1
|
Sigg D, Carnevale V. Markov models and long-term memory in ion channels: A contradiction in terms? Biophys J 2025; 124:1356-1375. [PMID: 39949059 DOI: 10.1016/j.bpj.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/07/2024] [Accepted: 02/06/2025] [Indexed: 02/28/2025] Open
Abstract
The opening kinetics of ion channels are typically modeled using Markov schemes, which assume a finite number of states linked by time-independent rate constants. Although aggregate closed or open states may, under the right conditions, experience short-term (exponential) memory of previous gating events, there is experimental evidence for stretched-exponential or power-law memory decay that does not conform to Markov theory. Here, using Monte Carlo simulations of a lattice system, we investigate long-term memory in channels coupled to a heterogeneous membrane near the critical temperature. We observed that increasing the strength of the channel-lipid coupling parameter from zero to nearly 1 kT per lipid binding site leads to a progression in the autocorrelation of successive open dwell times. This evolution changes from 1) multiexponential decay to 2) power-law decay, and finally to 3) stretched exponential decay, mirroring changes in channel distribution from: 1) complete independence, 2) partitioning in the interphase between lipid domains, and 3) partitioning inside the domain favorable to the activation state of the channel. The intermediate power-law regime demonstrates characteristics of long-term memory, such as trend-reinforcing values of the Hurst exponent. Still, this regime passes a previously proposed Markovianity test utilizing conditional dwell time histograms. We conclude that low-energy state-dependent interactions between ion channels and a dynamic membrane soften the Markov assumption by maintaining a fluctuating microenvironment and storing configurational memory, thus supporting the existence of long memory tails without necessarily diminishing the usefulness of Markov modeling.
Collapse
Affiliation(s)
- Daniel Sigg
- dPET, Spokane, Washington; Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
2
|
Engberg O, Saha Roy D, Krupa P, Banerjee S, Chaudhary A, Smith AA, Li MS, Maiti S, Huster D. Molecules in the Serotonin-Melatonin Synthesis Pathway Have Distinct Interactions with Lipid Membranes. J Phys Chem B 2025; 129:2687-2700. [PMID: 40017165 PMCID: PMC11912468 DOI: 10.1021/acs.jpcb.4c08750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
The neurotransmitter serotonin is involved in physiological processes such as appetite, sleep, and mood and diseases such as anxiety and depression. Traditionally, the effects of serotonin were thought to be initiated by binding to its target transmembrane receptors. It is also known that serotonin can bind directly to the membrane with high affinity and modulate lipid dynamics, lateral segregation of lipids, vesicular association, and membrane protein activity. We investigated if other small molecules in the serotonin metabolic pathway, some of which are known to be signaling molecules while some others are not, have similar membrane modulating effects. Therefore, we examined serotonin and several of its metabolites: 5-hydroxytryptophan (5-HTP), serotonin, N-acetylserotonin (NAS), and melatonin in model membranes mimicking synaptic membranes. Using 2H NMR spectroscopy of deuterated 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), we observed that all metabolites disorder the synaptic membrane-mimicking model membranes. The largest disordering effect was observed for NAS and the smallest for tryptophan. Using fluorescence correlation spectroscopy, it was found that only NAS promotes vesicular association similar to that of serotonin, while the others did not. Furthermore, we found that the serotonin metabolites differed in their membrane distribution by employing solid state 1H magic angle spinning nuclear Overhauser enhancement spectroscopy (NOESY) experiments in simple POPC membranes. Similar results were obtained in synaptic membrane mimics using molecular dynamics simulations. In conclusion, while the causal correlation between membrane modulation effects and membrane distribution for the serotonin metabolites remains elusive, this study suggests that small-molecule metabolites and drugs can have drastic biological effects mediated through the membrane. The finding that small changes in structure lead to very different membrane modulation and distributions suggests the possibility of developing membrane modulating drugs in the future.
Collapse
Affiliation(s)
- Oskar Engberg
- Institute
of Medical Physics and Biophysics, Medical Department, University of Leipzig, Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Debsankar Saha Roy
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Pawel Krupa
- Institute
of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Shankha Banerjee
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Ankur Chaudhary
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Albert A. Smith
- Institute
of Medical Physics and Biophysics, Medical Department, University of Leipzig, Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
- Institute
for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward,
District 12, 729110 Ho Chi Minh City, Vietnam
| | - Sudipta Maiti
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Daniel Huster
- Institute
of Medical Physics and Biophysics, Medical Department, University of Leipzig, Härtelstr. 16/18, D-04107 Leipzig, Germany
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
3
|
Lütge S, Krebs M, Risselada HJ. Toward the Evolutionary Optimisation of Small Molecules Within Coarse-Grained Simulations: Training Molecules to Hide Behind Lipid Head Groups. J Phys Chem B 2025; 129:2482-2492. [PMID: 39984164 DOI: 10.1021/acs.jpcb.4c08200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Exploring the vast chemical space of small molecules poses a significant challenge. We develop a new strategy to efficiently explore this space using coarse-grained toy-like molecules utilizing the Martini3 force field and graph representations. This yields initial proof-of-concept results for the approach enabling the identification of optimal molecules with specific properties targeting lipid bilayers. By leveraging genetic algorithms and coarse-grained molecular dynamics simulations, we demonstrate the potential of our method in designing simple, linear molecules. Our findings show a good convergence toward molecules with weak amphiphilic properties, resembling known (general anesthetic) molecules. While this study demonstrates the feasibility of our method, further refinement is needed to fully realize its potential and explore more complex molecular topologies. Nevertheless, these encouraging results suggest a new path for future research in small molecule discovery and design without relying on extensive data sets.
Collapse
Affiliation(s)
- Sebastian Lütge
- Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Maximilian Krebs
- Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany
| | | |
Collapse
|
4
|
Matsumoto A, Uesono Y. Establishment of the Meyer-Overton correlation in an artificial membrane without protein. Biochim Biophys Acta Gen Subj 2024; 1868:130717. [PMID: 39343251 DOI: 10.1016/j.bbagen.2024.130717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The potency of anesthetics with various structures increases exponentially with lipophilicity, which is the Meyer-Overton (MO) correlation discovered over 120 years ago. The MO correlation was also observed with various biological effects and chemicals, including alcohols; thus, the correlation represents a fundamental relationship between chemicals and organisms. The MO correlation was explained by the lipid and protein theories, although the principle remains unknown because these are still debating. METHODS The gentle hydration method was used to form giant unilamellar vesicles (GUVs) consisting of high- and low-melting phospholipids and cholesterol in the presence of n-alcohols (C2-C12). Confocal fluorescence microscopy was used to determine the percentage of GUVs with domains in relation to the n-alcohol concentrations. RESULTS n-Alcohols inhibited the domain formation of GUVs, and the half inhibitory concentration (IC50) in the aqueous phase (Cw) decreased exponentially with increasing chain length (lipophilicity). In contrast, the membrane concentrations (Cm) of alcohols for the inhibition, which is a product of the membrane-water partition coefficient and the IC50 values, remained constant irrespective of the chain length. CONCLUSIONS The MO correlation is established in GUVs, which supports the lipid theory. When alcohols reach the same critical concentration in the membrane, similar biological effects appear irrespective of the chain length, which is the principle underlying the MO correlation. GENERAL SIGNIFICANCE The protein theory states that a highly lipophilic compound targets minor membrane proteins due to the low Cw. However, our lipid theory states that the compound targets various membrane proteins due to the high Cm.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yukifumi Uesono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
5
|
Krogman WL, Woodard T, McKay RSF. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels. Anesth Analg 2024; 139:92-106. [PMID: 37968836 DOI: 10.1213/ane.0000000000006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.
Collapse
Affiliation(s)
- William L Krogman
- From the Department of Anesthesiology, University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | | | | |
Collapse
|
6
|
Shimokawa N, Takagi M. Biomimetic Lipid Raft: Domain Stability and Interaction with Physiologically Active Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:15-32. [PMID: 39289271 DOI: 10.1007/978-981-97-4584-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The cell membrane, also called the plasma membrane, is the membrane on the cytoplasmic surface that separates the extracellular from the intracellular. It is thin, about 10 nm thick when viewed with an electron microscope, and is composed of two monolayers of phospholipid membranes (lipid bilayers) containing many types of proteins. It is now known that this cell membrane not only separates the extracellular from the intracellular, but is also involved in sensory stimuli such as pain, itching, sedation, and excitement. Since the "Fluid mosaic model" was proposed for cell membranes, molecules have been thought to be homogeneously distributed on the membrane surface. Later, at the end of the twentieth century, the existence of "Phase-separated microdomain structures" consisting of ordered phases rich in saturated lipids and cholesterol was suggested, and these were termed "Lipid rafts." A model in which lipid rafts regulate cell signaling has been proposed and is the subject of active research.This chapter first outlines the physicochemical properties and thermodynamic models of membrane phase separation (lipid rafts), which play an important role in cell signaling. Next, how physiologically active molecules such as local anesthetics, cooling agents (menthol), and warming agents (capsaicin) interact with artificial cell membranes will be presented.It is undeniable that the plasma membrane contains many channels and receptors that are involved in the propagation of sensory stimuli. At the same time, however, it is important to understand that the membrane exerts a significant influence on the intensity and propagation of these stimuli.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan.
| |
Collapse
|
7
|
Noguchi S, Kajimoto T, Kumamoto T, Shingai M, Narasaki S, Urabe T, Imamura S, Harada K, Hide I, Tanaka S, Yanase Y, Nakamura SI, Tsutsumi YM, Sakai N. Features and mechanisms of propofol-induced protein kinase C (PKC) translocation and activation in living cells. Front Pharmacol 2023; 14:1284586. [PMID: 38026993 PMCID: PMC10662334 DOI: 10.3389/fphar.2023.1284586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background and purpose: In this study, we aimed to elucidate the action mechanisms of propofol, particularly those underlying propofol-induced protein kinase C (PKC) translocation. Experimental approach: Various PKCs fused with green fluorescent protein (PKC-GFP) or other GFP-fused proteins were expressed in HeLa cells, and their propofol-induced dynamics were observed using confocal laser scanning microscopy. Propofol-induced PKC activation in cells was estimated using the C kinase activity receptor (CKAR), an indicator of intracellular PKC activation. We also examined PKC translocation using isomers and derivatives of propofol to identify the crucial structural motifs involved in this process. Key results: Propofol persistently translocated PKCα conventional PKCs and PKCδ from novel PKCs (nPKCs) to the plasma membrane (PM). Propofol translocated PKCδ and PKCη of nPKCs to the Golgi apparatus and endoplasmic reticulum, respectively. Propofol also induced the nuclear translocation of PKCζ of atypical PKCs or proteins other than PKCs, such that the protein concentration inside and outside the nucleus became uniform. CKAR analysis revealed that propofol activated PKC in the PM and Golgi apparatus. Moreover, tests using isomers and derivatives of propofol predicted that the structural motifs important for the induction of PKC and nuclear translocation are different. Conclusion and implications: Propofol induced the subtype-specific intracellular translocation of PKCs and activated PKCs. Additionally, propofol induced the nuclear translocation of PKCs and other proteins, probably by altering the permeability of the nuclear envelope. Interestingly, propofol-induced PKC and nuclear translocation may occur via different mechanisms. Our findings provide insights into the action mechanisms of propofol.
Collapse
Affiliation(s)
- Soma Noguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuya Kumamoto
- Department of Synthetic Organic Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Shingai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Soshi Narasaki
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Urabe
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Serika Imamura
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuhki Yanase
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuo M. Tsutsumi
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Melcrová A, Maity S, Melcr J, de Kok NAW, Gabler M, van der Eyden J, Stensen W, Svendsen JSM, Driessen AJM, Marrink SJ, Roos WH. Lateral membrane organization as target of an antimicrobial peptidomimetic compound. Nat Commun 2023; 14:4038. [PMID: 37419980 PMCID: PMC10328936 DOI: 10.1038/s41467-023-39726-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Antimicrobial resistance is one of the leading concerns in medical care. Here we study the mechanism of action of an antimicrobial cationic tripeptide, AMC-109, by combining high speed-atomic force microscopy, molecular dynamics, fluorescence assays, and lipidomic analysis. We show that AMC-109 activity on negatively charged membranes derived from Staphylococcus aureus consists of two crucial steps. First, AMC-109 self-assembles into stable aggregates consisting of a hydrophobic core and a cationic surface, with specificity for negatively charged membranes. Second, upon incorporation into the membrane, individual peptides insert into the outer monolayer, affecting lateral membrane organization and dissolving membrane nanodomains, without forming pores. We propose that membrane domain dissolution triggered by AMC-109 may affect crucial functions such as protein sorting and cell wall synthesis. Our results indicate that the AMC-109 mode of action resembles that of the disinfectant benzalkonium chloride (BAK), but with enhanced selectivity for bacterial membranes.
Collapse
Affiliation(s)
- Adéla Melcrová
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Sourav Maity
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Josef Melcr
- Molecular Dynamics, Groningen Biomolecular Sciences & Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Niels A W de Kok
- Molecular Microbiology, Groningen Biomolecular Sciences & Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Mariella Gabler
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jonne van der Eyden
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Wenche Stensen
- Department of Chemistry, UiT Arctic University of Norway, Tromsø, Norway
| | - John S M Svendsen
- Department of Chemistry, UiT Arctic University of Norway, Tromsø, Norway
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences & Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Siewert J Marrink
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
- Molecular Dynamics, Groningen Biomolecular Sciences & Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Serotonergic drugs modulate the phase behavior of complex lipid bilayers. Biochimie 2022; 203:40-50. [PMID: 35447219 DOI: 10.1016/j.biochi.2022.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Serotonin is an endogenous neurotransmitter involved in both physiological and pathophysiological processes. Traditionally, serotonin acts as a ligand for G protein-coupled receptors (GPCRs) leading to subsequent cell signaling. However, serotonin can also bind to lipid membranes with high affinity and modulate the phase behavior in 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/N-palmitoyl-D-erythro-sphingosylphosphorylcholine (PSM)/cholesterol model membranes mimicking the outer leaflet of the plasma membrane. Here, we investigated if serotonergic drugs containing the pharmacophore from serotonin would also modulate phase behavior in lipid membranes in a similar fashion. We used 2H NMR spectroscopy to explore the phase behavior of POPC/PSM/cholesterol (4/4/2 molar ratio) mixtures in the presence of the serotonergic drugs aripiprazole, BRL-54443, BW-723C86, and CP-135807 at a lipid to drug molar ratio of 10:1. POPC and PSM were perdeuterated in the palmitoyl chain, respectively, and prepared in individual samples. Numerical lineshape simulations of the 2H NMR spectra were used to calculate the order parameter profiles and projected lengths of the saturated acyl chains. All serotonergic drugs induce two components in 2H NMR spectra, indicating that they increased the hydrophobic mismatch between the thickness of the coexisting lipid phases leading to larger domain sizes, relatively similarly to serotonin. AFM force indentation and Raman spectral studies, which interrogate membrane mechanical properties, also indicate changes in membrane order in the presence of these drugs. These findings highlight how serotonergic drugs alter membrane phase behavior and could modulate both target and other membrane proteins, possibly explaining the side effects observed for serotonergic and other clinically relevant drugs.
Collapse
|
10
|
Effect of Local Anesthetics on Dipole Potential of Different Phase Membranes: A Fluorescence Study. J Membr Biol 2022; 255:363-369. [PMID: 35587273 DOI: 10.1007/s00232-022-00240-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022]
Abstract
The molecular mechanism behind the action of local anesthetics is not well understood. Phenylethanol (PEtOH) is an ingredient of essential oils with a rose-like odor, and it has previously been used as a local anesthetic. In this work, we explored the effect of PEtOH on dipole potential in membranes representing biologically relevant phases, employing the dual-wavelength ratiometric method utilizing the potential-sensitive probe di-8-ANEPPS. Our results show that PEtOH reduces membrane dipole potential in membranes of all biologically relevant phases (gel, liquid-ordered, and fluid) in a concentration-dependent manner. To the best of our knowledge, these results constitute one of the early reports describing reduction of membrane dipole potential induced by local anesthetics, irrespective of membrane phase.
Collapse
|
11
|
Sezgin E. Giant plasma membrane vesicles to study plasma membrane structure and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183857. [PMID: 34990591 DOI: 10.1016/j.bbamem.2021.183857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
The plasma membrane (PM) is a highly heterogenous structure intertwined with the cortical actin cytoskeleton and extracellular matrix. This complex architecture makes it difficult to study the processes taking place at the PM. Model membrane systems that are simple mimics of the PM overcome this bottleneck and allow us to study the biophysical principles underlying the processes at the PM. Among them, cell-derived giant plasma membrane vesicles (GPMVs) are considered the most physiologically relevant system, retaining the compositional complexity of the PM to a large extent. GPMVs have become a key tool in membrane research in the last few years. In this review, I will provide a brief overview of this system, summarize recent applications and discuss the limitations.
Collapse
Affiliation(s)
- Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden.
| |
Collapse
|
12
|
Gupta A, Lu D, Balasubramanian H, Chi Z, Wohland T. Heptanol-mediated phase separation determines phase preference of molecules in live cell membranes. J Lipid Res 2022; 63:100220. [PMID: 35490741 PMCID: PMC9160352 DOI: 10.1016/j.jlr.2022.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
The localization of many membrane proteins within cholesterol- and sphingolipid-containing microdomains is essential for proper cell signaling and function. These membrane domains, however, are too small and dynamic to be recorded, even with modern super-resolution techniques. Therefore, the association of membrane proteins with these domains can only be detected with biochemical assays that destroy the integrity of cells require pooling of many cells and take a long time to perform. Here, we present a simple membrane fluidizer–induced clustering approach to identify the phase-preference of membrane-associated molecules in individual live cells within 10–15 min. Experiments in phase-separated bilayers and live cells on molecules with known phase preference show that heptanol hyperfluidizes the membrane and stabilizes phase separation. This results in a transition from nanosized to micronsized clusters of associated molecules allowing their identification using routine microscopy techniques. Membrane fluidizer-induced clustering is an inexpensive and easy to implement method that can be conducted at large-scale and allows easy identification of protein partitioning in live cell membranes.
Collapse
|
13
|
Fricke N, Raghunathan K, Tiwari A, Stefanski KM, Balakrishnan M, Waterson AG, Capone R, Huang H, Sanders CR, Bauer JA, Kenworthy AK. High-Content Imaging Platform to Discover Chemical Modulators of Plasma Membrane Rafts. ACS CENTRAL SCIENCE 2022; 8:370-378. [PMID: 35355811 PMCID: PMC8961798 DOI: 10.1021/acscentsci.1c01058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 05/05/2023]
Abstract
Plasma membrane organization profoundly impacts cellular functionality. A well-known mechanism underlying this organization is through nanoscopic clustering of distinct lipids and proteins in membrane rafts. Despite their physiological importance, rafts remain a difficult-to-study aspect of membrane organization, in part because of the paucity of chemical tools to experimentally modulate their properties. Methods to selectively target rafts for therapeutic purposes are also currently lacking. To tackle these problems, we developed a high-throughput screen and an accompanying image analysis pipeline to identify small molecules that enhance or inhibit raft formation. Cell-derived giant plasma membrane vesicles were used as the experimental platform. A proof-of-principle screen using a bioactive lipid library demonstrates that this method is robust and capable of validating established raft modulators including C6- and C8-ceramide, miltefosine, and epigallocatechin gallate as well as identifying new ones. The platform we describe here represents a powerful tool to discover new chemical approaches to manipulate rafts and their components.
Collapse
Affiliation(s)
- Nico Fricke
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Krishnan Raghunathan
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Ajit Tiwari
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Katherine M. Stefanski
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
| | - Muthuraj Balakrishnan
- Center
for Membrane and Cell Physiology and Department of Molecular Physiology
and Biological Physics, University of Virginia
School of Medicine, Charlottesville, Virginia 22903, United States
| | - Alex G. Waterson
- Department
of Pharmacology, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Ricardo Capone
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
| | - Joshua A. Bauer
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
- Vanderbilt
Institute of Chemical Biology, High-Throughput Screening Facility, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Anne K. Kenworthy
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
14
|
Zizzi EA, Cavaglià M, Tuszynski JA, Deriu MA. Alteration of lipid bilayer mechanics by volatile anesthetics: Insights from μs-long molecular dynamics simulations. iScience 2022; 25:103946. [PMID: 35265816 PMCID: PMC8898909 DOI: 10.1016/j.isci.2022.103946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Very few drugs in clinical practice feature the chemical diversity, narrow therapeutic window, unique route of administration, and reversible cognitive effects of volatile anesthetics. The correlation between their hydrophobicity and their potency and the increasing amount of evidence suggesting that anesthetics exert their action on transmembrane proteins, justifies the investigation of their effects on phospholipid bilayers at the molecular level, given the strong functional and structural link between transmembrane proteins and the surrounding lipid matrix. Molecular dynamics simulations of a model lipid bilayer in the presence of ethylene, desflurane, methoxyflurane, and the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (also called F6 or 2N) at different concentrations highlight the structural consequences of VA partitioning in the lipid phase, with a decrease of lipid order and bilayer thickness, an increase in overall lipid lateral mobility and area-per-lipid, and a marked reduction in the mechanical stiffness of the membrane, that strongly correlates with the compounds' hydrophobicity.
Collapse
Affiliation(s)
- Eric A. Zizzi
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Marco Cavaglià
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Jack A. Tuszynski
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Marco A. Deriu
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
15
|
Surface densities prewet a near-critical membrane. Proc Natl Acad Sci U S A 2021; 118:2103401118. [PMID: 34599097 DOI: 10.1073/pnas.2103401118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Recent work has highlighted roles for thermodynamic phase behavior in diverse cellular processes. Proteins and nucleic acids can phase separate into three-dimensional liquid droplets in the cytoplasm and nucleus and the plasma membrane of animal cells appears tuned close to a two-dimensional liquid-liquid critical point. In some examples, cytoplasmic proteins aggregate at plasma membrane domains, forming structures such as the postsynaptic density and diverse signaling clusters. Here we examine the physics of these surface densities, employing minimal simulations of polymers prone to phase separation coupled to an Ising membrane surface in conjunction with a complementary Landau theory. We argue that these surface densities are a phase reminiscent of prewetting, in which a molecularly thin three-dimensional liquid forms on a usually solid surface. However, in surface densities the solid surface is replaced by a membrane with an independent propensity to phase separate. We show that proximity to criticality in the membrane dramatically increases the parameter regime in which a prewetting-like transition occurs, leading to a broad region where coexisting surface phases can form even when a bulk phase is unstable. Our simulations naturally exhibit three-surface phase coexistence even though both the membrane and the polymer bulk only display two-phase coexistence on their own. We argue that the physics of these surface densities may be shared with diverse functional structures seen in eukaryotic cells.
Collapse
|
16
|
Jiang F, Wang Y, Liu C, Zhang B, Wang E, Liu J, Zhang T. Egg White-Derived Peptides QVPLW and LCAY Inhibit the Activity of Angiotensin I-Converting Enzyme in Human Umbilical Vein Endothelial Cells by Suppressing Its Recruitment into Lipid Rafts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10350-10357. [PMID: 34448567 DOI: 10.1021/acs.jafc.1c04512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a membrane protein, the activity of angiotensin I-converting enzyme (ACE) can be modulated via regulation of its localization in the cell membrane with food-derived peptides. This study aimed to explore the effect of egg white peptides on the cell membrane localization and activity of ACE in human umbilical vein endothelial cells. ACE activity was found to be related to lipid rafts by using methyl-β-cyclodextrin (MβCD). QVPLW and LCAY can inhibit ACE activity by preventing ACE recruitment into lipid rafts, with in situ IC50 values of 238.46 ± 11.35 μM and 31.55 ± 2.64 μM in the control groups, as well as 45.43 ± 6.15 μM and 34.63 ± 1.59 μM in the MβCD groups, respectively. QVPLW and LCAY may alter the cell membrane properties, including the fluidity, potential, and permeability, and eventually promote the transposition of ACE.
Collapse
Affiliation(s)
- Feng Jiang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ying Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, People's Republic of China
| | - Chang Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Biying Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Erlei Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
17
|
Sanders DW, Jumper CC, Ackerman PJ, Bracha D, Donlic A, Kim H, Kenney D, Castello-Serrano I, Suzuki S, Tamura T, Tavares AH, Saeed M, Holehouse AS, Ploss A, Levental I, Douam F, Padera RF, Levy BD, Brangwynne CP. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. eLife 2021; 10:e65962. [PMID: 33890572 PMCID: PMC8104966 DOI: 10.7554/elife.65962] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.
Collapse
Affiliation(s)
- David W Sanders
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Chanelle C Jumper
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Paul J Ackerman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Anita Donlic
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Hahn Kim
- Princeton University Small Molecule Screening Center, Princeton University, Princeton, United States
- Department of Chemistry, Princeton University, Princeton, United States
| | - Devin Kenney
- Department of Microbiology, Boston University School of Medicine, Boston, United States
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Tomokazu Tamura
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Alexander H Tavares
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Mohsan Saeed
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - Florian Douam
- Department of Microbiology, Boston University School of Medicine, Boston, United States
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
- Howard Hughes Medical Institute, Princeton, United States
| |
Collapse
|
18
|
Abstract
Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid-liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Subhadip Ghosh
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah L Veatch
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
19
|
Klacsová M, Bóta A, Westh P, de Souza Funari S, Uhríková D, Balgavý P. Thermodynamic and structural study of DMPC-alkanol systems. Phys Chem Chem Phys 2021; 23:8598-8606. [PMID: 33876021 DOI: 10.1039/d0cp04991c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermodynamic and structural behaviors of lamellar dimyristoylphosphatidylcholine-alkanol (abbreviation DMPC-CnOH, n = 8-18 is the even number of carbons in the alkyl chain) systems were studied by using DSC and SAXD/WAXD methods at a 0-0.8 CnOH : DMPC molar ratio range. Up to n≤ 10 a significant biphasic effect depending on the main transition temperature tm on the CnOH concentration was observed. Two breakpoints were revealed: turning point (TP), corresponding to the minimum, and threshold concentration (cT), corresponding to the end of the biphasic tendency. These breakpoints were also observed in the alkanol concentration dependent change in the enthalpy of the main transition ΔHm. In the case of CnOHs with n > 10 we propose a marked shift of TP and cT to very low concentrations; consequently, only increase of tm is observed. A partial phase diagram was constructed for a pseudo-binary DMPC-C12OH system. We suggest a fluid-fluid immiscibility of the DMPC-C12OH system above cT with a consequent formation of domains with different C12OH contents. At a constant CnOH concentration, the effects of CnOHs on ΔHm and bilayer repeat distance were found to depend predominantly on the mismatch between CnOH and lipid chain lengths. Observed effects are suggested to be underlined by a counterbalancing effect of interchain van der Waals interactions and headgroup repulsion.
Collapse
Affiliation(s)
- Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
20
|
Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2021; 14:34-47. [PMID: 33510571 PMCID: PMC7832984 DOI: 10.33393/dti.2020.2185] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/23/2023] Open
Abstract
Introduction Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.
Collapse
|
21
|
Jin W, Zucker M, Pralle A. Membrane nanodomains homeostasis during propofol anesthesia as function of dosage and temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183511. [PMID: 33245892 DOI: 10.1016/j.bbamem.2020.183511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Some anesthetics bind and potentiate γ-aminobutyric-acid-type receptors, but no universal mechanism for general anesthesia is known. Furthermore, often encountered complications such as anesthesia induced amnesia are not understood. General anesthetics are hydrophobic molecules easily dissolving into lipid bilayers. Recently, it was shown that general anesthetics perturb phase separation in vesicles extracted from fixed cells. Unclear is whether under physiological conditions general anesthetics induce perturbation of the lipid bilayer, and whether this contributes to the transient loss of consciousness or anesthesia side effects. Here we show that propofol perturbs lipid nanodomains in the outer and inner leaflet of the plasma membrane in intact cells, affecting membrane nanodomains in a concentration dependent manner: 1 μM to 5 μM propofol destabilize nanodomains; however, propofol concentrations higher than 5 μM stabilize nanodomains with time. Stabilization occurs only at physiological temperature and in intact cells. This process requires ARP2/3 mediated actin nucleation and Myosin II activity. The rate of nanodomain stabilization is potentiated by GABAA receptor activity. Our results show that active nanodomain homeostasis counteracts the initial disruption causing large changes in cortical actin. SIGNIFICANCE STATEMENT: General anesthesia is a routine medical procedure with few complications, yet a small number of patients experience side-effects that persist for weeks and months. Very young children are at risk for effects on brain development. Elderly patients often exhibit subsequent amnesia. Here, we show that the general anesthetic propofol perturbs the ultrastructure of the lipid bilayer of the cell membrane in intact cells. Initially propofol destabilized lipid nanodomains. However, with increasing incubation time and propofol concentration, the effect is reversed and nanodomains are further stabilized. We show that this stabilization is caused by the activation of the actin cortex under the membrane. These perturbations of membrane bilayer and cortical actin may explain how propofol affects neuronal plasticity at synapses.
Collapse
Affiliation(s)
- Weixiang Jin
- Dept. of Physics, University at Buffalo, SUNY, Buffalo, NY 14260-1500, USA
| | - Michael Zucker
- Dept. of Physics, University at Buffalo, SUNY, Buffalo, NY 14260-1500, USA
| | - Arnd Pralle
- Dept. of Physics, University at Buffalo, SUNY, Buffalo, NY 14260-1500, USA.
| |
Collapse
|
22
|
Modulation and dynamics of cell membrane heterogeneities. Chem Phys Lipids 2020; 233:105006. [PMID: 33144069 DOI: 10.1016/j.chemphyslip.2020.105006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023]
Abstract
Numerous studies provide evidence that the lipid bilayer of the plasma membrane contains lateral nanodomains, and that these are functionally important regulators of transmembrane cell signaling. Depending on their chemical composition and the biophysical mechanism bringing the lipids together, multiple types of nanodomains exist in the inner and the outer leaflet of the plasma membrane bilayer. In intact cells, these domains are smaller than the optical resolution limit of light microscopy and also highly dynamic. Recently, advanced fluorescence methods have provided data to characterize many biophysical and thermodynamic aspects of these nanodomains. In this review, we summarize the physicochemical determinants of nanodomain formation, stability and extent. Then, we detail how these nanodomains play a structural role by anchoring nucleation sites for the membrane cytoskeleton on the lipid bilayer. Further, we review the existing literature on mechanisms that modulate the nanodomain size and stability, both acute and chronic events. We conclude that regulation of the nanodomains distribution in the lipid bilayer of the plasma membrane is important for modulation of transmembrane signaling. However, only very few modulators of nanodomain stability and size have been quantified in cells, suggesting interesting directions for future studies.
Collapse
|
23
|
Miller EJ, Ratajczak AM, Anthony AA, Mottau M, Rivera Gonzalez XI, Honerkamp-Smith AR. Divide and conquer: How phase separation contributes to lateral transport and organization of membrane proteins and lipids. Chem Phys Lipids 2020; 233:104985. [DOI: 10.1016/j.chemphyslip.2020.104985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
|
24
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
25
|
Zapata-Morin PA, Sierra-Valdez FJ, Ruiz-Suárez JC. The cut-off effect of n-alcohols in lipid rafts: A lipid-dependent phenomenon ☆. J Mol Graph Model 2020; 101:107732. [PMID: 32920240 DOI: 10.1016/j.jmgm.2020.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
n-Aliphatic alcohols act as anesthetics only up to a certain chain length, beyond which its biological activity disappears. This is known as the 'cut-off' phenomenon. Although the most accepted explanation is based on action sites in membrane proteins, it is not well understood why alcohols alter their functions. The structural dependence of these protein receptors to lipid domains known as 'lipid rafts', suggests a new approach to tackle the puzzling phenomenon. In this work, by performing molecular dynamic simulations (MDS) to explore the lipid role, we provide relevant molecular details about the membrane-alcohol interaction at the cut-off point regime. Since the high variability of the cut-off points found on protein receptors in neurons may be a consequence of differences in the lipid composition surrounding such proteins, our results could have a clear-cut importance.
Collapse
Affiliation(s)
- Patricio A Zapata-Morin
- Facultad de Ciencias Biológicas, Laboratorio de Micología y Fitopatología, Universidad Autónoma de Nuevo León, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - F J Sierra-Valdez
- Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, Ave. Batallón de San Patricio 112, San Pedro Garza García, 66278, Nuevo León, Mexico; Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León, 64849, Mexico
| | | |
Collapse
|
26
|
Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy. Proc Natl Acad Sci U S A 2020; 117:19943-19952. [PMID: 32759206 DOI: 10.1073/pnas.2002200117] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nanoscale organization of biological membranes into structurally and compositionally distinct lateral domains is believed to be central to membrane function. The nature of this organization has remained elusive due to a lack of methods to directly probe nanoscopic membrane features. We show here that cryogenic electron microscopy (cryo-EM) can be used to directly image coexisting nanoscopic domains in synthetic and bioderived membranes without extrinsic probes. Analyzing a series of single-component liposomes composed of synthetic lipids of varying chain lengths, we demonstrate that cryo-EM can distinguish bilayer thickness differences as small as 0.5 Å, comparable to the resolution of small-angle scattering methods. Simulated images from computational models reveal that features in cryo-EM images result from a complex interplay between the atomic distribution normal to the plane of the bilayer and imaging parameters. Simulations of phase-separated bilayers were used to predict two sources of contrast between coexisting ordered and disordered phases within a single liposome, namely differences in membrane thickness and molecular density. We observe both sources of contrast in biomimetic membranes composed of saturated lipids, unsaturated lipids, and cholesterol. When extended to isolated mammalian plasma membranes, cryo-EM reveals similar nanoscale lateral heterogeneities. The methods reported here for direct, probe-free imaging of nanodomains in unperturbed membranes open new avenues for investigation of nanoscopic membrane organization.
Collapse
|
27
|
Abstract
Anesthetics are used every day in thousands of hospitals to induce loss of consciousness, yet scientists and the doctors who administer these compounds lack a molecular understanding for their action. The chemical properties of anesthetics suggest that they could target the plasma membrane. Here the authors show anesthetics directly target a subset of plasma membrane lipids to activate an ion channel in a two-step mechanism. Applying the mechanism, the authors mutate a fruit fly to be less sensitive to anesthetics and convert a nonanesthetic-sensitive channel into a sensitive one. These findings suggest a membrane-mediated mechanism will be an important consideration for other proteins of which direct binding of anesthetic has yet to explain conserved sensitivity to chemically diverse anesthetics. Inhaled anesthetics are a chemically diverse collection of hydrophobic molecules that robustly activate TWIK-related K+ channels (TREK-1) and reversibly induce loss of consciousness. For 100 y, anesthetics were speculated to target cellular membranes, yet no plausible mechanism emerged to explain a membrane effect on ion channels. Here we show that inhaled anesthetics (chloroform and isoflurane) activate TREK-1 through disruption of phospholipase D2 (PLD2) localization to lipid rafts and subsequent production of signaling lipid phosphatidic acid (PA). Catalytically dead PLD2 robustly blocks anesthetic TREK-1 currents in whole-cell patch-clamp recordings. Localization of PLD2 renders the TRAAK channel sensitive, a channel that is otherwise anesthetic insensitive. General anesthetics, such as chloroform, isoflurane, diethyl ether, xenon, and propofol, disrupt lipid rafts and activate PLD2. In the whole brain of flies, anesthesia disrupts rafts and PLDnull flies resist anesthesia. Our results establish a membrane-mediated target of inhaled anesthesia and suggest PA helps set thresholds of anesthetic sensitivity in vivo.
Collapse
|
28
|
Centi A, Dutta A, Parekh SH, Bereau T. Inserting Small Molecules across Membrane Mixtures: Insight from the Potential of Mean Force. Biophys J 2020; 118:1321-1332. [PMID: 32075746 DOI: 10.1016/j.bpj.2020.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/05/2020] [Accepted: 01/27/2020] [Indexed: 11/29/2022] Open
Abstract
Small solutes have been shown to alter the lateral organization of cell membranes and reconstituted phospholipid bilayers; however, the mechanisms by which these changes happen are still largely unknown. Traditionally, both experiment and simulation studies have been restricted to testing only a few compounds at a time, failing to identify general molecular descriptors or chemical properties that would allow extrapolating beyond the subset of considered solutes. In this work, we probe the competing energetics of inserting a solute in different membrane environments by means of the potential of mean force. We show that these calculations can be used as a computationally efficient proxy to establish whether a solute will stabilize or destabilize domain phase separation. Combined with umbrella-sampling simulations and coarse-grained molecular dynamics simulations, we are able to screen solutes across a wide range of chemistries and polarities. Our results indicate that for the system under consideration, preferential partitioning and therefore effectiveness in altering membrane phase separation are strictly linked to the location of insertion in the bilayer (i.e., midplane or interface). Our approach represents a fast and simple tool for obtaining structural and thermodynamic insight into the partitioning of small molecules between lipid domains and its relation to phase separation, ultimately providing a platform for identifying the key determinants of this process.
Collapse
Affiliation(s)
- Alessia Centi
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Arghya Dutta
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Sapun H Parekh
- Max Planck Institute for Polymer Research, Mainz, Germany; Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
29
|
Levental I, Levental KR, Heberle FA. Lipid Rafts: Controversies Resolved, Mysteries Remain. Trends Cell Biol 2020; 30:341-353. [PMID: 32302547 DOI: 10.1016/j.tcb.2020.01.009] [Citation(s) in RCA: 368] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/08/2023]
Abstract
The lipid raft hypothesis postulates that lipid-lipid interactions can laterally organize biological membranes into domains of distinct structures, compositions, and functions. This proposal has in equal measure exhilarated and frustrated membrane research for decades. While the physicochemical principles underlying lipid-driven domains has been explored and is well understood, the existence and relevance of such domains in cells remains elusive, despite decades of research. Here, we review the conceptual underpinnings of the raft hypothesis and critically discuss the supporting and contradicting evidence in cells, focusing on why controversies about the composition, properties, and even the very existence of lipid rafts remain unresolved. Finally, we highlight several recent breakthroughs that may resolve existing controversies and suggest general approaches for moving beyond questions of the existence of rafts and towards understanding their physiological significance.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA.
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 33830, USA
| |
Collapse
|
30
|
Sezgin E, Carugo D, Levental I, Stride E, Eggeling C. Creating Supported Plasma Membrane Bilayers Using Acoustic Pressure. MEMBRANES 2020; 10:E30. [PMID: 32085393 PMCID: PMC7074417 DOI: 10.3390/membranes10020030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 01/12/2023]
Abstract
Model membrane systems are essential tools for the study of biological processes in a simplified setting to reveal the underlying physicochemical principles. As cell-derived membrane systems, giant plasma membrane vesicles (GPMVs) constitute an intermediate model between live cells and fully artificial structures. Certain applications, however, require planar membrane surfaces. Here, we report a new approach for creating supported plasma membrane bilayers (SPMBs) by bursting cell-derived GPMVs using ultrasound within a microfluidic device. We show that the mobility of outer leaflet molecules is preserved in SPMBs, suggesting that they are accessible on the surface of the bilayers. Such model membrane systems are potentially useful in many applications requiring detailed characterization of plasma membrane dynamics.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Dario Carugo
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, Institute for Life Sciences (IfLS), University of Southampton, SO17 1BJ Southampton, UK;
| | - Ilya Levental
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK;
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
31
|
Cammarota E, Soriani C, Taub R, Morgan F, Sakai J, Veatch SL, Bryant CE, Cicuta P. Criticality of plasma membrane lipids reflects activation state of macrophage cells. J R Soc Interface 2020; 17:20190803. [PMID: 32019470 PMCID: PMC7061703 DOI: 10.1098/rsif.2019.0803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Signalling is of particular importance in immune cells, and upstream in the signalling pathway many membrane receptors are functional only as complexes, co-locating with particular lipid species. Work over the last 15 years has shown that plasma membrane lipid composition is close to a critical point of phase separation, with evidence that cells adapt their composition in ways that alter the proximity to this thermodynamic point. Macrophage cells are a key component of the innate immune system, are responsive to infections and regulate the local state of inflammation. We investigate changes in the plasma membrane’s proximity to the critical point as a response to stimulation by various pro- and anti-inflammatory agents. Pro-inflammatory (interferon γ, Kdo 2-Lipid A, lipopolysaccharide) perturbations induce an increase in the transition temperature of giant plasma membrane vesicles; anti-inflammatory interleukin 4 has the opposite effect. These changes recapitulate complex plasma membrane composition changes, and are consistent with lipid criticality playing a master regulatory role: being closer to critical conditions increases membrane protein activity.
Collapse
Affiliation(s)
- Eugenia Cammarota
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Alembic, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Soriani
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Raphaelle Taub
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Fiona Morgan
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Jiro Sakai
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Sarah L Veatch
- Biophysics Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
32
|
Skinkle AD, Levental KR, Levental I. Cell-Derived Plasma Membrane Vesicles Are Permeable to Hydrophilic Macromolecules. Biophys J 2020; 118:1292-1300. [PMID: 32053777 DOI: 10.1016/j.bpj.2019.12.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
Giant plasma membrane vesicles (GPMVs) are a widely used experimental platform for biochemical and biophysical analysis of isolated mammalian plasma membranes (PMs). A core advantage of these vesicles is that they maintain the native lipid and protein diversity of the PM while affording the experimental flexibility of synthetic giant vesicles. In addition to fundamental investigations of PM structure and composition, GPMVs have been used to evaluate the binding of proteins and small molecules to cell-derived membranes and the permeation of drug-like molecules through them. An important assumption of such experiments is that GPMVs are sealed, i.e., that permeation occurs by diffusion through the hydrophobic core rather than through hydrophilic pores. Here, we demonstrate that this assumption is often incorrect. We find that most GPMVs isolated using standard preparations are passively permeable to various hydrophilic solutes as large as 40 kDa, in contrast to synthetic giant unilamellar vesicles. We attribute this leakiness to stable, relatively large, and heterogeneous pores formed by rupture of vesicles from cells. Finally, we identify preparation conditions that minimize poration and allow evaluation of sealed GPMVs. These unexpected observations of GPMV poration are important for interpreting experiments utilizing GPMVs as PM models, particularly for drug permeation and membrane asymmetry.
Collapse
Affiliation(s)
- Allison D Skinkle
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas; Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
33
|
Li G, Wang Q, Kakuda S, London E. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. J Lipid Res 2020; 61:758-766. [PMID: 31964764 DOI: 10.1194/jlr.ra119000565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Indexed: 01/04/2023] Open
Abstract
The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.
Collapse
Affiliation(s)
- Guangtao Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Qing Wang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Shinako Kakuda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215. mailto:
| |
Collapse
|
34
|
Petersen EN, Pavel MA, Wang H, Hansen SB. Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183091. [PMID: 31672538 PMCID: PMC6907892 DOI: 10.1016/j.bbamem.2019.183091] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
TWIK related K+ channel (TREK-1) is a mechano- and anesthetic sensitive channel that when activated attenuates pain and causes anesthesia. Recently the enzyme phospholipase D2 (PLD2) was shown to bind to the channel and generate a local high concentration of phosphatidic acid (PA), an anionic signaling lipid that gates TREK-1. In a biological membrane, the cell harnesses lipid heterogeneity (lipid compartments) to control gating of TREK-1 using palmitate-mediated localization of PLD2. Here we discuss the ability of mechanical force and anesthetics to disrupt palmitate-mediated localization of PLD2 giving rise to TREK-1's mechano- and anesthetic-sensitive properties. The likely consequences of this indirect lipid-based mechanism of activation are discussed in terms of a putative model for excitatory and inhibitory mechano-effectors and anesthetic sensitive ion channels in a biological context. Lastly, we discuss the ability of locally generated PA to reach mM concentrations near TREK-1 and the biophysics of localized signaling. Palmitate-mediated localization of PLD2 emerges as a central control mechanism of TREK-1 responding to mechanical force and anesthetic action. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- E Nicholas Petersen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hao Wang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
35
|
Mužić T, Tounsi F, Madsen SB, Pollakowski D, Konrad M, Heimburg T. Melting transitions in biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183026. [PMID: 31465764 DOI: 10.1016/j.bbamem.2019.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022]
Abstract
We investigated melting transitions in native biological membranes containing their membrane proteins. The membranes originated from E. coli, B. subtilis, lung surfactant and nerve tissue from the spinal cord of several mammals. For some preparations, we studied the pressure, pH and ionic strength dependence of the transition. For porcine spine, we compared the transition of the native membrane to that of the extracted lipids. All preparations displayed melting transitions of 10-20° below physiological or growth temperature, independent of the organism of origin and the respective cell type. We found that the position of the transitions in E. coli membranes depends on the growth temperature. We discuss these findings in the context of the thermodynamic theory of membrane fluctuations close to transition that predicts largely altered elastic constants, an increase in fluctuation lifetime and in membrane permeability. We also discuss how to distinguish lipid melting from protein unfolding transitions. Since the feature of a transition slightly below physiological temperature is conserved even when growth conditions change, we conclude that the transitions are likely to be of major biological importance for the survival and the function of the cell.
Collapse
Affiliation(s)
- Tea Mužić
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Fatma Tounsi
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Søren B Madsen
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Denis Pollakowski
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Manfred Konrad
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Thomas Heimburg
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark.
| |
Collapse
|
36
|
Devanand T, Krishnaswamy S, Vemparala S. Interdigitation of Lipids Induced by Membrane–Active Proteins. J Membr Biol 2019; 252:331-342. [DOI: 10.1007/s00232-019-00072-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
|
37
|
Startek JB, Boonen B, Talavera K, Meseguer V. TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. Int J Mol Sci 2019; 20:E371. [PMID: 30654572 PMCID: PMC6359677 DOI: 10.3390/ijms20020371] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/19/2022] Open
Abstract
Transient Receptor Potential ion channels (TRPs) have been described as polymodal sensors, being responsible for transducing a wide variety of stimuli, and being involved in sensory functions such as chemosensation, thermosensation, mechanosensation, and photosensation. Mechanical and chemical stresses exerted on the membrane can be transduced by specialized proteins into meaningful intracellular biochemical signaling, resulting in physiological changes. Of particular interest are compounds that can change the local physical properties of the membrane, thereby affecting nearby proteins, such as TRP channels, which are highly sensitive to the membrane environment. In this review, we provide an overview of the current knowledge of TRP channel activation as a result of changes in the membrane properties induced by amphipathic structural lipidic components such as cholesterol and diacylglycerol, and by exogenous amphipathic bacterial endotoxins.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Victor Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández y CSIC, E-03550 Alicante , Spain.
| |
Collapse
|
38
|
Rao BD, Shrivastava S, Pal S, Chattopadhyay A. Effect of Local Anesthetics on the Organization and Dynamics of Hippocampal Membranes: A Fluorescence Approach. J Phys Chem B 2018; 123:639-647. [DOI: 10.1021/acs.jpcb.8b10232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bhagyashree D. Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
39
|
Hantal G, Fábián B, Sega M, Jójárt B, Jedlovszky P. Effect of general anesthetics on the properties of lipid membranes of various compositions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:594-609. [PMID: 30571949 DOI: 10.1016/j.bbamem.2018.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
Computer simulations of four lipid membranes of different compositions, namely neat DPPC and PSM, and equimolar DPPC-cholesterol and PSM-cholesterol mixtures, are performed in the presence and absence of the general anesthetics diethylether and sevoflurane both at 1 and 600 bar. The results are analyzed in order to identify membrane properties that are potentially related to the molecular mechanism of anesthesia, namely that change in the same way in any membrane with any anesthetics, and change oppositely with increasing pressure. We find that the lateral lipid density satisfies both criteria: it is decreased by anesthetics and increased by pressure. This anesthetic-induced swelling is attributed to only those anesthetic molecules that are located close to the boundary of the apolar phase. This lateral expansion is found to lead to increased lateral mobility of the lipids, an effect often thought to be related to general anesthesia; to an increased fraction of the free volume around the outer preferred position of anesthetics; and to the decrease of the lateral pressure in the nearby range of the ester and amide groups, a region into which anesthetic molecules already cannot penetrate. All these changes are reverted by the increase of pressure. Another important finding of this study is that cholesterol has an opposite effect on the membrane properties than anesthetics, and, correspondingly, these changes are less marked in the presence of cholesterol. Therefore, changes in the membrane that can lead to general anesthesia are expected to occur in the membrane domains of low cholesterol content.
Collapse
Affiliation(s)
- György Hantal
- Faculty of Physics, University of Vienna, Sensengasse 8/9, A-1090 Vienna, Austria
| | - Balázs Fábián
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary; Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon, France
| | - Marcello Sega
- Faculty of Physics, University of Vienna, Sensengasse 8/9, A-1090 Vienna, Austria
| | - Balázs Jójárt
- Institute of Food Engineering, University of Szeged, Moszkvai krt 5-7, H-6725 Szeged, Hungary
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary.
| |
Collapse
|
40
|
Weinrich M, Worcester DL. The actions of volatile anesthetics: a new perspective. Acta Crystallogr D Struct Biol 2018; 74:1169-1177. [PMID: 30605131 PMCID: PMC6317591 DOI: 10.1107/s2059798318004771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 11/10/2022] Open
Abstract
This article reviews recent work in applying neutron and X-ray scattering towards the elucidation of the molecular mechanisms of volatile anesthetics. Experimental results on domain mixing in ternary lipid mixtures, and the influence of volatile anesthetics and hydrostatic pressure are placed in the contexts of ion-channel function and receptor trafficking at the postsynaptic density.
Collapse
|
41
|
Kimchi O, Veatch SL, Machta BB. Ion channels can be allosterically regulated by membrane domains near a de-mixing critical point. J Gen Physiol 2018; 150:1769-1777. [PMID: 30455180 PMCID: PMC6279359 DOI: 10.1085/jgp.201711900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 08/24/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
Ion channels are embedded in the plasma membrane, a compositionally diverse two-dimensional liquid that has the potential to exert profound influence on their function. Recent experiments suggest that this membrane is poised close to an Ising critical point, below which cell-derived plasma membrane vesicles phase separate into coexisting liquid phases. Related critical points have long been the focus of study in simplified physical systems, but their potential roles in biological function have been underexplored. Here we apply both exact and stochastic techniques to the lattice Ising model to study several ramifications of proximity to criticality for idealized lattice channels, whose function is coupled through boundary interactions to critical fluctuations of membrane composition. Because of diverging susceptibilities of system properties to thermodynamic parameters near a critical point, such a lattice channel's activity becomes strongly influenced by perturbations that affect the critical temperature of the underlying Ising model. In addition, its kinetics acquire a range of time scales from its surrounding membrane, naturally leading to non-Markovian dynamics. Our model may help to unify existing experimental results relating the effects of small-molecule perturbations on membrane properties and ion channel function. We also suggest ways in which the role of this mechanism in regulating real ion channels and other membrane-bound proteins could be tested in the future.
Collapse
Affiliation(s)
- Ofer Kimchi
- Department of Physics, Princeton University, Princeton, NJ.,Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Benjamin B Machta
- Department of Physics, Princeton University, Princeton, NJ .,Lewis-Sigler Institute, Princeton University, Princeton, NJ.,Department of Physics, Yale University, New Haven, CT.,Systems Biology Institute, Yale University, West Haven, CT
| |
Collapse
|
42
|
Raghunathan K, Kenworthy AK. Dynamic pattern generation in cell membranes: Current insights into membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2018-2031. [PMID: 29752898 DOI: 10.1016/j.bbamem.2018.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
It has been two decades since the lipid raft hypothesis was first presented. Even today, whether these nanoscale cholesterol-rich domains are present in cell membranes is not completely resolved. However, especially in the last few years, a rich body of literature has demonstrated both the presence and the importance of non-random distribution of biomolecules on the membrane, which is the focus of this review. These new developments have pushed the experimental limits of detection and have brought us closer to observing lipid domains in the plasma membrane of live cells. Characterization of biomolecules associated with lipid rafts has revealed a deep connection between biological regulation and function and membrane compositional heterogeneities. Finally, tantalizing new developments in the field have demonstrated that lipid domains might not just be associated with the plasma membrane of eukaryotes but could potentially be a ubiquitous membrane-organizing principle in several other biological systems. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA 15224, USA.
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
43
|
Gerstle Z, Desai R, Veatch SL. Giant Plasma Membrane Vesicles: An Experimental Tool for Probing the Effects of Drugs and Other Conditions on Membrane Domain Stability. Methods Enzymol 2018; 603:129-150. [PMID: 29673522 DOI: 10.1016/bs.mie.2018.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Giant plasma membrane vesicles (GPMVs) are isolated directly from living cells and provide an alternative to vesicles constructed of synthetic or purified lipids as an experimental model system for use in a wide range of assays. GPMVs capture much of the compositional protein and lipid complexity of intact cell plasma membranes, are filled with cytoplasm, and are free from contamination with membranes from internal organelles. GPMVs often exhibit a miscibility transition below the growth temperature of their parent cells. GPMVs labeled with a fluorescent protein or lipid analog appear uniform on the micron-scale when imaged above the miscibility transition temperature, and separate into coexisting liquid domains with differing membrane compositions and physical properties below this temperature. The presence of this miscibility transition in isolated GPMVs suggests that a similar phase-like heterogeneity occurs in intact plasma membranes under growth conditions, albeit on smaller length scales. In this context, GPMVs provide a simple and controlled experimental system to explore how drugs and other environmental conditions alter the composition and stability of phase-like domains in intact cell membranes. This chapter describes methods to generate and isolate GPMVs from adherent mammalian cells and to interrogate their miscibility transition temperatures using fluorescence microscopy.
Collapse
Affiliation(s)
- Zoe Gerstle
- University of Michigan, Ann Arbor, MI, United States
| | - Rohan Desai
- University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
44
|
Kishikawa JI, Inoue Y, Fujikawa M, Nishimura K, Nakanishi A, Tanabe T, Imamura H, Yokoyama K. General anesthetics cause mitochondrial dysfunction and reduction of intracellular ATP levels. PLoS One 2018; 13:e0190213. [PMID: 29298324 PMCID: PMC5752027 DOI: 10.1371/journal.pone.0190213] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/11/2017] [Indexed: 12/29/2022] Open
Abstract
General anesthetics are indispensable for effective clinical care. Although, the mechanism of action of general anesthetics remains controversial, lipid bilayers and proteins have been discussed as their targets. In this study, we focused on the relationship between cellular ATP levels and general anesthetics. The ATP levels of nematodes and cultured mammalian cells were decreased by exposure to three general anesthetics: isoflurane, pentobarbital, and 1-phenoxy-2-propanol. Furthermore, these general anesthetics abolished mitochondrial membrane potential, resulting in the inhibition of mitochondrial ATP synthesis. These results suggest that the observed decrease of cellular ATP level is a common phenomenon of general anesthetics.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Yuki Inoue
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Makoto Fujikawa
- Departmet of Pharmacology Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kenji Nishimura
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Atsuko Nakanishi
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Tsutomu Tanabe
- Departmet of Pharmacology Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, Japan
- * E-mail: (HI); (KY)
| | - Ken Yokoyama
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
- * E-mail: (HI); (KY)
| |
Collapse
|
45
|
Hallmarks of Reversible Separation of Living, Unperturbed Cell Membranes into Two Liquid Phases. Biophys J 2018; 113:2425-2432. [PMID: 29211996 DOI: 10.1016/j.bpj.2017.09.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Controversy has long surrounded the question of whether spontaneous lateral demixing of membranes into coexisting liquid phases can organize proteins and lipids on micron scales within unperturbed, living cells. A clear answer hinges on observation of hallmarks of a reversible phase transition. Here, by directly imaging micron-scale membrane domains of yeast vacuoles both in vivo and cell free, we demonstrate that the domains arise through a phase separation mechanism. The domains are large, have smooth boundaries, and can merge quickly, consistent with fluid phases. Moreover, the domains disappear above a distinct miscibility transition temperature (Tmix) and reappear below Tmix, over multiple heating and cooling cycles. Hence, large-scale membrane organization in living cells under physiologically relevant conditions can be controlled by tuning a single thermodynamic parameter.
Collapse
|
46
|
Local anesthetics induce interdigitation and thermotropic changes in dipalmitoylphosphatidylcholine bilayers. Chem Phys Lipids 2018; 210:22-27. [DOI: 10.1016/j.chemphyslip.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023]
|
47
|
Abstract
Cell membrane fatty acids influence fundamental properties of the plasma membrane, including membrane fluidity, protein functionality, and lipid raft signalling. Evidence suggests that dietary n-3 PUFA may target the plasma membrane of immune cells by altering plasma membrane lipid dynamics, thereby regulating the attenuation of immune cell activation and suppression of inflammation. As lipid-based immunotherapy might be a promising new clinical strategy for the treatment of inflammatory disorders, we conducted in vitro and in vivo experiments to examine the effects of n-3 PUFA on CD4+ T cell membrane order, mitochondrial bioenergetics and lymphoproliferation. n-3 PUFA were incorporated into human primary CD4+ T cells phospholipids in vitro in a dose-dependent manner, resulting in a reduction in whole cell membrane order, oxidative phosphorylation and proliferation. At higher doses, n-3 PUFA induced unique phase separation in T cell-derived giant plasma membrane vesicles. Similarly, in a short-term human pilot study, supplementation of fish oil (4 g n-3 PUFA/d) for 6 weeks in healthy subjects significantly elevated EPA (20 : 5n-3) levels in CD4+ T cell membrane phospholipids, and reduced membrane lipid order. These results demonstrate that the dynamic reshaping of human CD4+ T cell plasma membrane organisation by n-3 PUFA may modulate down-stream clonal expansion.
Collapse
|
48
|
Allender DW, Schick M. The Effect of Solutes on the Temperature of Miscibility Transitions in Multicomponent Membranes. Biophys J 2017; 113:1814-1821. [PMID: 29045875 DOI: 10.1016/j.bpj.2017.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
We address questions posed by experiments that show small-chain alcohols reduce the miscibility transition temperature when added to giant plasma membrane vesicles (GPMVs), but increase that temperature when added to giant unilamellar vesicles. In giant unilamellar vesicles the change in temperature displays a definite minimum, between decanol and tetradecanol, as a function of alcohol chain length; in GPMVs there is no such minimum. To emphasize the competition between internal entropies of the components and the interactions between them, we model the system as consisting of three different linear polymers. Two of them are the constituents of a liquid, one that can undergo a miscibility transition. To this liquid is added the third polymer component, which represents the short-chain alcohol. We show that, within Flory-Huggins theory, the addition of alcohol causes an increase or decrease of the miscibility transition temperature depending upon the competition of two effects. The first is the dilution of the interactions between the two components of the liquid caused by the introduction of the alcohol. This tends to lower the transition temperature. The second effect is the preferential partitioning of the alcohol into one phase of the liquid or the other. This tends to raise the transition temperature irrespective of which phase the alcohol prefers. This second effect is the smallest, and the decrease in transition temperature the largest, when the alcohol partitions equally between the two phases. Such equal partitioning occurs when the effect of the entropic excluded volume interactions (which cause the alcohol to prefer one phase) just balances the effect of the direct interactions, which cause it to prefer the other. These results allow us to make several predictions, and to propose an explanation for the different behavior of the transition temperature in GPMVs and giant unilamellar vesicles that results from the addition of alcohols.
Collapse
Affiliation(s)
- David W Allender
- Department of Physics, Kent State University, Kent, Ohio; Department of Physics, University of Washington, Seattle, Washington
| | - M Schick
- Department of Physics, University of Washington, Seattle, Washington.
| |
Collapse
|
49
|
Levental KR, Surma MA, Skinkle AD, Lorent JH, Zhou Y, Klose C, Chang JT, Hancock JF, Levental I. ω-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis. SCIENCE ADVANCES 2017; 3:eaao1193. [PMID: 29134198 PMCID: PMC5677358 DOI: 10.1126/sciadv.aao1193] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/16/2017] [Indexed: 05/19/2023]
Abstract
Mammalian cells produce hundreds of dynamically regulated lipid species that are actively turned over and trafficked to produce functional membranes. These lipid repertoires are susceptible to perturbations from dietary sources, with potentially profound physiological consequences. However, neither the lipid repertoires of various cellular membranes, their modulation by dietary fats, nor their effects on cellular phenotypes have been widely explored. We report that differentiation of human mesenchymal stem cells (MSCs) into osteoblasts or adipocytes results in extensive remodeling of the plasma membrane (PM), producing cell-specific membrane compositions and biophysical properties. The distinct features of osteoblast PMs enabled rational engineering of membrane phenotypes to modulate differentiation in MSCs. Specifically, supplementation with docosahexaenoic acid (DHA), a lipid component characteristic of osteoblast membranes, induced broad lipidomic remodeling in MSCs that reproduced compositional and structural aspects of the osteoblastic PM phenotype. The PM changes induced by DHA supplementation potentiated osteogenic differentiation of MSCs concurrent with enhanced Akt activation at the PM. These observations prompt a model wherein the DHA-induced lipidome leads to more stable membrane microdomains, which serve to increase Akt activity and thereby enhance osteogenic differentiation. More broadly, our investigations suggest a general mechanism by which dietary fats affect cellular physiology through remodeling of membrane lipidomes, biophysical properties, and signaling.
Collapse
Affiliation(s)
- Kandice R. Levental
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | - Joseph H. Lorent
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yong Zhou
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Jeffrey T. Chang
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John F. Hancock
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ilya Levental
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
50
|
Honerkamp-Smith AR. Zebrafish Keep Their Cool. Biophys J 2017; 113:1175-1176. [PMID: 28554481 DOI: 10.1016/j.bpj.2017.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022] Open
|