1
|
Bühler L, de Moura AC, Giovenardi M, Goffin V, Rasia-Filho AA. Sex-related gene expression in the posterodorsal medial amygdala of cycling female rats along with prolactin modulation of lordosis behavior. Brain Res 2025; 1857:149602. [PMID: 40147695 DOI: 10.1016/j.brainres.2025.149602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The rat posterodorsal medial amygdala (MePD) is sexually dimorphic, has a high concentration of receptors for gonadal hormones and prolactin (PRL), and modulates reproduction. To unravel genetic and functional data for this relevant node of the social behavior network, we studied the expression of ERα, ERβ, GPER1, Kiss1, Kiss1R, PRGR, PRL, PRLR, EGR1, JAK2, STAT5A, and STAT5B in the MePD of males and females along the estrous cycle using the RT-qPCR technique. We also investigated whether PRL in the MePD would affect the sexual behavior display of proestrus females by microinjecting saline, the PRL receptor antagonist Del1-9-G129R-hPRL (1 µM and 10 µM), or PRL (1 nM) and Del1-9-G129R-hPRL (10 µM) 3 h before the onset of the dark-cycle period. The estrogen-dependent lordosis behavior, indicative of sexual receptivity of proestrus females, was recorded and compared before (control) and after (test) microinjections in these groups. Sex differences were found in the right and left MePD gene expression. ERα and Kiss1R, as well as PRL, Short PRLR, and STAT5B expression is higher in cycling females than males. Kiss1 expression is higher in males than females, and GPER1 is higher during diestrus than proestrus. Furthermore, Del1-9-G129R-hPRL in the MePD significantly reduced the full display and quotient of lordosis in proestrus females, an effect restored by the co-microinjection of PRL. In conjunction, the expression of studied genes showed specific sex and estrous cycle phase features, and PRL action in the MePD plays an essential role in the display of lordosis during the ovulatory period.
Collapse
Affiliation(s)
- Letícia Bühler
- Graduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 9035-003, Brazil
| | - Ana Carolina de Moura
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil; Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| | - Vincent Goffin
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, F-75015 Paris, France.
| | - Alberto A Rasia-Filho
- Graduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 9035-003, Brazil; Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil; Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| |
Collapse
|
2
|
Yu M, Feng B, Bean JC, Zhao Q, Yang Y, Liu H, Li Y, Eappen BP, Liu H, Tu L, Conde KM, Wang M, Chen X, Yin N, Threat DA, Xu N, Han J, Gao P, Zhu Y, Hadsell DL, He Y, Xu P, He Y, Wang C. Suppression of hypothalamic oestrogenic signal sustains hyperprolactinemia and metabolic adaptation in lactating mice. Nat Metab 2025; 7:759-777. [PMID: 40211044 DOI: 10.1038/s42255-025-01268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/07/2025] [Indexed: 04/12/2025]
Abstract
17β-oestradiol (E2) inhibits overeating and promotes brown adipose tissue (BAT) thermogenesis, whereas prolactin (PRL) does the opposite. During lactation, the simultaneous decline in E2 and surge in PRL contribute to maternal metabolic adaptations, including hyperphagia and suppressed BAT thermogenesis. However, the underlying neuroendocrine mechanisms remain unclear. Here, we find that oestrogen receptor alpha (ERα)-expressing neurons in the medial basal hypothalamus (MBH), specifically the arcuate nucleus of the hypothalamus and the ventrolateral subdivision of the ventromedial hypothalamus (vlVMH), are suppressed during lactation. Deletion of ERα from MBH neurons in virgin female mice induces metabolic phenotypes characteristic of lactation, including hyperprolactinemia, hyperphagia and suppressed BAT thermogenesis. By contrast, activation of ERαvlVMH neurons in lactating mice attenuates these phenotypes. Overall, our study reveals an inhibitory effect of E2-ERαvlVMH signalling on PRL production, which is suppressed during lactation to sustain hyperprolactinemia and metabolic adaptations.
Collapse
Affiliation(s)
- Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, USA
| | - Jonathan C Bean
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qianru Zhao
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongxiang Li
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin P Eappen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xi Chen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Darah Ave Threat
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Nathan Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Peiyu Gao
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, USA
| | - Yi Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Darryl L Hadsell
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, USA.
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Basu S, Waghade A, Parveen R, Kushwaha A, Mitra S, Kokare DM, Singru PS. CART neurons in the hypothalamic ventral premammillary nucleus (PMv) in rats mediate maternal, but not inter-male aggression. J Neurosci 2025; 45:e2140242025. [PMID: 40086871 PMCID: PMC12019109 DOI: 10.1523/jneurosci.2140-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Compared to males, aggression is less frequently noticed in females. Fierce maternal-aggression to thwart the attack/threat of male-conspecific/intruder is transiently expressed as she defends her pups. The odor cues emanated by the intruder provoke aggressive behavior by robustly activating the ventral-premammillary nucleus (PMv) in the hypothalamic-attack area (HAA). But, how PMv activation triggers aggression is unclear. In view of neuropeptide CART's potential to reconfigure neural circuits for behavioral demands, occurrence throughout aggression-circuitry, and abundance particularly in PMv, we test the role of PMvCART in maternal and inter-male aggression in the rats. Males/dams actively attacked the intruder; virgin-females did not. The dams/males without intruder showed isolated cFos-cells in PMv, but intruder's presence triggered cFos-activation in different PMv-subdivisions in dams/males. Compared to dams without intruder, confrontation with intruder robustly activated PMvCART-neurons, augmented CART-ir in ventral-PMv and cart-mRNA in PMv-containing tissues in dams. Conversely, in males, intruder's presence activated lateral-PMv CART neurons, but CART-levels remained unaltered. Intra-PMv CART-siRNA administration suppressed maternal-aggression but male-aggression was unaffected. Since PMv is strongly connected with ventrolateral-ventromedial hypothalamus (VMHvl) and medial-preoptic nucleus (MPN), we test whether CART-signalling to these nuclei triggers maternal-aggression. While VMHvl showed stronger CARTergic-axonal input than MPN, immunoneutralization of CART in VMHvl but not MPN, blocked maternal-aggression. CART may drive the circuit beyond HAA since VMHvl neurons contacted by CART-axons project to periaqueductal-gray. We identify engagement of vPMv and lPMv during maternal and inter-male aggression, respectively, and CART as a key mediator in PMv-VMHvl-pathway to express maternal-aggression in rats.Significance statement Pregnant/lactating rat transiently become fiercely aggressive to protect her pups when challenged by an intruder. The neural mechanism underlying this transitory expression of aggressive behavior is not clear. We identify the role of neuropeptide CART-containing neurons in the hypothalamic premammillary nucleus (PMv) in dams that gives her the behavioral flexibility to display maternal-aggression. A subset of PMvCART neurons in dams shows dramatic activation when provoked by an intruder while silencing of these neurons suppressed maternal- but not male-male aggression. Further, CART signals the ventrolateral part of the ventromedial hypothalamus to trigger aggression in dams. The study shows CART as a novel messenger in aggression circuitry and PMvCART a key regulator of maternal-aggression.
Collapse
Affiliation(s)
- Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Akash Waghade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj (R.T.M.) Nagpur University, Nagpur, India
| | - Roshni Parveen
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Ayushi Kushwaha
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj (R.T.M.) Nagpur University, Nagpur, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
4
|
Puska G, Szendi V, Dobolyi A. Lateral septum as a possible regulatory center of maternal behaviors. Neurosci Biobehav Rev 2024; 161:105683. [PMID: 38649125 DOI: 10.1016/j.neubiorev.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The lateral septum (LS) is involved in controlling anxiety, aggression, feeding, and other motivated behaviors. Lesion studies have also implicated the LS in various forms of caring behaviors. Recently, novel experimental tools have provided a more detailed insight into the function of the LS, including the specific role of distinct cell types and their neuronal connections in behavioral regulations, in which the LS participates. This article discusses the regulation of different types of maternal behavioral alterations using the distributions of established maternal hormones such as prolactin, estrogens, and the neuropeptide oxytocin. It also considers the distribution of neurons activated in mothers in response to pups and other maternal activities, as well as gene expressional alterations in the maternal LS. Finally, this paper proposes further research directions to keep up with the rapidly developing knowledge on maternal behavioral control in other maternal brain regions.
Collapse
Affiliation(s)
- Gina Puska
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Menezes F, Wasinski F, de Souza GO, Nunes AP, Bernardes ES, dos Santos SN, da Silva FFA, Peroni CN, Oliveira JE, Kopchick JJ, Brown RSE, Fernandez G, De Francesco PN, Perelló M, Soares CRJ, Donato J. The Pattern of GH Action in the Mouse Brain. Endocrinology 2024; 165:bqae057. [PMID: 38728240 PMCID: PMC11137758 DOI: 10.1210/endocr/bqae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
GH acts in numerous organs expressing the GH receptor (GHR), including the brain. However, the mechanisms behind the brain's permeability to GH and how this hormone accesses different brain regions remain unclear. It is well-known that an acute GH administration induces phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the mouse brain. Thus, the pattern of pSTAT5 immunoreactive cells was analyzed at different time points after IP or intracerebroventricular GH injections. After a systemic GH injection, the first cells expressing pSTAT5 were those near circumventricular organs, such as arcuate nucleus neurons adjacent to the median eminence. Both systemic and central GH injections induced a medial-to-lateral pattern of pSTAT5 immunoreactivity over time because GH-responsive cells were initially observed in periventricular areas and were progressively detected in lateral brain structures. Very few choroid plexus cells exhibited GH-induced pSTAT5. Additionally, Ghr mRNA was poorly expressed in the mouse choroid plexus. In contrast, some tanycytes lining the floor of the third ventricle expressed Ghr mRNA and exhibited GH-induced pSTAT5. The transport of radiolabeled GH into the hypothalamus did not differ between wild-type and dwarf Ghr knockout mice, indicating that GH transport into the mouse brain is GHR independent. Also, single-photon emission computed tomography confirmed that radiolabeled GH rapidly reaches the ventral part of the tuberal hypothalamus. In conclusion, our study provides novel and valuable information about the pattern and mechanisms behind GH transport into the mouse brain.
Collapse
Affiliation(s)
- Filipe Menezes
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
- Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo 04039-032, Brazil
| | - Gabriel O de Souza
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Amanda P Nunes
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Emerson S Bernardes
- Radiopharmacy Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Sofia N dos Santos
- Radiopharmacy Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Fábio F A da Silva
- Radiopharmacy Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Cibele N Peroni
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - João E Oliveira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Rosemary S E Brown
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA 1900, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA 1900, Argentina
| | - Mario Perelló
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA 1900, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala 75312, Sweden
| | - Carlos R J Soares
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo 05508-000, Brazil
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
6
|
Wasinski F, Tavares MR, Gusmao DO, List EO, Kopchick JJ, Alves GA, Frazao R, Donato J. Central growth hormone action regulates neuroglial and proinflammatory markers in the hypothalamus of male mice. Neurosci Lett 2023; 806:137236. [PMID: 37030549 PMCID: PMC10133206 DOI: 10.1016/j.neulet.2023.137236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Growth hormone (GH) action in specific neuronal populations regulates neuroendocrine responses, metabolism, and behavior. However, the potential role of central GH action on glial function is less understood. The present study aims to determine how the hypothalamic expression of several neuroglial markers is affected by central GH action in male mice. The dwarf GH- and insulin-like growth factor-1 (IGF-1)-deficient Ghrhrlit/lit mice showed decreased mRNA expression of Nes (Nestin), Gfap, Iba1, Adgre1 (F4/80), and Tnf (TNFα) in the hypothalamus, compared to wild-type animals. In contrast, transgenic overexpression of GH led to high serum GH and IGF-1 levels, and increased hypothalamic expression of Nes, Gfap, Adgre1, Iba1, and Rax. Hepatocyte-specific GH receptor (GHR) knockout mice, which are characterized by high serum GH levels, but reduced IGF-1 secretion, showed increased mRNA expression of Gfap, Iba1, Tnf, and Sox10, demonstrating that the increase in GH levels alters the hypothalamic expression of glial markers associated with neuroinflammation, independently of IGF-1. Conversely, brain-specific GHR knockout mice showed reduced expression of Gfap, Adgre1, and Vim (vimentin), indicating that brain GHR signaling is necessary to mediate GH-induced changes in the expression of several neuroglial markers. In conclusion, the hypothalamic mRNA levels of several neuroglial markers associated with inflammation are directly modulated by GHR signaling in male mice.
Collapse
Affiliation(s)
- Frederick Wasinski
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, SP 04039-032, Brazil
| | - Mariana R Tavares
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Guilherme A Alves
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Renata Frazao
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil.
| |
Collapse
|
7
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
8
|
de Souza GO, Wasinski F, Donato J. Characterization of the metabolic differences between male and female C57BL/6 mice. Life Sci 2022; 301:120636. [PMID: 35568227 DOI: 10.1016/j.lfs.2022.120636] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/22/2023]
Abstract
AIMS The present study aims to compare the responses between male and female C57BL/6 mice to multiple metabolic challenges to understand the importance of sex in the control of energy homeostasis. MAIN METHODS Male and female C57BL/6 mice were subjected to nutritional and hormonal challenges, such as food restriction and refeeding, diet-induced obesity, feeding response to ghrelin and leptin, ghrelin-induced growth hormone secretion, and central responsiveness to ghrelin and leptin. The hypothalamic expression of transcripts that control energy homeostasis was also evaluated. KEY FINDINGS Male mice lost more weight and lean body mass in response to food restriction, compared to females. During refeeding, males accumulated more body fat and exhibited lower energy expenditure and glycemia, as compared to females. Additionally, female mice exhibited a higher protection against diet-induced obesity and related metabolic imbalances in comparison to males. Low dose ghrelin injection elicited higher food intake and growth hormone secretion in male mice, whereas the acute anorexigenic effect of leptin was more robust in females. However, the sex differences in the feeding responses to ghrelin and leptin were not explained by variations in the central responsiveness to these hormones nor by differences in the fiber density from arcuate nucleus neurons. Female, but not male, mice exhibited compensatory increases in hypothalamic Pomc mRNA levels in response to diet-induced obesity. SIGNIFICANCE Our findings revealed several sexually differentiated responses to metabolic challenges in C57BL/6 mice, highlighting the importance of taking into account sex differences in metabolic studies.
Collapse
Affiliation(s)
- Gabriel O de Souza
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil..
| |
Collapse
|
9
|
Wasinski F, Teixeira PDS, List EO, Kopchick JJ, Donato J. Growth hormone receptor contributes to the activation of STAT5 in the hypothalamus of pregnant mice. Neurosci Lett 2021; 770:136402. [PMID: 34929316 DOI: 10.1016/j.neulet.2021.136402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) receptor (GHR) signaling induces the phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the cells of several tissues including in the hypothalamus. During pregnancy, several STAT5-recruiting hormones (e.g., prolactin, GH and placental lactogens) are highly secreted. However, the precise contribution of GHR signaling to the surge of pSTAT5 immunoreactive neurons that occurs in the hypothalamus of pregnant mice is currently unknown. Thus, the objective of the present study was to determine whether GHR expression in neurons is required for inducing pSTAT5 expression in several hypothalamic nuclei during pregnancy. Initially, we demonstrated that late pregnant C57BL/6 mice (gestational day 14 to 18) exhibited increased pulsatile GH secretion compared to virgin females. Next, we confirmed that neuron-specific GHR ablation robustly reduces hypothalamic Ghr mRNA levels and prevents GH-induced pSTAT5 in the arcuate, paraventricular and ventromedial hypothalamic nuclei. Subsequently, the number of pSTAT5 immunoreactive cells was determined in the hypothalamus of late pregnant mice. Although neuron-specific GHR ablation did not affect the number of pSTAT5 immunoreactive cells in the paraventricular nucleus of the hypothalamus, reduced pSTAT5 expression was observed in the arcuate and ventromedial nuclei of pregnant neuron-specific GHR knockouts, compared to control pregnant mice. In summary, a subset of hypothalamic neurons requires GHR signaling to express pSTAT5 during pregnancy. These findings contribute to the understanding of the endocrine factors that affect the activation of transcription factors in the brain during pregnancy.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo 05508000, Brazil
| | - Pryscila D S Teixeira
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo 05508000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo 05508000, Brazil.
| |
Collapse
|
10
|
Decoding signaling pathways involved in prolactin-induced neuroprotection: A review. Front Neuroendocrinol 2021; 61:100913. [PMID: 33766566 DOI: 10.1016/j.yfrne.2021.100913] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022]
Abstract
It has been well recognized that prolactin (PRL), a pleiotropic hormone, has many functions in the brain, such as maternal behavior, neurogenesis, and neuronal plasticity, among others. Recently, it has been reported to have a significant role in neuroprotection against excitotoxicity. Glutamate excitotoxicity is a common alteration in many neurological and neurodegenerative diseases, leading to neuronal death. In this sense, several efforts have been made to decrease the progression of these pathologies. Despite various reports of PRL's neuroprotective effect against excitotoxicity, the signaling pathways that underlie this mechanism remain unclear. This review aims to describe the most recent and relevant studies on the molecular signaling pathways, particularly, PI3K/AKT, NF-κB, and JAK2/STAT5, which are currently under investigation and might be implicated in the molecular mechanisms that explain the PRL effects against excitotoxicity and neuroprotection. Remarkable neuroprotective effects of PRL might be useful in the treatment of some neurological diseases.
Collapse
|
11
|
Corona R, Jayakumar P, Carbajo Mata MA, Del Valle-Díaz MF, Luna-García LA, Morales T. Sexually dimorphic effects of prolactin treatment on the onset of puberty and olfactory function in mice. Gen Comp Endocrinol 2021; 301:113652. [PMID: 33122037 DOI: 10.1016/j.ygcen.2020.113652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
The onset of puberty is associated with the psychophysiological maturation of the adolescent to an adult capable of reproduction when olfactory signals play an important role. This period begins with the secretion of the gonadotropin-releasing hormone (GnRH) from GnRH neurons within the hypothalamus. This is regulated by kisspeptin neurons that express high levels of transmembrane prolactin receptors (PRLR) that bind to and are activated by prolactin (PRL). The elevated levels of serum PRL found during lactation, or caused by chronic PRL infusion, decreases the secretion of gonadotropins and kisspeptin and compromised the estrous cyclicity and the ovulation. In the present work, we aimed to evaluate the effects of either increased or decreased PRL circulating levels within the peripubertal murine brain by administration of PRL or treatment with cabergoline (Cab) respectively. We showed that either treatment delayed the onset of puberty in females, but not in males. This was associated with the augmentation of the PRL receptor (Prlr) mRNA expression in the arcuate nucleus and decreased Kiss1 expression in the anteroventral periventricular zone. Then, during adulthood, we assessed the activation of the mitral and granular cells of the main (MOB) and accessory olfactory bulb (AOB) by cFos immunoreactivity (ir) after the exposure to soiled bedding of the opposite sex. In the MOB, the PRL treatment promoted an increased cFos-ir of the mitral cells of males and females. In the granular cells of male of either treatment an augmented activation was observed. In the AOB, an impaired cFos-ir was observed in PRL and Cab treated females after exposure to male soiled bedding. However, in males, only Cab impaired its activation. No effects were observed in the AOB-mitral cells. In conclusion, our results demonstrate that PRL contributes to pubertal development and maturation of the MOB-AOB during the murine juvenile period in a sex-dependent way.
Collapse
Affiliation(s)
- Rebeca Corona
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico.
| | - Preethi Jayakumar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | - Teresa Morales
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
12
|
Wasinski F, Klein MO, Bittencourt JC, Metzger M, Donato J. Distribution of growth hormone-responsive cells in the brain of rats and mice. Brain Res 2020; 1751:147189. [PMID: 33152340 DOI: 10.1016/j.brainres.2020.147189] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
A growth hormone (GH) injection is able to induce the phosphorylated form of the signal transducer and activator of transcription 5 (pSTAT5) in a large number of cells throughout the mouse brain. The present study had the objective to map the distribution of GH-responsive cells in the brain of rats that received an intracerebroventricular injection of GH and compare it to the pattern found in mice. We observed that rats and mice exhibited a similar distribution of GH-induced pSTAT5 in the majority of areas of the telencephalon, hypothalamus and brainstem. However, rats exhibited a higher density of GH-responsive cells than mice in the horizontal limb of the diagonal band of Broca (HDB), supraoptic and suprachiasmatic nuclei, whereas mice displayed more GH-responsive cells than rats in the hippocampus, lateral hypothalamic area and dorsal motor nucleus of the vagus (DMX). Since both HDB and DMX contain acetylcholine-producing neurons, pSTAT5 was co-localized with choline acetyltransferase in GH-injected animals. We found that 50.0 ± 4.5% of cholinergic neurons in the rat HDB coexpressed GH-induced pSTAT5, whereas very few co-localizations were observed in the mouse HDB. In contrast, rats displayed fewer cholinergic neurons responsive to GH in the DMX at the level of the area postrema. In summary, pSTAT5 can be used as a marker of GH-responsive cells in the rat brain. Although rats and mice exhibit a relatively similar distribution of GH-responsive neurons, some species-specific differences exist, as exemplified for the responsiveness to GH in distinct populations of cholinergic neurons.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Marianne O Klein
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Jackson C Bittencourt
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Martin Metzger
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Georgescu T, Ladyman SR, Brown RSE, Grattan DR. Acute effects of prolactin on hypothalamic prolactin receptor expressing neurones in the mouse. J Neuroendocrinol 2020; 32:e12908. [PMID: 33034148 DOI: 10.1111/jne.12908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
In addition to its critical role in lactation, the anterior pituitary hormone prolactin also influences a broad range of other physiological processes. In particular, widespread expression of prolactin receptor (Prlr) in the brain has highlighted pleiotropic roles for prolactin in regulating neuronal function, including maternal behaviour, reproduction and energy balance. Research into the central actions of prolactin has predominately focused on effects on gene transcription via the canonical JAK2/STAT5; however, it is evident that prolactin can exert rapid actions to stimulate activity in specific populations of neurones. We aimed to investigate how widespread these rapid actions of prolactin are in regions of the brain with large populations of prolactin-sensitive neurones, and whether physiological state alters these responses. Using transgenic mice where the Cre-dependent calcium indicator, GCaMP6f, was conditionally expressed in cells expressing the long form of the Prlr, we monitored changes in levels of intracellular calcium ([Ca2+ ]i ) in ex vivo brain slice preparations as a surrogate marker of cellular activity. Here, we surveyed hypothalamic regions implicated in the diverse physiological functions of prolactin such as the arcuate (ARC) and paraventricular nuclei of the hypothalamus (PVN), as well as the medial preoptic area (MPOA). We observed that, in the ARC of males and in both virgin and lactating females, prolactin can exert rapid actions to stimulate neuronal activity in the majority of Prlr-expressing neurones. In the PVN and MPOA, we found a smaller subset of cells that rapidly respond to prolactin. In these brain regions, the effects we detected ranged from rapid or sustained increases in [Ca2+ ]i to inhibitory effects, indicating a heterogeneous nature of these Prlr-expressing populations. These results enhance our understanding of mechanisms by which prolactin acts on hypothalamic neurones and provide insights into how prolactin might influence neuronal circuits in the mouse brain.
Collapse
Affiliation(s)
- Teodora Georgescu
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
14
|
Quaresma PGF, Dos Santos WO, Wasinski F, Metzger M, Donato J. Neurochemical phenotype of growth hormone-responsive cells in the mouse paraventricular nucleus of the hypothalamus. J Comp Neurol 2020; 529:1228-1239. [PMID: 32844436 DOI: 10.1002/cne.25017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Multiple neuroendocrine, autonomic and behavioral responses are regulated by the paraventricular nucleus of the hypothalamus (PVH). Previous studies have shown that PVH neurons express the growth hormone (GH) receptor (GHR), although the role of GH signaling on PVH neurons is still unknown. Given the great heterogeneity of cell types located in the PVH, we performed a detailed analysis of the neurochemical identity of GH-responsive cells to understand the possible physiological importance of GH action on PVH neurons. GH-responsive cells were detected via the phosphorylated form of the signal transducer and activator of transcription-5 (pSTAT5) in adult male mice that received an intraperitoneal GH injection. Approximately 51% of GH-responsive cells in the PVH co-localized with the vesicular glutamate transporter 2. Rare co-localizations between pSTAT5 and vesicular GABA transporter or vasopressin were observed, whereas approximately 20% and 38% of oxytocin and tyrosine hydroxylase (TH) cells, respectively, were responsive to GH in the PVH. Approximately 55%, 35% and 63% of somatostatin, thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) neurons expressed GH-induced pSTAT5, respectively. Additionally, 8%, 49% and 75% of neuroendocrine TH, TRH and CRH neurons, and 67%, 32% and 74% of nonneuroendocrine TH, TRH and CRH neurons were responsive to GH in the PVH of Fluoro-Gold-injected mice. Our findings suggest that GH action on PVH neurons is involved in the regulation of the thyroid, somatotropic and adrenal endocrine axes, possibly influencing homeostatic and stress responses.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Willian O Dos Santos
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Metzger
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Donato
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Lynch KS, Louder MIM, Friesen CN, Fischer EK, Xiang A, Steele A, Shalov J. Examining the disconnect between prolactin and parental care in avian brood parasites. GENES BRAIN AND BEHAVIOR 2020; 19:e12653. [PMID: 32198809 DOI: 10.1111/gbb.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/20/2020] [Accepted: 03/17/2020] [Indexed: 01/16/2023]
Abstract
Prolactin is often referred to as the "parental hormone" but there are examples in which prolactin and parental behavior are disconnected. One intriguing example is in avian obligate brood parasites; species exhibiting high circulating prolactin but no parental care. To understand this disconnect, we examined transcriptional and behavioral responses to prolactin in brown-headed (Molothrus ater) and bronzed (M aeneus) brood parasitic cowbirds. We first examine prolactin-dependent regulation of transcriptome wide gene expression in the preoptic area (POA), a brain region associated with parental care across vertebrates. We next examined prolactin-dependent abundance of seven parental care-related candidate genes in hypothalamic regions that are prolactin-responsive in other avian species. We found no evidence of prolactin sensitivity in cowbirds in either case. To understand this prolactin insensitivity, we compared prolactin receptor transcript abundance between parasitic and nonparasitic species and between prolactin treated and untreated cowbirds. We observed significantly lower prolactin receptor transcript abundance in brown-headed but not bronzed cowbird POA compared with a nonparasite and no prolactin-dependent changes in either parasitic species. Finally, estrogen-primed female brown-headed cowbirds with or without prolactin treatment exhibited significantly greater avoidance of nestling begging stimuli compared with untreated birds. Taken together, our results suggest that modified prolactin receptor distributions in the POA and surrounding hypothalamic regions disconnect prolactin from parental care in brood parasitic cowbirds.
Collapse
Affiliation(s)
- Kathleen S Lynch
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Matthew I M Louder
- Department of Biology, East Carolina University, Greenville, North Carolina, USA.,International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan.,Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana, Illinois, USA
| | - Caitlin N Friesen
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Eva K Fischer
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana, Illinois, USA
| | - Angell Xiang
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Angela Steele
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Julia Shalov
- Department of Biology, Hofstra University, Hempstead, New York, USA
| |
Collapse
|
16
|
Teixeira PDS, Wasinski F, Lima LB, Frazão R, Bittencourt JC, Donato J. Regulation and neurochemical identity of melanin-concentrating hormone neurones in the preoptic area of lactating mice. J Neuroendocrinol 2020; 32:e12818. [PMID: 31782183 DOI: 10.1111/jne.12818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Neurones expressing the melanin-concentrating hormone (MCH) can be found in the medial preoptic area (mPOA) and ventral aspects of the periventricular preoptic nucleus of rats by mid-to-late lactation and this expression disappears after weaning. The transitory expression of MCH in the preoptic area suggests a role for these neurones in the control of the end of lactation. However, the neurochemical identity of mPOA MCH neurones and the regulatory factors that control the transient MCH expression remain largely unknown, especially in the mouse. In the present study, we showed that mice also present the transitory expression of MCH in the mPOA at late lactation. mPOA MCH cells did not colocalise significantly with markers of GABAergic (VGAT), glutamatergic (VGLUT2 and VGLUT3) or dopaminergic (tyrosine hydroxylase) neurones. mPOA MCH cells also did not express Kiss1 or oxytocin. By contrast, approximately 70% and 90% of mPOA MCH neurones colocalised with oestrogen receptor α and prolactin-induced phosphorylated signal transducer and activator of transcription 5 (STAT5), respectively. Finally, we demonstrated that the number of MCH neurones in the mPOA is significantly higher in females during the first lactation, compared to mice on the second lactation or pregnant mice during the first lactation or brain-specific STAT5 knockout mice during the first lactation. In summary, our findings indicate that MCH neurones in the mPOA of lactating mice are sensitive to oestrogens and prolactin. Thus, mPOA MCH expression is possibly influenced by hormonal variations. Furthermore, the STAT5 signalling pathway is likely involved in the regulation of MCH expression in the mPOA of lactating mice.
Collapse
Affiliation(s)
- Pryscila D S Teixeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro B Lima
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Renata Frazão
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jackson C Bittencourt
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Teixeira PDS, Ramos-Lobo AM, Furigo IC, Donato J. Brain STAT5 Modulates Long-Term Metabolic and Epigenetic Changes Induced by Pregnancy and Lactation in Female Mice. Endocrinology 2019; 160:2903-2917. [PMID: 31599926 DOI: 10.1210/en.2019-00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Several metabolic and behavioral adaptations that emerge during pregnancy remain present after weaning. Thus, reproductive experience causes long-lasting metabolic programming, particularly in the brain. However, the isolate effects of pregnancy or lactation and the molecular mechanisms involved in these long-term modifications are currently unknown. In the current study, we investigated the role of brain signal transducer and activator of transcription-5 (STAT5), a key transcription factor recruited by hormones highly secreted during gestation or lactation, for the long-term adaptations induced by reproductive experience. In control mice, pregnancy followed by lactation led to increased body adiposity and reduced ambulatory activity later in life. Additionally, pregnancy+lactation induced long-term epigenetic modifications in the brain: we observed upregulation in hypothalamic expression of histone deacetylases and reduced numbers of neurons with histone H3 acetylation in the paraventricular, arcuate, and ventromedial nuclei. Remarkably, brain-specific STAT5 ablation prevented all metabolic and epigenetic changes observed in reproductively experienced control female mice. Nonetheless, brain-specific STAT5 knockout (KO) mice that had the experience of pregnancy but did not lactate showed increased body weight and reduced energy expenditure later in life, whereas pregnancy KO and pregnancy+lactation KO mice exhibited improved insulin sensitivity compared with virgin KO mice. In summary, lactation is necessary for the long-lasting metabolic effects observed in reproductively experienced female mice. In addition, epigenetic mechanisms involving histone acetylation in neuronal populations related to energy balance regulation are possibly associated with these long-term consequences. Finally, our findings highlighted the key role played by brain STAT5 signaling for the chronic metabolic and epigenetic changes induced by pregnancy and lactation.
Collapse
Affiliation(s)
- Pryscila D S Teixeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Angela M Ramos-Lobo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Isadora C Furigo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Teixeira PDS, Couto GC, Furigo IC, List EO, Kopchick JJ, Donato J. Central growth hormone action regulates metabolism during pregnancy. Am J Physiol Endocrinol Metab 2019; 317:E925-E940. [PMID: 31479305 PMCID: PMC7132326 DOI: 10.1152/ajpendo.00229.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The maternal organism undergoes numerous metabolic adaptations to become prepared for the demands associated with the coming offspring. These metabolic adaptations involve changes induced by several hormones that act at multiple levels, ultimately influencing energy and glucose homeostasis during pregnancy and lactation. Previous studies have shown that central growth hormone (GH) action modulates glucose and energy homeostasis. However, whether central GH action regulates metabolism during pregnancy and lactation is still unknown. In the present study, we generated mice carrying ablation of GH receptor (GHR) in agouti-related protein (AgRP)-expressing neurons, in leptin receptor (LepR)-expressing cells or in the entire brain to investigate the role played by central GH action during pregnancy and lactation. AgRP-specific GHR ablation led to minor metabolic changes during pregnancy and lactation. However, while brain-specific GHR ablation reduced food intake and body adiposity during gestation, LepR GHR knockout (KO) mice exhibited increased leptin responsiveness in the ventromedial nucleus of the hypothalamus during late pregnancy, although their offspring showed reduced growth rate. Additionally, both Brain GHR KO and LepR GHR KO mice had lower glucose tolerance and glucose-stimulated insulin secretion during pregnancy, despite presenting increased insulin sensitivity, compared with control pregnant animals. Our findings revealed that during pregnancy central GH action regulates food intake, fat retention, as well as the sensitivity to insulin and leptin in a cell-specific manner. Together, the results suggest that GH acts in concert with other "gestational hormones" to prepare the maternal organism for the metabolic demands of the offspring.
Collapse
Affiliation(s)
- Pryscila D S Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gisele C Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Patil M, Belugin S, Mecklenburg J, Wangzhou A, Paige C, Barba-Escobedo PA, Boyd JT, Goffin V, Grattan D, Boehm U, Dussor G, Price TJ, Akopian AN. Prolactin Regulates Pain Responses via a Female-Selective Nociceptor-Specific Mechanism. iScience 2019; 20:449-465. [PMID: 31627131 PMCID: PMC6818331 DOI: 10.1016/j.isci.2019.09.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Many clinical and preclinical studies report an increased prevalence and severity of chronic pain among females. Here, we identify a sex-hormone-controlled target and mechanism that regulates dimorphic pain responses. Prolactin (PRL), which is involved in many physiologic functions, induces female-specific hyperalgesia. A PRL receptor (Prlr) antagonist in the hind paw or spinal cord substantially reduced hyperalgesia in inflammatory models. This effect was mimicked by sensory neuronal ablation of Prlr. Although Prlr mRNA is expressed equally in female and male peptidergic nociceptors and central terminals, Prlr protein was found only in females and PRL-induced excitability was detected only in female DRG neurons. PRL-induced excitability was reproduced in male Prlr+ neurons after prolonged treatment with estradiol but was prevented with addition of a translation inhibitor. We propose a novel mechanism for female-selective regulation of pain responses, which is mediated by Prlr signaling in sensory neurons via sex-dependent control of Prlr mRNA translation. Local or spinal PRL injection induces hyperalgesia in a female-selective manner Sensory neuron Prlr regulates tissue injury-induced pain only in females PRL regulates excitability in Prlr+ neurons depending on sex and estrogen Regulation of Prlr translation defines female-selective neuronal excitability
Collapse
Affiliation(s)
- Mayur Patil
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Molecular Pharmacology and Physiology, University South Florida (USF), Tampa, FL 33612, USA
| | - Sergei Belugin
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jennifer Mecklenburg
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Priscilla A Barba-Escobedo
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jacob T Boyd
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - David Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.
| | - Armen N Akopian
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
20
|
Relationship of α-MSH and AgRP axons to the perikarya of melanocortin-4 receptor neurons. Brain Res 2019; 1717:136-146. [DOI: 10.1016/j.brainres.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022]
|
21
|
Patil M, Hovhannisyan AH, Wangzhou A, Mecklenburg J, Koek W, Goffin V, Grattan D, Boehm U, Dussor G, Price TJ, Akopian AN. Prolactin receptor expression in mouse dorsal root ganglia neuronal subtypes is sex-dependent. J Neuroendocrinol 2019; 31:e12759. [PMID: 31231869 PMCID: PMC6939775 DOI: 10.1111/jne.12759] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 02/01/2023]
Abstract
Sensory neurones exhibit sex-dependent responsiveness to prolactin (PRL). This could contribute to sexual dimorphism in pathological pain conditions. The present study aimed to determine the mechanisms underlying sex-dependent PRL sensitivity in sensory neurones. A quantitative reverse transcriptase-polymerase chain reaction shows that prolactin receptor (Prlr) long and short isoform mRNAs are expressed at comparable levels in female and male mouse dorsal root ganglia (DRG). In Prlrcre/+ ;Rosa26LSL-tDTomato/+ reporter mice, percentages of Prlr+ sensory neurones in female and male DRG are also similar. Characterisation of Prlr+ DRG neurones using immunohistochemistry and electrophysiology revealed that Prlr+ DRG neurones are mainly peptidergic nociceptors in females and males. However, sensory neurone type-dependent expression of Prlr is sex dimorphic. Thus, Prlr+ populations fell into three small- and two medium-large-sized sensory neuronal groups. Prlr+ DRG neurones are predominantly medium-large sized in males and are proportionally more comprised of small-sized sensory neurones in females. Specifically, Prlr+ /IB4+ /CGRP+ neurones are four- to five-fold higher in numbers in female DRG. By contrast, Prlr+ /IB4- /CGRP+ /5HT3a+ /NPYR2- are predominant in male DRG. Prlr+ /IB4- /CGRP- , Prlr+ /IB4- /CGRP+ and Prlr+ /IB4- /CGRP+ /NPYR2+ neurones are evenly encountered in female and male DRG. These differences were confirmed using an independently generated single-cell sequencing dataset. Overall, we propose a novel mechanism by which sensory neurone type-dependent expression of Prlr could explain the unique sex dimorphism in responsiveness of nociceptors to PRL.
Collapse
Affiliation(s)
- Mayur Patil
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Anahit H. Hovhannisyan
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080
| | - Jennifer Mecklenburg
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Wouter Koek
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | | | - David Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080
| | - Theodore J. Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080
- Corresponding authors:Armen N. Akopian, The School of Dentistry, University of Texas Health Science Center @ San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, Office: (210) 567-6668 Fax: (210) 567-3389 , Theodore J. Price School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson TX 75080, Office: (972) 883-4311
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Corresponding authors:Armen N. Akopian, The School of Dentistry, University of Texas Health Science Center @ San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, Office: (210) 567-6668 Fax: (210) 567-3389 , Theodore J. Price School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson TX 75080, Office: (972) 883-4311
| |
Collapse
|
22
|
Furigo IC, Suzuki MF, Oliveira JE, Ramos-Lobo AM, Teixeira PDS, Pedroso JA, de Alencar A, Zampieri TT, Buonfiglio DC, Quaresma PGF, Prada PO, Bartolini P, Soares CRJ, Donato J. Suppression of Prolactin Secretion Partially Explains the Antidiabetic Effect of Bromocriptine in ob/ob Mice. Endocrinology 2019; 160:193-204. [PMID: 30462197 DOI: 10.1210/en.2018-00629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that bromocriptine mesylate (Bromo) lowers blood glucose levels in adults with type 2 diabetes mellitus; however, the mechanism of action of the antidiabetic effects of Bromo is unclear. As a dopamine receptor agonist, Bromo can alter brain dopamine activity affecting glucose control, but it also suppresses prolactin (Prl) secretion, and Prl levels modulate glucose homeostasis. Thus, the objective of the current study was to investigate whether Bromo improves insulin sensitivity via inhibition of Prl secretion. Male and female ob/ob animals (a mouse model of obesity and insulin resistance) were treated with Bromo and/or Prl. Bromo-treated ob/ob mice exhibited lower serum Prl concentration, improved glucose and insulin tolerance, and increased insulin sensitivity in the liver and skeletal muscle compared with vehicle-treated mice. Prl replacement in Bromo-treated mice normalized serum Prl concentration without inducing hyperprolactinemia. Importantly, Prl replacement partially reversed the improvements in glucose homeostasis caused by Bromo treatment. The effects of the Prl receptor antagonist G129R-hPrl on glucose homeostasis were also investigated. We found that central G129R-hPrl infusion increased insulin tolerance of male ob/ob mice. In summary, our findings indicate that part of Bromo effects on glucose homeostasis are associated with decrease in serum Prl levels. Because G129R-hPrl treatment also improved the insulin sensitivity of ob/ob mice, pharmacological compounds that inhibit Prl signaling may represent a promising therapeutic approach to control blood glucose levels in individuals with insulin resistance.
Collapse
Affiliation(s)
- Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Miriam F Suzuki
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - João E Oliveira
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Pryscila D S Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João A Pedroso
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Amanda de Alencar
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thais T Zampieri
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniella C Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula G F Quaresma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, SP, Brazil
| | - Patricia O Prada
- School of Applied Sciences, State University of Campinas, Limeira, São Paulo, SP, Brazil
| | - Paolo Bartolini
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - Carlos R J Soares
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Salais-López H, Agustín-Pavón C, Lanuza E, Martínez-García F. The maternal hormone in the male brain: Sexually dimorphic distribution of prolactin signalling in the mouse brain. PLoS One 2018; 13:e0208960. [PMID: 30571750 PMCID: PMC6301622 DOI: 10.1371/journal.pone.0208960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/27/2018] [Indexed: 01/10/2023] Open
Abstract
Research of the central actions of prolactin is highly focused on females, but this hormone has also documented roles in male physiology and behaviour. Here, we provide the first description of the pattern of prolactin-derived signalling in the male mouse brain, employing the immunostaining of phosphorylated signal transducer and activator of transcription 5 (pSTAT5) after exogenous prolactin administration. Next, we explore possible sexually dimorphic differences by comparing pSTAT5 immunoreactivity in prolactin-supplemented males and females. We also assess the role of testosterone in the regulation of central prolactin signalling in males by comparing intact with castrated prolactin-supplemented males. Prolactin-supplemented males displayed a widespread pattern of pSTAT5 immunoreactivity, restricted to brain centres showing expression of the prolactin receptor. Immunoreactivity for pSTAT5 was present in several nuclei of the preoptic, anterior and tuberal hypothalamus, as well as in the septofimbrial nucleus or posterodorsal medial amygdala of the telencephalon. Conversely, non-supplemented control males were virtually devoid of pSTAT5-immunoreactivity, suggesting that central prolactin actions in males are limited to situations concurrent with substantial hypophyseal prolactin release (e.g. stress or mating). Furthermore, comparison of prolactin-supplemented males and females revealed a significant, female-biased sexual dimorphism, supporting the view that prolactin has a preeminent role in female physiology and behaviour. Finally, in males, castration significantly reduced pSTAT5 immunoreactivity in some structures, including the paraventricular and ventromedial hypothalamic nuclei and the septofimbrial region, thus indicating a region-specific regulatory role of testosterone over central prolactin signalling.
Collapse
Affiliation(s)
- Hugo Salais-López
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Carmen Agustín-Pavón
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
- Departament de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Enrique Lanuza
- Departament de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Fernando Martínez-García
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
24
|
Bamji SF, Rouchka E, Zhang Y, Li X, Kalbfleisch T, Corbitt C. Next generation sequencing analysis of soy glyceollins and 17-β estradiol: Effects on transcript abundance in the female mouse brain. Mol Cell Endocrinol 2018; 471:15-21. [PMID: 28483703 DOI: 10.1016/j.mce.2017.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
Glyceollins (Glys) are produced by soy plants in response to stress and are known for their anti-estrogenic activity both in vivo and in vitro in cancer cell lines as well as peripheral tissues. Glys can also exhibit non-estrogen receptor (ER) mediated effects. The effects of Glys on gene expression in the brain are still unclear. For this study, 17-β estradiol (E2) or placebo slow-release pellets were implanted into ovariectomized CFW mice followed by 11 days of exposure to either Glys or vehicle i.p. injections. We then examined the female mouse brain transcriptome using paired-end RNA sequencing (RNA-Seq) on the Illumina GAIIx platform. The goal of this study was to compare and contrast the results obtained from RNA-Seq with the results from our previous whole brain microarray experiment, which indicated that Glys potentially act through both ER-mediated and non-ER-mediated mechanisms, exhibiting a gene expression profile distinct from E2-treated groups. Our results suggest that the transcripts regulated by both E2 and Glys alone or in combination annotated to similar pathway maps and networks in both microarray and RNA-Seq experiments. Additionally, unlike our microarray data analysis, RNA-Seq enabled the detection of treatment effects on low expression transcripts of interest (e.g., prolactin and growth hormone). Collectively, our results suggest that depending on the gene, Glys can regulate expression independently of E2 action, similarly to E2, or oppose E2's effects in the female mouse brain.
Collapse
Affiliation(s)
- Sanaya F Bamji
- Department of Biology, University of Louisville, United States
| | - Eric Rouchka
- Department of Computer Engineering and Computer Science, Speed School of Engineering, University of Louisville, United States
| | - Yan Zhang
- Institute for Genome Sciences, University of Maryland School of Medicine, United States
| | - Xiaohong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, United States; Department of Bioinformatics and Biostatistics, University of Louisville, United States
| | - Ted Kalbfleisch
- Department of Biochemistry & Molecular Genetics, University of Louisville, United States
| | - Cynthia Corbitt
- Department of Biology, University of Louisville, United States.
| |
Collapse
|
25
|
Prolactin-induced and neuronal activation in the brain of mother mice. Brain Struct Funct 2018; 223:3229-3250. [PMID: 29802523 DOI: 10.1007/s00429-018-1686-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/12/2018] [Indexed: 12/18/2022]
Abstract
Nursing has important consequences on mothers. To separate the prolactin-mediated and the neuronally-mediated actions of nursing, neurons directly affected by prolactin were visualized using pSTAT5 immunohistochemistry in relation to Fos-expressing neurons in suckled mother mice. In response to pup exposure following 22-h pup deprivation, we found a markedly elevated number of pSTAT5-containing neurons in several brain regions, including the lateral septum, medial amygdaloid nucleus, subparafascicular area, caudal periaqueductal gray, dorsal raphe, lateral parabrachial nucleus, nucleus of the solitary tract, and the periventricular, medial preoptic, paraventricular, arcuate and ventromedial nuclei of the hypothalamus. Pup exposure also induced Fos expression in all of these brain regions except the arcuate and ventromedial hypothalamic nuclei. Bromocriptine treatment known to reduce prolactin levels eliminated pSTAT5 from most brain regions while it did not affect Fos activation following suckling. The degree of colocalization for pSTAT5 and Fos ranged from 8 to 80% in the different brain regions suggesting that most neurons responding to pup exposure in mother mice are driven either by prolactin or direct neuronal input from the pups, while the number of neurons affected by both types of inputs depends on the examined brain area. In addition, both pSTAT5 and Fos were also double-labeled with estrogen receptor alpha (ERα) in mother mice, which revealed a very high degree of colocalization between pSTAT5 and ERα with much less potential interaction between Fos- and ERα-containing neurons suggesting that estrogen-sensitive neurons are more likely to be affected by prolactin than by direct neuronal activation.
Collapse
|
26
|
Brain STAT5 signaling modulates learning and memory formation. Brain Struct Funct 2018; 223:2229-2241. [PMID: 29460051 DOI: 10.1007/s00429-018-1627-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/12/2018] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects. Therefore, the objective of the present study was to investigate whether brain STAT5 signaling modulates learning and memory formation. For this purpose, brain-specific STAT5 knockout (STAT5 KO) mice were studied in well-established memory tests. Initially, we confirmed a robust reduction in STAT5a and STAT5b mRNA levels in different brain structures of STAT5 KO mice. STAT5 KO mice showed no significant alterations in metabolism, growth, somatotropic axis and spontaneous locomotor activity. In contrast, brain-specific STAT5 ablation impaired learning and memory formation in the novel object recognition, Barnes maze and contextual fear conditioning tests. To unravel possible mechanisms that might underlie the memory deficits of STAT5 KO mice, we assessed neurogenesis in the hippocampus, but no significant differences were observed between groups. On the other hand, reduced insulin-like growth factor-1 (IGF-1) mRNA expression was found in the hippocampus and hypothalamus of STAT5 KO mice. These findings collectively indicate that brain STAT5 signaling is required to attain normal learning and memory. Therefore, STAT5 is an important downstream cellular mechanism shared by several cytokines to regulate cognitive functions.
Collapse
|
27
|
Pedroso JAB, de Mendonca POR, Fortes MAS, Tomaz I, Pecorali VL, Auricino TB, Costa IC, Lima LB, Furigo IC, Bueno DN, Ramos-Lobo AM, Lotfi CFP, Donato J. SOCS3 expression in SF1 cells regulates adrenal differentiation and exercise performance. J Endocrinol 2017; 235:207-222. [PMID: 28899903 DOI: 10.1530/joe-17-0255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/12/2017] [Indexed: 12/25/2022]
Abstract
Many hormones/cytokines are secreted in response to exercise and cytokine signaling may play a pivotal role in the training adaptations. To investigate the importance of cytokine signaling during vertical ladder climbing, a resistance exercise model, we produced mice lacking SOCS3 protein exclusively in steroidogenic factor-1 (SF1) cells (SF1 Socs3 KO mice). SF1 expression is found in steroidogenic cells of the adrenal cortex and gonads, as well as in neurons of the ventromedial nucleus of the hypothalamus. Histological markers of the fetal adrenal zone (or X-zone in rodents) were still present in adult males and postpartum SF1 Socs3 KO females, suggesting a previously unrecognized effect of SOCS3 on the terminal differentiation of the adrenal gland. This change led to a distinct distribution of lipid droplets along the adrenal cortex. Under basal conditions, adult SF1 Socs3 KO mice exhibited similar adrenal weight, and plasma ACTH and corticosterone concentrations. Nonetheless, SF1 Socs3 KO mice exhibited a blunted ACTH-induced corticosterone secretion. The overall metabolic responses induced by resistance training remained unaffected in SF1 Socs3 KO mice, including changes in body adiposity, glucose tolerance and energy expenditure. However, training performance and glucose control during intense resistance exercise were impaired in SF1 Socs3 KO mice. Furthermore, a reduced counter-regulatory response to 2-deoxy-d-glucose was observed in mutant mice. These findings revealed a novel participation of SOCS3 regulating several endocrine and metabolic aspects. Therefore, cytokine signaling in SF1 cells exerts an important role to sustain training performance possibly by promoting the necessary metabolic adjustments during exercise.
Collapse
Affiliation(s)
- João A B Pedroso
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pedro O R de Mendonca
- Department of AnatomyInstitute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Marco A S Fortes
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Tomaz
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor L Pecorali
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais B Auricino
- Department of AnatomyInstitute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Ismael C Costa
- Department of AnatomyInstitute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Leandro B Lima
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isadora C Furigo
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debora N Bueno
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudimara F P Lotfi
- Department of AnatomyInstitute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jose Donato
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Ramos-Lobo AM, Teixeira PD, Furigo IC, Donato J. SOCS3 ablation in SF1 cells causes modest metabolic effects during pregnancy and lactation. Neuroscience 2017; 365:114-124. [DOI: 10.1016/j.neuroscience.2017.09.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
29
|
Conditional Deletion of the Prolactin Receptor Reveals Functional Subpopulations of Dopamine Neurons in the Arcuate Nucleus of the Hypothalamus. J Neurosci 2017; 36:9173-85. [PMID: 27581458 DOI: 10.1523/jneurosci.1471-16.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Tuberoinfundibular dopamine (TIDA) neurons, known as neuroendocrine regulators of prolactin secretion from the pituitary gland, also release GABA within the hypothalamic arcuate nucleus. As these neurons express prolactin receptors (Prlr), prolactin may regulate GABA secretion from TIDA neurons, potentially mediating actions of prolactin on hypothalamic function. To investigate whether GABA is involved in feedback regulation of TIDA neurons, we examined the physiological consequences of conditional deletion of Prlr in GABAergic neurons. For comparison, we also examined mice in which Prlr were deleted from most forebrain neurons. Both neuron-specific and GABA-specific recombination of the Prlr gene occurred throughout the hypothalamus and in some extrahypothalamic regions, consistent with the known distribution of Prlr expression, indicative of knock-out of Prlr. This was confirmed by a significant loss of prolactin-induced phosphorylation of STAT5, a marker of prolactin action. Several populations of GABAergic neurons that were not previously known to be prolactin-sensitive, notably in the medial amygdala, were identified. Approximately 50% of dopamine neurons within the arcuate nucleus were labeled with a GABA-specific reporter, but Prlr deletion from these dopamine/GABA neurons had no effect on feedback regulation of prolactin secretion. In contrast, Prlr deletion from all dopamine neurons resulted in profound hyperprolactinemia. The absence of coexpression of tyrosine hydroxylase, a marker for dopamine production, in GABAergic nerve terminals in the median eminence suggested that rather than a functional redundancy within the TIDA population, the dopamine/GABA neurons in the arcuate nucleus represent a subpopulation with a functional role distinct from the regulation of prolactin secretion. SIGNIFICANCE STATEMENT Using a novel conditional deletion of the prolactin receptor, we have identified functional subpopulations in hypothalamic dopamine neurons. Although commonly considered a uniform population of neuroendocrine neurons involved in the control of prolactin secretion, we have shown that approximately half of these neurons express GABA as well as dopamine, but these neurons are not necessary for the feedback regulation of prolactin secretion. The absence of tyrosine hydroxylase in GABAergic nerve terminals in the median eminence suggests that only the non-GABAergic dopamine neurons are involved in the control of pituitary prolactin secretion, and the GABAergic subpopulation may function as interneurons within the arcuate nucleus to regulate other aspects of hypothalamic function.
Collapse
|
30
|
Silveira MA, Furigo IC, Zampieri TT, Bohlen TM, de Paula DG, Franci CR, Donato J, Frazao R. STAT5 signaling in kisspeptin cells regulates the timing of puberty. Mol Cell Endocrinol 2017; 448:55-65. [PMID: 28344041 DOI: 10.1016/j.mce.2017.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/03/2017] [Accepted: 03/22/2017] [Indexed: 12/26/2022]
Abstract
Previous studies have shown that kisspeptin neurons are important mediators of prolactin's effects on reproduction. However, the cellular mechanisms recruited by prolactin to affect kisspeptin neurons remain unknown. Using whole-cell patch-clamp recordings of brain slices from kisspeptin reporter mice, we observed that 20% of kisspeptin neurons in the anteroventral periventricular nucleus was indirectly depolarized by prolactin via an unknown population of prolactin responsive neurons. This effect required the phosphatidylinositol 3-kinase signaling pathway. No effects on the activity of arcuate kisspeptin neurons were observed, despite a high percentage (70%) of arcuate neurons expressing prolactin-induced STAT5 phosphorylation. To determine whether STAT5 expression in kisspeptin cells regulates reproduction, mice carrying Stat5a/b inactivation specifically in kisspeptin cells were generated. These mutants exhibited an early onset of estrous cyclicity, indicating that STAT5 transcription factors exert an inhibitory effect on the timing of puberty.
Collapse
Affiliation(s)
- Marina Augusto Silveira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thais T Zampieri
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tabata M Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniella G de Paula
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Celso Rodrigues Franci
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Pallotta MM, Turano M, Ronca R, Mezzasalma M, Petraccioli A, Odierna G, Capriglione T. Brain Gene Expression is Influenced by Incubation Temperature During Leopard Gecko (Eublepharis macularius) Development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:360-370. [DOI: 10.1002/jez.b.22736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mimmo Turano
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | - Raffaele Ronca
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | | | - Agnese Petraccioli
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | - Gaetano Odierna
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | - Teresa Capriglione
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| |
Collapse
|
32
|
Gouw AM, Efe G, Barakat R, Preecha A, Mehdizadeh M, Garan SA, Brooks GA. Roles of estrogen receptor-alpha in mediating life span: the hypothalamic deregulation hypothesis. Physiol Genomics 2016; 49:88-95. [PMID: 28011880 DOI: 10.1152/physiolgenomics.00073.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In several species caloric restriction (CR) extends life span. In this paper we integrate data from studies on CR and other sources to articulate the hypothalamic deregulation hypothesis by which estrogen receptor-alpha (ER-α) signaling in the hypothalamus and limbic system affects life span under the stress of CR in mammals. ER-α is one of two principal estrogen-binding receptors differentially expressed in the amygdala, hippocampus, and several key hypothalamic nuclei: the arcuate nucleus (ARN), preoptic area (POA), ventromedial nucleus (VMN), antero ventral periventricular nucleus (AVPV), paraventricular nucleus (PVN), supraoptic nucleus (SON), and suprachiasmatic nucleus (SCN). Estradiol signaling via ER-α is essential in basal level functioning of reproductive cycle, sexually receptive behaviors, physiological stress responses, as well as sleep cycle, and other nonsexual behaviors. When an organism is placed under long-term CR, which introduces an external stress to this ER-α signaling, the reduction of ER-α expression is attenuated over time in the hypothalamus. This review paper seeks to characterize the downstream effects of ER-α in the hypothalamus and limbic system that affect normal endocrine functioning.
Collapse
Affiliation(s)
- Arvin M Gouw
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and.,Department of Integrative Biology, University of California at Berkeley, Berkeley, California
| | - Gizem Efe
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Rita Barakat
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Andrew Preecha
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Morvarid Mehdizadeh
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - Steven A Garan
- Lawrence Berkeley National Laboratories, Berkeley, California.,Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and
| | - George A Brooks
- Center for Research and Education in Aging, University of California at Berkeley, Lawrence Berkeley National Laboratories, California; and .,Department of Integrative Biology, University of California at Berkeley, Berkeley, California
| |
Collapse
|
33
|
Furigo IC, Ramos-Lobo AM, Frazão R, Donato J. Brain STAT5 signaling and behavioral control. Mol Cell Endocrinol 2016; 438:70-76. [PMID: 27118133 DOI: 10.1016/j.mce.2016.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 02/06/2023]
Abstract
Several growth factors and cytokines recruit the signal transducer and activator of transcription 5 (STAT5) signaling pathway to control cell proliferation, differentiation and apoptosis. Nonetheless, the importance of this transcription factor for brain functions is still poorly understood. Because some STAT5-inducing hormones, such as prolactin and leptin, act in the brain to regulate the expression of motivated behaviors, this signaling pathway is likely involved in behavioral modulation. Therefore, the objective of the present review was to summarize and discuss the available data regarding the possible role of central STAT5 signaling in the regulation of brain functions, especially on behavioral control. We discussed studies that investigated the importance of STAT5 signaling in the regulation of maternal and feeding behaviors. Additionally, we highlighted other behaviors that could be potentially affected by STAT5 signaling. This knowledge may help to understand how motivated behaviors are regulated at the cellular level.
Collapse
Affiliation(s)
- Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - J Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
34
|
Donato J, Frazão R. Interactions between prolactin and kisspeptin to control reproduction. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2016; 60:587-595. [PMID: 27901187 PMCID: PMC10522168 DOI: 10.1590/2359-3997000000230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/26/2016] [Indexed: 11/21/2022]
Abstract
Prolactin is best known for its effects of stimulating mammary gland development and lactogenesis. However, prolactin is a pleiotropic hormone that is able to affect several physiological functions, including fertility. Prolactin receptors (PRLRs) are widely expressed in several tissues, including several brain regions and reproductive tract organs. Upon activation, PRLRs may exert prolactin's functions through several signaling pathways, although the recruitment of the signal transducer and activator of transcription 5 causes most of the known effects of prolactin. Pathological hyperprolactinemia is mainly due to the presence of a prolactinoma or pharmacological effects induced by drugs that interact with the dopamine system. Notably, hyperprolactinemia is a frequent cause of reproductive dysfunction and may lead to infertility in males and females. Recently, several studies have indicated that prolactin may modulate the reproductive axis by acting on specific populations of hypothalamic neurons that express the Kiss1 gene. The Kiss1 gene encodes neuropeptides known as kisspeptins, which are powerful activators of gonadotropin-releasing hormone neurons. In the present review, we will summarize the current knowledge about prolactin's actions on reproduction. Among other aspects, we will discuss whether the interaction between prolactin and the Kiss1-expressing neurons can affect reproduction and how kisspeptins may become a novel therapeutic approach to treat prolactin-induced infertility.
Collapse
Affiliation(s)
- Jose Donato
- Departamento de Fisiologia e BiofísicaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasilDepartamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| | - Renata Frazão
- Departamento de AnatomiaInstituto de Ciências BiomédicasUSPSão PauloSPBrasilDepartamento de Anatomia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brasil
| |
Collapse
|
35
|
Salais-López H, Lanuza E, Agustín-Pavón C, Martínez-García F. Tuning the brain for motherhood: prolactin-like central signalling in virgin, pregnant, and lactating female mice. Brain Struct Funct 2016; 222:895-921. [DOI: 10.1007/s00429-016-1254-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
|
36
|
Distribution of growth hormone-responsive cells in the mouse brain. Brain Struct Funct 2016; 222:341-363. [PMID: 27072946 DOI: 10.1007/s00429-016-1221-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/30/2016] [Indexed: 12/31/2022]
Abstract
Growth hormone (GH) exerts important biological effects primarily related to growth and metabolism. However, the role of GH signaling in the brain is still elusive. To better understand GH functions in the brain, we mapped the distribution of GH-responsive cells and identified the receptors involved in GH central effects. For this purpose, mice received an acute intraperitoneal challenge with specific ligands of the GH receptor (mouse GH), prolactin receptor (prolactin) or both receptors (human GH), and their brains were subsequently processed immunohistochemically to detect the phosphorylated form of STAT5 (pSTAT5). GH induced pSTAT5 immunoreactivity in neurons, but not in astroglial cells of numerous brain regions, including the cerebral cortex, nucleus accumbens, hippocampus, septum and amygdala. The most prominent populations of GH-responsive neurons were located in hypothalamic areas, including several preoptic divisions, and the supraoptic, paraventricular, suprachiasmatic, periventricular, arcuate, ventromedial, dorsomedial, tuberal, posterior and ventral premammillary nuclei. Interestingly, many brainstem structures also exhibited GH-responsive cells. Experiments combining immunohistochemistry for pSTAT5 and in situ hybridization for GH and prolactin receptors revealed that human GH induced pSTAT5 in most, but not all, brain regions through both prolactin and GH receptors. Additionally, males and females exhibited a similar number of GH-responsive cells in forebrain structures known to be sexually dimorphic. In summary, we found GH-responsive cells primarily distributed in brain regions implicated in neurovegetative, emotional/motivational and cognitive functions. Our findings deepen the understanding of GH signaling in the brain and suggest that central GH signaling is likely more ample and complex than formerly recognized.
Collapse
|
37
|
Buonfiglio DC, Ramos-Lobo AM, Freitas VM, Zampieri TT, Nagaishi VS, Magalhães M, Cipolla-Neto J, Cella N, Donato J. Obesity impairs lactation performance in mice by inducing prolactin resistance. Sci Rep 2016; 6:22421. [PMID: 26926925 PMCID: PMC4772384 DOI: 10.1038/srep22421] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/15/2016] [Indexed: 12/30/2022] Open
Abstract
Obesity reduces breastfeeding success and lactation performance in women. However, the mechanisms involved are not entirely understood. In the present study, female C57BL/6 mice were chronically exposed to a high-fat diet to induce obesity and subsequently exhibited impaired offspring viability (only 15% survival rate), milk production (33% reduction), mammopoiesis (one-third of the glandular area compared to control animals) and postpartum maternal behaviors (higher latency to retrieving and grouping the pups). Reproductive experience attenuated these defects. Diet-induced obese mice exhibited high basal pSTAT5 levels in the mammary tissue and hypothalamus, and an acute prolactin stimulus was unable to further increase pSTAT5 levels above basal levels. In contrast, genetically obese leptin-deficient females showed normal prolactin responsiveness. Additionally, we identified the expression of leptin receptors specifically in basal/myoepithelial cells of the mouse mammary gland. Finally, high-fat diet females exhibited altered mRNA levels of ERBB4 and NRG1, suggesting that obesity may involve disturbances to mammary gland paracrine circuits that are critical in the control of luminal progenitor function and lactation. In summary, our findings indicate that high leptin levels are a possible cause of the peripheral and central prolactin resistance observed in obese mice which leads to impaired lactation performance.
Collapse
Affiliation(s)
- Daniella C Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Thais T Zampieri
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Vanessa S Nagaishi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Magna Magalhães
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Nathalie Cella
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
38
|
Bridges RS. Long-term alterations in neural and endocrine processes induced by motherhood in mammals. Horm Behav 2016; 77:193-203. [PMID: 26388065 PMCID: PMC4724454 DOI: 10.1016/j.yhbeh.2015.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 01/23/2023]
Abstract
This article is part of a Special Issue "Parental Care". The reproductive experience of pregnancy, lactation and motherhood can significantly remodel the female's biological state, affecting endocrine, neuroendocrine, neural, and immunological processes. The brain, pituitary gland, liver, thymus, and mammary tissue are among the structures that are modified by reproductive experience. The present review that focuses on rodent research, but also includes pertinent studies in sheep and other species, identifies specific changes in these processes brought about by the biological states of pregnancy, parturition, and lactation and how the components of reproductive experience contribute to the remodeling of the maternal brain and organ systems. Findings indicate that prior parity alters key circulating hormone levels and neural receptor gene expression. Moreover, reproductive experience results in modifications in neural processes and glial support. The possible role of pregnancy-induced neurogenesis is considered in the context of neuroplasticity and behavior, and the effects of reproductive experience on maternal memory, i.e. the retention of maternal behavior, together with anxiety and learning are presented. Together, these sets of findings support the concept that the neural and biological state of the adult female is significantly and dramatically altered on a long-term basis by the experiences of parity and motherhood. Remodeling of the maternal brain and other biological systems is posited to help facilitate adaptations to environmental/ecological challenges as the female raises young and ages.
Collapse
Affiliation(s)
- Robert S Bridges
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA.
| |
Collapse
|
39
|
Distribution of histaminergic neuronal cluster in the rat and mouse hypothalamus. J Chem Neuroanat 2015; 68:1-13. [DOI: 10.1016/j.jchemneu.2015.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/11/2015] [Accepted: 07/01/2015] [Indexed: 01/03/2023]
|
40
|
Abstract
The hypothalamic control of prolactin secretion is different from other anterior pituitary hormones, in that it is predominantly inhibitory, by means of dopamine from the tuberoinfundibular dopamine neurons. In addition, prolactin does not have an endocrine target tissue, and therefore lacks the classical feedback pathway to regulate its secretion. Instead, it is regulated by short loop feedback, whereby prolactin itself acts in the brain to stimulate production of dopamine and thereby inhibit its own secretion. Finally, despite its relatively simple name, prolactin has a broad range of functions in the body, in addition to its defining role in promoting lactation. As such, the hypothalamo-prolactin axis has many characteristics that are quite distinct from other hypothalamo-pituitary systems. This review will provide a brief overview of our current understanding of the neuroendocrine control of prolactin secretion, in particular focusing on the plasticity evident in this system, which keeps prolactin secretion at low levels most of the time, but enables extended periods of hyperprolactinemia when necessary for lactation. Key prolactin functions beyond milk production will be discussed, particularly focusing on the role of prolactin in inducing adaptive responses in multiple different systems to facilitate lactation, and the consequences if prolactin action is impaired. A feature of this pleiotropic activity is that functions that may be adaptive in the lactating state might be maladaptive if prolactin levels are elevated inappropriately. Overall, my goal is to give a flavour of both the history and current state of the field of prolactin neuroendocrinology, and identify some exciting new areas of research development.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New ZealandMaurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New ZealandMaurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand
| |
Collapse
|
41
|
Sárvári M, Kalló I, Hrabovszky E, Solymosi N, Rodolosse A, Vastagh C, Auer H, Liposits Z. Hippocampal Gene Expression Is Highly Responsive to Estradiol Replacement in Middle-Aged Female Rats. Endocrinology 2015; 156:2632-45. [PMID: 25924104 DOI: 10.1210/en.2015-1109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the hippocampus, estrogens are powerful modulators of neurotransmission, synaptic plasticity and neurogenesis. In women, menopause is associated with increased risk of memory disturbances, which can be attenuated by timely estrogen therapy. In animal models of menopause, 17β-estradiol (E2) replacement improves hippocampus-dependent spatial memory. Here, we explored the effect of E2 replacement on hippocampal gene expression in a rat menopause model. Middle-aged ovariectomized female rats were treated continuously for 29 days with E2, and then, the hippocampal transcriptome was investigated with Affymetrix expression arrays. Microarray data were analyzed by Bioconductor packages and web-based softwares, and verified with quantitative PCR. At standard fold change selection criterion, 156 genes responded to E2. All alterations but 4 were transcriptional activation. Robust activation (fold change > 10) occurred in the case of transthyretin, klotho, claudin 2, prolactin receptor, ectodin, coagulation factor V, Igf2, Igfbp2, and sodium/sulfate symporter. Classification of the 156 genes revealed major groups, including signaling (35 genes), metabolism (31 genes), extracellular matrix (17 genes), and transcription (16 genes). We selected 33 genes for further studies, and all changes were confirmed by real-time PCR. The results suggest that E2 promotes retinoid, growth factor, homeoprotein, neurohormone, and neurotransmitter signaling, changes metabolism, extracellular matrix composition, and transcription, and induces protective mechanisms via genomic effects. We propose that these mechanisms contribute to effects of E2 on neurogenesis, neural plasticity, and memory functions. Our findings provide further support for the rationale to develop safe estrogen receptor ligands for the maintenance of cognitive performance in postmenopausal women.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Norbert Solymosi
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Annie Rodolosse
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Csaba Vastagh
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Herbert Auer
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| |
Collapse
|
42
|
Buonfiglio DC, Ramos-Lobo AM, Silveira MA, Furigo IC, Hennighausen L, Frazão R, Donato J. Neuronal STAT5 signaling is required for maintaining lactation but not for postpartum maternal behaviors in mice. Horm Behav 2015; 71:60-8. [PMID: 25896118 PMCID: PMC6282758 DOI: 10.1016/j.yhbeh.2015.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/04/2015] [Accepted: 04/10/2015] [Indexed: 12/17/2022]
Abstract
Prolactin and placental lactogens control mammary development and lactation as well as play an important role in maternal behaviors. However, the molecular mechanisms in the brain responsible for this regulation remain largely unknown. Therefore, the present study investigated whether Signal Transducer and Activator of Transcription 5 (STAT5) signaling in the brain, the key transcriptional factor recruited by prolactin receptor and other hormones, is required for postpartum maternal behavior, maintenance of lactation and offspring growth. Neuronal ablation of STAT5 impaired the control of prolactin secretion and reduced the hypothalamic expression of suppressors of cytokine signaling (i.e., SOCS3 and CISH). In addition, neuronal STAT5 deletion attenuated the hyperphagia commonly observed during lactation by decreasing the hypothalamic expression of orexigenic neurotransmitters such as the neuropeptide Y and agouti-related protein. The lower food intake of lactating neuron-specific STAT5 knockout females resulted in reduced milk production and offspring growth. Unexpectedly, postpartum maternal behavior expression was not impaired in neuron-specific STAT5 knockout females. On the contrary, the latency to retrieve and group the pups into the nest was reduced in mutant dams. Finally, we demonstrated that approximately 30% of recorded neurons in the medial preoptic area were acutely depolarized by prolactin suggesting that fast STAT5-independent signaling pathways may be involved in the regulation of maternal behaviors. Overall, our results revealed important information about the molecular mechanisms recruited by hormones to orchestrate the activation of neural circuitries engaged in the induction of maternal care.
Collapse
Affiliation(s)
- Daniella C Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Marina A Silveira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|