1
|
López JM, Carballeira P, Pozo J, León-Espinosa G, Muñoz A. Hypothalamic orexinergic neuron changes during the hibernation of the Syrian hamster. Front Neuroanat 2022; 16:993421. [PMID: 36157325 PMCID: PMC9501701 DOI: 10.3389/fnana.2022.993421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hibernation in small mammals is a highly regulated process with periods of torpor involving drops in body temperature and metabolic rate, as well as a general decrease in neural activity, all of which proceed alongside complex brain adaptive changes that appear to protect the brain from extreme hypoxia and low temperatures. All these changes are rapidly reversed, with no apparent brain damage occurring, during the short periods of arousal, interspersed during torpor—characterized by transitory and partial rewarming and activity, including sleep activation, and feeding in some species. The orexins are neuropeptides synthesized in hypothalamic neurons that project to multiple brain regions and are known to participate in the regulation of a variety of processes including feeding behavior, the sleep-wake cycle, and autonomic functions such as brown adipose tissue thermogenesis. Using multiple immunohistochemical techniques and quantitative analysis, we have characterized the orexinergic system in the brain of the Syrian hamster—a facultative hibernator. Our results revealed that orexinergic neurons in this species consisted of a neuronal population restricted to the lateral hypothalamic area, whereas orexinergic fibers distribute throughout the rostrocaudal extent of the brain, particularly innervating catecholaminergic and serotonergic neuronal populations. We characterized the changes of orexinergic cells in the different phases of hibernation based on the intensity of immunostaining for the neuronal activity marker C-Fos and orexin A (OXA). During torpor, we found an increase in C-Fos immunostaining intensity in orexinergic neurons, accompanied by a decrease in OXA immunostaining. These changes were accompanied by a volume reduction and a fragmentation of the Golgi apparatus (GA) as well as a decrease in the colocalization of OXA and the GA marker GM-130. Importantly, during arousal, C-Fos and OXA expression in orexinergic neurons was highest and the structural appearance and the volume of the GA along with the colocalization of OXA/GM-130 reverted to euthermic levels. We discuss the involvement of orexinergic cells in the regulation of mammalian hibernation and, in particular, the possibility that the high activation of orexinergic cells during the arousal stage guides the rewarming as well as the feeding and sleep behaviors characteristic of this phase.
Collapse
Affiliation(s)
- Jesús M. López
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Paula Carballeira
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Javier Pozo
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Gonzalo León-Espinosa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
| | - Alberto Muñoz
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Alberto Muñoz,
| |
Collapse
|
2
|
Hypocretin (orexin) immunoreactivity in the feline midbrain: Relevance for the generation of wakefulness. J Chem Neuroanat 2020; 105:101769. [PMID: 32145304 DOI: 10.1016/j.jchemneu.2020.101769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
Hypocretins (Hcrt) 1 and 2 are two neuropeptides synthesized from neurons that are located in the perifornical area of the lateral hypothalamus. These neurons project diffusely throughout the central nervous system, and have been implicated in the generation and maintenance of wakefulness, as well as in critical physiological processes that occur during this behavioral state, such as motivation. The hypocretinergic projections towards the feline midbrain have not been studied before. Therefore, the aim of the present study was to analyze their relationship to the midbrain neurons, that are critically involved in the control of sleep and wakefulness. With this purpose, we examined the distribution of Hcrt1-positive fibers in the midbrain and pontomesencephalic area of the domestic cat (Felis catus), and their relationship with catecholaminergic and cholinergic neurons by means of single and double immunohistochemistry. Hcrtergic axons with distinctive varicosities and buttons were heterogeneously distributed, exhibiting different densities in distinct regions of the midbrain. High Hcrtergic fiber densities were observed in the periaqueductal gray, interpeduncular nucleus, locus coeruleus and cholinergic mesopontine regions. In addition, we studied in detail the Hcrtergic projection towards the dopaminergic nuclei of the midbrain. While very few Hcrt + fibers were observed in the substantia nigra pars compacta, the highest density of Hcrtergic fibers was found in the dopaminergic ventral periaqueductal gray area (also called A10dc area); appositions between Hcrtergic terminals and dopaminergic somata and dendrites were observed within this area. Because this dopaminergic area has been involved in the control of wakefulness, the present anatomical data provides relevant support about the role of the Hcrtergic system in the generation of this behavioral state.
Collapse
|
3
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
4
|
Costa A, Castro-Zaballa S, Lagos P, Chase MH, Torterolo P. Distribution of MCH-containing fibers in the feline brainstem: Relevance for REM sleep regulation. Peptides 2018; 104:50-61. [PMID: 29680268 DOI: 10.1016/j.peptides.2018.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022]
Abstract
Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are localized in the postero-lateral hypothalamus and incerto-hypothalamic area. These neurons project diffusely throughout the central nervous system and have been implicated in critical physiological processes, such as sleep. Unlike rodents, in the order carnivora as well as in humans, MCH exerts its biological functions through two receptors: MCHR-1 and MCHR-2. Hence, the cat is an optimal animal to model MCHergic functions in humans. In the present study, we examined the distribution of MCH-positive fibers in the brainstem of the cat. MCHergic axons with distinctive varicosities and boutons were heterogeneously distributed, exhibiting different densities in distinct regions of the brainstem. High density of MCHergic fibers was found in the dorsal raphe nucleus, the laterodorsal tegmental nucleus, the periaqueductal gray, the pendunculopontine tegmental nucleus, the locus coeruleus and the prepositus hypoglossi. Because these areas are involved in the control of REM sleep, the present anatomical data support the role of this neuropeptidergic system in the control of this behavioral state.
Collapse
Affiliation(s)
- Alicia Costa
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Uruguay
| | | | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Uruguay
| | - Michael H Chase
- WebSciences International and UCLA School of Medicine, Los Angeles, USA
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Uruguay.
| |
Collapse
|
5
|
Davimes JG, Alagaili AN, Bennett NC, Mohammed OB, Bhagwandin A, Manger PR, Gravett N. Neurochemical organization and morphology of the sleep related nuclei in the brain of the Arabian oryx, Oryx leucoryx. J Chem Neuroanat 2017; 81:53-70. [PMID: 28163217 DOI: 10.1016/j.jchemneu.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/01/2022]
Abstract
The Arabian oryx, Oryx leucoryx, is a member of the superorder Cetartiodactyla and is native to the Arabian Desert. The desert environment can be considered extreme in which to sleep, as the ranges of temperatures experienced are beyond what most mammals encounter. The current study describes the nuclear organization and neuronal morphology of the systems that have been implicated in sleep control in other mammals for the Arabian oryx. The nuclei delineated include those revealed immunohistochemically as belonging to the cholinergic, catecholaminergic, serotonergic and orexinergic systems within the basal forebrain, hypothalamus, midbrain and pons. In addition, we examined the GABAergic neurons and their terminal networks surrounding or within these nuclei. The majority of the neuronal systems examined followed the typical mammalian organizational plan, but some differences were observed: (1) the neuronal morphology of the cholinergic laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei, as well as the parvocellular subdivision of the orexinergic main cluster, exhibited Cetartiodactyl-specific features; (2) the dorsal division of the catecholaminergic anterior hypothalamic group (A15d), which has not been reported in any member of the Artiodactyla studied to date, was present in the brain of the Arabian oryx; and (3) the catecholaminergic tuberal cell group (A12) was notably more expansive than previously seen in any other mammal. The A12 nucleus has been associated functionally to osmoregulation in other mammals, and thus its expansion could potentially be a species specific feature of the Arabian oryx given their native desert environment and the need for extreme water conservation.
Collapse
Affiliation(s)
- Joshua G Davimes
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nigel C Bennett
- SARChI Chair for Mammalian Behavioural Ecology and Physiology, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa.
| |
Collapse
|
6
|
Carrive P, Kuwaki T. Orexin and Central Modulation of Cardiovascular and Respiratory Function. Curr Top Behav Neurosci 2017; 33:157-196. [PMID: 27909989 DOI: 10.1007/7854_2016_46] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Orexin makes an important contribution to the regulation of cardiorespiratory function. When injected centrally under anesthesia, orexin increases blood pressure, heart rate, sympathetic nerve activity, and the amplitude and frequency of respiration. This is consistent with the location of orexin neurons in the hypothalamus and the distribution of orexin terminals at all levels of the central autonomic and respiratory network. These cardiorespiratory responses are components of arousal and are necessary to allow the expression of motivated behaviors. Thus, orexin contributes to the cardiorespiratory response to acute stressors, especially those of a psychogenic nature. Consequently, upregulation of orexin signaling, whether it is spontaneous or environmentally induced, can increase blood pressure and lead to hypertension, as is the case for the spontaneously hypertensive rat and the hypertensive BPH/2J Schlager mouse. Blockade of orexin receptors will reduce blood pressure in these animals, which could be a new pharmacological approach for the treatment of some forms of hypertension. Orexin can also magnify the respiratory reflex to hypercapnia in order to maintain respiratory homeostasis, and this may be in part why it is upregulated during obstructive sleep apnea. In this pathological condition, blockade of orexin receptors would make the apnea worse. To summarize, orexin is an important modulator of cardiorespiratory function. Acting on orexin signaling may help in the treatment of some cardiovascular and respiratory disorders.
Collapse
Affiliation(s)
- Pascal Carrive
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
7
|
Orexin, Stress and Central Cardiovascular Control. A Link with Hypertension? Neurosci Biobehav Rev 2016; 74:376-392. [PMID: 27477446 DOI: 10.1016/j.neubiorev.2016.06.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/28/2016] [Accepted: 06/13/2016] [Indexed: 01/28/2023]
Abstract
Orexin, the arousal peptide, originates from neurons located in an area of the dorsal hypothalamus well known for integrating defense responses and their cardiovascular component. Orexin neurons, which are driven in large part by the limbic forebrain, send projections to many regions in the brain, including regions involved in cardiovascular control, as far down as sympathetic preganglionic neurons in the spinal cord. Central injections of orexin evoke sympathetically mediated cardiovascular responses. Conversely, blockade of orexin receptors reduce the cardiovascular responses to acute stressors, preferentially of a psychological nature. More importantly, lasting upregulation of orexin signaling can lead to a hypertensive state. This can be observed in rats exposed to chronic stress as well as in strains known to display spontaneous hypertension such as the spontaneously hypertensive rat (SHR) or the hypertensive BPH/2J Schlager mouse. Thus, there is a link between orexin, stress and hypertension, and orexin upregulation could be a factor in the development of essential hypertension. Orexin receptor antagonists have anti-hypertensive effects that could be of clinical use.
Collapse
|
8
|
Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016; 594:5391-414. [PMID: 27060683 DOI: 10.1113/jp271324] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/02/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid eye movement (REM) sleep is a recurring part of the sleep-wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre-motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep-related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Singh C, Oikonomou G, Prober DA. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. eLife 2015; 4:e07000. [PMID: 26374985 PMCID: PMC4606453 DOI: 10.7554/elife.07000] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Pharmacological studies in mammals suggest that norepinephrine (NE) plays an important role in promoting arousal. However, the role of endogenous NE is unclear, with contradicting reports concerning the sleep phenotypes of mice lacking NE due to mutation of dopamine β-hydroxylase (dbh). To investigate NE function in an alternative vertebrate model, we generated dbh mutant zebrafish. In contrast to mice, these animals exhibit dramatically increased sleep. Surprisingly, despite an increase in sleep, dbh mutant zebrafish have a reduced arousal threshold. These phenotypes are also observed in zebrafish treated with small molecules that inhibit NE signaling, suggesting that they are caused by the lack of NE. Using genetic overexpression of hypocretin (Hcrt) and optogenetic activation of hcrt-expressing neurons, we also find that NE is important for Hcrt-induced arousal. These results establish a role for endogenous NE in promoting arousal and indicate that NE is a critical downstream effector of Hcrt neurons. DOI:http://dx.doi.org/10.7554/eLife.07000.001 Although the neural circuits that regulate sleep and wakefulness have yet to be fully identified, the importance of at least two brain regions is well established. These are the hypothalamus, a structure deep within the brain that controls a number of basic activities including hunger, thirst and sleep; and the brainstem, which connects the brain with the spinal cord. Specific neurons within the hypothalamus and brainstem regulate the sleep–wake cycle by signaling to one another using chemicals called neurotransmitters and neuropeptides. Throughout the day, some hypothalamic neurons release a neuropeptide called hypocretin, which helps maintain wakefulness. Hypocretin acts on neurons within the brainstem and causes them to release other neurotransmitters that promote wakefulness. However, the identity of these molecules is unclear. One candidate is norepinephrine. Drugs that enhance the effects of norepinephrine increase wakefulness, whereas those that block norepinephrine signaling promote sleep. Despite this, mice that have been genetically modified to lack the enzyme that produces norepinephrine exhibit relatively normal sleep. This may be because in mammals, norepinephrine also has important roles outside the brain, thus complicating the effects of this genetic modification on behavior. Alternatively, while zebrafish that lack norepinephrine are healthy, mice containing this modification die early in development. Treating these mice with a specific drug allows them to survive, but might affect their behavior. To clarify the role of norepinephrine and its interaction with hypocretin, Singh, Oikonomou and Prober created a new animal model by genetically modifying zebrafish. In contrast to mice, zebrafish that were unable to make norepinephrine slept more than normal fish, although they were also lighter sleepers and were more prone to being startled. A genetic modification that increases hypocretin signaling induces insomnia; Singh, Oikonomou and Prober found that this occurs only in animals with normal levels of norepinephrine. Thus, these experiments indicate that hypocretin does indeed promote wakefulness though norepinephrine. The work of Singh, Oikonomou and Prober has clarified the role of norepinephrine in regulating the sleep–wake cycle. These findings could help in the development of drugs that target the neurons that make hypocretin, which may improve treatments for sleep disorders. DOI:http://dx.doi.org/10.7554/eLife.07000.002
Collapse
Affiliation(s)
- Chanpreet Singh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
10
|
Xi M, Fung SJ, Yamuy J, Chase MH. Interactions between hypocretinergic and GABAergic systems in the control of activity of neurons in the cat pontine reticular formation. Neuroscience 2015; 298:190-9. [PMID: 25892701 DOI: 10.1016/j.neuroscience.2015.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 11/30/2022]
Abstract
Anatomical studies have demonstrated that hypocretinergic and GABAergic neurons innervate cells in the nucleus pontis oralis (NPO), a nucleus responsible for the generation of active (rapid eye movement (REM)) sleep (AS) and wakefulness (W). Behavioral and electrophysiological studies have shown that hypocretinergic and GABAergic processes in the NPO are involved in the generation of AS as well as W. An increase in hypocretin in the NPO is associated with both AS and W, whereas GABA levels in the NPO are elevated during W. We therefore examined the manner in which GABA modulates NPO neuronal responses to hypocretin. We hypothesized that interactions between the hypocretinergic and GABAergic systems in the NPO play an important role in determining the occurrence of AS or W. To determine the veracity of this hypothesis, we examined the effects of the juxtacellular application of hypocretin-1 and GABA on the activity of NPO neurons, which were recorded intracellularly, in chloralose-anesthetized cats. The juxtacellular application of hypocretin-1 significantly increased the mean amplitude of spontaneous EPSPs and the frequency of discharge of NPO neurons; in contrast, the juxtacellular microinjection of GABA produced the opposite effects, i.e., there was a significant reduction in the mean amplitude of spontaneous EPSPs and a decrease in the discharge of these cells. When hypocretin-1 and GABA were applied simultaneously, the inhibitory effect of GABA on the activity of NPO neurons was reduced or completely blocked. In addition, hypocretin-1 also blocked GABAergic inhibition of EPSPs evoked by stimulation of the laterodorsal tegmental nucleus. These data indicate that hypocretin and GABA function within the context of a neuronal gate that controls the activity of AS-on neurons. Therefore, we suggest that the occurrence of either AS or W depends upon interactions between hypocretinergic and GABAergic processes as well as inputs from other sites that project to AS-on neurons in the NPO.
Collapse
Affiliation(s)
- M Xi
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - S J Fung
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - J Yamuy
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - M H Chase
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
López JM, Sanz-Morello B, González A. Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus. Peptides 2014; 61:23-37. [PMID: 25169954 DOI: 10.1016/j.peptides.2014.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 01/12/2023]
Abstract
Cladistians are primitive actinopterygian fishes mostly neglected in neuroanatomical studies. In the present study, the detailed neuroanatomical distribution of orexin (hypocretin)-like immunoreactive (OX-ir) cell bodies and fibers was analyzed in the brain of two species representative of the two extant genera of cladistians. Antibodies against mammalian orexin-A and orexin-B peptides were used. Simultaneous detection of orexins with neuropeptide Y (NPY), tyrosine hydroxylase (TH), and serotonin (5-HT) was used to establish accurately the topography of the orexin system and to evaluate the possible interactions with NPY and monoaminergic systems. A largely common pattern of OX-ir distribution in the two cladistian species was observed. Most OX-ir cells were located in the suprachiasmatic nucleus and tuberal hypothalamus, whereas scarce cells were observed in the posterior tubercle. In addition, a population of OX-ir cells was found in the preoptic area only in Polypterus and some cells also contained TH. The observed widespread distribution of OX-ir fibers was especially abundant in the retrobulbar area, subpallial areas, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic area, prethalamus, thalamus, pretectum, optic tectum, and tegmentum. Low innervation was found in relation to monoaminergic cell groups, whereas a high NPY innervation was observed in all OX-ir cell groups. These relationships would represent the anatomical substrate for the functional interdependence between these systems. The organization of the orexin system in cladistians revealed a pattern largely consistent with those reported for all studied groups of vertebrates, suggesting that the primitive organization of this peptidergic system occurred in the common ancestor of gnathostome vertebrates.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | - Berta Sanz-Morello
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Schwartz MD, Mong JA. Estradiol modulates recovery of REM sleep in a time-of-day-dependent manner. Am J Physiol Regul Integr Comp Physiol 2013; 305:R271-80. [PMID: 23678032 PMCID: PMC3743004 DOI: 10.1152/ajpregu.00474.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/06/2013] [Indexed: 11/22/2022]
Abstract
Ovarian hormones are thought to modulate sleep and fluctuations in the hormonal milieu are coincident with sleep complaints in women. In female rats, estradiol increases waking and suppresses sleep. In this study, we asked whether this effect is mediated via circadian or homeostatic regulatory mechanisms. Ovariectomized female rats received daily injections of estradiol benzoate (EB) or sesame oil that mimicked the rapid increase and subsequent decline of circulating estradiol at proestrus. In one experiment, animals were sleep deprived for 6 h starting at lights-on, so that recovery began in the mid-light phase; in the second experiment, animals were sleep deprived starting in the mid-light phase, so that recovery began at lights-off. EB suppressed baseline rapid eye movement (REM) and non-REM (NREM) sleep and increased waking in the dark phase. In both experiments, EB enhanced REM recovery in the light phase while suppressing it in the dark compared with oil; this effect was most pronounced in the first 6 h of recovery. By contrast, NREM recovery was largely unaffected by EB. In summary, EB enhanced waking and suppressed sleep, particularly REM sleep, in the dark under baseline and recovery conditions. These strong temporally dependent effects suggest that EB consolidates circadian sleep-wake rhythms in female rats.
Collapse
Affiliation(s)
- Michael D Schwartz
- Center for Neuroscience, Biosciences Division, SRI international, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | | |
Collapse
|
13
|
García-García B, Reinoso-Suárez F, Rodrigo-Angulo ML. Hypothalamic Hypocretinergic/Orexinergic Neurons Projecting to the Oral Pontine Rapid Eye Movement Sleep Inducing Site in the Cat. Anat Rec (Hoboken) 2013; 296:815-21. [DOI: 10.1002/ar.22690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/19/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Berta García-García
- Departamento de Anatomía; Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid; Madrid Spain
| | - Fernando Reinoso-Suárez
- Departamento de Anatomía; Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid; Madrid Spain
| | - Margarita L. Rodrigo-Angulo
- Departamento de Anatomía; Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
14
|
Miranda B, Esposito V, de Girolamo P, Sharp PJ, Wilson PW, Dunn IC. Orexin in the chicken hypothalamus: immunocytochemical localisation and comparison of mRNA concentrations during the day and night, and after chronic food restriction. Brain Res 2013; 1513:34-40. [PMID: 23548597 DOI: 10.1016/j.brainres.2013.03.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 03/17/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022]
Abstract
In mammals Orexin-A and -B are neuropeptides involved in the hypothalamic regulation of diverse physiological functions including food intake and the sleep-wake cycle. This generalisation was investigated in meat-(broiler) and layer-type juvenile domestic chickens by immunocytochemical localisation of orexin A/B in the hypothalamus, and by measurements of hypothalamic hypocretin mRNA which encodes for orexin A/B after chronic food restriction, and during the sleep-wake cycle. Orexin immunoreactive fibres were observed throughout the hypothalamus with cell bodies in and around the paraventricular nucleus. No differences were observed in the pattern of immunoreactivity using anti- human orexin-A, or -B antisera. The amount of hypothalamic hypocretin mRNA in food -restricted broilers was higher than in broilers fed ad libitum, but the same as in layer- type hens fed ad libitum. Hypothalamic hypocretin mRNA was increased (P<0.01) in 12-week-old broilers fed 25% of their ad libitum intake between 6-12 weeks of age. No difference in hypothalamic hypocretin mRNA was seen in 12-week-old layer- type hens when they were awake (1-2h after lights on) or sleeping (1-2h after lights off). It is concluded that in the chicken, we could not find evidence that hypothalamic orexin plays a role in the sleep-wake cycle and it may be involved in aspects of energy balance.
Collapse
Affiliation(s)
- Bernadette Miranda
- Department of Structures, Functions and Biological Technologies, University of Naples FedericoII, via Delpino1, I-80137 Naples, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Torterolo P, Sampogna S, Chase MH. Hypocretinergic and non-hypocretinergic projections from the hypothalamus to the REM sleep executive area of the pons. Brain Res 2013; 1491:68-77. [PMID: 23122879 PMCID: PMC3529971 DOI: 10.1016/j.brainres.2012.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 12/28/2022]
Abstract
Within the postero-lateral hypothalamus neurons that utilize hypocretin or melanin-concentrating hormone (MCH) as neuromodulators are co-distributed. These neurons have been involved in the control of behavioral states, and a deficit in the hypocretinergic system is the pathogenic basis of narcolepsy with cataplexy. In this report, utilizing immunohistochemistry and retrograde tracing techniques, we examined the hypocretinergic innervation of the nucleus pontis oralis (NPO), which is the executive site that is responsible for the generation of REM sleep in the cat. The retrograde tracer cholera toxin subunit b (CTb) was administered in pontine regions where carbachol microinjections induced REM sleep. Utilizing immunohistochemical techniques, we found that approximately 1% of hypocretinergic neurons in the tuberal area of the hypothalamus project to the NPO. In addition, approximately 6% of all CTb+ neurons in this region were hypocretinergic. The hypocretinergic innervation of the NPO was also compared with the innervation of the same site by MCH-containing neurons. More than three times as many MCHergic neurons were found to project to the NPO compared with hypocretinergic cells; both neuronal types exhibited bilateral projections. We also identified a group of non-hypocretinergic non-MCHergic neuronal group of neurons that were intermingled with both hypocretinergic and MCHergic neurons that also projected to this same brainstem region. These neurons were grater in number that either hypocretin or MCH-containing neurons; their soma size was also smaller and their projections were mainly ipsilateral. The present anatomical data suggest that hypocretinergic, MCHergic and an unidentified companion group of neurons of the postero-lateral hypothalamus participate in the regulation of the neuronal activity of NPO neurons, and therefore, are likely to participate in the control of wakefulness and REM sleep.
Collapse
Affiliation(s)
- Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, Uruguay.
| | | | | |
Collapse
|
16
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
17
|
Zhang J, Xi M, Fung SJ, Sampogna S, Chase MH. Projections from the central nucleus of the amygdala to the nucleus pontis oralis in the rat: An anterograde labeling study. Neurosci Lett 2012; 525:157-62. [DOI: 10.1016/j.neulet.2012.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/13/2012] [Accepted: 07/24/2012] [Indexed: 11/25/2022]
|
18
|
Schwartz MD, Mong JA. Estradiol suppresses recovery of REM sleep following sleep deprivation in ovariectomized female rats. Physiol Behav 2011; 104:962-71. [PMID: 21722658 PMCID: PMC3183102 DOI: 10.1016/j.physbeh.2011.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 12/24/2022]
Abstract
Sleep complaints such as insufficient sleep and insomnia are twice as prevalent in women. Symptoms of sleep disruption are often coincident with changes in the gonadal hormone profile across a women's lifespan. Data from a number of different species, including humans, non-human primates and rodents strongly implicate a role for gonadal hormones in the modulation of sleep. In female rats, increased levels of circulating estradiol increase wakefulness and reduce sleep in the dark phase. In this study, we asked whether this reduction in sleep is driven by estradiol-dependent reduction in sleep need during the dark phase by assessing sleep before and after sleep deprivation (SD). Ovariectomized rats implanted with EEG telemetry transmitters were given Silastic capsules containing either 17-β estradiol in sesame oil (E2) or sesame oil alone. After a 24-hour baseline, animals were sleep-deprived via gentle handling for the entire 12-hour light phase, and then allowed to recover. E2 treatment suppressed baseline REM sleep duration in the dark phase, but not NREM or Wake duration, within three days. While SD induced a compensatory increase in REM duration in both groups, this increase was smaller in E2-treated rats compared to oils, as measured in absolute duration as well as by relative increase over baseline. Thus, E2 suppressed REM sleep in the dark phase both before and after SD. E2 also suppressed NREM and increased waking in the early- to mid-dark phase on the day after SD. NREM delta power tracked NREM sleep before and after SD, with small hormone-dependent reductions in delta power in recovery, but not spontaneous sleep. These results demonstrate that E2 powerfully and specifically suppresses spontaneous and recovery REM sleep in the dark phase, and suggest that ovarian steroids may consolidate circadian sleep-wake rhythms.
Collapse
Affiliation(s)
- Michael D Schwartz
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore MD 21201, USA.
| | | |
Collapse
|
19
|
Hong EY, Lee HS. Retrograde study of projections from the tuberomammillary nucleus to the mesopontine cholinergic complex in the rat. Brain Res 2011; 1383:169-78. [DOI: 10.1016/j.brainres.2011.01.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 01/29/2023]
|
20
|
Xi M, Chase MH. The injection of hypocretin-1 into the nucleus pontis oralis induces either active sleep or wakefulness depending on the behavioral state when it is administered. Sleep 2010; 33:1236-43. [PMID: 20857871 DOI: 10.1093/sleep/33.9.1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES We previously reported that the microinjection of hypocretin (orexin) into the nucleus pontis oralis (NPO) induces a behavioral state that is comparable to naturally occurring active (rapid eye movement) sleep. However, other laboratories have found that wakefulness occurs following injections of hypocretin into the NPO. The present study tested the hypothesis that the discrepancy in behavioral state responses to hypocretin injections is due to the fact that hypocretin was not administered during the same states of sleep or wakefulness. DESIGN Adult cats were implanted with electrodes to record sleep and waking states. Hypocretin-1 (0.25 microL, 500microM) was microinjected into the NPO while the animals were awake or in quiet (non-rapid eye movement) sleep. MEASUREMENTS AND RESULTS When hyprocretin-1 was microinjected into the NPO during quiet sleep, active sleep occurred with a short latency. In addition, there was a significant increase in the time spent in active sleep and in the number of episodes of this state. On the other hand, the injection of hyprocretin-1 during wakefulness resulted not only in a significant increase in wakefulness, but also in a decrease in the percentage and frequency of episodes of active sleep. CONCLUSIONS The present data demonstrate that the behavioral state of the animal dictates whether active sleep or wakefulness is induced following the injection of hypocretin. Therefore, we suggest that hypocretin-1 enhances ongoing states of wakefulness and their accompanying patterns of physiologic activity and that hypocretin-1 is also capable of promoting active sleep and the changes in various processes that occur during this state.
Collapse
Affiliation(s)
- Mingchu Xi
- WebSciences International, Los Angeles, CA 90024, USA.
| | | |
Collapse
|
21
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
22
|
Distribution of orexin-A immunoreactive neurons and their terminal networks in the brain of the rock hyrax, Procavia capensis. J Chem Neuroanat 2010; 41:86-96. [PMID: 21126575 DOI: 10.1016/j.jchemneu.2010.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/21/2010] [Accepted: 11/21/2010] [Indexed: 11/21/2022]
Abstract
The present study describes the distribution of orexin-A immunoreactive neurons and terminal networks in relation to the previously described catecholaminergic, cholinergic and serotonergic systems within the brain of the rock hyrax, Procavia capensis. Adult female rock hyrax brains were sectioned and immunohistochemically stained with an antibody to orexin-A. The staining revealed that the neurons were mainly located within the hypothalamus as with other mammals. The orexinergic terminal network distribution also resembled the typical mammalian plan. High-density orexinergic terminal networks were located within regions of the diencephalon (e.g. paraventricular nuclei), midbrain (e.g. serotonergic nuclei) and pons (locus coeruleus), while medium density orexinergic terminal networks were evident in the telencephalic (e.g. basal forebrain), diencephalic (e.g. hypothalamus), midbrain (e.g. periaqueductal gray matter), pontine (e.g. serotonergic nuclei) and medullary regions (e.g. serotonergic and catecholaminergic nuclei). Although the distribution of the orexinergic terminal networks was typically mammalian, the rock hyrax did show one atypical feature, the presence of a high-density orexinergic terminal network within the anterodorsal nucleus of the dorsal thalamus (AD). The dense orexinergic innervation of the AD nucleus has only been reported previously in the Nile grass rat, Arvicanthis niloticus and Syrian hamster, Mesocricetus auratus, both diurnal mammals. It is possible that orexinergic innervation of the AD nucleus might be a unique feature associated with diurnal mammals. It was also noted that the dense orexinergic innervation of the AD nucleus coincided with previously identified cholinergic neurons and terminal networks in this particular nucleus of the rock hyrax brain. It is possible that this dense orexinergic innervation of the AD nucleus in the brain of the rock hyrax may act in concert with the cholinergic neurons and/or the cholinergic axonal terminals, which in turn may influence arousal states and motivational processing.
Collapse
|
23
|
Chen L, McKenna JT, Bolortuya Y, Winston S, Thakkar MM, Basheer R, Brown RE, McCarley RW. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period. Eur J Neurosci 2010; 32:1528-36. [PMID: 21089218 PMCID: PMC3058252 DOI: 10.1111/j.1460-9568.2010.07401.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The locus coeruleus (LC) regulates sleep/wakefulness and is densely innervated by orexinergic neurons in the lateral hypothalamus. Here we used small interfering RNAs (siRNAs) to test the role of LC orexin type 1 receptor (OxR1) in sleep–wake control. In sleep studies, bilateral OxR1 siRNA injections led to an increase of time spent in rapid eye movement (REM) sleep, which was selective for the dark (active) period, peaked at approximately 30% of control during the second dark period after injection and then disappeared after 4 days. Cataplexy-like episodes were not observed. The percentage time spent in wakefulness and non-REM (NREM) sleep and the power spectral profile of NREM and REM sleep were unaffected. Control animals, injected with scrambled siRNA, had no sleep changes after injection. Quantification of the knockdown revealed that unilateral microinjection of siRNAs targeting OxR1 into the rat LC on two consecutive days induced a 45.5% reduction of OxR1 mRNA in the LC 2 days following the injections when compared with the contralateral side receiving injections of control (scrambled) siRNAs. This reduction disappeared 4 days after injection. Similarly, unilateral injection of OxR1 siRNA into the LC revealed a marked (33.5%) reduction of OxR1 staining 2 days following injections. In contrast, both the mRNA level and immunohistochemical staining for tyrosine hydroxylase were unaffected. The results indicate that a modest knockdown of OxR1 is sufficient to induce observable sleep changes. Moreover, orexin neurons, by acting on OxR1 in the LC, play a role in the diurnal gating of REM sleep.
Collapse
Affiliation(s)
- Lichao Chen
- Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Brockton, MA 02301,USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang JH, Fung SJ, Xi M, Sampogna S, Chase MH. Apnea produces neuronal degeneration in the pons and medulla of guinea pigs. Neurobiol Dis 2010; 40:251-64. [PMID: 20554036 DOI: 10.1016/j.nbd.2010.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 05/19/2010] [Accepted: 05/30/2010] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea and other sleep-related breathing disorders result in recurrent periods of oxygen deprivation (hypoxia), hypercapnia and an increase in the cellular production of reactive oxygen species (oxidative stress-related injury). Individuals with these disorders suffer from a variety of cellular abnormalities that result in cardiopulmonary dysfunctions, disturbances in sleep and other pathologies. In the present experiment, using an animal model of sleep apnea, we determined that the degeneration of neurons and glia, due to apoptosis, occurs in specific regions of the pons and medulla. Adult guinea pigs, which were divided into control (normoxic) and experimental (hypoxic) groups, were anesthetized with alpha-chloralose and immobilized with Flaxedil. Apnea (hypoxia) was induced by ventilatory arrest in order to desaturate the oxyhemoglobin to 75% SpO(2). A sequence of apnea, followed by ventilation with recovery to >95% SpO(2), was repeated for a period of 3h. At the end of the period of recurrent apnea, the animals were perfused and brain sections were immunostained with a mouse monoclonal antibody raised against single-stranded DNA (ssDNA). Apoptotic neurons and glia, which were not found in the control group of animals, were present in brainstem regions in hypoxic group of animals; these regions involved in the control of respiration (e.g., the parafacial respiratory group and the ventral respiratory group), cardiovascular functions (e.g., the nucleus ambiguus, the nucleus tractus solitarius and the dorsal motor nucleus of the vagus) as well as REM sleep (the nucleus pontis oralis) and wakefulness (e.g., the dorsal raphe and locus ceruleus). We suggest apoptotic neurons and glia in critical areas of the pons and medulla results in many of the comorbidities experienced by patients with sleep-disordered breathing pathologies.
Collapse
|
25
|
Badami VM, Rice CD, Lois JH, Madrecha J, Yates BJ. Distribution of hypothalamic neurons with orexin (hypocretin) or melanin concentrating hormone (MCH) immunoreactivity and multisynaptic connections with diaphragm motoneurons. Brain Res 2010; 1323:119-26. [PMID: 20144885 PMCID: PMC2888976 DOI: 10.1016/j.brainres.2010.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 01/30/2010] [Accepted: 02/02/2010] [Indexed: 11/16/2022]
Abstract
Prior work showed that neurons in the lateral, dorsal, and perifornical regions of the tuberal and mammillary levels of the hypothalamus participate in the control of breathing. The same areas also contain large numbers of neurons that produce either orexins (hypocretins) or melanin concentrating hormone (MCH). These peptides have been implicated in regulating energy balance and physiological changes that occur in transitions between sleep and wakefulness, amongst other functions. The goal of this study was to determine if hypothalamic neurons involved in respiratory control, which were identified in cats by the retrograde transneuronal transport of rabies virus from the diaphragm, were immunopositive for either orexin-A or MCH. In animals with limited rabies infection of the hypothalamus (<10 infected cells/section), where the neurons with the most direct influences on diaphragm motoneurons were presumably labeled, a large fraction (28-75%) of the infected hypothalamic neurons contained orexin-A. In the same cases, 6-33% of rabies-infected hypothalamic cells contained MCH. However, in animals with more extensive infection, where rabies had presumably passed transneuronally through more synapses, the fraction of infected cells that contained orexin-A was lower. The findings from these experiments thus support the notion that hypothalamic influences on breathing are substantially mediated through orexins or MCH.
Collapse
Affiliation(s)
- Varun M Badami
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
26
|
Domínguez L, Morona R, Joven A, González A, López JM. Immunohistochemical localization of orexins (hypocretins) in the brain of reptiles and its relation to monoaminergic systems. J Chem Neuroanat 2010; 39:20-34. [DOI: 10.1016/j.jchemneu.2009.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 12/01/2022]
|
27
|
Yamuy J, Fung SJ, Xi M, Chase MH. State-dependent control of lumbar motoneurons by the hypocretinergic system. Exp Neurol 2009; 221:335-45. [PMID: 19962375 DOI: 10.1016/j.expneurol.2009.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
Neurons in the lateral hypothalamus (LH) that synthesize hypocretins (Hcrt-1 and Hcrt-2) are active during wakefulness and excite lumbar motoneurons. Because hypocretinergic cells also discharge during phasic periods of rapid eye movement (REM) sleep, we sought to examine their action on the activity of motoneurons during this state. Accordingly, cat lumbar motoneurons were intracellularly recorded, under alpha-chloralose anesthesia, prior to (control) and during the carbachol-induced REM sleep-like atonia (REMc). During control conditions, LH stimulation induced excitatory postsynaptic potentials (composite EPSP) in motoneurons. In contrast, during REMc, identical LH stimulation induced inhibitory PSPs in motoneurons. We then tested the effects of LH stimulation on motoneuron responses following the stimulation of the nucleus reticularis gigantocellularis (NRGc) which is part of a brainstem-spinal cord system that controls motoneuron excitability in a state-dependent manner. LH stimulation facilitated NRGc stimulation-induced composite EPSP during control conditions whereas it enhanced NRGc stimulation-induced IPSPs during REMc. These intriguing data indicate that the LH exerts a state-dependent control of motor activity. As a first step to understand these results, we examined whether hypocretinergic synaptic mechanisms in the spinal cord were state dependent. We found that the juxtacellular application of Hcrt-1 induced motoneuron excitation during control conditions whereas motoneuron inhibition was enhanced during REMc. These data indicate that the hypocretinergic system acts on motoneurons in a state-dependent manner via spinal synaptic mechanisms. Thus, deficits in Hcrt-1 may cause the coexistence of incongruous motor signs in cataplectic patients, such as motor suppression during wakefulness and movement disorders during REM sleep.
Collapse
Affiliation(s)
- Jack Yamuy
- WebSciences International, Los Angeles, CA 90024, USA.
| | | | | | | |
Collapse
|
28
|
Schreyer S, Büttner-Ennever JA, Tang X, Mustari MJ, Horn AKE. Orexin-A inputs onto visuomotor cell groups in the monkey brainstem. Neuroscience 2009; 164:629-40. [PMID: 19703526 DOI: 10.1016/j.neuroscience.2009.08.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 08/16/2009] [Accepted: 08/17/2009] [Indexed: 11/30/2022]
Abstract
Orexin-A, synthesized by neurons of the lateral hypothalamus helps to maintain wakefulness through excitatory projections to nuclei involved in arousal. Obvious changes in eye movements, eyelid position and pupil reactions seen in the transition to sleep led to the investigation of orexin-A projections to visuomotor cell groups to determine whether direct pathways exist that may modify visuomotor behaviors during the sleep-wake cycle. Histological markers were used to define these specific visuomotor cell groups in monkey brainstem sections and combined with orexin-A immunostaining. The dense supply by orexin-A boutons around adjacent neurons in the dorsal raphe nucleus served as a control standard for a strong orexin-A input. The quantitative analysis assessing various functional cell groups of the oculomotor system revealed that almost no input from orexin-A terminals reached motoneurons supplying the singly-innervated muscle fibers of the extraocular muscles in the oculomotor nucleus, the omnipause neurons in the nucleus raphe interpositus and the premotor neurons in the rostral interstitial nucleus of the medial longitudinal fasciculus. In contrast, the motoneurons supplying the multiply-innervated muscle fibers of the extraocular muscles, the motoneurons of the levator palpebrae muscle in the central caudal nucleus, and especially the preganglionic neurons supplying the ciliary ganglion received a strong orexin input. We interpret these results as evidence that orexin-A does modulate pupil size, lid position, and possibly convergence and eye alignment via the motoneurons of multiply-innervated muscle fibres. However orexin-A does not directly modulate premotor pathways for saccades or the singly-innervated muscle fibre motoneurons.
Collapse
Affiliation(s)
- S Schreyer
- Institute of Anatomy, Ludwig-Maximilians University of Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | | | | | | | | |
Collapse
|
29
|
López JM, Domínguez L, Moreno N, González A. Comparative immunohistochemical analysis of the distribution of orexins (hypocretins) in the brain of amphibians. Peptides 2009; 30:873-87. [PMID: 19428764 DOI: 10.1016/j.peptides.2009.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
The orexins (hypocretins) are peptides found primarily in neurons of the hypothalamus of all vertebrates. Many differences were reported about the precise location of orexin containing cells and their projections throughout the brain in different species. However, there are few direct cross-species comparisons. Previous studies in anuran amphibians have also reported notable species differences. We examined and directly compared the distribution of orexinergic neurons and fibers within the brains of representatives of the three amphibian orders, anurans, urodeles and gymnophionans. Simultaneous detection of orexins and tyrosine hydroxylase was used to assess the precise location of the orexins in the brain and to evaluate the possible influence of the orexin system on the catecholaminergic cell groups. Although some differences were noted, a common pattern for the distribution of orexins in amphibians was observed. In all species, most immunoreactive neurons were observed in the suprachiasmatic nucleus, whereas the cells in the preoptic area and the tuberal region were more variable. Orexin immunoreactive fibers in the brain of all species included abundant fibers throughout the preoptic area and hypothalamus, whereas moderate amounts of fibers were present in the pallium, striatum, septum, thalamus, optic tectum, torus semicircularis, rhombencephalon and spinal cord. The use of double immunohistochemistry in amphibians revealed orexinergic innervation in dopaminergic and noradrenergic cell groups, such as the midbrain tegmentum, locus coeruleus and nucleus of the solitary tract, as was previously reported in mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Zhang JH, Fung SJ, Xi M, Sampogna S, Chase MH. Recurrent apnea induces neuronal apoptosis in the guinea pig forebrain. Exp Neurol 2008; 216:290-4. [PMID: 19124019 DOI: 10.1016/j.expneurol.2008.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/01/2008] [Indexed: 11/29/2022]
Abstract
Obstructive sleep apnea (OSA) and sleep-disordered breathing (SDB) can result in impaired cognition and mental acuity, and the generation of mood disorders, including depression. However, the mechanisms of neuronal damage for these complications have not been elucidated. Accordingly, using immunohistochemical technique with monoclonal antibody against single-stranded DNA, we examined the morphological effects of chronic recurrent apnea on neurons in the hippocampus and related forebrain sites in guinea pigs. Our results show that a large number of neurons labeled by anti-ssDNA antibody were present in the cingulate, insular and frontal cortices, the hippocampus and the amygdala in conjunction with periods of recurrent apnea. However, no labeling was observed in comparable regions of the brain in control guinea pigs. In the cortices of experimental animals, labeled neurons were detected mainly in the superficial layers (II-III) in the frontal, insular and cingulate cortex. In the hippocampus, most labeled neurons were located in the CA1 region, in which most of stained neurons were observed in strata pyramidal, while only a few positive neurons were located in the strata radiatum and the strata oriens. In addition, a large number of labeled neurons were also detected in the central nucleus of amygdala in the guinea pigs underwent recurrent periods of apnea. The present data indicate that recurrent apnea results in cell death in the hippocampus and related forebrain regions via mechanisms of apoptosis, which may represent the basis for the clinical complications of obstructive sleep apnea and sleep-disordered breathing.
Collapse
|
31
|
Gompf HS, Aston-Jones G. Role of orexin input in the diurnal rhythm of locus coeruleus impulse activity. Brain Res 2008; 1224:43-52. [PMID: 18614159 PMCID: PMC2596878 DOI: 10.1016/j.brainres.2008.05.060] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/28/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
Abstract
Activation of noradrenergic locus coeruleus (LC) neurons promotes wakefulness and behavioral arousal. In rats, LC neurons receive circadian inputs via a circuit that originates in the suprachiasmatic nucleus (SCN) and relays through the dorsomedial hypothalamus (DMH) to LC; this circuit input increases LC activity during the active period. DMH neurons expressing the peptide neurotransmitter orexin/hypocretin are ideally situated to act as a relay between SCN and LC due to their synaptic inputs from SCN and innervation of LC. Here, we examined the hypothesis that orexin is involved in transmitting circadian signals to LC using single-unit recordings of LC neurons in anesthetized rats maintained in 12:12 light-dark housing. We replicated earlier findings from this lab that LC neurons fire significantly faster on average during the active compared to rest periods. Local microinjection of an orexin antagonist, SB-334867-A attenuated the impulse activities of the fastest firing population of LC neurons during the active period. We also found that DMH orexin neurons project preferentially to LC and express a diurnal rhythm of activation that correlates with LC neuronal firing frequency. Therefore, we propose that DMH orexin neurons play a role in modulating the day-night differences of LC impulse activity.
Collapse
Affiliation(s)
- Heinrich S. Gompf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Gary Aston-Jones
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
32
|
Watson CJ, Soto-Calderon H, Lydic R, Baghdoyan HA. Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness. Sleep 2008; 31:453-64. [PMID: 18457232 DOI: 10.1093/sleep/31.4.453] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES GABAergic transmission in the oral part of the pontine reticular formation (PnO) increases wakefulness. The hypothalamic peptide hypocretin-1 (orexin A) promotes wakefulness, and the PnO receives hypocretinergic input. The present study tested the hypothesis that PnO administration of hypocretin-1 increases PnO GABA levels and increases wakefulness. This study also tested the hypothesis that wakefulness is either increased or decreased, respectively, by PnO administration of drugs known to selectively increase or decrease GABA levels. DESIGN Awithin-subjects design was used for microdialysis and microinjection experiments. SETTING University of Michigan. PATIENTS OR PARTICIPANTS Experiments were performed using adult male Crl:CD (SD)IGS BR (Sprague-Dawley) rats (n=46). INTERVENTIONS PnO administration of hypocretin-1, nipecotic acid (a GABA uptake inhibitor that increases extracellular GABA levels), 3-mercaptopropionic acid (a GABA synthesis inhibitor that decreases extracellular GABA levels; 3-MPA), and Ringer solution (vehicle control). MEASUREMENTS AND RESULTS Dialysis administration of hypocretin-1 to the PnO caused a statistically significant, concentration-dependent increase in PnO GABA levels. PnO microinjection of hypocretin-1 or nipecotic acid caused a significant increase in wakefulness and a significant decrease in non-rapid eye movement (NREM) sleep and REM sleep. Microinjecting 3-MPA into the PnO caused a significant increase in NREM sleep and REM sleep and a significant decrease in wakefulness. CONCLUSIONS An increase or a decrease in PnO GABA levels causes an increase or decrease, respectively, in wakefulness. Hypocretin-1 may promote wakefulness, at least in part, by increasing GABAergic transmission in the PnO.
Collapse
Affiliation(s)
- Christopher J Watson
- Department ofAnesthesiology, University ofMichigan, Ann Arbor, MI 48109-5615, USA
| | | | | | | |
Collapse
|
33
|
Moreno-Balandrn E, Garzn M, Bdalo C, Reinoso-Surez F, de Andrs I. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum. Eur J Neurosci 2008; 28:331-41. [DOI: 10.1111/j.1460-9568.2008.06334.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Lazarov NE. Neurobiology of orofacial proprioception. ACTA ACUST UNITED AC 2007; 56:362-83. [PMID: 17915334 DOI: 10.1016/j.brainresrev.2007.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/22/2007] [Indexed: 12/29/2022]
Abstract
Primary sensory fibers innervating the head region derive from neurons of both the trigeminal ganglion (TG) and mesencephalic trigeminal nucleus (MTN). The trigeminal primary proprioceptors have their cell bodies in the MTN. Unlike the TG cells, MTN neuronal somata are centrally located within the brainstem and receive synaptic inputs that potentially modify their output. They are a crucial component of the neural circuitry responsible for the generation and control of oromotor activities. Gaining an insight into the chemical neuroanatomy of the MTN is, therefore, of fundamental importance for the understanding of neurobiology of the head proprioceptive system. This paper summarizes the recent advances in our knowledge of pre- and postsynaptic mechanisms related to orofacial proprioceptive signaling in mammals. It first briefly describes the neuroanatomy of the MTN, which is involved in the processing of proprioceptive information from the face and oral cavity, and then focuses on its neurochemistry. In order to solve the puzzle of the chemical coding of the mammalian MTN, we review the expression of classical neurotransmitters and their receptors in mesencephalic trigeminal neurons. Furthermore, we discuss the relationship of neuropeptides and their corresponding receptors in relaying of masticatory proprioception and also refer to the interactions with other atypical neuromessengers and neurotrophic factors. In extension of previous inferences, we provide conclusive evidence that the levels of transmitters vary according to the environmental conditions thus implying the neuroplasticity of mesencephalic trigeminal neurons. Finally, we have also tried to give an integrated functional account of the MTN neurochemical profiles.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University-Sofia, 2, Zdrave Street, BG-1431 Sofia, Bulgaria.
| |
Collapse
|
35
|
Nixon JP, Smale L. A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents. Behav Brain Funct 2007; 3:28. [PMID: 17567902 PMCID: PMC1913054 DOI: 10.1186/1744-9081-3-28] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Accepted: 06/13/2007] [Indexed: 12/02/2022] Open
Abstract
Background The orexins (hypocretins) are a family of peptides found primarily in neurons in the lateral hypothalamus. Although the orexinergic system is generally thought to be the same across species, the orexins are involved in behaviors which show considerable interspecific variability. There are few direct cross-species comparisons of the distributions of cells and fibers containing these peptides. Here, we addressed the possibility that there might be important species differences by systematically examining and directly comparing the distribution of orexinergic neurons and fibers within the forebrains of species with very different patterns of sleep-wake behavior. Methods We compared the distribution of orexin-immunoreactive cell bodies and fibers in two nocturnal species (the lab rat, Rattus norvegicus and the golden hamster, Mesocricetus auratus) and two diurnal species (the Nile grass rat, Arvicanthis niloticus and the degu, Octodon degus). For each species, tissue from the olfactory bulbs through the brainstem was processed for immunoreactivity for orexin A and orexin B (hypocretin-1 and -2). The distribution of orexin-positive cells was noted for each species. Orexin fiber distribution and density was recorded and analyzed using a principal components factor analysis to aid in evaluating potential species differences. Results Orexin-positive cells were observed in the lateral hypothalamic area of each species, though there were differences with respect to distribution within this region. In addition, cells positive for orexin A but not orexin B were observed in the paraventricular nucleus of the lab rat and grass rat, and in the supraoptic nucleus of the lab rat, grass rat and hamster. Although the overall distributions of orexin A and B fibers were similar in the four species, some striking differences were noted, especially in the lateral mammillary nucleus, ventromedial hypothalamic nucleus and flocculus. Conclusion The orexin cell and fiber distributions observed in this study were largely consistent with those described in previous studies. However, the present study shows significant species differences in the distribution of orexin cell bodies and in the density of orexin-IR fibers in some regions. Finally, we note previously undescribed populations of orexin-positive neurons outside the lateral hypothalamus in three of the four species examined.
Collapse
Affiliation(s)
- Joshua P Nixon
- Department of Zoology, Michigan State University, 203 Natural Science Building, East Lansing, MI 48824-1115 USA
- Department of Food Science and Nutrition and Minnesota Craniofacial Research Training Program (MinnCResT), 17-164 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455-0357 USA
| | - Laura Smale
- Department of Zoology, Michigan State University, 203 Natural Science Building, East Lansing, MI 48824-1115 USA
| |
Collapse
|
36
|
Abstract
The primary headaches are a group of distinct individually characterized attack forms, which although varying in presentation, share some common anatomical basis responsible for the pain component of the attack. The hypothalamus is known to modulate a multitude of functions and has been shown to be involved in the pathophysiology of a variety of primary headaches including cluster headache and chronic migraine. It seems likely that it may be involved in other primary headache disorders due to their episodic nature and may underlie many of their diverse symptoms. We discuss the hypothalamic involvement in the modulation of trigeminovascular processing and examine the involvement of the hypothalamic orexinergic system as a key regulator of this function.
Collapse
Affiliation(s)
- Philip Holland
- Headache Group, Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | | |
Collapse
|
37
|
Holland PR, Akerman S, Goadsby PJ. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur J Neurosci 2006; 24:2825-33. [PMID: 17156207 DOI: 10.1111/j.1460-9568.2006.05168.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Migraine pathophysiology is thought to involve the trigeminal innervation of the dura mater and intracranial blood vessels. Electrical stimulation of dural blood vessels is painful in humans and causes activation of neurons in the caudal-most portion of the trigeminal nucleus in experimental animals. The hypothalamic neuropeptides orexin A and B are selectively synthesized in the lateral and posterior hypothalamus, and recent findings have implicated their involvement in nociceptive processing. To evaluate the potential for orexin receptor modulation of trigeminovascular nociceptive afferents, we examined the effects of intravenous orexin A and B on responses of neurons in the trigeminal nucleus caudalis. To dissect the receptor pharmacology of responses to stimulation we utilized the novel orexin 1 receptor (OX(1)R) antagonist N-(2-methyl-6-benzoxazolyl)-N''-1,5-naphthyridin-4-yl urea (SB-334867). Orexin A 30 microg/kg (F(1.9,9.8) = 21.93, P < 0.001) and 50 microg/kg (F(3.2,16.4) = 3.28, P < 0.045) inhibited the A-fibre responses to dural electrical stimulation over 60 min. Maximum inhibition was achieved at 25 min for both 30 microg/kg (t(5) = 19.83, n = 6, P < 0.001) and 50 microg/kg (t(5) = 7.74, n = 6, P < 0.001). The response with orexin A 30 microg/kg was reversed by pretreatment with the OX(1)R antagonist SB-334867 (F(3.5,17.5) = 0.49, P = 0.73), which had no effect when given alone. Orexin B and control vehicle administration had no significant effect on trigeminal neuronal firing. The current study demonstrates that orexin A is able to inhibit A-fibre responses to dural electrical stimulation via activation of the OX(1)R.
Collapse
Affiliation(s)
- P R Holland
- Headache Group, Institute of Neurology, Queen Square, London, UK
| | | | | |
Collapse
|
38
|
Xi MC, Chase MH. Neuronal mechanisms of active (rapid eye movement) sleep induced by microinjections of hypocretin into the nucleus pontis oralis of the cat. Neuroscience 2006; 140:335-42. [PMID: 16533574 DOI: 10.1016/j.neuroscience.2006.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/18/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
Hypocretinergic (orexinergic) neurons in the hypothalamus project to the nucleus pontis oralis, a nucleus which plays a crucial role in the generation of active (rapid eye movement) sleep. We recently reported that the microinjection of hypocretin into the nucleus pontis oralis of chronically-instrumented, unanesthetized cats induces a behavioral state that is comparable to naturally-occurring active sleep. The present study examined the intracellular signaling pathways underlying the active sleep-inducing effects of hypocretin. Accordingly, hypocretin-1, a protein kinase C inhibitor and a protein kinase A inhibitor were injected into the nucleus pontis oralis in selected combinations in order to determine their effects on sleep and waking states of chronically instrumented, unanesthetized cats. Microinjections of hypocretin-1 into the nucleus pontis oralis elicited active sleep with a short latency. However, a pre-injection of bisindolylmaleimide-I, a protein kinase C-specific inhibitor, completely blocked the active sleep-inducing effects of hypocretin-1. The combined injection of bisindolylmaleimide-I and hypocretin-1 significantly increased the latency to active sleep induced by hypocretin-1; it also abolished the increase in the time spent in active sleep induced by hypocretin-1. On the other hand, the injection of 2'5'-dideoxyadenosine, an adenylyl cyclase inhibitor, did not block the occurrence of active sleep by hypocretin-1. We conclude that the active sleep-inducing effect of hypocretin in the nucleus pontis oralis is mediated by intracellular signaling pathways that act via G-protein stimulation of protein kinase C.
Collapse
Affiliation(s)
- M-C Xi
- WebSciences International, 1251 Westwood Boulevard, Los Angeles, CA 90024, USA
| | | |
Collapse
|
39
|
Lee HS, Park SH, Song WC, Waterhouse BD. Retrograde study of hypocretin-1 (orexin-A) projections to subdivisions of the dorsal raphe nucleus in the rat. Brain Res 2005; 1059:35-45. [PMID: 16153616 DOI: 10.1016/j.brainres.2005.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/05/2005] [Accepted: 08/07/2005] [Indexed: 10/25/2022]
Abstract
A retrograde tracer, WGA-apo-HRP-gold (WG), was injected into each subdivision of the dorsal raphe (DR) nucleus, and subsequent orexin-A immunostaining was performed for the tuberal region of the hypothalamus in order to investigate orexin projections to the DR. Similar to previous studies, the majority of orexin-single-labeled neurons were observed at the dorsal half of the lateral hypothalamus (LH), the circle around the fornix, i.e., perifornical nucleus (PeF), and the area dorsal to the fornix. The present study reports that hypothalamic neurons exhibited differential projections to each subdivision of the DR. Following WG injections into rostral DR, WG-single-labeled cells were observed at the dorsal half of the LH as well as dorsomedial hypothalamic nucleus. The major input to the intermediate DR originates from the ventromedial portion of the LH, PeF, and the area dorsal to the PeF, whereas one to lateral wing DR derived from PeF as well as the ventrolateral portion of the LH. Following WG injections into caudal DR, WG-single-labeled cells were located at ventromedial LH and the ventrolateral portion of the posterior hypothalamus. Following WG injections into each DR subdivision, WG/orexin-double-labeled neurons were observed at LH, PeF, and the area dorsal to the PeF. Only a few double-labeled cells were observed in dorsomedial and posterior hypothalamic nuclei. Our observations suggest that various hypothalamic neurons differentially project to each subdivision of the DR, a portion of which is orexin-immunoreactive. These orexin-immunoreactive DR-projecting hypothalamic neurons might have wake-related influences over a variety of brain functions subject to DR efferent regulation, including affective behavior, autonomic control, nociception, cognition, and sensorimotor integration.
Collapse
Affiliation(s)
- Hyun S Lee
- Department of Anatomy, College of Medicine, Konkuk University, Chungju, Chungbuk 380-701, South Korea.
| | | | | | | |
Collapse
|
40
|
Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y. Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol 2005; 568:1003-20. [PMID: 16123113 PMCID: PMC1464186 DOI: 10.1113/jphysiol.2005.085829] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Orexinergic neurones in the perifornical lateral hypothalamus project to structures of the midbrain, including the substantia nigra and the mesopontine tegmentum. These areas contain the mesencephalic locomotor region (MLR), and the pedunculopontine and laterodorsal tegmental nuclei (PPN/LDT), which regulate atonia during rapid eye movement (REM) sleep. Deficiencies of the orexinergic system result in narcolepsy, suggesting that these projections are concerned with switching between locomotor movements and muscular atonia. The present study characterizes the role of these orexinergic projections to the midbrain. In decerebrate cats, injecting orexin-A (60 microm to 1.0 mm, 0.20-0.25 microl) into the MLR reduced the intensity of the electrical stimulation required to induce locomotion on a treadmill (4 cats) or even elicit locomotor movements without electrical stimulation (2 cats). On the other hand, when orexin was injected into either the PPN (8 cats) or the substantia nigra pars reticulata (SNr, 4 cats), an increased stimulus intensity at the PPN was required to induce muscle atonia. The effects of orexin on the PPN and the SNr were reversed by subsequently injecting bicuculline (5 mm, 0.20-0.25 microl), a GABA(A) receptor antagonist, into the PPN. These findings indicate that excitatory orexinergic drive could maintain a higher level of locomotor activity by increasing the excitability of neurones in the MLR, while enhancing GABAergic effects on presumably cholinergic PPN neurones, to suppress muscle atonia. We conclude that orexinergic projections from the hypothalamus to the midbrain play an important role in regulating motor behaviour and controlling postural muscle tone and locomotor movements when awake and during sleep. Furthermore, as the excitability is attenuated in the absence of orexin, signals to the midbrain may induce locomotor behaviour when the orexinergic system functions normally but elicit atonia or narcolepsy when the orexinergic function is disturbed.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Asahikawa Medical College, Midorigaoka-higashi 2-1, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Stoyanova II, Lazarov NE. Localization of orexin-A-immunoreactive fibers in the mesencephalic trigeminal nucleus of the rat. Brain Res 2005; 1054:82-7. [PMID: 16054597 DOI: 10.1016/j.brainres.2005.06.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/21/2005] [Accepted: 06/25/2005] [Indexed: 11/20/2022]
Abstract
Orexin A is a neuropeptide located exclusively in neurons in the hypothalamic nuclei involved in the central regulation of many brain functions, related to motor activity and state-dependent processes. Orexins modulate behavioral state via actions across multiple terminal fields. In order to determine whether the mesencephalic trigeminal neurons may receive a direct hypothalamic orexinergic input, the distribution of orexin A immunoreactivity was examined in the rat mesencephalic trigeminal nucleus (MTN), using orexin A immunohistochemistry. Orexin-A-immunostained nerve fibers and terminals were found in a close apposition to the perikarya of primary afferent neurons in the MTN with a marked rostrocaudal gradient in their density. In the caudal pontine MTN, only scattered orexin-A-immunoreactive fibers were found, while more rostrally in the pons, and in the midbrain-pontine junction part of the nucleus, orexin-A-immunopositive varicosities were relatively more abundant, located in close proximity to or often surrounding the neuronal profiles. At the level of the inferior or superior colliculi, a large number of orexin-A-containing neuronal processes and terminal arborizations were observed traveling toward and contacting mesencephalic trigeminal neurons, some of which were multipolar. The results of this study show that MTN neurons receive orexin A hypothalamic innervation with a somatotopic arrangement of the projections in the nucleus. The central orexinergic system may exert direct influence upon jaw movements at the level of the MTN and thus to participate in the control of feeding behavior.
Collapse
Affiliation(s)
- Irina I Stoyanova
- Department of Anatomy, Faculty of Medicine, Thracian University, P. O. Box 1025, BG-6010 Stara Zagora, Bulgaria.
| | | |
Collapse
|
42
|
Kuipers R, Mouton LJ, Holstege G. Afferent projections to the pontine micturition center in the cat. J Comp Neurol 2005; 494:36-53. [PMID: 16304684 DOI: 10.1002/cne.20775] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The pontine micturition center (PMC) or Barrington's nucleus controls micturition by way of its descending projections to the sacral spinal cord. However, little is known about the afferents to the PMC that control its function and may be responsible for dysfunction in patients with urge-incontinence and overactive bladder. In five female cats, wheatgerm agglutinin-conjugated horseradish peroxidase (WGA-HRP) injections were made in the PMC and adjoining dorsolateral pontine tegmentum. Retrogradely labeled neurons were found in a large area, including the medullary and pontine medial and lateral tegmental field; dorsomedial, lateral, and ventrolateral periaqueductal gray matter (PAG); posterior hypothalamus; medial preoptic area (MPO); bed nucleus of the stria terminalis; central nucleus of the amygdala; and infralimbic, prelimbic, and insular cortices. To verify whether these areas indeed project specifically to the PMC or perhaps only to adjacent structures in the pontine tegmentum, in 67 cats (3)H-leucine or WGA-HRP injections were made in each of these regions. Five cell groups appeared to have direct connections to the PMC, the ventromedial pontomedullary tegmental field, the ventrolateral and dorsomedial PAG, the MPO, and the posterior hypothalamus. The possible functions of these projections are discussed. These results indicate that all other parts of the brain that influence micturition have no direct connection with the PMC.
Collapse
Affiliation(s)
- Rutger Kuipers
- Department of Anatomy and Embryology, University Medical Center Groningen, The Netherlands
| | | | | |
Collapse
|