1
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 PMCID: PMC11801300 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
2
|
Klinger ME, Miller RA, Komatsu N, Shiu A, Wilbrecht L, Landry MP. Optical Fibers Functionalized with Single-Walled Carbon Nanotubes for Flexible Fluorescent Catecholamine Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9654-9663. [PMID: 40223211 DOI: 10.1021/acs.langmuir.4c04910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Despite the popularity of drugs that act on catecholamine receptors, our knowledge of catecholamine dynamics in human health and disease remains incomplete. Recent advances in fluorescent sensors have enabled unprecedented access to catecholamine dynamics in preclinical animal models, but the requirements of these technologies to use in model organisms limit their translational value for clinical diagnostics. Here, we introduce proof of principle fluorescent catecholamine detection via optical fibers functionalized with single-walled carbon nanotube (SWNT)-based near-infrared catecholamine sensors (nIRCats), a catecholamine detection form factor that has potential for more convenient and less invasive clinical translation. We show that these near-infrared functionalized (nIRF) fibers respond to dopamine in a biologically relevant concentration range (10 nM through 1 μM), with minimal responsivity loss following 16 h exposure to human blood plasma. We further demonstrate the utility of these fibers in detecting dopamine from as little as 10 μL volumes of clinically relevant biofluids up to 24 weeks after fiber synthesis. We also introduce a compact, mobile dual-near-infrared fiber photometry rig and demonstrate its success detecting dopamine in acute brain slices with nIRF fibers. Together, this fiber-based dopamine detection tool and photometry rig expand the toolset for catecholamine detection.
Collapse
Affiliation(s)
- Madeline E Klinger
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Rigney A Miller
- College of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Natsumi Komatsu
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Amanda Shiu
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Linda Wilbrecht
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Psychology, University of California Berkeley, Berkeley, California 94720, United States
| | - Markita P Landry
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94063, United States
| |
Collapse
|
3
|
Jian-Min C, Zhi-Yuan W, Shi-Xuan W, Cheng Z, Guan-Yi L, Jin L, Ning W. Novel application potential of lisdexamfetamine for visual discrimination and reversal learning improvement in rats: A translational cognitive research. Exp Neurol 2025; 389:115254. [PMID: 40216066 DOI: 10.1016/j.expneurol.2025.115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Impairments in visual discrimination and cognitive flexibility are prevalent in several neuropsychiatric disorders. Here, we explored the effects of lisdexamfetamine, the prodrug of d-amphetamine, on visual discrimination and cognitive flexibility using touchscreen-based visual discrimination and reversal learning task, a translational cross-species cognitive paradigm in rats. A single administration of 1.0 mg/kg lisdexamfetamine significantly improved the accuracy of visual discrimination. Furthermore, repeated treatment with 1.0 mg/kg lisdexamfetamine during the visual discrimination training period significantly shortened training sessions to achieve 80 % accuracy. However, neither acute nor chronic administration of d-amphetamine (0.05-0.5 mg/kg) significantly improved visual discrimination performance in rats. Furthermore, both 3.0 mg/kg lisdexamfetamine and 1.5 mg/kg d-amphetamine significantly improved reversal learning. Given the crucial involvement of N-methyl-D-aspartic acid glutamate receptors (NMDARs) in discrimination learning process, the membranous/cytosolic distribution of NMDARs after chronic treatment with lisdexamfetamine and d-amphetamine was tested using Western Blotting. Lisdexamfetamine (1.0 mg/kg), rather than d-amphetamine (0.05-0.5 mg/kg) significantly increased the membranous distribution of GluN1, GluN2A, GluN2B, the main subunits of NMDARs in hippocampus, the key brain region associated with learning process, but not in medial prefrontal cortex. Together, these results revealed that lisdexamfetamine improved visual discrimination and cognitive flexibility in rats. The chronic effects of lisdexamfetamine on enhancing visual discrimination learning may be partly related to increase membranous NMDARs distribution in the hippocampus. The present study suggests a novel potential application of lisdexamfetamine for improving visual discrimination and cognitive flexibility, which may facilitate the clinical application to address certain cognitive deficits in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chen Jian-Min
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Department of Pharmacy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, 46th Chongxin Road, Guilin 541000, China
| | - Wang Zhi-Yuan
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Wu Shi-Xuan
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Zhang Cheng
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Lu Guan-Yi
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Li Jin
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Wu Ning
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
4
|
Zhou W, Chu HY. Progressive noradrenergic degeneration and motor cortical dysfunction in Parkinson's disease. Acta Pharmacol Sin 2025; 46:829-835. [PMID: 39592731 PMCID: PMC11950218 DOI: 10.1038/s41401-024-01428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
The locus coeruleus norepinephrine (LC-NE) system plays an important role in regulating brain function, and its neuronal loss has been well-documented in Parkinson's disease (PD). The LC-NE neurodegeneration is believed to underlie various nonmotor symptoms in people with PD, including neuropsychiatric deficits, sleep disruptions, and cognitive impairments. Of particular interest, LC-NE neurons send intensive axonal projections to the motor regions of the cerebral cortex. However, how NE depletion in the motor cortex contributes to PD pathophysiology remains poorly understood. In addition, recent studies provided increasing mechanistic insights into secondary changes in the cerebral cortex as LC-NE degenerates, which might involve its interaction with dopaminergic signaling during the chronic course of the disease. In the present article, we briefly discuss clinical and preclinical studies that support the critical roles of LC-NE neurodegeneration and motor cortical dysfunction in both motor and nonmotor deficits in Parkinsonian states. We focus our discussion on the potential impact of LC-NE neurodegeneration on motor cortical function and the subsequent symptom manifestation. Last, we propose future research directions that can advance our understanding of cortical pathophysiology in PD by integrating noradrenergic degeneration.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington D.C., WA, 20007, USA
| | - Hong-Yuan Chu
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington D.C., WA, 20007, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA.
| |
Collapse
|
5
|
Hendrix CM, Baker HE, Yu Y, Schneck DD, Wang J, Johnson LA, Vitek JL. Parkinsonism Disrupts Neuronal Modulation in the Presupplementary Motor Area during Movement Preparation. J Neurosci 2025; 45:e1802242025. [PMID: 39890463 PMCID: PMC11949476 DOI: 10.1523/jneurosci.1802-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/19/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Multiple studies suggest that Parkinson's disease (PD) is associated with changes in neuronal activity throughout the basal ganglia-thalamocortical motor circuit. There are limited electrophysiological data, however, describing how parkinsonism impacts neuronal activity in the presupplementary motor area (pre-SMA), an area in the medial frontal cortex involved in movement planning and motor control. In this study, single unit activity was recorded in the pre-SMA of two female nonhuman primates during a visually cued reaching task in both the naive and parkinsonian state using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. In the naive state, neuronal discharge rates were dynamically modulated prior to the presentation of the instructional go-cue. In a subset of these modulated cells, the magnitude of modulation correlated linearly with reaction time (RT). In the parkinsonian state, however, modulation of discharge rates in the pre-SMA was disrupted, and the predictive encoding of RT was significantly diminished. These findings add to our understanding of the role of pre-SMA in motor behavior and suggest that disrupted encoding in this cortical region contributes to the alteration of early preparatory and premovement processes present in Parkinson's disease.
Collapse
Affiliation(s)
- Claudia M Hendrix
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Hannah E Baker
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - David D Schneck
- University of Minnesota Masonic Institute for the Developing Brain, Minneapolis, Minnesota 55414
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Luke A Johnson
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
6
|
Greydanus DE, Nazeer A, Patel DR. Opioid use and abuse in adolescents and young adults; dealing with science, laws and ethics: Charming the COBRAS. Dis Mon 2025; 71:101853. [PMID: 39809600 DOI: 10.1016/j.disamonth.2025.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The subject of substance use disorders in the pediatric population remains a disturbing conundrum for clinicians, researchers and society in general. Many of our youth are at risk of being damaged and even killed by drug addictions that result from the collision of rapidly developing as well as vulnerable central nervous systems encountering the current global drug addiction crisis. A major motif of this chemical calamity is opioid use disorder in adolescents and young adults that was stimulated by the 19th century identification of such highly addictive drugs as morphine, heroin and a non-opiate, cocaine. This analysis focuses on the pervasive presence of opioid drugs such as heroin and fentanyl that has become a major tragedy in the 21st century arising from an overall substance use and misuse phenomenon rampant in global society. Themes covered in this article include the history of addictive drugs in humans, diagnostic terms in use, the role of neurobiology in drug addiction, and current psychopharmacologic approaches to opioid overdose as well as addiction. Our youth are continuously confronted by dangers of high-risk behaviors including death and injury from opioid use disorders due to their central nervous system neuroplasticity as well as the widespread availability of these harmful chemicals. Healthcare professionals should actively assist our youth who unknowingly and even innocently encounter this deadly menace in the 21st century.
Collapse
Affiliation(s)
- Donald E Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States.
| | - Ahsan Nazeer
- Division of Child and Adolescent Psychiatry, Sidra Medicine/Weill Cornell Medicine, Doha, Qatar
| | - Dilip R Patel
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
7
|
Donnan KJ, Williams EL, Stanger N. Tyrosine supplementation is ineffective in facilitating soccer players' physical and cognitive performance during high-intensity intermittent exercise in hot conditions. PLoS One 2025; 20:e0317486. [PMID: 39820592 PMCID: PMC11737745 DOI: 10.1371/journal.pone.0317486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
Tyrosine has been proposed to potentially provide ergogenic benefits to cognitive and physical performance in physiologically demanding environments. However research into its effectiveness on cognitive and physical performance during exercise in the heat has revealed mixed findings. This study examined the effects of a commonly employed dosage of tyrosine supplementation on soccer players' physical and decision-making performance, cognitive appraisal, and affective states, during prolonged high-intensity intermittent exercise in hot conditions. Eight trained male soccer players completed a 92-minute high-intensity intermittent cycling sprint protocol whilst responding to soccer-specific decision-making tasks at various time points in 32°C (50%rh), in two counterbalanced conditions; tyrosine (150mg.kg-1) and placebo. No differences were found for peak power output (p = .486; 715 ± 98W vs 724 ± 98W, respectively), decision-making (p = .627; 86.9 ± 10.7% vs 88.6 ± 7.0%, respectively), cognitive appraisal (p = .693, 0.90 ± 0.42 vs 0.88 ± 0.39, respectively) nor affective states (p = .918; 1.15 ± 1.55 vs 1.14 ± 1.70, respectively) between tyrosine and placebo conditions. Also, no condition by time interaction effects were noted for these outcomes. In sum, tyrosine supplementation was ineffective for facilitating prolonged intermittent sprint (self-paced) activity, soccer-specific decision-making, and in alleviating perceptual strain, for soccer players' exercising in the heat. However, future research may wish to consider alternative approaches for tyrosine supplementation (e.g., timing, dosage) or induce heightened physiological strain to extend on these findings.
Collapse
Affiliation(s)
- Kate J. Donnan
- Department of Sport, Health and Exercise Science, University of Hull, Hull, United Kingdom
| | - Emily L. Williams
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Nicholas Stanger
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
8
|
Xu J, Yu J, Li G, Wang Y. Exercise intervention on the brain structure and function of patients with mild cognitive impairment: systematic review based on magnetic resonance imaging studies. Front Psychiatry 2024; 15:1464159. [PMID: 39691788 PMCID: PMC11650209 DOI: 10.3389/fpsyt.2024.1464159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
Objective This systematic review evaluates the impact of exercise intervention in MCI patients and discusses the potential neural mechanisms. Methods A systematic search and screening of relevant literature was conducted in English and Chinese databases. Based on predefined keywords and criteria, 24 articles were assessed and analyzed. Results Structurally, a significant increase was observed in the hippocampal and gray matter volumes of MCI patients following exercise intervention, with a trend of improvement in cortical thickness and white matter integrity. Functionally, after the exercise intervention, there were significant changes in the local spontaneous brain activity levels, cerebral blood flow, and functional connectivity during rest and memory encoding and retrieval tasks in MCI patients. Conclusion Exercise may contribute to delaying neurodegenerative changes in brain structure and function in patients with MCI. However, the underlying neural mechanisms require further research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023482419.
Collapse
Affiliation(s)
| | | | | | - Yanqiu Wang
- Department of Physical Education and Sports, Central China Normal University, Wuhan, China
| |
Collapse
|
9
|
Hassani SA, Tiesinga P, Womelsdorf T. Noradrenergic alpha-2a receptor stimulation enhances prediction error signaling and updating of attention sets in anterior cingulate cortex and striatum. Nat Commun 2024; 15:9905. [PMID: 39548091 PMCID: PMC11568163 DOI: 10.1038/s41467-024-54395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
The noradrenergic system is believed to support behavioral flexibility. A possible source mediating improved flexibility are α2A adrenoceptors (α2AR) in prefrontal cortex (PFC) or the anterior cingulate cortex (ACC). We tested this hypothesis by stimulating α2ARs using Guanfacine during attentional set shifting in male nonhuman primates. We found that α2AR stimulation improved learning from errors and updating attention sets. Neural recordings in the ACC, dorsolateral PFC, and the striatum showed that α2AR stimulation selectively enhanced neural signaling of prediction errors in neurons of the ACC and the striatum, but not in dlPFC. This modulation was accompanied by enhanced encoding of attended target features and particularly apparent in putative fast-spiking interneurons, pointing to an interneuron mediated mechanism of α2AR action. These results reveal that α2A receptors are part of the causal chain of flexibly updating attention sets through an enhancement of outcomes and prediction error signaling in ACC and striatum.
Collapse
Affiliation(s)
- Seyed A Hassani
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Al Eid F, Albanna A, Joseph J, Talo S, Jeyaseelan L, Sultan MA. Exploring the impact of stimulant medications on weight in children with attention deficit hyperactivity disorder in Dubai, United Arab Emirates. Front Psychiatry 2024; 15:1392846. [PMID: 39479597 PMCID: PMC11521801 DOI: 10.3389/fpsyt.2024.1392846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Objective Attention deficit hyperactivity disorder (ADHD), prevalent in 5% of children worldwide, impacts academic performance and often coexists with psychiatric disorders. Psychostimulant medications are primary treatments for ADHD, enhancing dopamine to reduce symptoms. However, dopamine increase may cause appetite loss. This pioneering study in the United Arab Emirates (UAE) explores psychostimulant effects on weight in children diagnosed with ADHD, aiming to uncover unique regional characteristics and contributing factors to weight changes. Methods This retrospective cohort study assessed data from electronic medical records from 2017 to 2022, aiming to assess the impact of psychostimulants on weight in children aged 6-18 years. Inclusion criteria covered psychostimulant-treated and untreated patients with ADHD. Statistical analysis, involving longitudinal data methods aimed to demonstrate significant weight differences. Results Data from 107 pediatric patients diagnosed with ADHD were analyzed, with 86 meeting inclusion criteria. Most patients were male (80.2%). ADHD presentations varied, and methylphenidate immediate release was the most prescribed stimulant medication. Patients experienced initial weight loss followed by overall gain over 12 months. Coexisting conditions, maternal factors, family history, and correlations with autism spectrum disorder were explored. Conclusion This study provides valuable insights into the effects of psychostimulant medications on the weight of children and adolescents diagnosed with ADHD in the UAE. It suggests avenues for future research, emphasizing extended follow-ups to understand long-term psychostimulant effects, nuanced examinations of age and gender, and exploring interactions with comorbidities. Despite limitations, the research provides insights into ADHD medication effects, guiding personalized treatment approaches for pediatric populations.
Collapse
Affiliation(s)
- Faten Al Eid
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- Mental Health Centre of Excellence, Al Jalila Children’s Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Ammar Albanna
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- Al Amal Psychiatric Hospital, Emirates Health Services, Dubai, United Arab Emirates
| | - Jessie Joseph
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Sami Talo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Lakshmanan Jeyaseelan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Meshal A. Sultan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Wang X, Han D, Zheng T, Ma J, Chen Z. Modulation of human induced neural stem cell-derived dopaminergic neurons by DREADD reveals therapeutic effects on a mouse model of Parkinson's disease. Stem Cell Res Ther 2024; 15:297. [PMID: 39256801 PMCID: PMC11389507 DOI: 10.1186/s13287-024-03921-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Stem cell-based therapy is a promising strategy for treating Parkinson's disease (PD) characterized by the loss of dopaminergic neurons. Recently, induced neural stem cell-derived dopaminergic precursor cells (iNSC-DAPs) have been emerged as a promising candidate for PD cell therapy because of a lower tumor-formation ability. Designer receptors exclusively activated by designer drugs (DREADDs) are useful tools for examining functional synaptic connections with host neurons. METHODS DREADD knock-in human iNSCs to express excitatory hM3Dq and inhibitory hM4Di receptors were engineered by CRISPR. The knock-in iNSCs were differentiated into midbrain dopaminergic precursor cells (DAPs) and transplanted into PD mice. The various behavior test such as the Apomorphine-induced rotation test, Cylinder test, Rotarod test, and Open field test were assessed at 4, 8, or 12 weeks post-transplantation with or without the administration of CNO. Electrophysiology were performed to assess the integrated condition and modulatory function to host neurons. RESULTS DREADD expressing iNSCs were constructed with normal neural stem cells characteristics, proliferation ability, and differentiation potential into dopaminergic neuorns. DAPs derived from DREADD expressing iNSC showed matched function upon administration of clozapine N-oxide (CNO) in vitro. The results of electrophysiology and behavioral tests of transplanted PD mouse models revealed that the grafts established synaptic connections with downstream host neurons and exhibited excitatory or inhibitory modulation in response to CNO in vivo. CONCLUSION iNSC-DAPs are a promising candidate for cell replacement therapy for Parkinson's disease. Remote DREADD-dependent activation of iNSC-DAP neurons significantly enhanced the beneficial effects on transplanted mice with Parkinson's disease.
Collapse
Affiliation(s)
- Xueyao Wang
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Deqiang Han
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
12
|
Parlatini V, Bellato A, Murphy D, Cortese S. From neurons to brain networks, pharmacodynamics of stimulant medication for ADHD. Neurosci Biobehav Rev 2024; 164:105841. [PMID: 39098738 DOI: 10.1016/j.neubiorev.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulants represent the first line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD) and are among the most prescribed psychopharmacological treatments. Their mechanism of action at synaptic level has been extensively studied. However, it is less clear how their mechanism of action determines clinically observed benefits. To help bridge this gap, we provide a comprehensive review of stimulant effects, with an emphasis on nuclear medicine and magnetic resonance imaging (MRI) findings. There is evidence that stimulant-induced modulation of dopamine and norepinephrine neurotransmission optimizes engagement of task-related brain networks, increases perceived saliency, and reduces interference from the default mode network. An acute administration of stimulants may reduce brain alterations observed in untreated individuals in fronto-striato-parieto-cerebellar networks during tasks or at rest. Potential effects of prolonged treatment remain controversial. Overall, neuroimaging has fostered understanding on stimulant mechanism of action. However, studies are often limited by small samples, short or no follow-up, and methodological heterogeneity. Future studies should address age-related and longer-term effects, potential differences among stimulants, and predictors of treatment response.
Collapse
Affiliation(s)
- Valeria Parlatini
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Solent NHS Trust, Southampton, United Kingdom.
| | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; School of Psychology, University of Nottingham, Semenyih, Malaysia
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; Mind and Neurodevelopment (MiND) Research Group, University of Nottingham, Semenyih, Malaysia; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| |
Collapse
|
13
|
Carboni E, Ibba M, Carboni E, Carta AR. Adolescent stress differentially modifies dopamine and norepinephrine release in the medial prefrontal cortex of adult rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111055. [PMID: 38879069 DOI: 10.1016/j.pnpbp.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Adolescent stress (AS) has been associated with higher vulnerability to psychiatric disorders such as schizophrenia, depression, or drug dependence. Moreover, the alteration of brain catecholamine (CAT) transmission in the medial prefrontal cortex (mPFC) has been found to play a major role in the etiology of psychiatric disturbances. We investigated the effect of adolescent stress on CAT transmission in the mPFC of freely moving adult rats because of the importance of this area in the etiology of psychiatric disorders, and because CAT transmission is the target of a relevant group of drugs used in the therapy of depression and psychosis. We assessed basal dopamine (DA) and norepinephrine (NE) extracellular concentrations (output) by brain microdialysis in in the mPFC of adult rats that were exposed to chronic mild stress in adolescence. To ascertain the role of an altered release or reuptake, we stimulated DA and NE output by administering either different doses of amphetamine (0.5 and 1.0 mg / kg s.c.), which by a complex mechanism determines a dose dependent increase in the CAT output, or reboxetine (10 mg/kg i.p.), a selective NE reuptake inhibitor. The results showed the following: (i) basal DA output in AS rats was lower than in controls, while no difference in basal NE output was observed; (ii) amphetamine, dose dependently, stimulated DA and NE output to a greater extent in AS rats than in controls; (iii) reboxetine stimulated NE output to a greater extent in AS rats than in controls, while no difference in stimulated DA output was observed between the two groups. These results show that AS determines enduring effects on DA and NE transmission in the mPFC and might lead to the occurrence of psychiatric disorders or increase the vulnerability to drug addiction.
Collapse
Affiliation(s)
- Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Italy.
| | - Marcello Ibba
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Elena Carboni
- Unit of Paediatrics, ASST Cremona Maggiore Hospital, Cremona, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| |
Collapse
|
14
|
Peng A, Chai J, Wu H, Bai B, Yang H, He W, Zhao Y. New Therapeutic Targets and Drugs for Schizophrenia Beyond Dopamine D2 Receptor Antagonists. Neuropsychiatr Dis Treat 2024; 20:607-620. [PMID: 38525480 PMCID: PMC10961082 DOI: 10.2147/ndt.s455279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Schizophrenia is a disease with a complex pathological mechanism that is influenced by multiple genes. The study of its pathogenesis is dominated by the dopamine hypothesis, as well as other hypotheses such as the 5-hydroxytryptamine hypothesis, glutamate hypothesis, immune-inflammatory hypothesis, gene expression abnormality hypothesis, and neurodevelopmental abnormality hypothesis. The first generation of antipsychotics was developed based on dopaminergic receptor antagonism, which blocks dopamine D2 receptors in the brain to exert antipsychotic effects. The second generation of antipsychotics acts by dual blockade of 5-hydroxytryptamine and dopamine receptors. From the third generation of antipsychotics onwards, the therapeutic targets for antipsychotic schizophrenia expanded beyond D2 receptor blockade to explore D2 receptor partial agonism and the antipsychotic effects of new targets such as D3, 5-HT1A, 5-HT7, and mGlu2/3 receptors. The main advantages of the second and third generation antipsychotics over first-generation antipsychotics are the reduction of side effects and the improvement of negative symptoms, and even though third-generation antipsychotics do not directly block D2 receptors, the modulation of the dopamine transmitter system is still an important part of their antipsychotic process. According to recent research, several receptors, including 5-hydroxytryptamine, glutamate, γ-aminobutyric acid, acetylcholine receptors and norepinephrine, play a role in the development of schizophrenia. Therefore, the focus of developing new antipsychotic drugs has shifted towards agonism or inhibition of these receptors. Specifically, the development of NMDARs stimulants, GABA receptor agonists, mGlu receptor modulators, cholinergic receptor modulators, 5-HT2C receptor agonists and alpha-2 receptor modulators has become the main direction. Animal experiments have confirmed the antipsychotic effects of these drugs, but their pharmacokinetics and clinical applicability still require further exploration. Research on alternative targets for antipsychotic drugs, beyond the dopamine D2 receptor, has expanded the potential treatment options for schizophrenia and gives an important way to address the challenge of refractory schizophrenia. This article aims to provide a comprehensive overview of the research on therapeutic targets and medications for schizophrenia, offering valuable insights for both treatment and further research in this field.
Collapse
Affiliation(s)
- Aineng Peng
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, People’s Republic of China
| | - Haiyuan Wu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Bing Bai
- Tongde Hospital of Zhejiang Province, Hangzhou, 311100, People’s Republic of China
| | - Huihui Yang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Weizhi He
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, People’s Republic of China
| |
Collapse
|
15
|
Fahri Aydın E, Güleç M, Oral E, Gökhan Daloğlu A. The Effects of Fluoxetine and Agomelatine on Neurocognitive Functions and Sleep in Patients with Major Depressive Disorder. PSYCHIAT CLIN PSYCH 2024; 34:9-18. [PMID: 38883888 PMCID: PMC11177640 DOI: 10.5152/pcp.2024.22498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/21/2023] [Indexed: 06/18/2024] Open
Abstract
Background We aimed to evaluate the effects of 6 weeks of agomelatine versus fluoxetine treatment on cognition and sleep. Methods Agomelatine 25 mg/day and fluoxetine 20 mg/day were administered to major depressive disorder (MDD) patients. Assessments were conducted before the treatment and at the sixth week of treatment via psychometric measures and comprehensive neurocognitive assessments of various functions, including executive skills, attention, memory, verbal fluency, and speed of processing. Results They both improved the evaluated neurocognitive test scores (P < .05), except for the scores of the Digit Span Test (P > .05), but only fluoxetine significantly improved the scores of the Controlled Oral Word Association Test (P = .018). Only in relation to the subjective sleep quality part of the Pittsburgh Sleep Quality Index (P = .035) and the Trail Making Test-B (TMT-B) (P = .046) was there an important difference between the study groups, and agomelatine showed better effects than fluoxetine in these measures. Conclusion Both drugs improved the neurocognitive functioning in the participants. However, the better effect of agomelatine in improving the TMT-B scores suggests that it is a suitable option for MDD patients with noticeable executive disturbances.
Collapse
Affiliation(s)
- Esat Fahri Aydın
- Department of Psychiatry, Atatürk University, Faculty of Medicine, Erzurum, Turkey
| | - Mustafa Güleç
- Department of Psychiatry, Izmir Katip Çelebi University, Atatürk Education and Training Hospital, İzmir, Turkey
| | - Elif Oral
- Department of Psychiatry, Izmir Katip Çelebi University, Atatürk Education and Training Hospital, İzmir, Turkey
| | - Ali Gökhan Daloğlu
- Department of Psychiatry, Mersin City Training and Research Hospital, Mersin, Turkey
| |
Collapse
|
16
|
Münster A, Huster J, Sommer S, Traxler C, Votteler A, Hauber W. Enhanced Risky Choice in Male Rats Elicited by the Acute Pharmacological Stressor Yohimbine Involves Prefrontal Dopamine D1 Receptor Activation. Int J Neuropsychopharmacol 2024; 27:pyae006. [PMID: 38214654 PMCID: PMC10852621 DOI: 10.1093/ijnp/pyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Acute stress alters risk-based decision-making; however, the underlying neural and neurochemical substrates are underexplored. Given their well-documented stress-inducing effects in humans and laboratory animals, glucocorticoids such as cortisol and corticosterone and the α2-adrenoceptor antagonist yohimbine represent potent pharmacological tools to mimic some characteristics of acute stress. METHODS Here, we analyzed the effects of the pharmacological stressors corticosterone and yohimbine given systemically on risk-based decision-making in male rats. Moreover, we investigated whether pharmacological stressor effects on risk-based decision-making involve dopamine D1 receptor stimulation in the dorsal prelimbic cortex (PL). We used a risk discounting task that requires choosing between a certain/small reward lever that always delivered 1 pellet and a risky/large reward lever that delivered 4 pellets with a decreasing probability across subsequent trials. RESULTS Systemic administration of yohimbine increased the preference for the risky/large reward lever. By contrast, systemic single administration of corticosterone did not significantly promote risky choice. Moreover, co-administration of corticosterone did not enhance the effects of yohimbine on risky choice. The data further show that the increased preference for the risky/large reward lever under systemic yohimbine was lowered by a concurrent pharmacological blockade of dopamine D1 receptors in the PL. CONCLUSIONS Our rodent data provide causal evidence that stimulation of PL D1 receptors may represent a neurochemical mechanism by which the acute pharmacological stressor yohimbine, and possibly nonpharmacological stressors as well, promote risky choice.
Collapse
Affiliation(s)
| | | | - Susanne Sommer
- Department of Neurobiology, University of Stuttgart, Stuttgart, Germany
| | | | - Angeline Votteler
- Department of Neurobiology, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
17
|
Prochnow A, Mückschel M, Eggert E, Senftleben J, Frings C, Münchau A, Roessner V, Bluschke A, Beste C. The Ability to Voluntarily Regulate Theta Band Activity Affects How Pharmacological Manipulation of the Catecholaminergic System Impacts Cognitive Control. Int J Neuropsychopharmacol 2024; 27:pyae003. [PMID: 38181228 PMCID: PMC10810285 DOI: 10.1093/ijnp/pyae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The catecholaminergic system influences response inhibition, but the magnitude of the impact of catecholaminergic manipulation is heterogeneous. Theoretical considerations suggest that the voluntary modulability of theta band activity can explain this variance. The study aimed to investigate to what extent interindividual differences in catecholaminergic effects on response inhibition depend on voluntary theta band activity modulation. METHODS A total of 67 healthy adults were tested in a randomized, double-blind, cross-over study design. At each appointment, they received a single dose of methylphenidate or placebo and performed a Go/Nogo task with stimuli of varying complexity. Before the first appointment, the individual's ability to modulate theta band activity was measured. Recorded EEG data were analyzed using temporal decomposition and multivariate pattern analysis. RESULTS Methylphenidate effects and voluntary modulability of theta band activity showed an interactive effect on the false alarm rates of the different Nogo conditions. The multivariate pattern analysis revealed that methylphenidate effects interacted with voluntary modulability of theta band activity at a stimulus processing level, whereas during response selection methylphenidate effects interacted with the complexity of the Nogo condition. CONCLUSIONS The findings reveal that the individual's theta band modulability affects the responsiveness of an individual's catecholaminergic system to pharmacological modulation. Thus, the impact of pharmacological manipulation of the catecholaminergic system on cognitive control most likely depends on the existing ability to self-modulate relevant brain oscillatory patterns underlying the cognitive processes being targeted by pharmacological modulations.
Collapse
Affiliation(s)
- Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jessica Senftleben
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Frings
- Cognitive Psychology, Institute of Psychology, University of Trier, Trier, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
18
|
Li LF, Li ZL, Song BL, Jiang Y, Wang Y, Zou HW, Yao LG, Liu YJ. Dopamine D2 receptors in the dorsomedial prefrontal cortex modulate social hierarchy in male mice. Curr Zool 2023; 69:682-693. [PMID: 37876636 PMCID: PMC10591156 DOI: 10.1093/cz/zoac087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/01/2022] [Indexed: 10/26/2023] Open
Abstract
Social hierarchy greatly influences behavior and health. Both human and animal studies have signaled the medial prefrontal cortex (mPFC) as specifically related to social hierarchy. Dopamine D1 receptors (D1Rs) and D2 receptors (D2Rs) are abundantly expressed in the mPFC, modulating its functions. However, it is unclear how DR-expressing neurons in the mPFC regulate social hierarchy. Here, using a confrontation tube test, we found that most adult C57BL/6J male mice could establish a linear social rank after 1 week of cohabitation. Lower rank individuals showed social anxiety together with decreased serum testosterone levels. D2R expression was significantly downregulated in the dorsal part of mPFC (dmPFC) in lower rank individuals, whereas D1R expression showed no significant difference among the rank groups in the whole mPFC. Virus knockdown of D2Rs in the dmPFC led to mice being particularly prone to lose the contests in the confrontation tube test. Finally, simultaneous D2R activation in the subordinates and D2R inhibition in the dominants in a pair switched their dominant-subordinate relationship. The above results indicate that D2Rs in the dmPFC play an important role in social dominance. Our findings provide novel insights into the divergent functions of prefrontal D1Rs and D2Rs in social dominance, which may contribute to ameliorating social dysfunctions along with abnormal social hierarchy.
Collapse
Affiliation(s)
- Lai-Fu Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Zi-Lin Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Yan Wang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Hua-Wei Zou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Lun-Guang Yao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Ying-Juan Liu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| |
Collapse
|
19
|
Hassani SA, Womelsdorf T. Noradrenergic alpha-2a Receptor Stimulation Enhances Prediction Error Signaling in Anterior Cingulate Cortex and Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564052. [PMID: 37961384 PMCID: PMC10634832 DOI: 10.1101/2023.10.25.564052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The noradrenergic system is implicated to support behavioral flexibility by increasing exploration during periods of uncertainty and by enhancing working memory for goal-relevant stimuli. Possible sources mediating these pro-cognitive effects are α2A adrenoceptors (α2AR) in prefrontal cortex or the anterior cingulate cortex facilitating fronto-striatal learning processes. We tested this hypothesis by selectively stimulating α2ARs using Guanfacine during feature-based attentional set shifting in nonhuman primates. We found that α2A stimulation improved learning from errors and facilitates updating the target feature of an attentional set. Neural recordings in the anterior cingulate cortex (ACC), the dorsolateral prefrontal cortex (dlPFC), and the striatum showed that α2A stimulation selectively enhanced the neural representation of negative reward prediction errors in neurons of the ACC and of positive prediction errors in the striatum, but not in dlPFC. This modulation was accompanied by enhanced encoding of the feature and location of the attended target across the fronto-striatal network. Enhanced learning was paralleled by enhanced encoding of outcomes in putative fast-spiking interneurons in the ACC, dlPFC, and striatum but not in broad spiking cells, pointing to an interneuron mediated mechanism of α2AR action. These results illustrate that α2A receptors causally support the noradrenergic enhancement of updating attention sets through an enhancement of prediction error signaling in the ACC and the striatum.
Collapse
Affiliation(s)
- Seyed A. Hassani
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
- Vanderbilt Brain Institute, Nashville, TN 37240
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20824
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
- Vanderbilt Brain Institute, Nashville, TN 37240
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
20
|
Gungor Aydin A, Adiguzel E. The mesocortical dopaminergic system cannot explain hyperactivity in an animal model of attention deficit hyperactivity disorder (ADHD)- Spontaneously hypertensive rats (SHR). Lab Anim Res 2023; 39:20. [PMID: 37710339 PMCID: PMC10500870 DOI: 10.1186/s42826-023-00172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatric disorders with morphological brain abnormalities. There is a growing body of evidence that abnormalities in the dopaminergic system may account for ADHD pathogenesis. However, it is not clear whether the dopaminergic system is hyper or hypoactive. To determine whether the DA neurons and/or axons deficiency might be the cause of the postulated dopaminergic hypofunction in spontaneously hypertensive rats (SHR, animal model of ADHD), this study examined the dopaminergic neurons and fibers in the brain tissues of SHRs and Wistar Kyoto rats (WKY, control animals). Here, we performed immunohistochemical tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) staining on brain sections collected on juveniles from SHR and WKY. Moreover, behavioral testing to examine the hyperactivity in the open field area was also elucidated. RESULTS The mesocortical dopaminergic system appears to be normal in juvenile SHR, as suggested by (i) no alteration in the area density of TH-immunoreactive (TH-ir) dopaminergic neurons in the ventral tegmental area (VTA), (ii) no alterations in the volume density of TH-ir fibers in layer I of the prelimbic (PrL) subregion of medial PFC (mPFC), (iii) no alteration in the percentage of TH-ir dopaminergic fibers in layer I of the PrL subregion of mPFC as revealed by TH and/or DBH immunoreactivity. Furthermore, the SHR showed increased locomotor activity than WKY in the open field test. CONCLUSIONS The demonstration of no alteration in mesocortical dopaminergic neurons and fiber in SHR raises some concern about the position of SHR as an animal model of the inattentive subtype of ADHD. However, these results strengthen this strain as an animal model of hyperactive/impulsive subtype ADHD for future studies that may elucidate the underlying mechanism mediating hyperactivity and test various treatment strategies.
Collapse
Affiliation(s)
- Aysegul Gungor Aydin
- Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA.
| | - Esat Adiguzel
- Department of Anatomy, Faculty of Medicine, Pamukkale University, 20070, Denizli, Turkey
- Department of Neuroscience, Institute of Health Sciences, Pamukkale University, 20070, Denizli, Turkey
| |
Collapse
|
21
|
Tabrisi R, Harun-Rashid MD, Montero J, Venizelos N, Msghina M. Clozapine but not lithium reverses aberrant tyrosine uptake in patients with bipolar disorder. Psychopharmacology (Berl) 2023; 240:1667-1676. [PMID: 37318540 PMCID: PMC10349740 DOI: 10.1007/s00213-023-06397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
RATIONALE Availability of the dopamine and noradrenaline precursor tyrosine is critical for normal functioning, and deficit in tyrosine transport across cell membrane and the blood-brain barrier has been reported in bipolar disorder and schizophrenia. Clozapine and lithium are two psychoactive agents used to treat psychosis, mood disorders and suicidal behavior, but their mechanism of action remains largely unknown. OBJECTIVE To characterize immediate and delayed differences in tyrosine uptake between healthy controls (HC) and bipolar patients (BP) and see if these differences could be normalized by either clozapine, lithium or both. A second objective was to see if clozapine and lithium have additive, antagonistic or synergistic effects in this. METHOD Fibroblasts from five HC and five BP were incubated for 5 min or 6 h with clozapine, lithium, or combination of both. Radioactive labelled tyrosine was used to quantify tyrosine membrane transport. RESULTS There was significantly reduced tyrosine uptake at baseline in BP compared to HC, a deficit that grew with increasing incubation time. Clozapine selectively increased tyrosine uptake in BP and abolished the deficit seen under baseline conditions, while lithium had no such effect. Combination treatment with clozapine and lithium was less effective than when clozapine was used alone. CONCLUSIONS There was significant deficit in tyrosine transport in BP compared to HC that was reversed by clozapine but not lithium. Clozapine was more effective when used alone than when added together with lithium. Potential clinical implications of this will be discussed.
Collapse
Affiliation(s)
- R Tabrisi
- Department of Plastic Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - M D Harun-Rashid
- School of Health Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - J Montero
- School of Health Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - N Venizelos
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - M Msghina
- Department of Psychiatry, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Klem L, Nielsen MM, Gestsdóttir SB, Frandsen SL, Prichardt S, Andreasen JT. Assessing attention and impulsivity in the variable stimulus duration and variable intertrial interval rodent continuous performance test schedules using noradrenaline receptor antagonists in female C57BL/6JRj mice. Psychopharmacology (Berl) 2023; 240:1629-1650. [PMID: 37329343 PMCID: PMC10349758 DOI: 10.1007/s00213-023-06385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/10/2023] [Indexed: 06/19/2023]
Abstract
RATIONALE Noradrenergic dysfunction is associated with disorders of impulsivity and inattention. The rodent continuous performance test (rCPT) quantifies changes in attention and impulsivity. OBJECTIVE To use NA receptor antagonists to examine the roles of NA on attention and impulsivity behaviours measured in the rCPT variable stimulus duration (vSD) and the variable intertrial interval (vITI) schedules. METHODS Two cohorts of 36 female C57BL/6JRj mice were examined separately in the rCPT vSD and vITI schedules. Both cohorts received antagonists of the following adrenoceptors: α1 (doxazosin, DOX: 1.0, 3.0, 10.0 mg/kg), α2 (yohimbine, YOH: 0.1, 0.3, 1.0 mg/kg), and β1/2 (propranolol, PRO: 1.0, 3.0, 10.0 mg/kg) in consecutive balanced Latin square designs with flanking reference measurements. The antagonists were subsequently examined for effects on locomotor activity. RESULTS DOX showed similar effects in both schedules, improving discriminability and accuracy, and reducing responding and impulsivity, and DOX also reduced locomotor activity. YOH showed prominent effects in the vSD schedule to increase responding and impulsivity, while impairing discriminability and accuracy. YOH did not affect locomotor activity. PRO increased responding and impulsivity, decreased accuracy, but did not affect discriminability or locomotor activity. CONCLUSION Antagonism of α2 or β1/2 adrenoceptors caused similar increases in responding and impulsivity and worsened attentional performance, while α1 adrenoceptor antagonism showed the opposite effects. Our results suggest that endogenous NA exerts bidirectional control of most behaviours in the rCPT. The parallel vSD and vITI studies showed a substantial overlap in effects, but also some differences that indicate differing sensitivity towards noradrenergic manipulations.
Collapse
Affiliation(s)
- L Klem
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - M M Nielsen
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S B Gestsdóttir
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S L Frandsen
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S Prichardt
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - J T Andreasen
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
23
|
Rojas-Thomas F, Artigas C, Wainstein G, Morales JP, Arriagada M, Soto D, Dagnino-Subiabre A, Silva J, Lopez V. Impact of acute psychosocial stress on attentional control in humans. A study of evoked potentials and pupillary response. Neurobiol Stress 2023; 25:100551. [PMID: 37362419 PMCID: PMC10285563 DOI: 10.1016/j.ynstr.2023.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
Psychosocial stress has increased considerably in our modern lifestyle, affecting global mental health. Deficits in attentional control are cardinal features of stress disorders and pathological anxiety. Studies suggest that changes in the locus coeruleus-norepinephrine system could underlie the effects of stress on top-down attentional control. However, the impact of psychosocial stress on attentional processes and its underlying neural mechanisms are poorly understood. This study aims to investigate the effect of psychosocial stress on attentional processing and brain signatures. Evoked potentials and pupillary activity related to the oddball auditory paradigm were recorded before and after applying the Montreal Imaging Stress Task (MIST). Electrocardiogram (ECG), salivary cortisol, and subjective anxiety/stress levels were measured at different experimental periods. The control group experienced the same physical and cognitive effort but without the psychosocial stress component. The results showed that stressed subjects exhibited decreased P3a and P3b amplitude, pupil phasic response, and correct responses. On the other hand, they displayed an increase in Mismatch Negativity (MMN). N1 amplitude after MIST only decreased in the control group. We found that differences in P3b amplitude between the first and second oddball were significantly correlated with pupillary dilation and salivary cortisol levels. Our results suggest that under social-evaluative threat, basal activity of the coeruleus-norepinephrine system increases, enhancing alertness and decreasing voluntary attentional resources for the cognitive task. These findings contribute to understanding the neurobiological basis of attentional changes in pathologies associated with chronic psychosocial stress.
Collapse
Affiliation(s)
- F. Rojas-Thomas
- Laboratorio de Psicología Experimental y Neurociencias, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Programa de Doctorado en Neurociencia, Centro Interdisciplinario en Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - C. Artigas
- Departamento de Biología, Universidad Autónoma de Chile, Santiago, Chile
| | - G. Wainstein
- Departamento de Psiquiatría, Escuela de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan-Pablo Morales
- Programa de Doctorado en Neurociencia, Centro Interdisciplinario en Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Facultad de Educación Psicología y Familia, Universidad Finis Terrae, Santiago, Chile
| | - M. Arriagada
- College of Veterinary Medicine, Faculty of Medical Sciences, Bernardo O'Higgins University, Santiago, Chile
| | - D. Soto
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - A. Dagnino-Subiabre
- Laboratorio de Neurobiología del Estrés, Instituto de Fisiología, CENFI, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - J. Silva
- Instituto de Bienestar Socioemocional (IBEM), Facultad de Psicología, Universidad del Desarrollo, Santiago, Chile
| | - V. Lopez
- Laboratorio de Psicología Experimental y Neurociencias, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
LeDuke DO, Borio M, Miranda R, Tye KM. Anxiety and depression: A top-down, bottom-up model of circuit function. Ann N Y Acad Sci 2023; 1525:70-87. [PMID: 37129246 PMCID: PMC10695657 DOI: 10.1111/nyas.14997] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A functional interplay of bottom-up and top-down processing allows an individual to appropriately respond to the dynamic environment around them. These processing modalities can be represented as attractor states using a dynamical systems model of the brain. The transition probability to move from one attractor state to another is dependent on the stability, depth, neuromodulatory tone, and tonic changes in plasticity. However, how does the relationship between these states change in disease states, such as anxiety or depression? We describe bottom-up and top-down processing from Marr's computational-algorithmic-implementation perspective to understand depressive and anxious disease states. We illustrate examples of bottom-up processing as basolateral amygdala signaling and projections and top-down processing as medial prefrontal cortex internal signaling and projections. Understanding these internal processing dynamics can help us better model the multifaceted elements of anxiety and depression.
Collapse
Affiliation(s)
- Deryn O. LeDuke
- Salk Institute for Biological Studies, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Matilde Borio
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Raymundo Miranda
- Salk Institute for Biological Studies, La Jolla, California, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Kay M. Tye
- Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, La Jolla, California, USA
- Kavli Institute for the Brain and Mind, La Jolla, California, USA
| |
Collapse
|
25
|
Colombo M, Aggujaro S, Lombardi N, Pedrocchi A, Molteni F, Guanziroli E. Motor and Cognitive Modulation of a Single Session of Transcutaneous Auricular Vagus Nerve Stimulation in Post Stroke Patients: A Pilot Study. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:292-299. [PMID: 38196973 PMCID: PMC10776103 DOI: 10.1109/ojemb.2023.3268011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 01/11/2024] Open
Abstract
Objective: The aim of the present study is to explore whether a single session of transcutaneous Vagus Nerve Stimulation (tVNS) can enhance the ipsilesional, and contralesional upper limb motor functions as well as cognitive functions in stroke patients. The effects of the stimulation were evaluated through two different tasks: the box and blocks test (BB), indexing manual dexterity, and the Go/No-go task, a visuomotor paradigm used to assess both motor readiness and response inhibition. Tests were administered without tVNS, during tVNS and during sham tVNS. Results: The BB showed a statistical difference for both contralesional side (p = 0.05) between Basal-Real condition (p = 0.042) and ipsilesional side (p = 0.001) between Basal-Real (p = 0.008) and for Real-Sham (p = 0.005). Any statistical difference was found for the mean latencies in the three conditions of the Go/No-go test. Conclusion: A single session of tVNS seems to improve upper limb motor functions but not cognitive functions in post-stroke patients, despite a positive trend was detected.
Collapse
Affiliation(s)
- M. Colombo
- Villa Beretta Rehabilitation Center Costa Masnaga – Lecco23845ComoItaly
| | - S. Aggujaro
- Villa Beretta Rehabilitation Center Costa Masnaga – Lecco23845ComoItaly
| | - N. Lombardi
- Villa Beretta Rehabilitation Center Costa Masnaga – Lecco23845ComoItaly
| | - A. Pedrocchi
- Nearlab, Department of Electronics, Informatics and BioengineeringPolitecnico di Milano20133MilanItaly
| | - F. Molteni
- Villa Beretta Rehabilitation Center Costa Masnaga – Lecco23845ComoItaly
| | | |
Collapse
|
26
|
Wang P, Yan F, Dong J, Wang S, Shi Y, Zhu M, Zuo Y, Ma H, Xue R, Zhai D, Song X. A multiple-step screening protocol to identify norepinephrine and dopamine reuptake inhibitors for depression. Phys Chem Chem Phys 2023; 25:8341-8354. [PMID: 36880666 DOI: 10.1039/d2cp05676c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Depression severely impairs the health of people all over the world. Cognitive dysfunction due to depression has resulted in a severe economic burden to family and society induced by the reduction of social functioning of patients. Norepinephrine-dopamine reuptake inhibitors (NDRIs) targeted with the human norepinephrine transporter (hNET) and distributed with the human dopamine transporter (hDAT) simultaneously treat depression and improve cognitive function, and they effectively prevent sexual dysfunction and other side effects. Because many patients continue to poorly respond to NDRIs, it is urgent to discover novel NDRI antidepressants that do not interfere with cognitive function. The aim of this work was to selectively identify novel NDRI candidates acting against hNET and hDAT from large compound libraries by a comprehensive strategy integrating support vector machine (SVM) models, ADMET, molecular docking, in vitro binding assays, molecular dynamics simulation, and binding energy calculation. First, 6522 compounds that do not inhibit the human serotonin transporter (hSERT) were obtained by SVM models of hNET, hDAT, and non-target hSERT with similarity analyses from compound libraries. ADMET and molecular docking were then used to identify compounds that could potently bind to the hNET and hDAT with satisfactory ADMET, and 4 compounds were successfully identified. According to their docking scores and ADMET information, 3719810 was advanced for profiling by in vitro assays as a novel NDRI lead compound due to its strongest druggability and balancing activities. Encouragingly, 3719810 performed comparative activities on two targets, with Ki values of 7.32 μM for hNET and 5.23 μM for hDAT. To obtain candidates with additional activities and balance the activities of 2 targets, 5 analogs were optimized, and 2 novel scaffold compounds were successively designed. By assessment of molecular docking, molecular dynamics simulations, and binding energy calculations, 5 compounds were validated as NDRI candidates with high activities, and 4 of them performed acceptable balancing activities acting on hNET and hDAT. This work supplied promising novel NDRIs for treatment of depression with cognitive dysfunction or other related neurodegenerative disorders, and also provided a strategy for highly efficient and cost-effective identification of inhibitors for dual targets with homologous non-targets.
Collapse
Affiliation(s)
- Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Fengmei Yan
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Jianghong Dong
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Shengqiang Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Yu Shi
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Mengdan Zhu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Yuting Zuo
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Hui Ma
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Ruirui Xue
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Dingjie Zhai
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Xiaoyu Song
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| |
Collapse
|
27
|
Volnova A, Kurzina N, Belskaya A, Gromova A, Pelevin A, Ptukha M, Fesenko Z, Ignashchenkova A, Gainetdinov RR. Noradrenergic Modulation of Learned and Innate Behaviors in Dopamine Transporter Knockout Rats by Guanfacine. Biomedicines 2023; 11:222. [PMID: 36672730 PMCID: PMC9856099 DOI: 10.3390/biomedicines11010222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Investigation of the precise mechanisms of attention deficit and hyperactivity disorder (ADHD) and other dopamine-associated conditions is crucial for the development of new treatment approaches. In this study, we assessed the effects of repeated and acute administration of α2A-adrenoceptor agonist guanfacine on innate and learned forms of behavior of dopamine transporter knockout (DAT-KO) rats to evaluate the possible noradrenergic modulation of behavioral deficits. DAT-KO and wild type rats were trained in the Hebb-Williams maze to perform spatial working memory tasks. Innate behavior was evaluated via pre pulse inhibition (PPI). Brain activity of the prefrontal cortex and the striatum was assessed. Repeated administration of GF improved the spatial working memory task fulfillment and PPI in DAT-KO rats, and led to specific changes in the power spectra and coherence of brain activity. Our data indicate that both repeated and acute treatment with a non-stimulant noradrenergic drug lead to improvements in the behavior of DAT-KO rats. This study further supports the role of the intricate balance of norepinephrine and dopamine in the regulation of attention. The observed compensatory effect of guanfacine on the behavior of hyperdopaminergic rats may be used in the development of combined treatments to support the dopamine-norepinephrine balance.
Collapse
Affiliation(s)
- Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arina Gromova
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arseniy Pelevin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maria Ptukha
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Saint Petersburg University Hospital, Saint Petersburg 199034, Russia
| |
Collapse
|
28
|
Sheynikhovich D, Otani S, Bai J, Arleo A. Long-term memory, synaptic plasticity and dopamine in rodent medial prefrontal cortex: Role in executive functions. Front Behav Neurosci 2023; 16:1068271. [PMID: 36710953 PMCID: PMC9875091 DOI: 10.3389/fnbeh.2022.1068271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Mnemonic functions, supporting rodent behavior in complex tasks, include both long-term and (short-term) working memory components. While working memory is thought to rely on persistent activity states in an active neural network, long-term memory and synaptic plasticity contribute to the formation of the underlying synaptic structure, determining the range of possible states. Whereas, the implication of working memory in executive functions, mediated by the prefrontal cortex (PFC) in primates and rodents, has been extensively studied, the contribution of long-term memory component to these tasks received little attention. This review summarizes available experimental data and theoretical work concerning cellular mechanisms of synaptic plasticity in the medial region of rodent PFC and the link between plasticity, memory and behavior in PFC-dependent tasks. A special attention is devoted to unique properties of dopaminergic modulation of prefrontal synaptic plasticity and its contribution to executive functions.
Collapse
Affiliation(s)
- Denis Sheynikhovich
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France,*Correspondence: Denis Sheynikhovich ✉
| | - Satoru Otani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jing Bai
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
29
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
30
|
Bouras NN, Mack NR, Gao WJ. Prefrontal modulation of anxiety through a lens of noradrenergic signaling. Front Syst Neurosci 2023; 17:1173326. [PMID: 37139472 PMCID: PMC10149815 DOI: 10.3389/fnsys.2023.1173326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Anxiety disorders are the most common class of mental illness in the U.S., affecting 40 million individuals annually. Anxiety is an adaptive response to a stressful or unpredictable life event. Though evolutionarily thought to aid in survival, excess intensity or duration of anxiogenic response can lead to a plethora of adverse symptoms and cognitive dysfunction. A wealth of data has implicated the medial prefrontal cortex (mPFC) in the regulation of anxiety. Norepinephrine (NE) is a crucial neuromodulator of arousal and vigilance believed to be responsible for many of the symptoms of anxiety disorders. NE is synthesized in the locus coeruleus (LC), which sends major noradrenergic inputs to the mPFC. Given the unique properties of LC-mPFC connections and the heterogeneous subpopulation of prefrontal neurons known to be involved in regulating anxiety-like behaviors, NE likely modulates PFC function in a cell-type and circuit-specific manner. In working memory and stress response, NE follows an inverted-U model, where an overly high or low release of NE is associated with sub-optimal neural functioning. In contrast, based on current literature review of the individual contributions of NE and the PFC in anxiety disorders, we propose a model of NE level- and adrenergic receptor-dependent, circuit-specific NE-PFC modulation of anxiety disorders. Further, the advent of new techniques to measure NE in the PFC with unprecedented spatial and temporal resolution will significantly help us understand how NE modulates PFC function in anxiety disorders.
Collapse
|
31
|
Nassar A, Kodi T, Satarker S, Chowdari Gurram P, Upadhya D, SM F, Mudgal J, Nampoothiri M. Astrocytic MicroRNAs and Transcription Factors in Alzheimer's Disease and Therapeutic Interventions. Cells 2022; 11:cells11244111. [PMID: 36552875 PMCID: PMC9776935 DOI: 10.3390/cells11244111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes are important for maintaining cholesterol metabolism, glutamate uptake, and neurotransmission. Indeed, inflammatory processes and neurodegeneration contribute to the altered morphology, gene expression, and function of astrocytes. Astrocytes, in collaboration with numerous microRNAs, regulate brain cholesterol levels as well as glutamatergic and inflammatory signaling, all of which contribute to general brain homeostasis. Neural electrical activity, synaptic plasticity processes, learning, and memory are dependent on the astrocyte-neuron crosstalk. Here, we review the involvement of astrocytic microRNAs that potentially regulate cholesterol metabolism, glutamate uptake, and inflammation in Alzheimer's disease (AD). The interaction between astrocytic microRNAs and long non-coding RNA and transcription factors specific to astrocytes also contributes to the pathogenesis of AD. Thus, astrocytic microRNAs arise as a promising target, as AD conditions are a worldwide public health problem. This review examines novel therapeutic strategies to target astrocyte dysfunction in AD, such as lipid nanodiscs, engineered G protein-coupled receptors, extracellular vesicles, and nanoparticles.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Fayaz SM
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Correspondence:
| |
Collapse
|
32
|
Kamińska K, Lenda T, Konieczny J, Lorenc-Koci E. Behavioral and neurochemical interactions of the tricyclic antidepressant drug desipramine with L-DOPA in 6-OHDA-lesioned rats. Implications for motor and psychiatric functions in Parkinson's disease. Psychopharmacology (Berl) 2022; 239:3633-3656. [PMID: 36178508 PMCID: PMC9584871 DOI: 10.1007/s00213-022-06238-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
Abstract
RATIONALE The pharmacological effects of antidepressants in modulating noradrenergic transmission as compared to serotonergic transmission in a rat model of Parkinson's disease under chronic L-DOPA therapy are insufficiently explored. OBJECTIVES The aim of the present study was to investigate the effect of the tricyclic antidepressant desipramine administered chronically alone or jointly with L-DOPA, on motor behavior and monoamine metabolism in selected brain structures of rats with the unilateral 6-OHDA lesion. METHODS The antiparkinsonian activities of L-DOPA and desipramine were assessed behaviorally using a rotation test and biochemically based on changes in the tissue concentrations of noradrenaline, dopamine and serotonin and their metabolites, evaluated separately for the ipsi- and contralateral motor (striatum, substantia nigra) and limbic (prefrontal cortex, hippocampus) structures of rat brain by HPLC method. RESULTS Desipramine administered alone did not induce rotational behavior, but in combination with L-DOPA, it increased the number of contralateral rotations more strongly than L-DOPA alone. Both L-DOPA and desipramine + L-DOPA significantly increased DA levels in the ipsilateral striatum, substantia nigra, prefrontal cortex and the ipsi- and contralateral hippocampus. The combined treatment also significantly increased noradrenaline content in the ipsi- and contralateral striatum, while L-DOPA alone decreased serotonin level on both sides of the hippocampus. CONCLUSIONS The performed analysis of the level of monoamines and their metabolites in the selected brain structures suggests that co-modulation of noradrenergic and dopaminergic transmission in Parkinson's disease by the combined therapy with desipramine + L-DOPA may have some positive implications for motor and psychiatric functions but further research is needed to exclude potential negative effects.
Collapse
Affiliation(s)
- Kinga Kamińska
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Tomasz Lenda
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Jolanta Konieczny
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland.
| |
Collapse
|
33
|
Ptukha M, Fesenko Z, Belskaya A, Gromova A, Pelevin A, Kurzina N, Gainetdinov RR, Volnova A. Effects of Atomoxetine on Motor and Cognitive Behaviors and Brain Electrophysiological Activity of Dopamine Transporter Knockout Rats. Biomolecules 2022; 12:biom12101484. [PMID: 36291693 PMCID: PMC9599468 DOI: 10.3390/biom12101484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Changes in dopaminergic and noradrenergic transmission are considered to be the underlying cause of attention deficit and hyperactivity disorder (ADHD). Atomoxetine (ATX) is a selective norepinephrine transporter (NET) inhibitor that is currently used for ADHD treatment. In this study, we aimed to evaluate the effect of atomoxetine on the behavior and brain activity of dopamine transporter knockout (DAT-KO) rats, which are characterized by an ADHD-like behavioral phenotype. Prepulse inhibition (PPI) was assessed in DAT-KO and wild type rats after saline and ATX injections, as well as behavioral parameters in the Hebb-Williams maze and power spectra and coherence of electrophysiological activity. DAT-KO rats demonstrated a pronounced behavioral and electrophysiological phenotype, characterized by hyperactivity, increased number of errors in the maze, repetitive behaviors and disrupted PPI, changes in cortical and striatal power spectra and interareal coherence. Atomoxetine significantly improved PPI and decreased repetitive behaviors in DAT-KO rats and influenced behavior of wild-type rats. ATX also led to significant changes in power spectra and coherence of DAT-KO and wild type rats. Assessment of noradrenergic modulation effects in DAT-KO provides insight into the intricate interplay of monoaminergic systems, although further research is still required to fully understand the complexity of this interaction.
Collapse
Affiliation(s)
- Maria Ptukha
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence: (M.P.); (A.V.)
| | - Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Arina Gromova
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Arseniy Pelevin
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg State University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence: (M.P.); (A.V.)
| |
Collapse
|
34
|
Tang CX, Chen J, Shao KQ, Liu YH, Zhou XY, Ma CC, Liu MT, Shi MY, Kambey PA, Wang W, Ayanlaja AA, Liu YF, Xu W, Chen G, Wu J, Li X, Gao DS. Blunt dopamine transmission due to decreased GDNF in the PFC evokes cognitive impairment in Parkinson's disease. Neural Regen Res 2022; 18:1107-1117. [PMID: 36255000 PMCID: PMC9827775 DOI: 10.4103/1673-5374.355816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson's disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson's disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson's disease. We then established a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analyzed the potential relationships among glial cell line-derived neurotrophic factor in the prefrontal cortex, dopamine transmission, and cognitive function. Our results showed that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex weakened dopamine release and transmission by upregulating the presynaptic membrane expression of the dopamine transporter, which led to the loss and primitivization of dendritic spines of pyramidal neurons and cognitive impairment. In addition, magnetic resonance imaging data showed that the long-term lack of glial cell line-derived neurotrophic factor reduced the connectivity between the prefrontal cortex and other brain regions, and exogenous glial cell line-derived neurotrophic factor significantly improved this connectivity. These findings suggested that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex leads to neuroplastic degeneration at the level of synaptic connections and circuits, which results in cognitive impairment in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Chuan-Xi Tang
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing Chen
- Experinental Teaching Center of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kai-Quan Shao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ye-Hao Liu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiao-Yu Zhou
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Department of Neurology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu Province, China
| | - Cheng-Cheng Ma
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Meng-Ting Liu
- Department of Rehabilitation, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ming-Yu Shi
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Wang
- Department of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Abiola Abdulrahman Ayanlaja
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yi-Fang Liu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Xu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jiao Wu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue Li
- Department of Nursing Care, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dian-Shuai Gao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Dian-Shuai Gao, .
| |
Collapse
|
35
|
Roberts SGB, Dunbar RIM, Roberts AI. Communicative roots of complex sociality and cognition: neuropsychological mechanisms underpinning the processing of social information. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210295. [PMID: 35934969 PMCID: PMC9358321 DOI: 10.1098/rstb.2021.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/08/2022] [Indexed: 11/12/2022] Open
Abstract
Primate social bonds are described as being especially complex in their nature, and primates have unusually large brains for their body size compared to other mammals. Communication in primates has attracted considerable attention because of the important role it plays in social bonding. It has been proposed that differentiated social relationships are cognitively complex because primates need to continuously update their knowledge about different types of social bonds. Therefore, primates infer whether an opportunity for social interaction is rewarding (valuable to individual goals) based on their knowledge of the social relationships of the interactants. However, exposure to distraction and stress has detrimental effects on the dopaminergic system, suggesting that understanding social relationships as rewarding is affected in these conditions. This paper proposes that complex communication evolved to augment the capacity to form social relationships during stress through flexibly modifying intentionality in communication (audience checking, response waiting and elaboration). Intentional communication may upregulate dopamine dynamics to allow recognition that an interaction is rewarding during stress. By examining these associations between complexity of communication and stress, we provide new insights into the cognitive skills involved in forming social bonds in primates and the evolution of communication systems in both primates and humans. This article is part of the theme issue 'Cognition, communication and social bonds in primates'.
Collapse
Affiliation(s)
- Sam G. B. Roberts
- School of Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Robin I. M. Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Anna I. Roberts
- Institute of Human Biology and Evolution, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
36
|
Eggert E, Prochnow A, Roessner V, Frings C, Münchau A, Mückschel M, Beste C. Cognitive science theory-driven pharmacology elucidates the neurobiological basis of perception-motor integration. Commun Biol 2022; 5:919. [PMID: 36068298 PMCID: PMC9448745 DOI: 10.1038/s42003-022-03864-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
An efficient integration of sensory and motor processes is crucial to goal-directed behavior. Despite this high relevance, and although cognitive theories provide clear conceptual frameworks, the neurobiological basis of these processes remains insufficiently understood. In a double-blind, randomized placebo-controlled pharmacological study, we examine the relevance of catecholamines for perception-motor integration processes. Using EEG data, we perform an in-depth analysis of the underlying neurophysiological mechanisms, focusing on sensorimotor integration processes during response inhibition. We show that the catecholaminergic system affects sensorimotor integration during response inhibition by modulating the stability of the representational content. Importantly, catecholamine levels do not affect the stability of all aspects of information processing during sensorimotor integration, but rather-as suggested by cognitive theory-of specific codes in the neurophysiological signal. Particularly fronto-parietal cortical regions are associated with the identified mechanisms. The study shows how cognitive science theory-driven pharmacology can shed light on the neurobiological basis of perception-motor integration and how catecholamines affect specific information codes relevant to cognitive control.
Collapse
Affiliation(s)
- Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Frings
- Cognitive Psychology, Institute of Psychology, University of Trier, Trier, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
37
|
Zheng L, Pang Q, Xu H, Guo H, Liu R, Wang T. The Neurobiological Links between Stress and Traumatic Brain Injury: A Review of Research to Date. Int J Mol Sci 2022; 23:ijms23179519. [PMID: 36076917 PMCID: PMC9455169 DOI: 10.3390/ijms23179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Neurological dysfunctions commonly occur after mild or moderate traumatic brain injury (TBI). Although most TBI patients recover from such a dysfunction in a short period of time, some present with persistent neurological deficits. Stress is a potential factor that is involved in recovery from neurological dysfunction after TBI. However, there has been limited research on the effects and mechanisms of stress on neurological dysfunctions due to TBI. In this review, we first investigate the effects of TBI and stress on neurological dysfunctions and different brain regions, such as the prefrontal cortex, hippocampus, amygdala, and hypothalamus. We then explore the neurobiological links and mechanisms between stress and TBI. Finally, we summarize the findings related to stress biomarkers and probe the possible diagnostic and therapeutic significance of stress combined with mild or moderate TBI.
Collapse
Affiliation(s)
- Lexin Zheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qiuyu Pang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Hanmu Guo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Rong Liu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai 200063, China
- Correspondence:
| |
Collapse
|
38
|
Solecki WB, Kielbinski M, Wilczkowski M, Zajda K, Karwowska K, Joanna B, Rajfur Z, Przewłocki R. Regulation of cocaine seeking behavior by locus coeruleus noradrenergic activity in the ventral tegmental area is time- and contingency-dependent. Front Neurosci 2022; 16:967969. [PMID: 35992934 PMCID: PMC9388848 DOI: 10.3389/fnins.2022.967969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorder is linked to impairments in the ventral tegmental area (VTA) dopamine (DA) reward system. Noradrenergic (NA) inputs from locus coeruleus (LC) into VTA have been shown to modulate VTA neuronal activity, and are implicated in psychostimulant effects. Phasic LC activity controls time- and context-sensitive processes: decision making, cognitive flexibility, motivation and attention. However, it is not yet known how such temporally-distinct LC activity contributes to cocaine seeking. In a previous study we demonstrated that pharmacological inhibition of NA signaling in VTA specifically attenuates cocaine-seeking. Here, we used virally-delivered opsins to target LC neurons for inhibition or excitation, delivered onto afferents in VTA of male rats seeking cocaine under extinction conditions. Optogenetic stimulation or inhibition was delivered in distinct conditions: upon active lever press, contingently with discreet cues; or non-contingently, i.e., throughout the cocaine seeking session. Non-contingent inhibition of LC noradrenergic terminals in VTA attenuated cocaine seeking under extinction conditions. In contrast, contingent inhibition increased, while contingent stimulation reduced cocaine seeking. These findings were specific for cocaine, but not natural reward (food) seeking. Our results show that NA release in VTA drives behavior depending on timing and contingency between stimuli – context, discreet conditioned cues and reinforcer availability. We show that, depending on those factors, noradrenergic signaling in VTA has opposing roles, either driving CS-induced drug seeking, or contributing to behavioral flexibility and thus extinction.
Collapse
Affiliation(s)
- Wojciech B. Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- *Correspondence: Wojciech B. Solecki,
| | - Michał Kielbinski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Michał Wilczkowski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Department of Brain Biochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Zajda
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Karolina Karwowska
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Bernacka Joanna
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Zenon Rajfur
- Department of Biosystems Physics, Institute of Physics, Jagiellonian University, Kraków, Poland
| | - Ryszard Przewłocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
39
|
Ono T, Hino K, Kimura T, Uchimura Y, Ashihara T, Higa T, Kojima H, Murakami T, Udagawa J. Excessive folic acid intake combined with undernutrition during gestation alters offspring behavior and brain monoamine profiles. Congenit Anom (Kyoto) 2022; 62:169-180. [PMID: 35531602 DOI: 10.1111/cga.12472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Abstract
Dietary folic acid augmentation during gestation reduces neurodevelopmental disorder risk in offspring; however, it is still unclear if excessive maternal folic acid intake can impair brain function in offspring. We examined if excessive folic acid intake throughout gestation altered the behavior of male offspring under poor nutrition during early gestation (E5.5-E11.5). Dams were divided into four groups: control (CON, 2 mg folic acid/kg of food), excessive folic acid fortification (FF, 10 mg folic acid/kg of food), undernutrition (UN, 40% food reduction from E5.5-E11.5), and excessive folic acid fortification plus undernutrition (UN-FF). Excess maternal folic acid fortification induced hyperactivity in the open-field and lower anxiety-like behavior in the elevated plus maze at 9 weeks of age. These behavioral changes were accompanied by reduced dopamine in the prefrontal cortex (PFC), norepinephrine in the amygdala, and 5-hydroxytryptamine (5-HT) in the dorsal midbrain (DM), PFC, and amygdala where 5-HT neurons project from the DM. Furthermore, canonical discriminant analysis, including dopamine and DOPAC concentrations in the PFC, norepinephrine concentrations in the PFC, amygdala, and pons, and 5-HT and 5-HIAA concentrations in the amygdala and DM, correctly classified 73.5% of the offspring in CON, FF, UN, and UN-FF groups. The first discriminant function mainly classified groups based on nutritional status, whereas the second function mainly classified groups based on folic acid intake. Our study suggests that combined transformations of brain monoamine profiles by maternal undernutrition and excess folic acid intake is involved in the behavioral alteration of offsprings.
Collapse
Affiliation(s)
- Tetsuo Ono
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan.,Omihachiman Community Medical Center, Omihachiman, Shiga, Japan
| | - Kodai Hino
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoko Kimura
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Physical Therapy, Kyoto Tachibana University, Yamashina-ku, Kyoto, Japan
| | - Yasuhiro Uchimura
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical Engineering, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takako Higa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Udagawa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
40
|
Dolphin H, Dukelow T, Finucane C, Commins S, McElwaine P, Kennelly SP. “The Wandering Nerve Linking Heart and Mind” – The Complementary Role of Transcutaneous Vagus Nerve Stimulation in Modulating Neuro-Cardiovascular and Cognitive Performance. Front Neurosci 2022; 16:897303. [PMID: 35784842 PMCID: PMC9245542 DOI: 10.3389/fnins.2022.897303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The vagus nerve is the longest nerve in the human body, providing afferent information about visceral sensation, integrity and somatic sensations to the CNS via brainstem nuclei to subcortical and cortical structures. Its efferent arm influences GI motility and secretion, cardiac ionotropy, chonotropy and heart rate variability, blood pressure responses, bronchoconstriction and modulates gag and cough responses via palatine and pharyngeal innervation. Vagus nerve stimulation has been utilized as a successful treatment for intractable epilepsy and treatment-resistant depression, and new non-invasive transcutaneous (t-VNS) devices offer equivalent therapeutic potential as invasive devices without the surgical risks. t-VNS offers exciting potential as a therapeutic intervention in cognitive decline and aging populations, classically affected by reduced cerebral perfusion by modulating both limbic and frontal cortical structures, regulating cerebral perfusion and improving parasympathetic modulation of the cardiovascular system. In this narrative review we summarize the research to date investigating the cognitive effects of VNS therapy, and its effects on neurocardiovascular stability.
Collapse
Affiliation(s)
- Helena Dolphin
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Helena Dolphin,
| | - Tim Dukelow
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Ciaran Finucane
- Department of Medical Physics, St James’s Hospital, Dublin, Ireland
| | - Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Paul McElwaine
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sean P. Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Doneray E, Yazici KU, Yazici IP, Ustundag B. Altered Arginine/Nitric Oxide Pathway in Children Diagnosed Attention Deficit Hyperactivity Disorder, and the Effect of 10 Weeks Methylphenidate Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:350-363. [PMID: 35466106 PMCID: PMC9048004 DOI: 10.9758/cpn.2022.20.2.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022]
Abstract
Objective In this study, we investigated the levels of arginine, nitric oxide (NO), asymmetric dimethylarginine (ADMA), and adrenomedullin that are presumed to play a role in attention deficit hyperactivity disorder (ADHD) etiology, and to compare the findings with healthy controls. Methods Thirty ADHD patients and thirty healthy control subjects aged 6−12 years were included in the study. Sociodemographic data form, Schedule for Affective Disorders and Schizophrenia for School Age Children-Present and Lifetime Version; Conners’ Parent/Teacher Rating Scale-Revised Long Form; Children’s Depression Inventory; and The State-Trait Anxiety Inventory for Children were applied to all cases. All participants included in the study were evaluated in terms of their serum arginine, NO, ADMA, and adrenomedullin levels. Subsequently, methylphenidate treatment was started in ADHD patients and blood parameters were tested again in the tenth week of treatment. Results At the start of the study, arginine and ADMA levels were significantly higher and NO and adrenomedullin levels were significantly lower in the ADHD group compared to the control group. Post-treatment arginine and ADMA levels were found to be significantly lower than in the pre-treatment period. There were no significant differences in NO and adrenomedullin levels before and after treatment. There was no correlation between scale scores and blood parameters. Conclusion These variations in the blood parameters of the ADHD group seem to be worth further investigation. Studies to be conducted with larger sample groups after longer-term treatment may provide new information about the alterations in neurobiological processes related to ADHD etiology and treatment.
Collapse
Affiliation(s)
- Ebru Doneray
- Department of Child and Adolescent Psychiatry, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Kemal Utku Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Ipek Percinel Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Bilal Ustundag
- Department of Biochemistry, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
42
|
Neural Control of Action Selection Among Innate Behaviors. Neurosci Bull 2022; 38:1541-1558. [PMID: 35633465 DOI: 10.1007/s12264-022-00886-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Nervous systems must not only generate specific adaptive behaviors, such as reproduction, aggression, feeding, and sleep, but also select a single behavior for execution at any given time, depending on both internal states and external environmental conditions. Despite their tremendous biological importance, the neural mechanisms of action selection remain poorly understood. In the past decade, studies in the model animal Drosophila melanogaster have demonstrated valuable neural mechanisms underlying action selection of innate behaviors. In this review, we summarize circuit mechanisms with a particular focus on a small number of sexually dimorphic neurons in controlling action selection among sex, fight, feeding, and sleep behaviors in both sexes of flies. We also discuss potentially conserved circuit configurations and neuromodulation of action selection in both the fly and mouse models, aiming to provide insights into action selection and the sexually dimorphic prioritization of innate behaviors.
Collapse
|
43
|
Wilke SA, Johnson CL, Corlier J, Marder KG, Wilson AC, Pleman CM, Leuchter AF. Psychostimulant use and clinical outcome of repetitive transcranial magnetic stimulation treatment of major depressive disorder. Depress Anxiety 2022; 39:397-406. [PMID: 35389536 DOI: 10.1002/da.23255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for major depressive disorder (MDD). Psychostimulant medication use may be associated with improved rTMS outcomes, but a detailed understanding of these relationships is lacking. METHODS We compared MDD subjects taking psychostimulants (n = 37) with those not taking one of these medications (n = 53) during a course of 30 rTMS treatments. Changes in the 30-item Inventory of Depressive Symptomatology Self Report (IDS-SR30) subscale scores were examined at treatment 30. We also subdivided subjects into three categories based on drug mechanism and looked at IDS-SR30 total score after treatments 10, 20, and 30. RESULTS Subjects taking psychostimulants had a significantly greater overall clinical improvement than those not taking these medications at treatment 30. The psychostimulant group also improved significantly more than the control group in "sleep" and "mood/cognition," but not "anxiety/arousal" IDS-SR30 subscales. No differences were detected among individual drug categories, which may reflect the limited sample size for individual medications. There was a negative dose-response relationship for the lisdexamfetamine/dextroamphetamine group, in which lower doses were associated with better clinical outcome. CONCLUSIONS Psychostimulant medications may enhance clinical efficacy of rTMS for MDD by preferentially impacting specific symptom domains. For some psychostimulants, these effects may be dose-dependent. Prospective clinical trials are needed to guide psychostimulant augmentation of brain stimulation therapies.
Collapse
Affiliation(s)
- Scott A Wilke
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Crystal L Johnson
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Juliana Corlier
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Katharine G Marder
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Andrew C Wilson
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Christopher M Pleman
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Andrew F Leuchter
- Neuromodulation Division, TMS Clinical and Research Service, Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
44
|
Campos SM, Erley A, Ashraf Z, Wilczynski W. Signaler's Vasotocin Alters the Relationship between the Responder's Forebrain Catecholamines and Communication Behavior in Lizards (Anolis carolinensis). BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:184-196. [PMID: 35320812 DOI: 10.1159/000524217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Dynamic fluctuations in the distribution of catecholamines across the brain modulate the responsiveness of vertebrates to social stimuli. Previous work demonstrates that green anoles (Anolis carolinensis) increase chemosensory behavior in response to males treated with exogenous arginine vasotocin (AVT), but the neurochemical mechanisms underlying this behavioral shift remains unclear. Since central catecholamine systems, including dopamine, rapidly activate in response to social stimuli, we tested whether exogenous AVT in signalers (stimulus animals) impacts catecholamine concentrations in the forebrain (where olfactory and visual information are integrated and processed) of untreated lizard responders. We also tested whether AVT influences the relationship between forebrain catecholamine concentrations and communication behavior in untreated receivers. We measured global catecholamine (dopamine = DA, epinephrine = Epi, and norepinephrine = NE) concentrations in the forebrain of untreated responders using high-performance liquid chromatography-mass spectrometry following either a 30-min social interaction with a stimulus male or a period of social isolation. Stimulus males were injected with exogenous AVT or vehicle saline (SAL). We found that global DA, but not Epi or NE, concentrations were elevated in lizards responding to SAL-males relative to isolated lizards. Lizards interacting with AVT-males had DA, Epi and NE concentrations that were not significantly different from SAL or isolated groups. For behavior, we found a significant effect of social treatment (AVT vs. SAL) on the relationships between (1) DA concentrations and the motivation to perform a chemical display (latency to tongue flick) and (2) Epi concentrations and time spent displaying mostly green body coloration. We also found a significant negative correlation between DA concentrations and the latency to perform a visual display but found no effect of social treatment on this relationship. These data suggest that catecholamine concentrations in the forebrain of untreated responders are associated with chemical and visual communication in lizards and that signaler AVT alters this relationship for some, but not all, aspects of social communication.
Collapse
Affiliation(s)
- Stephanie M Campos
- Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| | | | - Zoha Ashraf
- Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Walter Wilczynski
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Boberg E, Iacobaeus E, Greenfield MS, Wang Y, Msghina M, Le Blanc K. Reduced prefrontal cortex and sympathetic nervous system activity correlate with fatigue after aHSCT. Bone Marrow Transplant 2022; 57:360-369. [PMID: 34864824 PMCID: PMC8907068 DOI: 10.1038/s41409-021-01539-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Long-term fatigue and cognitive dysfunction affects 35% of allogeneic haematopoietic stem cell transplantation (aHSCT) survivors, suggesting a dysfunctional prefrontal cortex. In this study, we assessed prefrontal cortex and sympathetic nervous system activity in aHSCT patients with fatigue (n = 12), non-fatigued patients (n = 12) and healthy controls (n = 27). Measurement of near-infrared spectroscopy and electrodermal activity was carried out at rest and during cognitive performance (Stroop, verbal fluency and emotion regulation tasks). Prefrontal cortex and sympathetic nervous system activity were also analyzed in response to dopamine and noradrenaline increase after a single dose of methylphenidate. Baseline cognitive performance was similar in the two patient groups. However, after methylphenidate, only non-fatigued patients improved in Stroop accuracy and had better verbal fluency task performance compared to the fatigued group. Task-related activation of prefrontal cortex in fatigued patients was lower compared to non-fatigued patients during all cognitive tests, both before and after methylphenidate administration. During the Stroop task, reaction time, prefrontal cortex activation, and sympathetic nervous system activity were all lower in fatigued patients compared to healthy controls, but similar in non-fatigued patients and healthy controls.Reduced prefrontal cortex activity and sympathetic arousal suggests novel treatment targets to improve fatigue after aHSCT.
Collapse
Affiliation(s)
- Erik Boberg
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Haematology, Karolinska University Hospital, Stockholm, Sweden.
| | - Ellen Iacobaeus
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Yanlu Wang
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Radiology, Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Mussie Msghina
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
46
|
Chuang YC, Wang CY, Huang WL, Wang LJ, Kuo HC, Chen YC, Huang YJ. Two meta-analyses of the association between atopic diseases and core symptoms of attention deficit hyperactivity disorder. Sci Rep 2022; 12:3377. [PMID: 35232975 PMCID: PMC8888762 DOI: 10.1038/s41598-022-07232-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Studies in the field of neuroscience and psychology have hypothesized that a causal association exists between atopic diseases and attention-deficit/hyperactivity disorder (ADHD). Previous systematic reviews and meta-analyses have reported a higher risk of ADHD in children with atopic diseases; however, the relationship between ADHD symptoms and atopic diseases remains unclear. We systematically reviewed observational cross-sectional and longitudinal studies to investigate the relationship between atopic diseases and ADHD symptom severity (hyperactivity/impulsivity and inattention). The majority of studies showed a statistically significant association between atopic diseases and both ADHD symptoms, with substantial heterogeneity in the outcome of hyperactivity/impulsivity. Remarkably decreased heterogeneity and statistical significance were observed in the second meta-analysis of ADHD-related behavior symptoms in atopic patients without ADHD. Our study indicated that atopic diseases not only associated with ADHD but also ADHD symptoms severity. This association was even observed in children with subthreshold ADHD, indicating that atopic diseases may play a role in the spectrum of ADHD symptom severity. Trial registration: This study was registered on PROSPERO (registration ID: CRD42020213219).
Collapse
Affiliation(s)
- Yu-Chieh Chuang
- Department of General Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ching-Yun Wang
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jui Huang
- Department of Psychiatry and Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
47
|
Shen B, Yang X, Noll SE, Yang X, Liu Y, Jia S, Zhao J, Zheng S, Zare RN, Zhong H. Cell-Based Ambient Venturi Autosampling and Matrix-Assisted Laser Desorption Ionization Mass Spectrometric Imaging of Secretory Products. Anal Chem 2022; 94:3456-3466. [PMID: 35157418 DOI: 10.1021/acs.analchem.1c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cell-based ambient Venturi autosampling device was established for the monitoring of dynamic cell secretions in response to chemical stimulations in real time with temporal resolution on the order of a second. Detection of secretory products of cells and screening of bioactive compounds are primarily performed on an ambient autosampling probe and matrix-assisted laser desorption ionization (MALDI) mass spectrometry. It takes advantage of the Venturi effect in which the fluid flowing through an inlet capillary tube is automatically fed into a parallel array of multiple outlet capillaries. Cells are incubated inside the inlet capillary tube that is connected with either a syringe pump or liquid chromatography (LC) for the transfer of single compounds or mixtures, respectively. Secretory products were continuously pushed into the outlet capillaries and then spotted into a compressed thin film of the matrix material 9-aminoacridine for MALDI mass spectrometric imaging. In physiological pH, without the use of high voltages and without the use of chemical derivatizations, this platform can be applied to the direct assay of neurotransmitters or other secretory products released from cells in response to the stimulation of individual compounds or LC-separated eluates of natural mixtures. It provides a new way to identify bioactive compounds with a detection limit down to 0.04 fmol/pixel.
Collapse
Affiliation(s)
- Baojie Shen
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Xiaoyu Yang
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Sarah Elizabeth Noll
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaojie Yang
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Yanping Liu
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Shanshan Jia
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Jiaxing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Shi Zheng
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hongying Zhong
- Laboratory of Mass Spectrometry, College of Chemistry, Key Laboratory of Pesticides and Chemical Biology, Central China Normal University, Ministry of Education, Wuhan, Hubei 430079, P. R. China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
48
|
Yan Y, Aierken A, Wang C, Jin W, Quan Z, Wang Z, Qing H, Ni J, Zhao J. Neuronal Circuits Associated with Fear Memory: Potential Therapeutic Targets for Posttraumatic Stress Disorder. Neuroscientist 2022; 29:332-351. [PMID: 35057666 DOI: 10.1177/10738584211069977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder that is associated with long-lasting memories of traumatic experiences. Extinction and discrimination of fear memory have become therapeutic targets for PTSD. Newly developed optogenetics and advanced in vivo imaging techniques have provided unprecedented spatiotemporal tools to characterize the activity, connectivity, and functionality of specific cell types in complicated neuronal circuits. The use of such tools has offered mechanistic insights into the exquisite organization of the circuitry underlying the extinction and discrimination of fear memory. This review focuses on the acquisition of more detailed, comprehensive, and integrated neural circuits to understand how the brain regulates the extinction and discrimination of fear memory. A future challenge is to translate these researches into effective therapeutic treatment for PTSD from the perspective of precise regulation of the neural circuits associated with the extinction and discrimination of fear memories.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wei Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
49
|
Distinct Roles for Prefrontal Dopamine D1 and D2 Neurons in Social Hierarchy. J Neurosci 2022; 42:313-324. [PMID: 34844989 PMCID: PMC8802944 DOI: 10.1523/jneurosci.0741-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/11/2023] Open
Abstract
Neuronal activity in the prefrontal cortex (PFC) controls dominance hierarchies in groups of animals. Dopamine (DA) strongly modulates PFC activity mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs). Still, it is unclear how these two subpopulations of DA receptor-expressing neurons in the PFC regulate social dominance hierarchy. Here, we demonstrate distinct roles for prefrontal D1R- and D2R-expressing neurons in establishing social hierarchy, with D1R+ neurons determining dominance and D2R+ neurons for subordinate. Ex vivo whole-cell recordings revealed that the dominant status of male mice correlates with rectifying AMPAR transmission and stronger excitatory synaptic strength onto D1R+ neurons in PFC pyramidal neurons. In contrast, the submissive status is associated with higher neuronal excitability in D2R+ neurons. Moreover, simultaneous manipulations of synaptic efficacy of D1R+ neurons in dominant male mice and neuronal excitability of D2R+ neurons of their male subordinates switch their dominant-subordinate relationship. These results reveal that prefrontal D1R+ and D2R+ neurons have distinct but synergistic functions in the dominance hierarchy, and DA-mediated regulation of synaptic strengths acts as a powerful behavioral determinant of intermale social rank.SIGNIFICANCE STATEMENT Dominance hierarchy exists widely among animals who confront social conflict. Studies have indicated that social status largely relies on the neuronal activity in the PFC, but how dopamine influences social hierarchy via subpopulation of prefrontal neurons is still elusive. Here, we explore the cell type-specific role of dopamine receptor-expressing prefrontal neurons in the dominance-subordinate relationship. We found that the synaptic strength of D1 receptor-expressing neurons determines the dominant status, whereas hyperactive D2-expressing neurons are associated with the subordinate status. These findings highlight how social conflicts recruit distinct cortical microcircuits to drive different behaviors and reveal how D1- and D2-receptor enriched neurocircuits in the PFC establish a social hierarchy.
Collapse
|
50
|
Jian-Min C, Zhi-Yuan W, Shi-Xuan W, Rui S, Ning W, Jin L. Effects of Lisdexamfetamine, a Prodrug of D-Amphetamine, on Locomotion, Spatial Cognitive Processing and Neurochemical Profiles in Rats: A Comparison With Immediate-Release Amphetamine. Front Psychiatry 2022; 13:885574. [PMID: 35558431 PMCID: PMC9086831 DOI: 10.3389/fpsyt.2022.885574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
D-amphetamine has been used to enhance cognitive performance over the last few decades. Due to the rapid absorption after administration, d-amphetamine shows narrow effective window and severe abuse potential. Lisdexamfetamine, a prodrug of d-amphetamine, reduces the magnitude of plasma d-amphetamine concentration and prolongs the action duration when compared with immediate-release d-amphetamine at equimolar doses. However, the differences of these two drugs, which produce distinct pharmacokinetic characteristics, in cognition improvement still unclear. In present study, we compared the effects of d-amphetamine (i.p) and lisdexamfetamine (p.o) at equimolar doses (0.2, 0.5, 1.5, 4.5, and 13.5 mg/kg of d-amphetamine base) on locomotion, spatial working memory and recognition memory in rats. Given the crucial involvement of dopamine neurotransmitter system within the medial prefrontal cortex (mPFC) in cognitive processing, microdialysis was conducted to profile the difference in neurochemical characteristics between the two drugs. In our results, d-amphetamine ranges from 0.5 to 1.5 mg/kg significantly increased locomotor activity. However, d-amphetamine ranges from 0.2 to 13.5 mg/kg failed to improve spatial working memory and recognition memory in Y-maze-based spontaneous alternation and two-trial delayed alternation tasks of rats, respectively. In contrast, lisdexamfetamine with 4.5 mg/kg significantly increased the locomotion and improved both spatial working and recognition memory. Further, microdialysis showed that lisdexamfetamine induced lower magnitude and longer duration of extracellular dopamine increase than that of d-amphetamine. These results suggest that lisdexamfetamine was more effective than d-amphetamine in improving spatial cognitive performance, which was attributed to the steady and lasting dopamine release pattern within the mPFC.
Collapse
Affiliation(s)
- Chen Jian-Min
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wang Zhi-Yuan
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wu Shi-Xuan
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Song Rui
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wu Ning
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Li Jin
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|