing E. coli cells to the rod-shape and bent-shape, a geometrical approach has been applied. From the analysis of the geometrical data which were obtained of image processing, we estimated the required effective energy for shaping a rod-shape to a bent-shape with the same size. We evaluated the energy of deformation in the naturally deformed bacteria with minimum cell manipulation, under in vivo condition, and with minimum influence of any external force, torque and pressure. Finally, we have also elaborated on the possible scenario to explain how naturally deformed bacteria are formed from initial to final-stage.
Collapse
|
32
|
Bacterial growth and form under mechanical compression. Sci Rep 2015; 5:11367. [PMID: 26086542 PMCID: PMC4471898 DOI: 10.1038/srep11367] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/22/2015] [Indexed: 11/08/2022] Open
Abstract
A combination of physical and chemical processes is involved in determining the bacterial cell shape. In standard medium, Escherichia coli cells are rod-shaped, and maintain a constant diameter during exponential growth. Here, we demonstrate that by applying compressive forces to growing E. coli, cells no longer retain their rod-like shapes but grow and divide with a flat pancake-like geometry. The deformation is reversible: deformed cells can recover back to rod-like shapes in several generations after compressive forces are removed. During compression, the cell elongation rate, proliferation rate, DNA replication rate, and protein synthesis are not significantly altered from those of the normal rod-shaped cells. Quantifying the rate of cell wall growth under compression reveals that the cell wall growth rate depends on the local cell curvature. MreB not only influences the rate of cell wall growth, but also influences how the growth rate scales with cell geometry. The result is consistent with predictions of a mechanochemical model, and suggests an active mechanical role for MreB during cell wall growth. The developed compressive device is also useful for studying a variety of cells in unique geometries.
Collapse
|
33
|
Kadoya R, Matsumoto K, Ooi T, Taguchi S. MtgA Deletion-Triggered Cell Enlargement of Escherichia coli for Enhanced Intracellular Polyester Accumulation. PLoS One 2015; 10:e0125163. [PMID: 26039058 PMCID: PMC4454544 DOI: 10.1371/journal.pone.0125163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/12/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial polyester polyhydroxyalkanoates (PHAs) have been produced in engineered Escherichia coli, which turned into an efficient and versatile platform by applying metabolic and enzyme engineering approaches. The present study aimed at drawing out the latent potential of this organism using genome-wide mutagenesis. To meet this goal, a transposon-based mutagenesis was carried out on E. coli, which was transformed to produce poly(lactate-co-3-hydroxybutyrate) from glucose. A high-throughput screening of polymer-accumulating cells on Nile red-containing plates isolated one mutant that produced 1.8-fold higher quantity of polymer without severe disadvantages in the cell growth and monomer composition of the polymer. The transposon was inserted into the locus within the gene encoding MtgA that takes part, as a non-lethal component, in the formation of the peptidoglycan backbone. Accordingly, the mtgA-deleted strain E. coli JW3175, which was a derivate of superior PHA-producing strain BW25113, was examined for polymer production, and exhibited an enhanced accumulation of the polymer (7.0 g/l) compared to the control (5.2 g/l). Interestingly, an enlargement in cell width associated with polymer accumulation was observed in this strain, resulting in a 1.6-fold greater polymer accumulation per cell compared to the control. This result suggests that the increase in volumetric capacity for accumulating intracellular material contributed to the enhanced polymer production. The mtgA deletion should be combined with conventional engineering approaches, and thus, is a promising strategy for improved production of intracellularly accumulated biopolymers.
Collapse
Affiliation(s)
- Ryosuke Kadoya
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ken'ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshihiko Ooi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Seiichi Taguchi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
34
|
Cell size modulates oscillation, positioning and length of mitotic spindles. Sci Rep 2015; 5:10504. [PMID: 26015263 PMCID: PMC4444851 DOI: 10.1038/srep10504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/15/2015] [Indexed: 02/05/2023] Open
Abstract
Mitotic spindle is the main subcellular structure that accomplishes the chromosome segregation between daughter cells during cell division. However, how mitotic spindles sense and control their size, position and movement inside the cell still remains unclear. In this paper, we focus on the size effects of mitotic spindles, i.e., how cell size controls various interesting phenomena in the metaphase, such as oscillation, positioning and size limit of mitotic spindles. We systematically studied the frequency doubling phenomenon during chromosome oscillation and found that cell size can regulate the period and amplitude of chromosome oscillation. We found that the relaxation time of the positioning process increases exponentially with cell size. We also showed that the stabler microtubule-kinetochore attachments alone can directly lead to an upper limit of spindle size. Our work not only explains the existing experimental observations, but also provides some interesting predictions that can be verified or rejected by further experiments.
Collapse
|
35
|
El-Hajj ZW, Newman EB. How much territory can a single E. coli cell control? Front Microbiol 2015; 6:309. [PMID: 25954251 PMCID: PMC4404868 DOI: 10.3389/fmicb.2015.00309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/29/2015] [Indexed: 11/20/2022] Open
Abstract
Bacteria have been traditionally classified in terms of size and shape and are best known for their very small size. Escherichia coli cells in particular are small rods, each 1–2 μ. However, the size varies with the medium, and faster growing cells are larger because they must have more ribosomes to make more protoplasm per unit time, and ribosomes take up space. Indeed, Maaløe’s experiments on how E. coli establishes its size began with shifts between rich and poor media. Recently much larger bacteria have been described, including Epulopiscium fishelsoni at 700 μm and Thiomargarita namibiensis at 750 μm. These are not only much longer than E. coli cells but also much wider, necessitating considerable intracellular organization. Epulopiscium cells for instance, at 80 μm wide, enclose a large enough volume of cytoplasm to present it with major transport problems. This review surveys E. coli cells much longer than those which grow in nature and in usual lab cultures. These include cells mutated in a single gene (metK) which are 2–4 × longer than their non-mutated parent. This metK mutant stops dividing when slowly starved of S-adenosylmethionine but continues to elongate to 50 μm and more. FtsZ mutants have been routinely isolated as long cells which form during growth at 42°C. The SOS response is a well-characterized regulatory network that is activated in response to DNA damage and also results in cell elongation. Our champion elongated E. coli is a metK strain with a further, as yet unidentified mutation, which reaches 750 μm with no internal divisions and no increase in width.
Collapse
Affiliation(s)
- Ziad W El-Hajj
- Department of Biology, Concordia University , Montreal, QC, Canada
| | - Elaine B Newman
- Department of Biology, Concordia University , Montreal, QC, Canada
| |
Collapse
|
36
|
Intergenerational continuity of cell shape dynamics in Caulobacter crescentus. Sci Rep 2015; 5:9155. [PMID: 25778096 PMCID: PMC4894450 DOI: 10.1038/srep09155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/11/2015] [Indexed: 01/15/2023] Open
Abstract
We investigate the intergenerational shape dynamics of single Caulobacter crescentus cells using a novel combination of imaging techniques and theoretical modeling. We determine the dynamics of cell pole-to-pole lengths, cross-sectional widths, and medial curvatures from high accuracy measurements of cell contours. Moreover, these shape parameters are determined for over 250 cells across approximately 10000 total generations, which affords high statistical precision. Our data and model show that constriction is initiated early in the cell cycle and that its dynamics are controlled by the time scale of exponential longitudinal growth. Based on our extensive and detailed growth and contour data, we develop a minimal mechanical model that quantitatively accounts for the cell shape dynamics and suggests that the asymmetric location of the division plane reflects the distinct mechanical properties of the stalked and swarmer poles. Furthermore, we find that the asymmetry in the division plane location is inherited from the previous generation. We interpret these results in terms of the current molecular understanding of shape, growth, and division of C. crescentus.
Collapse
|
37
|
Milkevych V, Batstone DJ. Controlling mechanisms in directional growth of aggregated archaeal cells. SOFT MATTER 2014; 10:9615-9625. [PMID: 25361175 DOI: 10.1039/c4sm01870b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Members of the family Methanosarcinaceae are important archaeal representatives due to their broad functionality, ubiquitous presence, and functionality in harsh environments. A key characteristic is their multicellular (packet) morphology represented by aggregates of spatially confined cells. This morphology is driven by directed growth of cells in confinement with sequential variation in growth direction. To further understand why spatially confined Methanosarcina cells (and in general, confined prokaryotes) change their direction of growth during consecutive growth-division stages, and how a particular cell senses its wall topology and responds to changes on it a theoretical model for stress dependent growth of aggregated archaeal cells was developed. The model utilizes a confined elastic shell representation of aggregated archaeal cell and is derived based on a work-energy principle. The growth law takes into account the fine structure of archaeal cell wall, polymeric nature of methanochondroitin layer, molecular-biochemical processes and is based on thermodynamic laws. The developed model has been applied to three typical configurations of aggregated cell in 3D. The developed model predicted a geometry response with delayed growth of aggregated archaeal cells explained from mechanistic principles, as well as continuous changes in direction of growth during the consecutive growth-division stages. This means that cell wall topology sensing and growth anisotropy can be predicted using simple cellular mechanisms without the need for dedicated cellular machinery.
Collapse
Affiliation(s)
- Viktor Milkevych
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus N, Denmark
| | | |
Collapse
|
38
|
Buske PJ, Mittal A, Pappu RV, Levin PA. An intrinsically disordered linker plays a critical role in bacterial cell division. Semin Cell Dev Biol 2014; 37:3-10. [PMID: 25305578 DOI: 10.1016/j.semcdb.2014.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/13/2014] [Indexed: 02/07/2023]
Abstract
In bacteria, animals, fungi, and many single celled eukaryotes, division is initiated by the formation of a ring of cytoskeletal protein at the nascent division site. In bacteria, the tubulin-like GTPase FtsZ serves as the foundation for the cytokinetic ring. A conserved feature of FtsZ is an intrinsically disordered peptide known as the C-terminal linker. Chimeric experiments suggest the linker acts as a flexible boom allowing FtsZ to associate with the membrane through a conserved C-terminal domain and also modulates interactions both between FtsZ subunits and between FtsZ and modulatory proteins in the cytoplasm.
Collapse
Affiliation(s)
- P J Buske
- Department of Cellular and Molecular Pharmacology and The Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Anuradha Mittal
- Department of Biomedical Engineering & Center for Biological Systems Engineering, Saint Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering & Center for Biological Systems Engineering, Saint Louis, MO 63130, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
39
|
Abstract
The rod is a ubiquitous shape adopted by walled cells from diverse organisms ranging from bacteria to fungi to plants. Although rod-like shapes are found in cells of vastly different sizes and are constructed by diverse mechanisms, the geometric similarities among these shapes across kingdoms suggest that there are common evolutionary advantages, which may result from simple physical principles in combination with chemical and physiological constraints. Here, we review mechanisms of constructing rod-shaped cells and the bases of different biophysical models of morphogenesis, comparing and contrasting model organisms in different kingdoms. We then speculate on possible advantages of the rod shape, and suggest strategies for elucidating the relative importance of each of these advantages.
Collapse
|
40
|
Sun X, Weinlandt WD, Patel H, Wu M, Hernandez CJ. A microfluidic platform for profiling biomechanical properties of bacteria. LAB ON A CHIP 2014; 14:2491-8. [PMID: 24855656 PMCID: PMC4104068 DOI: 10.1039/c3lc51428e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The ability to resist mechanical forces is necessary for the survival and division of bacteria and has traditionally been probed using specialized, low-throughput techniques such as atomic force microscopy and optical tweezers. Here we demonstrate a microfluidic technique to profile the stiffness of individual bacteria and populations of bacteria. The approach is similar to micropipette aspiration used to characterize the biomechanical performance of eukaryotic cells. However, the small size and greater stiffness of bacteria relative to eukaryotic cells prevents the use of micropipettes. Here we present devices with sub-micron features capable of applying loads to bacteria in a controlled fashion. Inside the device, individual bacteria are flowed and trapped in tapered channels. Less stiff bacteria undergo greater deformation and therefore travel further into the tapered channel. Hence, the distance traversed by bacteria into a tapered channel is inversely related to cell stiffness. We demonstrate the ability of the device to characterize hundreds of bacteria at a time, measuring stiffness at 12 different applied loads at a time. The device is shown to differentiate between two bacterial species, E. coli (less stiff) and B. subtilis (more stiff), and detect differences between E. coli submitted to antibiotic treatment from untreated cells of the same species/strain. The microfluidic device is advantageous in that it requires only minimal sample preparation, no permanent cell immobilization, no staining/labeling and maintains cell viability. Our device adds detection of biomechanical phenotypes of bacteria to the list of other bacterial phenotypes currently detectable using microchip-based methods and suggests the feasibility of separating/selecting bacteria based on differences in cell stiffness.
Collapse
Affiliation(s)
- Xuanhao Sun
- Sibley School of Mechanical and Aerospace Engineering, Biomedical Engineering, Cornell University, 219 Upson Hall, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
41
|
Organization of FtsZ filaments in the bacterial division ring measured from polarized fluorescence microscopy. Biophys J 2014; 105:1976-86. [PMID: 24209842 DOI: 10.1016/j.bpj.2013.09.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 12/16/2022] Open
Abstract
Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.
Collapse
|
42
|
Amir A, van Teeffelen S. Getting into shape: How do rod-like bacteria control their geometry? SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:227-35. [PMID: 25136385 DOI: 10.1007/s11693-014-9143-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/29/2022]
Abstract
Rod-like bacteria maintain their cylindrical shapes with remarkable precision during growth. However, they are also capable to adapt their shapes to external forces and constraints, for example by growing into narrow or curved confinements. Despite being one of the simplest morphologies, we are still far from a full understanding of how shape is robustly regulated, and how bacteria obtain their near-perfect cylindrical shapes with excellent precision. However, recent experimental and theoretical findings suggest that cell-wall geometry and mechanical stress play important roles in regulating cell shape in rod-like bacteria. We review our current understanding of the cell wall architecture and the growth dynamics, and discuss possible candidates for regulatory cues of shape regulation in the absence or presence of external constraints. Finally, we suggest further future experimental and theoretical directions which may help to shed light on this fundamental problem.
Collapse
Affiliation(s)
- Ariel Amir
- Department of Physics, Harvard University, Cambridge, MA 02138 USA
| | - Sven van Teeffelen
- Groupe Croissance et Morphogénése Microbienne, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
43
|
Caspi Y. Deformation of filamentous Escherichia coli cells in a microfluidic device: a new technique to study cell mechanics. PLoS One 2014; 9:e83775. [PMID: 24392095 PMCID: PMC3879274 DOI: 10.1371/journal.pone.0083775] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 11/14/2013] [Indexed: 12/27/2022] Open
Abstract
The mechanical properties of bacterial cells are determined by their stress-bearing elements. The size of typical bacterial cells, and the fact that different time and length scales govern their behavior, necessitate special experimental techniques in order to probe their mechanical properties under various spatiotemporal conditions. Here, we present such an experimental technique to study cell mechanics using hydrodynamic forces in a microfluidic device. We demonstrate the application of this technique by calculating the flexural rigidity of non-growing Escherichia coli cells. In addition, we compare the deformation of filamentous cells under growing and non-growing conditions during the deformation process. We show that, at low forces, the force needed to deform growing cells to the same extent as non-growing cells is approximately two times smaller. Following previous works, we interpret these results as the outcome of the difference between the elastic response of non-growing cells and the plastic-elastic response of growing cells. Finally, we observe some heterogeneity in the response of individual cells to the applied force. We suggest that this results from the individuality of different bacterial cells.
Collapse
Affiliation(s)
- Yaron Caspi
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
Model of fission yeast cell shape driven by membrane-bound growth factors and the cytoskeleton. PLoS Comput Biol 2013; 9:e1003287. [PMID: 24146607 PMCID: PMC3798282 DOI: 10.1371/journal.pcbi.1003287] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism) with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular level in the future. Fission yeast is a rod-shaped organism that is studied, in part, as a model for how cells develop and regulate their shape. Despite extensive work identifying effects of genetic mutations and pharmacological treatments on the shape of these cells, there is a lack of mathematical and computational models examining how internal cell signals and the cytoskeleton organize to remodel the cell wall, direct growth at cell tips, and maintain tubular shape. In this work we describe how the spatial distribution of regulatory protein signal at growing cell tips relates to cell diameter. Further, we describe the consequences of this signal depending on the shape of the cell, namely its length and diameter. Finally, we propose a computational model for understanding growth and shape that includes an axis-sensing microtubule system, landmarks delivered to cell tips along those microtubules, and a growth zone signal that moves around but is attracted to the landmarks. This picture explains a large number of reported abnormal shapes in terms of only a few modular components.
Collapse
|
45
|
Association of a D-alanyl-D-alanine carboxypeptidase gene with the formation of aberrantly shaped cells during the induction of viable but nonculturable Vibrio parahaemolyticus. Appl Environ Microbiol 2013; 79:7305-12. [PMID: 24056454 DOI: 10.1128/aem.01723-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a halophilic Gram-negative bacterium that causes human gastroenteritis. When the viable but nonculturable (VBNC) state of this bacterium was induced by incubation at 4°C in Morita minimal salt solution containing 0.5% NaCl, the rod-shaped cells became coccoid, and various aberrantly shaped intermediates were formed in the initial stage. This study examined the factors that influence the formation of these aberrantly shaped cells. The proportion of aberrantly shaped cells was not affected in a medium containing D-cycloserine (50 μg/ml) but was lower in a medium containing cephalosporin C (10 μg/ml) than in the control medium without antibiotics. The proportion of aberrantly shaped cells was higher in a culture medium that contained 0.5% NaCl than in culture media containing 1.0 or 1.5% NaCl. The expression of 15 of 17 selected genes associated with cell wall synthesis was enhanced, and the expression of VP2468 (dacB), which encodes D-alanyl-D-alanine carboxypeptidase, was enhanced the most. The proportion of aberrantly shaped cells was significantly lower in the dacB mutant strain than in the parent strain, but the proportion was restored in the presence of the complementary dacB gene. This study suggests that disturbance of the dynamics of cell wall synthesis by enhanced expression of the VP2468 gene is associated with the formation of aberrantly shaped cells in the initial stage of induction of VBNC V. parahaemolyticus cells under specific conditions.
Collapse
|
46
|
Desmarais SM, De Pedro MA, Cava F, Huang KC. Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly. Mol Microbiol 2013; 89:1-13. [PMID: 23679048 DOI: 10.1111/mmi.12266] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 02/02/2023]
Abstract
The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell wall synthesis and cell growth. High-performance liquid chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition. Here, we present a primer on the basic chemical features of wall structure that can be revealed through HPLC, along with a description of the applications of HPLC PG analyses for interpreting the effects of genetic and chemical perturbations to a variety of bacterial species in different environments. We describe the physical consequences of different PG compositions on cell shape, and review complementary experimental and computational methodologies for PG analysis. Finally, we present a partial list of future targets of development for HPLC and related techniques.
Collapse
|
47
|
van der Ploeg R, Verheul J, Vischer NOE, Alexeeva S, Hoogendoorn E, Postma M, Banzhaf M, Vollmer W, den Blaauwen T. Colocalization and interaction between elongasome and divisome during a preparative cell division phase inEscherichia coli. Mol Microbiol 2013; 87:1074-87. [DOI: 10.1111/mmi.12150] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 11/30/2022]
Affiliation(s)
- René van der Ploeg
- Bacterial Cell Biology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94232; 1090 GE; Amsterdam; the Netherlands
| | - Jolanda Verheul
- Bacterial Cell Biology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94232; 1090 GE; Amsterdam; the Netherlands
| | - Norbert O. E. Vischer
- Bacterial Cell Biology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94232; 1090 GE; Amsterdam; the Netherlands
| | - Svetlana Alexeeva
- Bacterial Cell Biology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94232; 1090 GE; Amsterdam; the Netherlands
| | - Eelco Hoogendoorn
- Molecular Cytology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94215; 1090 GE; Amsterdam; the Netherlands
| | - Marten Postma
- Molecular Cytology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94215; 1090 GE; Amsterdam; the Netherlands
| | - Manuel Banzhaf
- Institute for Cell and Molecular Biosciences; The Centre for Bacterial Cell Biology; Newcastle University; Richardson Road; Newcastle upon Tyne; NE2 4AX; UK
| | - Waldemar Vollmer
- Institute for Cell and Molecular Biosciences; The Centre for Bacterial Cell Biology; Newcastle University; Richardson Road; Newcastle upon Tyne; NE2 4AX; UK
| | - Tanneke den Blaauwen
- Bacterial Cell Biology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94232; 1090 GE; Amsterdam; the Netherlands
| |
Collapse
|
48
|
Huang KC, Ehrhardt DW, Shaevitz JW. The molecular origins of chiral growth in walled cells. Curr Opin Microbiol 2012. [PMID: 23194654 DOI: 10.1016/j.mib.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cells from all kingdoms of life adopt a dizzying array of fascinating shapes that support cellular function. Amoeboid and spherical shapes represent perhaps the simplest of geometries that may minimize the level of growth control required for survival. Slightly more complex are rod-shaped cells, from microscopic bacteria to macroscopic plants, which require additional mechanisms to define a cell's longitudinal axis, width, and length. Recent evidence suggests that many rod-shaped, walled cells achieve elongated growth through chiral insertion of cell-wall material that may be coupled to a twisting of the cell body. Inspired by these observations, biophysical mechanisms for twisting growth have been proposed that link the mechanics of intracellular proteins to cell shape maintenance. In this review, we highlight experimental and theoretical work that connects molecular-scale organization and structure with the cellular-scale phenomena of rod-shaped growth.
Collapse
|
49
|
Abstract
A combination of cell wall growth and cytoskeletal protein action gives rise to the observed bacterial cell shape. Aside from the common rod-like and spherical shapes, bacterial cells can also adopt curved or helical geometries. To understand how curvature in bacteria is developed or maintained, we examine how Caulobacter crescentus obtains its crescent-like shape. Caulobacter cells with or without the cytoskeletal bundle crescentin, an intermediate filament-like protein, exhibit two distinct growth modes, curvature maintenance that preserves the radius of curvature and curvature relaxation that straightens the cell (Fig. 1). Using a proposed mechanochemical model, we show that bending and twisting of the crescentin bundle can influence the stress distribution in the cell wall, and lead to the growth of curved cells. In contrast, after crescentin bundle is disrupted, originally curved cells will slowly relax towards a straight rod over time. The model is able to quantitatively capture experimentally observed curvature dynamics. Furthermore, we show that the shape anisotropy of the cross-section of a curved cell is never greater than 4%, even in the presence of crescentin.
Collapse
|
50
|
Activity of the osmotically regulated yqiHIK promoter from Bacillus subtilis is controlled at a distance. J Bacteriol 2012; 194:5197-208. [PMID: 22843846 DOI: 10.1128/jb.01041-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The yqiHIK gene cluster from Bacillus subtilis is predicted to encode an extracellular lipoprotein (YqiH), a secreted N-acetylmuramoyl-L-alanine amidase (YqiI), and a cytoplasmic glycerophosphodiester phosphodiesterase (YqiK). Reverse transcriptase PCR (RT-PCR) analysis showed that the yqiHIK genes are transcribed as an operon. Consistent with the in silico prediction, we found that the purified YqiI protein exhibited hydrolytic activity toward peptidoglycan sacculi. Transcription studies with yqiH-treA reporter fusion strains revealed that the expression of yqiHIK is subjected to finely tuned osmotic control, but enhanced expression occurs only in severely osmotically stressed cells. Primer extension analysis pinpointed the osmotically responsive yqiHIK promoter, and site-directed mutagenesis was employed to assess functionally important sequences required for promoter activity and osmotic control. Promoter variants with constitutive activity were isolated. A deletion analysis of the yqiHIK regulatory region showed that a 53-bp AT-rich DNA segment positioned 180 bp upstream of the -35 sequence is critical for the activity and osmotic regulation of the yqiHIK promoter. Hence, the expression of yqiHIK is subjected to genetic control at a distance. Upon the onset of growth of cells of the B. subtilis wild-type strain in high-salinity medium (1.2 M NaCl), we observed gross morphological deformations of cells that were then reversed to a rod-shaped morphology again when the cells had adjusted to the high-salinity environment. The products of the yqiHIK gene cluster were not critical for reestablishing rod-shaped morphology, but the deletion of this operon yielded a B. subtilis mutant impaired in growth in a defined minimal medium and at high salinity.
Collapse
|