1
|
Wang Y, Yuan T, Lyu T, Zhang L, Wang M, He Z, Wang Y, Li Z. Mechanism of inflammatory response and therapeutic effects of stem cells in ischemic stroke: current evidence and future perspectives. Neural Regen Res 2025; 20:67-81. [PMID: 38767477 PMCID: PMC11246135 DOI: 10.4103/1673-5374.393104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingli Yuan
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiying He
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
2
|
Ardic AF, Ardic N. Role of Neutrophils as Therapeutic Targets in Intracerebral Hemorrhage. Ther Innov Regul Sci 2024; 58:807-816. [PMID: 38753134 DOI: 10.1007/s43441-024-00668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/01/2024] [Indexed: 08/22/2024]
Abstract
Intracerebral hemorrhage (ICH) is a major health problem. It is one of the most common types of stroke and results in mortality in approximately half of patients. More than half of the fatalities occur in the first 2 days. In addition to the mass effect after ICH hemorrhage, complex pathophysiological mechanisms such as intracranial vessel vasospasm, microthrombosis, and inflammatory immune reaction also increase brain damage. Both resident (including microglia and astrocytes) and circulating immune cells (including neutrophils, macrophages, and lymphocytes) involved in the inflammatory process. The inflammatory response is especially harmful in the acute phase due to harmful substances secreted by infiltrating immune cells. The inflammatory response also has beneficial effects, especially in the later stages. Their role in pathophysiology makes immune cells important therapeutic targets. General immunosuppressive approaches and depleting cell groups such as neutrophils or keeping them away from the lesion site may not be sufficient to prevent poor outcomes after ICH. This is most likely because they suppress anti-inflammatory activities and pro-inflammatory effects. Instead, directing immune cells to the beneficial subpopulation seems like a more rational solution. The pro-inflammatory N1 subpopulation of neutrophils damages the tissue surrounding ICH. In contrast, the N2 subpopulation is associated with anti-inflammatory reactions and tissue repair. Studies show that when neutrophils are polarized toward the N2 subpopulation, clinical outcomes improve and the volume of the infarct decreases. However, more research is still needed. This study aims to evaluate the role of neutrophils as immunotherapeutic targets in ICH in light of current knowledge.
Collapse
Affiliation(s)
- Alper Fatih Ardic
- Asklepios Kliniken Schildautal Seesen, Neurology Clinic, Lower Saxony, Germany
| | - Nurittin Ardic
- Med-International UK Health Agency Ltd, Leicestershire, UK.
| |
Collapse
|
3
|
Lee NT, Savvidou I, Selan C, Calvello I, Vuong A, Wright DK, Brkljaca R, Willcox A, Chia JSJ, Wang X, Peter K, Robson SC, Medcalf RL, Nandurkar HH, Sashindranath M. Development of endothelial-targeted CD39 as a therapy for ischemic stroke. J Thromb Haemost 2024; 22:2331-2344. [PMID: 38754782 DOI: 10.1016/j.jtha.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Ischemic stroke is characterized by a necrotic lesion in the brain surrounded by an area of dying cells termed the penumbra. Salvaging the penumbra either with thrombolysis or mechanical retrieval is the cornerstone of stroke management. At-risk neuronal cells release extracellular adenosine triphosphate, triggering microglial activation and causing a thromboinflammatory response, culminating in endothelial activation and vascular disruption. This is further aggravated by ischemia-reperfusion injury that follows all reperfusion therapies. The ecto-enzyme CD39 regulates extracellular adenosine triphosphate by hydrolyzing it to adenosine, which has antithrombotic and anti-inflammatory properties and reverses ischemia-reperfusion injury. OBJECTIVES The objective off the study was to determine the efficacy of our therapeutic, anti-VCAM-CD39 in ischaemic stroke. METHODS We developed anti-VCAM-CD39 that targets the antithrombotic and anti-inflammatory properties of recombinant CD39 to the activated endothelium of the penumbra by binding to vascular cell adhesion molecule (VCAM)-1. Mice were subjected to 30 minutes of middle cerebral artery occlusion and analyzed at 24 hours. Anti-VCAM-CD39 or control agents (saline, nontargeted CD39, or anti-VCAM-inactive CD39) were given at 3 hours after middle cerebral artery occlusion. RESULTS Anti-VCAM-CD39 treatment reduced neurologic deficit; magnetic resonance imaging confirmed significantly smaller infarcts together with an increase in cerebrovascular perfusion. Anti-VCAM-CD39 also restored blood-brain barrier integrity and reduced microglial activation. Coadministration of anti-VCAM-CD39 with thrombolytics (tissue plasminogen activator [tPA]) further reduced infarct volumes and attenuated blood-brain barrier permeability with no associated increase in intracranial hemorrhage. CONCLUSION Anti-VCAM-CD39, uniquely targeted to endothelial cells, could be a new stroke therapy even when administered 3 hours postischemia and may further synergize with thrombolytic therapy to improve stroke outcomes.
Collapse
Affiliation(s)
- Natasha Ting Lee
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ioanna Savvidou
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Carly Selan
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Ilaria Calvello
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Amy Vuong
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robert Brkljaca
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Abbey Willcox
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Joanne S J Chia
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Harshal H Nandurkar
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Maithili Sashindranath
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Farahmand Y, Nabiuni M, Vafaei Mastanabad M, Sheibani M, Mahmood BS, Obayes AM, Asadi F, Davallou R. The exo-microRNA (miRNA) signaling pathways in pathogenesis and treatment of stroke diseases: Emphasize on mesenchymal stem cells (MSCs). Cell Biochem Funct 2024; 42:e3917. [PMID: 38379232 DOI: 10.1002/cbf.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 02/22/2024]
Abstract
A major factor in long-term impairment is stroke. Patients with persistent stroke and severe functional disabilities have few therapy choices. Long noncoding RNAs (lncRNAs) may contribute to the regulation of the pathophysiologic processes of ischemic stroke as shown by altered expression of lncRNAs and microRNA (miRNAs) in blood samples of acute ischemic stroke patients. On the other hand, multipotent mesenchymal stem cells (MSCs) increase neurogenesis, and angiogenesis, dampen neuroinflammation, and boost brain plasticity to improve functional recovery in experimental stroke models. MSCs can be procured from various sources such as the bone marrow, adipose tissue, and peripheral blood. Under the proper circumstances, MSCs can differentiate into a variety of mature cells, including neurons, astrocytes, and oligodendrocytes. Accordingly, the capability of MSCs to exert neuroprotection and also neurogenesis has recently attracted more attention. Nowadays, lncRNAs and miRNAs derived from MSCs have opened new avenues to alleviate stroke symptoms. Accordingly, in this review article, we examined various studies concerning the lncRNAs and miRNAs' role in stroke pathogenesis and delivered an overview of the therapeutic role of MSC-derived miRNAs and lncRNAs in stroke conditions.
Collapse
Affiliation(s)
- Yalda Farahmand
- School of Medicine, Terhan University of Medical Sciences, Tehran, Iran
| | - Mohsen Nabiuni
- Neurosurgery Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ali Mohammed Obayes
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Fatemeh Asadi
- Department of Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Rosa Davallou
- Department of Neurology, Sayyad Shirazi Hospital, Golestan University of Medical Siences, Gorgan, Iran
| |
Collapse
|
5
|
Wang J, Wang L, Wu Q, Cai Y, Cui C, Yang M, Sun B, Mao L, Wang Y. Interleukin-4 Modulates Neuroinflammation by Inducing Phenotypic Transformation of Microglia Following Subarachnoid Hemorrhage. Inflammation 2024; 47:390-403. [PMID: 37898992 PMCID: PMC10799105 DOI: 10.1007/s10753-023-01917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Neuroinflammation, a key pathological feature following subarachnoid hemorrhage (SAH), can be therapeutically targeted by inhibiting microglia M1 polarization and promoting phenotypic transformation to M2 microglia. Interleukin-4 (IL-4) is a pleiotropic cytokine known to its regulation of physiological functions of the central nervous system (CNS) and mediate neuroinflammatory processes. However, its specific role in neuroinflammation and microglia responses following SAH remains unexplored. In this investigation, we established both in vivo and in vitro SAH models and employed a comprehensive array of assessments, including ELISA, neurofunctional profiling, immunofluorescence staining, qRT-PCR, determination of phagocytic capacity, and RNA-Seq analyses. The findings demonstrate an elevated expression of IL-4 within cerebrospinal fluid (CSF) subsequent to SAH. Furthermore, exogenous administration of IL-4 ameliorates post-SAH neurofunctional deficits, attenuates cellular apoptosis, fosters M2 microglia phenotype conversion, and mitigates neuroinflammatory responses. The RNA-Seq analysis signifies that IL-4 governs the modulation of neuroinflammation in microglia within an in vitro SAH model through intricate cascades of signaling pathways, encompassing interactions between cytokines and cytokine receptors. These discoveries not only augment comprehension of the neuropathogenesis associated with post-SAH neuroinflammation but also present novel therapeutic targets for the management thereof.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao University, Qingdao, Shandong, 266021, China
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Lili Wang
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province, 272011, China
| | - Yichen Cai
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Chengfu Cui
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China
| | - Ming Yang
- Department of Ultrasonic Diagnosis and Treatment, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Baoliang Sun
- Medical College of Qingdao University, Qingdao, Shandong, 266021, China.
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China.
| | - Leilei Mao
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China.
| | - Yuan Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
6
|
Zhao K, Zhou X, Chen M, Gou L, Mei D, Gao C, Zhao S, Luo S, Wang X, Tan T, Zhang Y. Neuroprotective Effects of CXCR2 Antagonist SB332235 on Traumatic Brain Injury Through Suppressing NLRP3 Inflammasome. Neurochem Res 2024; 49:184-198. [PMID: 37702890 PMCID: PMC10776743 DOI: 10.1007/s11064-023-04021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
The inflammatory process mediated by nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain comprising 3 (NLRP3) inflammasome plays a predominant role in the neurological dysfunction following traumatic brain injury (TBI). SB332235, a highly selective antagonist of chemokine receptor 2 (CXCR2), has been demonstrated to exhibit anti-inflammatory properties and improve neurological outcomes in the central nervous system. We aimed to determine the neuroprotective effects of SB332235 in the acute phase after TBI in mice and to elucidate its underlying mechanisms. Male C57BL/6J animals were exposed to a controlled cortical impact, then received 4 doses of SB332235, with the first dose administered at 30 min after TBI, followed by additional doses at 6, 24, and 30 h. Neurological defects were assessed by the modified neurological severity score, while the motor function was evaluated using the beam balance and open field tests. Cognitive performance was evaluated using the novel object recognition test. Brain tissues were collected for pathological, Western blot, and immunohistochemical analyses. The results showed that SB332235 significantly ameliorated TBI-induced deficits, including motor and cognitive impairments. SB332235 administration suppressed expression of both CXCL1 and CXCR2 in TBI. Moreover, SB332235 substantially mitigated the augmented expression levels and activation of the NLRP3 inflammasome within the peri-contusional cortex induced by TBI. This was accompanied by the blocking of subsequent production of pro-inflammatory cytokines. Additionally, SB332235 hindered microglial activity induced by TBI. These findings confirmed the neuroprotective effects of SB332235 against TBI, and the involved mechanisms were in part due to the suppression of NLRP3 inflammasome activity. This study suggests that SB332235 may act as an anti-inflammatory agent to improve functional outcomes in brain injury when applied clinically.
Collapse
Affiliation(s)
- Ke Zhao
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Xinkui Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Mengyuan Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Shuying Luo
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Xiaona Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| |
Collapse
|
7
|
Takacs GP, Kreiger CJ, Luo D, Tian G, Garcia JS, Deleyrolle LP, Mitchell DA, Harrison JK. Glioma-derived CCL2 and CCL7 mediate migration of immune suppressive CCR2 +/CX3CR1 + M-MDSCs into the tumor microenvironment in a redundant manner. Front Immunol 2023; 13:993444. [PMID: 36685592 PMCID: PMC9854274 DOI: 10.3389/fimmu.2022.993444] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor, resulting in poor survival despite aggressive therapies. GBM is characterized in part by a highly heterogeneous and immunosuppressive tumor microenvironment (TME) made up predominantly of infiltrating peripheral immune cells. One significant immune cell type that contributes to glioma immune evasion is a population of immunosuppressive, hematopoietic cells, termed myeloid-derived suppressor cells (MDSCs). Previous studies suggest that a potent subset of myeloid cells, expressing monocytic (M)-MDSC markers, distinguished by dual expression of chemokine receptors CCR2 and CX3CR1, utilize CCR2 to infiltrate into the TME. This study evaluated the T cell suppressive function and migratory properties of CCR2+/CX3CR1+ MDSCs. Bone marrow-derived CCR2+/CX3CR1+ cells adopt an immune suppressive cell phenotype when cultured with glioma-derived factors. Recombinant and glioma-derived CCL2 and CCL7 induce the migration of CCR2+/CX3CR1+ MDSCs with similar efficacy. KR158B-CCL2 and -CCL7 knockdown murine gliomas contain equivalent percentages of CCR2+/CX3CR1+ MDSCs compared to KR158B gliomas. Combined neutralization of CCL2 and CCL7 completely blocks CCR2-expressing cell migration to KR158B cell conditioned media. CCR2+/CX3CR1+ cells are also reduced within KR158B gliomas upon combination targeting of CCL2 and CCL7. High levels of CCL2 and CCL7 are also associated with negative prognostic outcomes in GBM patients. These data provide a more comprehensive understanding of the function of CCR2+/CX3CR1+ MDSCs and the role of CCL2 and CCL7 in the recruitment of these immune suppressive cells and further support the significance of targeting this chemokine axis in GBM.
Collapse
Affiliation(s)
- Gregory P. Takacs
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christian J. Kreiger
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Defang Luo
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Guimei Tian
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julia S. Garcia
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Loic P. Deleyrolle
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jeffrey K. Harrison
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
8
|
Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther 2022; 237:108257. [PMID: 35908611 DOI: 10.1016/j.pharmthera.2022.108257] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
9
|
DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 2022; 44:625-648. [PMID: 35767089 DOI: 10.1007/s00281-022-00943-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Howard DeLong
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Naomi Ohashi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Charles O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Hachmann Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Korbecki J, Gąssowska-Dobrowolska M, Wójcik J, Szatkowska I, Barczak K, Chlubek M, Baranowska-Bosiacka I. The Importance of CXCL1 in Physiology and Noncancerous Diseases of Bone, Bone Marrow, Muscle and the Nervous System. Int J Mol Sci 2022; 23:ijms23084205. [PMID: 35457023 PMCID: PMC9024980 DOI: 10.3390/ijms23084205] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
This review describes the role of CXCL1, a chemokine crucial in inflammation as a chemoattractant for neutrophils, in physiology and in selected major non-cancer diseases. Due to the vast amount of available information, we focus on the role CXCL1 plays in the physiology of bones, bone marrow, muscle and the nervous system. For this reason, we describe its effects on hematopoietic stem cells, myoblasts, oligodendrocyte progenitors and osteoclast precursors. We also present the involvement of CXCL1 in diseases of selected tissues and organs including Alzheimer’s disease, epilepsy, herpes simplex virus type 1 (HSV-1) encephalitis, ischemic stroke, major depression, multiple sclerosis, neuromyelitis optica, neuropathic pain, osteoporosis, prion diseases, rheumatoid arthritis, tick-borne encephalitis (TBE), traumatic spinal cord injury and West Nile fever.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Jerzy Wójcik
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
11
|
Xu XJ, Long JB, Jin KY, Chen LB, Lu XY, Fan XH. Danshen-Chuanxiongqin Injection attenuates cerebral ischemic stroke by inhibiting neuroinflammation via the TLR2/ TLR4-MyD88-NF-κB Pathway in tMCAO mice. Chin J Nat Med 2021; 19:772-783. [PMID: 34688467 DOI: 10.1016/s1875-5364(21)60083-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 01/10/2023]
Abstract
Danshen-Chuanxiongqin Injection (DCI) is a commonly used traditional Chinese medicine for the treatment of cerebral ischemic stroke in China. However, its underlying mechanisms remain completely understood. The current study was designed to explore the protective mechanisms of DCI against cerebral ischemic stroke through integrating whole-transcriptome sequencing coupled with network pharmacology analysis. First, using a mouse model of cerebral ischemic stroke by transient middle cerebral artery occlusion (tMCAO), we found that DCI (4.10 mL·kg-1) significantly alleviated cerebral ischemic infarction, neurological deficits, and the pathological injury of hippocampal and cortical neurons in mice. Next, the whole-transcriptome sequencing was performed on brain tissues. The cerebral ischemia disease (CID) network was constructed by integrating transcriptome sequencing data and cerebrovascular disease-related genes. The results showed CID network was imbalanced due to tMCAO, but a recovery regulation was observed after DCI treatment. Pathway analysis of the key genes with recovery efficiency showed that the neuroinflammation signaling pathway was highly enriched, while the TLR2/TLR4-MyD88-NF-κB pathway was predicted to be affected. Consistently, the in vivo validation experiments confirmed that DCI exhibited protective effects against cerebral ischemic stroke by inhibiting neuroinflammation via the TLR2/TLR4-MyD88-NF-κB pathway. More interestingly, DCI markedly suppressed the neutrophils infiltrated into the brain parenchyma via the choroid plexus route and showed anti-neuroinflammation effects. In conclusion, our results provide dependable evidence that inhibiting neuroinflammation via the TLR2/TLR4-MyD88-NF-κB pathway is the main mechanism of DCI against cerebral ischemic stroke in mice.
Collapse
Affiliation(s)
- Xiao-Jing Xu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Bo Long
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai-Yu Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Bing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Yan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiao-Hui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
12
|
Chen J, Jin J, Zhang X, Yu H, Zhu X, Yu L, Chen Y, Liu P, Dong X, Cao X, Gu Y, Bao X, Xia S, Xu Y. Microglial lnc-U90926 facilitates neutrophil infiltration in ischemic stroke via MDH2/CXCL2 axis. Mol Ther 2021; 29:2873-2885. [PMID: 33895326 DOI: 10.1016/j.ymthe.2021.04.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Dysregulated long non-coding RNAs (lncRNAs) have been shown to contribute to the pathogenesis of ischemic stroke. However, the potential role of lncRNAs in post-stroke microglial activation remains largely unknown. Here, we uncovered that lncRNA-U90926 was significantly increased in microglia exposed to ischemia/reperfusion both in vivo and in vitro. In addition, adenovirus-associated virus (AAV)-mediated microglial U90926 silencing alleviated neurological deficits and reduced infarct volume in experimental stroke mice. Microglial U90926 knockdown could reduce the infiltration of neutrophils into ischemic lesion site, which might be attributed to the downregulation of C-X-C motif ligand 2 (CXCL2). Mechanistically, U90926 directly bound to malate dehydrogenase 2 (MDH2) and competitively inhibited the binding of MDH2 to the CXCL2 3' untranslated region (UTR), thus protecting against MDH2-mediated decay of CXCL2 mRNA. Taken together, our study demonstrated that microglial U90926 aggravated ischemic brain injury via facilitating neutrophil infiltration, suggesting that U90926 might be a potential biomarker and therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Hailong Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yanting Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China.
| |
Collapse
|
13
|
Li QQ, Li JY, Zhou M, Qin ZH, Sheng R. Targeting neuroinflammation to treat cerebral ischemia - The role of TIGAR/NADPH axis. Neurochem Int 2021; 148:105081. [PMID: 34082063 DOI: 10.1016/j.neuint.2021.105081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/24/2021] [Accepted: 05/22/2021] [Indexed: 01/30/2023]
Abstract
Cerebral ischemia is a disease of ischemic necrosis of brain tissue caused by intracranial artery stenosis or occlusion and cerebral artery embolization. Neuroinflammation plays an important role in the pathophysiology of cerebral ischemia. Microglia, astrocytes, leukocytes and other cells that release a variety of inflammatory factors involved in neuroinflammation may play a damaging or protective role during the process of cerebral ischemia. TP53-induced glycolysis and apoptotic regulators (TIGAR) may facilitate the production of nicotinamide adenine dinucleotide phosphoric acid (NADPH) via the pentose phosphate pathway (PPP) to inhibit oxidative stress and neuroinflammation. TIGAR can also directly inhibit NF-κB to inhibit neuroinflammation. TIGAR thus protect against cerebral ischemic injury. Exogenous NADPH can inhibit neuroinflammation by inhibiting oxidative stress and regulating a variety of signals. However, since NADPH oxidase (NOX) may use NADPH as a substrate to generate reactive oxygen species (ROS) to mediate neuroinflammation, the combination of NADPH and NOX inhibitors may produce more powerful anti-neuroinflammatory effects. Here, we review the cells and regulatory signals involved in neuroinflammation during cerebral ischemia, and discuss the possible mechanisms of targeting neuroinflammation in the treatment of cerebral ischemia with TIGAR/NADPH axis, so as to provide new ideas for the prevention and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jia-Ying Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Saad MAE, Fahmy MIM, Sayed RH, El-Yamany MF, El-Naggar R, Hegazy AAE, Al-Shorbagy M. Eprosartan: A closer insight into its neuroprotective activity in rats with focal cerebral ischemia-reperfusion injury. J Biochem Mol Toxicol 2021; 35:e22796. [PMID: 33942446 DOI: 10.1002/jbt.22796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Eprosartan (EPRO), an angiotensin receptor type-1 (AT-1) blocker, exhibited neuroprotective activities in ischemic stroke resulting from focal cerebral ischemia in rats. The current study aimed to clarify the neuroprotective role of EPRO in middle carotid artery occlusion (MCAO)-induced ischemic stroke in rats. Fifty-six male Wistar rats were divided into four groups (n = 14 per group): sham-operated group, sham receiving EPRO (60 mg/kg/day, po) group, ischemia-reperfusion (IR) group, and IR receiving EPRO (60 mg/kg/day, po) group. MCAO led to a remarkable impairment in motor function together with stimulation of inflammatory and apoptotic pathways in the hippocampus of rats. After MCAO, the AT1 receptor in the brain was stimulated, resulting in activation of Janus kinase 2/signal transducers and activators of transcription 3 signaling generating more neuroinflammatory milieu and destructive actions on the hippocampus. Augmentation of caspase-3 level by MCAO enhanced neuronal apoptosis synchronized with neurodegenerative effects of oxidative stress biomarkers. Pretreatment with EPRO opposed motor impairment and decreased oxidative and apoptotic mediators in the hippocampus of rats. The anti-inflammatory activity of EPRO was revealed by downregulation of nuclear factor-kappa B and tumor necrosis factor-β levels and (C-X-C motif) ligand 1 messenger RNA (mRNA) expression. Moreover, the study confirmed the role of EPRO against a unique pathway of hypoxia-inducible factor-1α and its subsequent inflammatory mediators. Furthermore, upregulation of caveolin-1 mRNA level was also observed along with decreased oxidative stress marker levels and brain edema. Therefore, EPRO showed neuroprotective effects in MCAO-induced cerebral ischemia in rats via attenuation of oxidative, apoptotic, and inflammatory pathways.
Collapse
Affiliation(s)
- Muhammad A E Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| | - Mohamed I M Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Muhammad F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Reham El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Ahmed A E Hegazy
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Muhammad Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| |
Collapse
|
15
|
Zhang SR, Phan TG, Sobey CG. Targeting the Immune System for Ischemic Stroke. Trends Pharmacol Sci 2020; 42:96-105. [PMID: 33341247 DOI: 10.1016/j.tips.2020.11.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Stroke is responsible for almost 6 million deaths and more than 10% of all mortalities each year, and two-thirds of stroke survivors remain disabled. With treatments for ischemic stroke still limited to clot lysis and/or mechanical removal, new therapeutic targets are desperately needed. In this review, we provide an overview of the complex mechanisms of innate and adaptive immune cell-mediated inflammatory injury, that exacerbates infarct development for several days after stroke. We also highlight the features of poststroke systemic immunodepression that commonly leads to infections and some mortalities, and argue that safe and effective therapies will need to balance pro- and anti-inflammatory mechanisms in a time-sensitive manner, to maximize the likelihood of an improved long-term outcome.
Collapse
Affiliation(s)
- Shenpeng R Zhang
- Department of Physiology, Anatomy, and Microbiology, and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thanh G Phan
- Clinical Trials, Imaging, and Informatics (CTI) Division, Stroke and Ageing Research (STARC), Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy, and Microbiology, and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
16
|
Ma G, Pan Z, Kong L, Du G. Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol 2020; 90:107216. [PMID: 33296780 DOI: 10.1016/j.intimp.2020.107216] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Hemorrhagic transformation (HT) is a common and serious complication following ischemic stroke, especially after tissue plasminogen activator (t-PA) thrombolysis, which is associated with increased mortality and disability. Due to the unknown mechanisms and targets of HT, there are no effective therapeutic drugs to decrease the incidence of HT. In recent years, many studies have found that neuroinflammation is closely related to the occurrence and development of HT after t-PA thrombolysis, including glial cell activation in the brain, peripheral inflammatory cell infiltration and the release of inflammatory factors, involving inflammation-related targets such as NF-κB, MAPK, HMGB1, TLR4 and NLRP3. Some drugs with anti-inflammatory activity have been shown to protect the BBB and reduce the risk of HT in preclinical experiments and clinical trials, including minocycline, fingolimod, tacrolimus, statins and some natural products. In addition, the changes in MMP-9, VAP-1, NLR, sICAM-1 and other inflammatory factors are closely related to the occurrence of HT, which may be potential biomarkers for the diagnosis and prognosis of HT. In this review, we summarize the potential inflammation-related mechanisms, targets, therapeutic drugs, and biomarkers associated with HT after t-PA thrombolysis and discuss the relationship between neuroinflammation and HT, which provides a reference for research on the mechanisms, prevention and treatment drugs, diagnosis and prognosis of HT.
Collapse
Affiliation(s)
- Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
17
|
Tabet F, Lee S, Zhu W, Levin MG, Toth CL, Cuesta Torres LF, Vinh A, Kim HA, Chu HX, Evans MA, Kuzmich ME, Drummond GR, Remaley AT, Rye KA, Sobey CG, Vickers KC. microRNA-367-3p regulation of GPRC5A is suppressed in ischemic stroke. J Cereb Blood Flow Metab 2020; 40:1300-1315. [PMID: 31296130 PMCID: PMC7238381 DOI: 10.1177/0271678x19858637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a major cause of mortality and long-term disability with limited treatment options, and a greater understanding of the gene regulatory mechanisms underlying ischemic stroke-associated neuroinflammation is required for new therapies. To study ischemic stroke in vivo, mice were subjected to sustained ischemia by intraluminal filament-induced middle cerebral artery occlusion (MCAo) for 24 h without reperfusion or transient ischemia for 30 min followed by 23.5 h reperfusion, and brain miRNA and mRNA expression changes were quantified by TaqMan OpenArrays and gene (mRNA) expression arrays, respectively. Sustained ischemia resulted in 18 significantly altered miRNAs and 392 altered mRNAs in mouse brains compared to Sham controls; however, the transient ischemic condition was found to impact only 6 miRNAs and 126 mRNAs. miR-367-3p was found to be significantly decreased in brain homogenates with sustained ischemia. G protein-coupled receptor, family C, group 5, member A (Gprc5a), a miR-367-3p target gene, was found to be significantly increased with sustained ischemia. In primary neurons, inhibition of endogenous miR-367-3p resulted in a significant increase in Gprc5a expression. Moreover, miR-367-3p was found to be co-expressed with GPRC5A in human neurons. Results suggest that loss of miR-367-3p suppression of GPRC5A may contribute to neuroinflammation associated with ischemic stroke.
Collapse
Affiliation(s)
- Fatiha Tabet
- Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Seyoung Lee
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Wanying Zhu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael G Levin
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia L Toth
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luisa F Cuesta Torres
- Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Antony Vinh
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Hyun Ah Kim
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Hannah X Chu
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Megan A Evans
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Meaghan E Kuzmich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Grant R Drummond
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerry-Anne Rye
- Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Christopher G Sobey
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Wang C, Yang YH, Zhou L, Ding XL, Meng YC, Han K. Curcumin alleviates OGD/R-induced PC12 cell damage via repressing CCL3 and inactivating TLR4/MyD88/MAPK/NF-κB to suppress inflammation and apoptosis. J Pharm Pharmacol 2020; 72:1176-1185. [PMID: 32436614 DOI: 10.1111/jphp.13293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/26/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Curcumin presents some therapeutic effects including anti-cancer and anti-inflammation. Herein, we centred on the functional role of curcumin in cerebral ischaemia injury and its potential molecular mechanisms. METHODS Microarray analysis was used for excavating crucial genes in cerebral ischaemia. PC12 cells were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) to imitate cerebral ischaemia/reperfusion (I/R) injury in vitro. Cell viability and apoptosis abilities were evaluated by Cell Counting Kit-8 and flow cytometry assays. qRT-PCR, Western blot and enzyme-linked immunosorbent assays were performed to assess the concentrations of related genes. KEY FINDINGS By enquiring GEO dataset, C-C motif chemokine ligand 3 (CCL3) was profoundly upregulated in cerebral I/R injury model. And CCL3 was found to be highly expressed in PC12 cells suffered from OGD/R. Moreover, we found that CCL3 was a potential target of curcumin in cerebral I/R injury. More importantly, the following experiments illustrated that curcumin inhibited the expression of CCL3 in OGD/R model and reduced cell apoptosis and inflammation. Moreover, high expression levels of TLR4, MyD88, p-NF-κB P65, p-P38 MAPK and p-IκBα in OGD/R model were inhibited by curcumin. CONCLUSIONS Our study manifested that curcumin might be a meritorious drug for the treatment of cerebral ischaemia by acting on CCL3.
Collapse
Affiliation(s)
- Chao Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yong-Hong Yang
- Department of Neurology, The Fifth Hospital of Jinan, Jinan, China
| | - Liang Zhou
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xin-Li Ding
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ying-Chun Meng
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ke Han
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
19
|
Sun S, Li L, Dong L, Cheng J, Zhao C, Bao C, Wang H. Circulating mRNA and microRNA profiling analysis in patients with ischemic stroke. Mol Med Rep 2020; 22:792-802. [PMID: 32626985 PMCID: PMC7339759 DOI: 10.3892/mmr.2020.11143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
To provide insight into molecular diagnosis and individualized treatment of ischemic stroke (IS), several available datasets in IS were analyzed to identify the differentially expressed genes and microRNAs (miRNAs). Series matrix files from GSE22255 and GSE16561 (mRNA profiles), a well as GSE110993 (miRNA profile) were downloaded from the Gene Expression Omnibus database. System-level clustering was performed with GeneCluster 3.0 software, and gene annotation and pathway enrichment were performed with gene ontology analysis and Database for Annotation, Visualization and Integrated Discovery software. For a protein-protein interaction (PPI) network, Biological General Repository for Interaction Datasets and IntAct interaction information were integrated to determine the interaction of differentially expressed genes. The selected miRNA candidates were imported into the TargetScan, miRDB and miRecords databases for the prediction of target genes. The present study identified 128 upregulated and 231 downregulated genes in female stroke patients, and 604 upregulated and 337 downregulated genes in male stroke patients compared with sex- and age-matched controls. The construction of a PPI network demonstrated that male stroke patients exhibited YWHAE, CUL3 and JUN as network center nodes, and in female patients CYLD, FOS and PIK3R1 interactions were the strongest. Notably, these interactions are mainly involved in immune inflammatory response, apoptosis and other biological pathways, such as blood coagulation. Female and male upregulated genes were cross-validated with another set of Illumina HumanRef-8 v3.0 expression beadchip (GSE16561). Functional item association networks, gene function networks and transcriptional regulatory networks were successfully constructed, and the relationships between miRNAs and target genes were successfully predicted. The present study identified a number of transcription factors, including DEFA1, PDK4, SDPR, TCN1 and MMP9, and miRNAs, including miRNA (miR)-21, miR-143/145, miR-125-5p and miR-122, which may serve important roles in the development of cerebral stroke and may be important molecular indicators for the treatment of IS.
Collapse
Affiliation(s)
- Sujuan Sun
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Litao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Lipeng Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Jinming Cheng
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Congying Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Chu Bao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| |
Collapse
|
20
|
González-Nieto D, Fernández-Serra R, Pérez-Rigueiro J, Panetsos F, Martinez-Murillo R, Guinea GV. Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells 2020; 9:E1074. [PMID: 32357544 PMCID: PMC7291200 DOI: 10.3390/cells9051074] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Brain Plasticity Group, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
21
|
Nakamura A, Otani K, Shichita T. Lipid mediators and sterile inflammation in ischemic stroke. Int Immunol 2020; 32:719-725. [DOI: 10.1093/intimm/dxaa027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Abstract
Stroke is one of the major causes of lethality and disability, yet few effective therapies have been established for ischemic stroke. Inflammation in the ischemic brain is induced by the infiltration and subsequent activation of immune cells. Loss of cerebral blood flow and ischemic brain-cell death trigger the activation of infiltrating immune cells and drastic changes in the lipid content of the ischemic brain. In particular, polyunsaturated fatty acids and their metabolites regulate cerebral post-ischemic inflammation and ischemic stroke pathologies. In this review, we discuss the relationships between the lipid mediators and cerebral post-ischemic inflammation and their relevance to possible future therapeutic strategies targeting lipid mediators for ischemic stroke.
Collapse
Affiliation(s)
- Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kento Otani
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
22
|
Zera KA, Buckwalter MS. The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics 2020; 17:414-435. [PMID: 32193840 PMCID: PMC7283378 DOI: 10.1007/s13311-020-00844-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune response to stroke is an exciting target for future stroke therapies. Stroke is a leading cause of morbidity and mortality worldwide, and clot removal (mechanical or pharmacological) to achieve tissue reperfusion is the only therapy currently approved for patient use. Due to a short therapeutic window and incomplete effectiveness, however, many patients are left with infarcted tissue that stimulates inflammation. Although this is critical to promote repair, it can also damage surrounding healthy brain tissue. In addition, acute immunodepression and subsequent infections are common and are associated with worse patient outcomes. Thus, the acute immune response is a major focus of researchers attempting to identify ways to amplify its benefits and suppress its negative effects to improve short-term recovery of patients. Here we review what is known about this powerful process. This includes the role of brain resident cells such as microglia, peripherally activated cells such as macrophages and neutrophils, and activated endothelium. The role of systemic immune activation and subsequent immunodepression in the days after stroke is also discussed, as is the chronic immune responses and its effects on cognitive function. The biphasic role of inflammation, as well as complex timelines of cell production, differentiation, and trafficking, suggests that the relationship between the acute and chronic phases of stroke recovery is complex. Gaining a more complete understanding of this intricate process by which inflammation is initiated, propagated, and terminated may potentially lead to therapeutics that can treat a larger population of stroke patients than what is currently available. The immune response plays a critical role in patient recovery in both the acute and chronic phases after stroke. In patients, the immune response can be beneficial by promoting repair and recovery, and also detrimental by propagating a pro-inflammatory microenvironment. Thus, it is critical to understand the mechanisms of immune activation following stroke in order to successfully design therapeutics.
Collapse
Affiliation(s)
- Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford Univeristy School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Acker G, Zollfrank J, Jelgersma C, Nieminen-Kelhä M, Kremenetskaia I, Mueller S, Ghori A, Vajkoczy P, Brandenburg S. The CXCR2/CXCL2 signalling pathway - An alternative therapeutic approach in high-grade glioma. Eur J Cancer 2020; 126:106-115. [PMID: 31927212 DOI: 10.1016/j.ejca.2019.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Besides VEGF, alternative signalling via CXCR2 and its ligands CXCL2/CXCL8 is a crucial part of angiogenesis in glioblastoma. Our aim was to understand the role of CXCR2 for glioma biology and elucidate the therapeutic potential of its specific inhibition. METHODS GL261 glioma cells were implanted intracranially in syngeneic mice. The 14 or 7 days of local or systemic treatment with CXCR2-antagonist (SB225002) was initiated early on the day of tumour cell implantation or delayed after 14 days of tumour growth. Glioma volume was verified using MRI before and after treatment. Immunofluorescence staining was used to investigate tumour progression, angiogenesis and microglial behaviour. Furthermore, in vitro assays and gene expression analyses of glioma and endothelial cells were performed to validate inhibitor activity. RESULTS CXCR2-blocking led to significantly reduced glioma volumes of around 50% after early and delayed local treatments. The treated tumours were comparable with controls regarding invasiveness, proliferation and apoptotic cell activity. Furthermore, no differences in CXCR2/CXCL2 expression were observed. However, immunostaining revealed reduction in vessel density and accumulation of microglia/macrophages, whereas interaction of these myeloid cells with tumour vessels was enhanced. In vitro analyses of the CXCR2-antagonist showed its direct impact on proliferation of glioma and endothelial cells if used at higher concentrations. In addition, expression of CXCR2/CXCL2 signalling genes was increased in both cell types by SB225002, but VEGF-relevant genes were unaffected. CONCLUSION The CXCR2-antagonist inhibited glioma growth during tumour initiation and progression, whereas treatment was well-tolerated by the recipients. Thus, the CXCR2/CXCL2 signalling represents a promising therapeutic target in glioma.
Collapse
Affiliation(s)
- Güliz Acker
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Julia Zollfrank
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Claudius Jelgersma
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Adnan Ghori
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susan Brandenburg
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
24
|
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 2019; 16:142. [PMID: 31291966 PMCID: PMC6617684 DOI: 10.1186/s12974-019-1516-2] [Citation(s) in RCA: 920] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic, prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.
Collapse
Affiliation(s)
- Richard L. Jayaraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Fakhreya Y. Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Gary A. Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
25
|
Edwards DN, Bix GJ. The Inflammatory Response After Ischemic Stroke: Targeting β 2 and β 1 Integrins. Front Neurosci 2019; 13:540. [PMID: 31191232 PMCID: PMC6546847 DOI: 10.3389/fnins.2019.00540] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability with limited therapeutic options. Resulting inflammatory mechanisms after reperfusion (removal of the thrombus) result in cytokine activation, calcium influx, and leukocytic infiltration to the area of ischemia. In particular, leukocytes migrate toward areas of inflammation by use of integrins, particularly integrins β1 and β2. Integrins have been shown to be necessary for leukocyte adhesion and migration, and thus are of immediate interest in many inflammatory diseases, including ischemic stroke. In this review, we identify the main integrins involved in leukocytic migration following stroke (α L β2, αDβ2, α4β1, and α5β1) and targeted clinical therapeutic interventions.
Collapse
Affiliation(s)
- Danielle N. Edwards
- Sanders–Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Gregory J. Bix
- Department of Neurology, University of Kentucky, Lexington, KY, United States
- Department of Neurosurgery, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
26
|
Jank L, Pinto-Espinoza C, Duan Y, Koch-Nolte F, Magnus T, Rissiek B. Current Approaches and Future Perspectives for Nanobodies in Stroke Diagnostic and Therapy. Antibodies (Basel) 2019; 8:antib8010005. [PMID: 31544811 PMCID: PMC6640704 DOI: 10.3390/antib8010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
Antibody-based biologics are the corner stone of modern immunomodulatory therapy. Though highly effective in dampening systemic inflammatory processes, their large size and Fc-fragment mediated effects hamper crossing of the blood brain barrier (BBB). Nanobodies (Nbs) are single domain antibodies derived from llama or shark heavy-chain antibodies and represent a new generation of biologics. Due to their small size, they display excellent tissue penetration capacities and can be easily modified to adjust their vivo half-life for short-term diagnostic or long-term therapeutic purposes or to facilitate crossing of the BBB. Furthermore, owing to their characteristic binding mode, they are capable of antagonizing receptors involved in immune signaling and of neutralizing proinflammatory mediators, such as cytokines. These qualities combined make Nbs well-suited for down-modulating neuroinflammatory processes that occur in the context of brain ischemia. In this review, we summarize recent findings on Nbs in preclinical stroke models and how they can be used as diagnostic and therapeutic reagents. We further provide a perspective on the design of innovative Nb-based treatment protocols to complement and improve stroke therapy.
Collapse
Affiliation(s)
- Larissa Jank
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
27
|
García-Culebras A, Durán-Laforet V, Peña-Martínez C, Ballesteros I, Pradillo JM, Díaz-Guzmán J, Lizasoain I, Moro MA. Myeloid cells as therapeutic targets in neuroinflammation after stroke: Specific roles of neutrophils and neutrophil-platelet interactions. J Cereb Blood Flow Metab 2018; 38:2150-2164. [PMID: 30129391 PMCID: PMC6282223 DOI: 10.1177/0271678x18795789] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ischemic brain injury causes a local inflammatory response, involving the activation of resident brain cells such as microglia and the recruitment of infiltrating immune cells. Increasing evidence supports that plasticity of the myeloid cell lineage is determinant for the specific role of these cells on stroke outcome, from initiation and maintenance to resolution of post-ischemic inflammation. The aim of this review is to summarize some of the key characteristics of these cells and the mechanisms for their recruitment into the injured brain through interactions with platelets, endothelial cells and other leukocytes. Also, we discuss the existence of different leukocyte subsets in the ischemic tissue and, specifically, the impact of different myeloid phenotypes on stroke outcome, with special emphasis on neutrophils and their interplay with platelets. Knowledge of these cellular phenotypes and interactions may pave the way to new therapies able to promote protective immune responses and tissue repair after cerebral ischemia.
Collapse
Affiliation(s)
- Alicia García-Culebras
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| | - Violeta Durán-Laforet
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| | - Carolina Peña-Martínez
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| | - Iván Ballesteros
- 4 Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús M Pradillo
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| | - Jaime Díaz-Guzmán
- 2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,5 Servicio de Neurología, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Ignacio Lizasoain
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| | - María A Moro
- 1 Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.,2 Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,3 Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM, Madrid, Spain
| |
Collapse
|
28
|
Pivotal role of innate myeloid cells in cerebral post-ischemic sterile inflammation. Semin Immunopathol 2018; 40:523-538. [PMID: 30206661 DOI: 10.1007/s00281-018-0707-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Inflammatory responses play a multifaceted role in regulating both disability and recovery after ischemic brain injury. In the acute phase of ischemic stroke, resident microglia elicit rapid inflammatory responses by the ischemic milieu. After disruption of the blood-brain barrier, peripheral-derived neutrophils and mononuclear phagocytes infiltrate into the ischemic brain. These infiltrating myeloid cells are activated by the endogenous alarming molecules released from dying brain cells. Inflammation after ischemic stroke thus typically consists of sterile inflammation triggered by innate immunity, which exacerbates the pathologies of ischemic stroke and worsens neurological prognosis. Infiltrating immune cells sustain the post-ischemic inflammation for several days; after this period, however, these cells take on a repairing function, phagocytosing inflammatory mediators and cellular debris. This time-specific polarization of immune cells in the ischemic brain is a potential novel therapeutic target. In this review, we summarize the current understanding of the phase-dependent role of innate myeloid cells in ischemic stroke and discuss the cellular and molecular mechanisms of their inflammatory or repairing polarization from a therapeutic perspective.
Collapse
|
29
|
Rana AK, Singh D. Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: Opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology 2018; 139:124-136. [DOI: 10.1016/j.neuropharm.2018.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
30
|
Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation 2018; 15:146. [PMID: 29776443 PMCID: PMC5960133 DOI: 10.1186/s12974-018-1173-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China.,Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China. .,Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
31
|
Chen C, Chu SF, Liu DD, Zhang Z, Kong LL, Zhou X, Chen NH. Chemokines play complex roles in cerebral ischemia. Neurochem Int 2018. [DOI: 10.1016/j.neuint.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Sun M, Brady RD, Wright DK, Kim HA, Zhang SR, Sobey CG, Johnstone MR, O'Brien TJ, Semple BD, McDonald SJ, Shultz SR. Treatment with an interleukin-1 receptor antagonist mitigates neuroinflammation and brain damage after polytrauma. Brain Behav Immun 2017; 66:359-371. [PMID: 28782716 DOI: 10.1016/j.bbi.2017.08.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/22/2017] [Accepted: 08/02/2017] [Indexed: 01/18/2023] Open
Abstract
Traumatic brain injury (TBI) and long bone fracture are common in polytrauma. This injury combination in mice results in elevated levels of the pro-inflammatory cytokine interleukin-1β (IL-1β) and exacerbated neuropathology when compared to isolated-TBI. Here we examined the effect of treatment with an IL-1 receptor antagonist (IL-1ra) in mice given a TBI and a concomitant tibial fracture (i.e., polytrauma). Adult male C57BL/6 mice were given sham-injuries or polytrauma and treated with saline-vehicle or IL-1ra (100mg/kg). Treatments were subcutaneously injected at 1, 6, and 24h, and then once daily for one week post-injury. 7-8 mice/group were euthanized at 48h post-injury. 12-16 mice/group underwent behavioral testing at 12weeks post-injury and MRI at 14weeks post-injury before being euthanized at 16weeks post-injury. At 48h post-injury, markers for activated microglia and astrocytes, as well as neutrophils and edema, were decreased in polytrauma mice treated with IL-1ra compared to polytrauma mice treated with vehicle. At 14weeks post-injury, MRI analysis demonstrated that IL-1ra treatment after polytrauma reduced volumetric loss in the injured cortex and mitigated track-weighted MRI markers for axonal injury. As IL-1ra (Anakinra) is approved for human use, it may represent a promising therapy in polytrauma cases involving TBI and fracture.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - David K Wright
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3052, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Shenpeng R Zhang
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia; Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Maddison R Johnstone
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Bridgette D Semple
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
33
|
The effect of CXCR2 inhibition on seizure activity in the pilocarpine epilepsy mouse model. Brain Res Bull 2017; 134:91-98. [DOI: 10.1016/j.brainresbull.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 01/13/2023]
|
34
|
Rayasam A, Hsu M, Hernández G, Kijak J, Lindstedt A, Gerhart C, Sandor M, Fabry Z. Contrasting roles of immune cells in tissue injury and repair in stroke: The dark and bright side of immunity in the brain. Neurochem Int 2017; 107:104-116. [PMID: 28245997 DOI: 10.1016/j.neuint.2017.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
Despite considerable efforts in research and clinical studies, stroke is still one of the leading causes of death and disability worldwide. Originally, stroke was considered a vascular thrombotic disease without significant immune involvement. However, over the last few decades it has become increasingly obvious that the immune responses can significantly contribute to both tissue injury and protection following stroke. Recently, much research has been focused on the immune system's role in stroke pathology and trying to elucidate the mechanism used by immune cells in tissue injury and protection. Since the discovery of tissue plasminogen activator therapy in 1996, there have been no new treatments for stroke. For this reason, research into understanding how the immune system contributes to stroke pathology may lead to better therapies or enhance the efficacy of current treatments. Here, we discuss the contrasting roles of immune cells to stroke pathology while emphasizing myeloid cells and T cells. We propose that focusing future research on balancing the beneficial-versus-detrimental roles of immunity may lead to the discovery of better and novel stroke therapies.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin Hsu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gianna Hernández
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Kijak
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anders Lindstedt
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Gerhart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation 2017; 14:21. [PMID: 28115020 PMCID: PMC5260103 DOI: 10.1186/s12974-016-0774-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
Stroke is one of the leading causes of death worldwide. A strong inflammatory response characterized by activation and release of cytokines, chemokines, adhesion molecules, and proteolytic enzymes contributes to brain damage following stroke. Stroke outcomes are worse among diabetics, resulting in increased mortality and disabilities. Diabetes involves chronic inflammation manifested by reactive oxygen species generation, expression of proinflammatory cytokines, and activation/expression of other inflammatory mediators. It appears that increased proinflammatory processes due to diabetes are further accelerated after cerebral ischemia, leading to increased ischemic damage. Hypoglycemia is an intrinsic side effect owing to glucose-lowering therapy in diabetics, and is known to induce proinflammatory changes as well as exacerbate cerebral damage in experimental stroke. Here, we present a review of available literature on the contribution of neuroinflammation to increased cerebral ischemic damage in diabetics. We also describe the role of hypoglycemia in neuroinflammation and cerebral ischemic damage in diabetics. Understanding the role of neuroinflammatory mechanisms in worsening stroke outcome in diabetics may help limit ischemic brain injury and improve clinical outcomes.
Collapse
Affiliation(s)
- Vibha Shukla
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA.,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA
| | - Akhalesh Kumar Shakya
- Present address: Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA.,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA.,Neuroscience Program, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA. .,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA. .,Neuroscience Program, University of Miami School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
36
|
Kim JY, Park J, Chang JY, Kim SH, Lee JE. Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells. Exp Neurobiol 2016; 25:241-251. [PMID: 27790058 PMCID: PMC5081470 DOI: 10.5607/en.2016.25.5.241] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
The immune response after stroke is known to play a major role in ischemic brain pathobiology. The inflammatory signals released by immune mediators activated by brain injury sets off a complex series of biochemical and molecular events which have been increasingly recognized as a key contributor to neuronal cell death. The primary immune mediators involved are glial cells and infiltrating leukocytes, including neutrophils, monocytes and lymphocyte. After ischemic stroke, activation of glial cells and subsequent release of pro- and anti-inflammatory signals are important for modulating both neuronal cell damage and wound healing. Infiltrated leukocytes release inflammatory mediators into the site of the lesion, thereby exacerbating brain injury. This review describes how the roles of glial cells and circulating leukocytes are a double-edged sword for neuroinflammation by focusing on their detrimental and protective effects in ischemic stroke. Here, we will focus on underlying characterize of glial cells and leukocytes under inflammation after ischemic stroke.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; Bk21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Young Chang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jaecheon 27136, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; Bk21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
37
|
Prophylactic Chronic Zinc Administration Increases Neuroinflammation in a Hypoxia-Ischemia Model. J Immunol Res 2016; 2016:4039837. [PMID: 27635404 PMCID: PMC5007350 DOI: 10.1155/2016/4039837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 11/24/2022] Open
Abstract
Acute and subacute administration of zinc exert neuroprotective effects in hypoxia-ischemia animal models; yet the effect of chronic administration of zinc still remains unknown. We addressed this issue by injecting zinc at a tolerable dose (0.5 mg/kg weight, i.p.) for 14 days before common carotid artery occlusion (CCAO) in a rat. After CCAO, the level of zinc was measured by atomic absorption spectrophotometry, nitrites were determined by Griess method, lipoperoxidation was measured by Gerard-Monnier assay, and mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors was measured by qRT-PCR, whereas nitrotyrosine, chemokines, and their receptors were assessed by ELISA and histopathological changes in the temporoparietal cortex-hippocampus at different time points. Long-term memory was evaluated using Morris water maze. Following CCAO, a significant increase in nitrosative stress, inflammatory chemokines/receptors, and cell death was observed after 8 h, and a 2.5-fold increase in zinc levels was detected after 7 days. Although CXCL12 and FGF2 protein levels were significantly increased, the long-term memory was impaired 12 days after reperfusion in the Zn+CCAO group. Our data suggest that the chronic administration of zinc at tolerable doses causes nitrosative stress, toxic zinc accumulation, and neuroinflammation, which might account for the neuronal death and cerebral dysfunction after CCAO.
Collapse
|
38
|
Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2016; 22:1258-77. [PMID: 25666795 DOI: 10.2174/0929867322666150209154036] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke.
Collapse
Affiliation(s)
| | - Midori A Yenari
- Dept. of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
39
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
40
|
Herz J, Sabellek P, Lane TE, Gunzer M, Hermann DM, Doeppner TR. Role of Neutrophils in Exacerbation of Brain Injury After Focal Cerebral Ischemia in Hyperlipidemic Mice. Stroke 2015; 46:2916-25. [PMID: 26337969 DOI: 10.1161/strokeaha.115.010620] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Inflammation-related comorbidities contribute to stroke-induced immune responses and brain damage. We previously showed that hyperlipidemia exacerbates ischemic brain injury, which is associated with elevated peripheral and cerebral granulocyte numbers. Herein, we evaluate the contribution of neutrophils to the exacerbation of ischemic brain injury. METHODS Wild-type mice fed with a normal chow and ApoE knockout mice fed with a high cholesterol diet were exposed to middle cerebral artery occlusion. CXCR2 was blocked using the selective antagonist SB225002 (2 mg/kg) or neutralizing CXCR2 antiserum. Neutrophils were depleted using an anti-Ly6G antibody. At 72 hours post ischemia, immunohistochemistry, flow cytometry, and real-time polymerase chain reaction were performed to determine cerebral tissue injury and immunologic changes in the blood, bone marrow, and brain. Functional outcome was assessed by accelerated rota rod and tight rope tests at 4, 7, and 14 days post ischemia. RESULTS CXCR2 antagonization reduced neurological deficits and infarct volumes that were exacerbated in hyperlipidemic ApoE-/- mice. This effect was mimicked by neutrophil depletion. Cerebral neutrophil infiltration and peripheral neutrophilia, which were increased on ischemia in hyperlipidemia, were attenuated by CXCR2 antagonization. This downscaling of neutrophil responses was associated with increased neutrophil apoptosis and reduced levels of CXCR2, inducible nitric oxide synthase, and NADPH oxidase 2 expression on bone marrow neutrophils. CONCLUSIONS Our data demonstrate a role of neutrophils in the exacerbation of ischemic brain injury induced by hyperlipidemia. Accordingly, CXCR2 blockade, which prevents neutrophil recruitment into the brain, might be an effective option for stroke treatment in patients with hyperlipidemia.
Collapse
Affiliation(s)
- Josephine Herz
- From the Department of Neurology (J.H., P.S., D.M.H., T.R.D.), Department of Pediatrics I (J.H.), and Institute of Experimental Immunology and Imaging, University Duisburg-Essen (M.G.), University Hospital Essen, Essen, Germany; and Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City (T.E.L.).
| | - Pascal Sabellek
- From the Department of Neurology (J.H., P.S., D.M.H., T.R.D.), Department of Pediatrics I (J.H.), and Institute of Experimental Immunology and Imaging, University Duisburg-Essen (M.G.), University Hospital Essen, Essen, Germany; and Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City (T.E.L.)
| | - Thomas E Lane
- From the Department of Neurology (J.H., P.S., D.M.H., T.R.D.), Department of Pediatrics I (J.H.), and Institute of Experimental Immunology and Imaging, University Duisburg-Essen (M.G.), University Hospital Essen, Essen, Germany; and Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City (T.E.L.)
| | - Matthias Gunzer
- From the Department of Neurology (J.H., P.S., D.M.H., T.R.D.), Department of Pediatrics I (J.H.), and Institute of Experimental Immunology and Imaging, University Duisburg-Essen (M.G.), University Hospital Essen, Essen, Germany; and Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City (T.E.L.)
| | - Dirk M Hermann
- From the Department of Neurology (J.H., P.S., D.M.H., T.R.D.), Department of Pediatrics I (J.H.), and Institute of Experimental Immunology and Imaging, University Duisburg-Essen (M.G.), University Hospital Essen, Essen, Germany; and Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City (T.E.L.)
| | - Thorsten R Doeppner
- From the Department of Neurology (J.H., P.S., D.M.H., T.R.D.), Department of Pediatrics I (J.H.), and Institute of Experimental Immunology and Imaging, University Duisburg-Essen (M.G.), University Hospital Essen, Essen, Germany; and Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City (T.E.L.)
| |
Collapse
|
41
|
Chu HX, Broughton BR, Ah Kim H, Lee S, Drummond GR, Sobey CG. Evidence That Ly6C
hi
Monocytes Are Protective in Acute Ischemic Stroke by Promoting M2 Macrophage Polarization. Stroke 2015; 46:1929-37. [DOI: 10.1161/strokeaha.115.009426] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Abstract
Background and Purpose—
Ly6C
hi
monocytes are generally thought to exert a proinflammatory role in acute tissue injury, although their impact after injuries to the central nervous system is poorly defined. CC chemokine receptor 2 is expressed on Ly6C
hi
monocytes and plays an essential role in their extravasation and transmigration into the brain after cerebral ischemia. We used a selective CC chemokine receptor 2 antagonist, INCB3344, to assess the effect of Ly6C
hi
monocytes recruited into the brain early after ischemic stroke.
Methods—
Male C57Bl/6J mice underwent occlusion of the middle cerebral artery for 1 hour followed by 23 hours of reperfusion. Mice were administered either vehicle (dimethyl sulfoxide/carboxymethylcellulose) or INCB3344 (10, 30 or 100 mg/kg IP) 1 hour before ischemia and at 2 and 6 hours after ischemia. At 24 hours, we assessed functional outcomes, infarct volume, and quantified the immune cells in blood and brain by flow cytometry or immunofluorescence. Gene expression of selected inflammatory markers was assessed by quantitative polymerase chain reaction.
Results—
Ly6C
hi
monocytes were increased 3-fold in the blood and 10-fold in the brain after stroke, and these increases were selectively prevented by INCB3344 in a dose-dependent manner. Mice treated with INCB3344 exhibited markedly worse functional outcomes and larger infarct volumes, in association with reduced M2 polarization and increased peroxynitrite production in macrophages, compared with vehicle-treated mice.
Conclusions—
Our data suggest that Ly6C
hi
monocytes exert an acute protective effect after ischemic stroke to limit brain injury and functional deficit that involves promotion of M2 macrophage polarization.
Collapse
Affiliation(s)
- Hannah X. Chu
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology (H.X.C., B.R.S.B., H.A.K., S.L., G.R.D., C.G.S.) and Vascular Biology and Immunopharmacology Group, Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Brad R.S. Broughton
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology (H.X.C., B.R.S.B., H.A.K., S.L., G.R.D., C.G.S.) and Vascular Biology and Immunopharmacology Group, Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Hyun Ah Kim
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology (H.X.C., B.R.S.B., H.A.K., S.L., G.R.D., C.G.S.) and Vascular Biology and Immunopharmacology Group, Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Seyoung Lee
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology (H.X.C., B.R.S.B., H.A.K., S.L., G.R.D., C.G.S.) and Vascular Biology and Immunopharmacology Group, Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Grant R. Drummond
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology (H.X.C., B.R.S.B., H.A.K., S.L., G.R.D., C.G.S.) and Vascular Biology and Immunopharmacology Group, Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| | - Christopher G. Sobey
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology (H.X.C., B.R.S.B., H.A.K., S.L., G.R.D., C.G.S.) and Vascular Biology and Immunopharmacology Group, Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia
| |
Collapse
|
42
|
Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 2015; 35:888-901. [PMID: 25806703 PMCID: PMC4640255 DOI: 10.1038/jcbfm.2015.45] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/08/2023]
Abstract
Neutrophils have key roles in ischemic brain injury, thrombosis, and atherosclerosis. As such, neutrophils are of great interest as targets to treat and prevent ischemic stroke. After stroke, neutrophils respond rapidly promoting blood-brain barrier disruption, cerebral edema, and brain injury. A surge of neutrophil-derived reactive oxygen species, proteases, and cytokines are released as neutrophils interact with cerebral endothelium. Neutrophils also are linked to the major processes that cause ischemic stroke, thrombosis, and atherosclerosis. Thrombosis is promoted through interactions with platelets, clotting factors, and release of prothrombotic molecules. In atherosclerosis, neutrophils promote plaque formation and rupture by generating oxidized-low density lipoprotein, enhancing monocyte infiltration, and degrading the fibrous cap. In experimental studies targeting neutrophils can improve stroke. However, early human studies have been met with challenges, and suggest that selective targeting of neutrophils may be required. Several properties of neutrophil are beneficial and thus may important to preserve in patients with stroke including antimicrobial, antiinflammatory, and neuroprotective functions.
Collapse
Affiliation(s)
- Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - DaZhi Liu
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Xinhua Zhan
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| |
Collapse
|
43
|
Lee S, Chu HX, Kim HA, Real NC, Sharif S, Fleming SB, Mercer AA, Wise LM, Drummond GR, Sobey CG. Effect of a Broad-Specificity Chemokine-Binding Protein on Brain Leukocyte Infiltration and Infarct Development. Stroke 2015; 46:537-44. [DOI: 10.1161/strokeaha.114.007298] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background and Purpose—
Expression of numerous chemokine-related genes is increased in the brain after ischemic stroke. Here, we tested whether post-stroke administration of a chemokine-binding protein (CBP), derived from the parapoxvirus bovine papular stomatitis virus, might reduce infiltration of leukocytes into the brain and consequently limit infarct development.
Methods—
The binding spectrum of the CBP was evaluated in chemokine ELISAs, and binding affinity was determined using surface plasmon resonance. Focal stroke was induced in C57Bl/6 mice by middle cerebral artery occlusion for 1 hour followed by reperfusion for 23 or 47 hours. Mice were treated intravenously with either bovine serum albumin (10 μg) or CBP (10 μg) at the commencement of reperfusion. At 24 or 48 hours, we assessed plasma levels of the chemokines CCL2/MCP-1 and CXCL2/MIP-2, as well as neurological deficit, brain leukocyte infiltration, and infarct volume.
Results—
The CBP interacted with a broad spectrum of CC, CXC, and XC chemokines and bound CCL2/MCP-1 and CXCL2/MIP-2 with high affinity (pM range). Stroke markedly increased plasma levels of CCL2/MCP-1 and CXCL2/MIP-2, as well as numbers of microglia and infiltrating leukocytes in the brain. Increases in plasma chemokines were blocked in mice treated with CBP, in which there was reduced neurological deficit, fewer brain-infiltrating leukocytes, and ≈50% smaller infarcts at 24 hours compared with bovine serum albumin–treated mice. However, CBP treatment was no longer protective at 48 hours.
Conclusions—
Post-stroke administration of CBP can reduce plasma chemokine levels in association with temporary atten uation of brain inflammation and infarct volume development.
Collapse
Affiliation(s)
- Seyoung Lee
- From the Department of Pharmacology (S.L., H.X.C., H.A.K., G.R.D., C.G.S.), and Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia; and Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand (N.C.R., S.S., S.B.F., A.A.M., L.M.W.)
| | - Hannah X. Chu
- From the Department of Pharmacology (S.L., H.X.C., H.A.K., G.R.D., C.G.S.), and Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia; and Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand (N.C.R., S.S., S.B.F., A.A.M., L.M.W.)
| | - Hyun Ah Kim
- From the Department of Pharmacology (S.L., H.X.C., H.A.K., G.R.D., C.G.S.), and Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia; and Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand (N.C.R., S.S., S.B.F., A.A.M., L.M.W.)
| | - Nicola C. Real
- From the Department of Pharmacology (S.L., H.X.C., H.A.K., G.R.D., C.G.S.), and Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia; and Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand (N.C.R., S.S., S.B.F., A.A.M., L.M.W.)
| | - Saeed Sharif
- From the Department of Pharmacology (S.L., H.X.C., H.A.K., G.R.D., C.G.S.), and Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia; and Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand (N.C.R., S.S., S.B.F., A.A.M., L.M.W.)
| | - Stephen B. Fleming
- From the Department of Pharmacology (S.L., H.X.C., H.A.K., G.R.D., C.G.S.), and Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia; and Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand (N.C.R., S.S., S.B.F., A.A.M., L.M.W.)
| | - Andrew A. Mercer
- From the Department of Pharmacology (S.L., H.X.C., H.A.K., G.R.D., C.G.S.), and Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia; and Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand (N.C.R., S.S., S.B.F., A.A.M., L.M.W.)
| | - Lyn M. Wise
- From the Department of Pharmacology (S.L., H.X.C., H.A.K., G.R.D., C.G.S.), and Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia; and Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand (N.C.R., S.S., S.B.F., A.A.M., L.M.W.)
| | - Grant R. Drummond
- From the Department of Pharmacology (S.L., H.X.C., H.A.K., G.R.D., C.G.S.), and Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia; and Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand (N.C.R., S.S., S.B.F., A.A.M., L.M.W.)
| | - Christopher G. Sobey
- From the Department of Pharmacology (S.L., H.X.C., H.A.K., G.R.D., C.G.S.), and Department of Surgery, Southern Clinical School (G.R.D., C.G.S.), Monash University, Clayton, Victoria, Australia; and Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand (N.C.R., S.S., S.B.F., A.A.M., L.M.W.)
| |
Collapse
|
44
|
Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J. The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci 2015; 8:461. [PMID: 25642168 PMCID: PMC4294142 DOI: 10.3389/fncel.2014.00461] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/18/2014] [Indexed: 01/15/2023] Open
Abstract
The immune response to acute cerebral ischemia is a major contributor to stroke pathobiology. The inflammatory response is characterized by the participation of brain resident cells and peripheral leukocytes. Microglia in the brain and monocytes/neutrophils in the periphery have a prominent role in initiating, sustaining and resolving post-ischemic inflammation. In this review we aim to summarize recent literature concerning the origins, fate and role of microglia, monocytes and neutrophils in models of cerebral ischemia and to discuss their relevance for human stroke.
Collapse
Affiliation(s)
- Corinne Benakis
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
45
|
Kim HA, Whittle SC, Lee S, Chu HX, Zhang SR, Wei Z, Arumugam TV, Vinh A, Drummond GR, Sobey CG. Brain immune cell composition and functional outcome after cerebral ischemia: comparison of two mouse strains. Front Cell Neurosci 2014; 8:365. [PMID: 25477780 PMCID: PMC4237143 DOI: 10.3389/fncel.2014.00365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/16/2014] [Indexed: 11/13/2022] Open
Abstract
Inflammatory cells may contribute to secondary brain injury following cerebral ischemia. The C57Bl/6 mouse strain is known to exhibit a T helper 1-prone, pro-inflammatory type response to injury, whereas the FVB strain is relatively T helper 2-prone, or anti-inflammatory, in its immune response. We tested whether stroke outcome is more severe in C57Bl/6 than FVB mice. Male mice of each strain underwent sham surgery or 1 h occlusion of the middle cerebral artery followed by 23 h of reperfusion. Despite no difference in infarct size, C57Bl/6 mice displayed markedly greater functional deficits than FVB mice after stroke, as assessed by neurological scoring and hanging wire test. Total numbers of CD45(+) leukocytes tended to be larger in the brains of C57Bl/6 than FVB mice after stroke, but there were marked differences in leukocyte composition between the two mouse strains. The inflammatory response in C57Bl/6 mice primarily involved T and B lymphocytes, whereas neutrophils, monocytes and macrophages were more prominent in FVB mice. Our data are consistent with the concept that functional outcome after stroke is dependent on the immune cell composition which develops following ischemic brain injury.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Pharmacology, Monash University Clayton, VIC, Australia
| | | | - Seyoung Lee
- Department of Pharmacology, Monash University Clayton, VIC, Australia
| | - Hannah X Chu
- Department of Pharmacology, Monash University Clayton, VIC, Australia
| | - Shenpeng R Zhang
- Department of Pharmacology, Monash University Clayton, VIC, Australia
| | - Zihui Wei
- Department of Pharmacology, Monash University Clayton, VIC, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore ; School of Pharmacy, Sungkyunkwan University Suwon, South Korea ; School of Biomedical Sciences, The University of Queensland St Lucia, QLD, Australia
| | - Anthony Vinh
- Department of Pharmacology, Monash University Clayton, VIC, Australia
| | - Grant R Drummond
- Department of Pharmacology, Monash University Clayton, VIC, Australia ; Department of Surgery, Monash Medical Centre, Southern Clinical School, Monash University Clayton, VIC, Australia
| | - Christopher G Sobey
- Department of Pharmacology, Monash University Clayton, VIC, Australia ; Department of Surgery, Monash Medical Centre, Southern Clinical School, Monash University Clayton, VIC, Australia
| |
Collapse
|
46
|
Abstract
CC chemokine receptor 2 (CCR2) plays important roles in extravasation and transmigration of monocytes under inflammatory conditions. CCR2 and its ligands have been extensively studied in a range of inflammatory diseases in the central nervous system (CNS), including multiple sclerosis, Alzheimer's disease and ischemic stroke. This brief review summarizes our current understanding of the physiologic and pathologic roles of CCR2, focusing on its involvement in CNS inflammatory diseases. There appears to be a rationale for exploring therapies involving CCR2 inhibition in multiple sclerosis and ischemic stroke, but there is also evidence for immunomodulatory and protective effects of CCR2 activity during CNS inflammation. The critical balance between protective and detrimental roles of CCR2-dependent recruitment of leukocytes must therefore be carefully examined to guide safe and effective development of any therapies involving CCR2 modulation.
Collapse
|
47
|
Chu HX, Kim HA, Lee S, Moore JP, Chan CT, Vinh A, Gelderblom M, Arumugam TV, Broughton BRS, Drummond GR, Sobey CG. Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab 2014; 34:450-9. [PMID: 24326388 PMCID: PMC3948121 DOI: 10.1038/jcbfm.2013.217] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/29/2022]
Abstract
We tested whether significant leukocyte infiltration occurs in a mouse model of permanent cerebral ischemia. C57BL6/J male mice underwent either permanent (3 or 24 hours) or transient (1 or 2 hours+22- to 23-hour reperfusion) middle cerebral artery occlusion (MCAO). Using flow cytometry, we observed ∼15,000 leukocytes (CD45(+high) cells) in the ischemic hemisphere as early as 3 hours after permanent MCAO (pMCAO), comprising ∼40% lymphoid cells and ∼60% myeloid cells. Neutrophils were the predominant cell type entering the brain, and were increased to ∼5,000 as early as 3 hours after pMCAO. Several cell types (monocytes, macrophages, B lymphocytes, CD8(+) T lymphocytes, and natural killer cells) were also increased at 3 hours to levels sustained for 24 hours, whereas others (CD4(+) T cells, natural killer T cells, and dendritic cells) were unchanged at 3 hours, but were increased by 24 hours after pMCAO. Immunohistochemical analysis revealed that leukocytes typically had entered and widely dispersed throughout the parenchyma of the infarct within 3 hours. Moreover, compared with pMCAO, there were ∼50% fewer infiltrating leukocytes at 24 hours after transient MCAO (tMCAO), independent of infarct size. Microglial cell numbers were bilaterally increased in both models. These findings indicate that a profound infiltration of inflammatory cells occurs in the brain early after focal ischemia, especially without reperfusion.
Collapse
Affiliation(s)
- Hannah X Chu
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Hyun Ah Kim
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Seyoung Lee
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Jeffrey P Moore
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Christopher T Chan
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Antony Vinh
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thiruma V Arumugam
- Department of Pharmacology, University of Queensland, St Lucia, Queensland, Australia
| | - Brad R S Broughton
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Grant R Drummond
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Christopher G Sobey
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
48
|
Broughton BR, Brait VH, Kim HA, Lee S, Chu HX, Gardiner-Mann CV, Guida E, Evans MA, Miller AA, Arumugam TV, Drummond GR, Sobey CG. Sex-Dependent Effects of G Protein–Coupled Estrogen Receptor Activity on Outcome After Ischemic Stroke. Stroke 2014; 45:835-41. [DOI: 10.1161/strokeaha.113.001499] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background and Purpose—
Experimental studies indicate that estrogen typically, but not universally, has a neuroprotective effect in stroke. Ischemic stroke increases membrane-bound G protein–coupled estrogen receptor (GPER) distribution and expression in the brain of male but not female mice. We hypothesized that GPER activation may have a greater neuroprotective effect in males than in females after stroke.
Methods—
Vehicle (dimethyl sulfoxide), a GPER agonist (G-1, 30 μg/kg), or a GPER antagonist (G-15, 300 μg/kg) were administered alone or in combination to young or aged male mice, or young intact or ovariectomized female mice, 1 hour before or 3 hours after cerebral ischemia-reperfusion. Some mice were treated with a combination of G-1 and the pan-caspase inhibitor, quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-V
D
-OPh), 1 hour before stroke. We evaluated functional and histological end points of stroke outcome up to 72 hours after ischemia-reperfusion. In addition, apoptosis was examined using cleaved caspase-3 immunohistochemistry.
Results—
Surprisingly, G-1 worsened functional outcomes and increased infarct volume in males poststroke, in association with an increased expression of cleaved caspase-3 in peri-infarct neurons. These effects were blocked by G-15 or Q-V
D
-OPh. Conversely, G-15 improved functional outcomes and reduced infarct volume after stroke in males, whether given before or after stroke. In contrast to findings in males, G-1 reduced neurological deficit, apoptosis, and infarct volume in ovariectomized females, but had no significant effect in intact females.
Conclusions—
Future therapies for acute stroke could exploit the modulation of GPER activity in a sex-specific manner.
Collapse
Affiliation(s)
- Brad R.S. Broughton
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Vanessa H. Brait
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Hyun Ah Kim
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Seyoung Lee
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Hannah X. Chu
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Chantelle V. Gardiner-Mann
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Elizabeth Guida
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Megan A. Evans
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Alyson A. Miller
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Thiruma V. Arumugam
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Grant R. Drummond
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Christopher G. Sobey
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| |
Collapse
|
49
|
Denes A, Pradillo JM, Drake C, Buggey H, Rothwell NJ, Allan SM. Surgical manipulation compromises leukocyte mobilization responses and inflammation after experimental cerebral ischemia in mice. Front Neurosci 2014; 7:271. [PMID: 24478617 PMCID: PMC3894778 DOI: 10.3389/fnins.2013.00271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/21/2013] [Indexed: 12/11/2022] Open
Abstract
Acute brain injury results in peripheral inflammatory changes, although the impact of these processes on neuronal death and neuroinflammation is currently unclear. To facilitate the translation of experimental studies to clinical benefit, it is vital to characterize the mechanisms by which acute brain injury induces peripheral inflammatory changes, and how these are affected by surgical manipulation in experimental models. Here we show that in mice, even mild surgical manipulation of extracranial tissues induced marked granulocyte mobilization (300%) and systemic induction of cytokines. However, intracranial changes induced by craniotomy, or subsequent induction of focal cerebral ischemia were required to induce egress of CXCR2-positive granulocytes from the bone marrow. CXCR2 blockade resulted in reduced mobilization of granulocytes from the bone marrow, caused an unexpected increase in circulating granulocytes, but failed to affect brain injury induced by cerebral ischemia. We also demonstrate that isoflurane anaesthesia interferes with circulating leukocyte responses, which could contribute to the reported vascular and neuroprotective effects of isoflurane. In addition, no immunosuppression develops in the bone marrow after experimental stroke. Thus, experimental models of cerebral ischemia are compromised by surgery and anaesthesia in proportion to the severity of surgical intervention and overall tissue injury. Understanding the inherent confounding effects of surgical manipulation and development of new models of cerebral ischemia with minimal surgical intervention could facilitate better understanding of interactions between inflammation and brain injury.
Collapse
Affiliation(s)
- Adam Denes
- Faculty of Life Sciences, University of Manchester Manchester, UK ; Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Budapest, Hungary
| | - Jesus M Pradillo
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Caroline Drake
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Hannah Buggey
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Nancy J Rothwell
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Stuart M Allan
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
50
|
Dornelles FN, Andrade EL, Campos MM, Calixto JB. Role of CXCR2 and TRPV1 in functional, inflammatory and behavioural changes in the rat model of cyclophosphamide-induced haemorrhagic cystitis. Br J Pharmacol 2014; 171:452-67. [PMID: 24117268 PMCID: PMC3904264 DOI: 10.1111/bph.12467] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/19/2013] [Accepted: 09/29/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Cyclophosphamide induces urotoxicity characterized by the development of cystitis, which involves bladder overactivity and inflammation. Here, we investigated the roles of chemokine receptor 2 (CXCR2) and transient receptor potential vanilloid 1 (TRPV1) channels in a rat model of cyclophosphamide-induced cystitis. EXPERIMENTAL APPROACH Cystitis induced by cyclophosphamide in rats was assessed by gross morphology, histology and immunohistochemistry of bladder tissue. mRNA for CXCR2 and TRPV1 channels were measured by RT-PCR. Nociceptive responses in paw and abdomen, along with cystometric measures were recorded. KEY RESULTS Cyclophosphamide, i.p., induced pain behaviour, bladder inflammation and voiding dysfunction. The CXCR2 antagonist, SB225002, the TRPV1 channel antagonist, SB366791 or their combination reduced the mechanical hypersensitivity of paw and abdominal area and nociceptive behaviour after cyclophosphamide. Cyclophosphamide-induced cystitis was characterized by haemorrhage, oedema, neutrophil infiltration and other inflammatory changes, which were markedly decreased by the antagonists. Up-regulation of CXCR2 and TRPV1 mRNA in the bladder after cyclophosphamide was inhibited by SB225002, SB366791 or their combination. Expression of CXCR2 and TRPV1 channels was increased in the urothelium after cyclophosphamide. Bladder dysfunction was shown by increased number of non-voiding contractions (NVCs) and bladder pressures and a reduction in bladder capacity (BC), voided volume (VV) and voiding efficiency (VE). SB225002 or its combination with SB366791 reduced bladder pressures, whereas SB225002, SB366791 or their combination increased BC, VV and VE, and also reduced the number of NVCs. CONCLUSIONS AND IMPLICATIONS CXCR2 and TRPV1 channels play important roles in cyclophosphamide-induced cystitis in rats and could provide potential therapeutic targets for cystitis.
Collapse
Affiliation(s)
- Fabiana N Dornelles
- Department of Pharmacology Centre of Biological Sciences, Universidade Federal de Santa CatarinaFlorianópolis, Santa Catarina, Brazil
| | - Edinéia L Andrade
- Department of Pharmacology Centre of Biological Sciences, Universidade Federal de Santa CatarinaFlorianópolis, Santa Catarina, Brazil
| | - Maria M Campos
- Faculty of Dentistry and Institute of Toxicology, Pontifícia Universidade Católica do Rio Grande do SulPorto Alegre, Rio Grande do Sul, Brazil
| | - João B Calixto
- Department of Pharmacology Centre of Biological Sciences, Universidade Federal de Santa CatarinaFlorianópolis, Santa Catarina, Brazil
| |
Collapse
|