1
|
Winther S, Lundell H, Rafael-Patiño J, Andersson M, Thiran JP, Dyrby TB. Susceptibility-induced internal gradients reveal axon morphology and cause anisotropic effects in the diffusion-weighted MRI signal. Sci Rep 2024; 14:29636. [PMID: 39609481 PMCID: PMC11605075 DOI: 10.1038/s41598-024-79043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Diffusion-weighted MRI is our most promising method for estimating microscopic tissue morphology in vivo. The signal acquisition is based on scanner-generated external magnetic gradients. However, it will also be affected by susceptibility-induced internal magnetic gradients caused by interactions between the tissue and the static magnetic field of the scanner. With 3D in silico experiments, we show how internal gradients cause morphology-, compartment-, and orientation-dependence of spin-echo and pulsed-gradient spin-echo experiments in myelinated axons. These effects surpass those observed with previous 2D modelling corresponding to straight cylinders. For an ex vivo monkey brain, we observe the orientation-dependence generated only when including non-circular cross-sections in the in silico morphological configurations, and find orientation-dependent deviation of up to 17% for diffusion tensor metrics. Interestingly, we find that the orientation-dependence not only biases the signal across different brain regions, but also carries a sensitivity to the morphology of axonal cross-sections which is not attainable by the idealised theoretical diffusion-weighted MRI signal.
Collapse
Affiliation(s)
- S Winther
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark.
| | - H Lundell
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - J Rafael-Patiño
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - M Andersson
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark
| | - J-P Thiran
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - T B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark.
| |
Collapse
|
2
|
Fabian‐Fine R, Weaver AL, Roman AG, Winters MJ, DeWitt JC. Myelinated Glial Cells: Their Proposed Role in Waste Clearance and Neurodegeneration in Arachnid and Human Brain. J Comp Neurol 2024; 532:e70000. [PMID: 39610046 PMCID: PMC11605019 DOI: 10.1002/cne.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
One of the most important goals in biomedical sciences is understanding the causal mechanisms of neurodegeneration. A prevalent hypothesis relates to impaired waste clearance mechanisms from the brain due to reported waste aggregation in the brains of Alzheimer patients, including amyloid-β plaques and neurofibrillary tau tangles. Currently, our understanding of the mechanisms by which waste is removed from the brain is only fragmentary. Here we provide compelling evidence that waste clearance from brain tissue is highly conserved in arachnids and humans. Utilizing RNAscope in situ hybridization, immunohistochemical, ultrastructural, and histological approaches, we demonstrate that cellular debris in spider neurons is engulfed by myelin-forming ependymal glial cells that transect into neuronal somata and form myelin-derived waste-internalizing receptacles. These canal systems channel this debris into the lymphatic system likely in an aquaporin-4 (AQP4) water channel-dependent manner. We provide robust evidence that a similar process may be true in human hippocampus where vast numbers of myelinated AQP4-immunoreactive ependymal glial cells send cellular projections into the somata of neurons and glial cells where they differentiate into waste internalizing receptacles. In the brains of Alzheimer decedents, hypertrophic impairment of these myelinated glial cells leads to the catastrophic obstruction and depletion of neuronal cytoplasm into the ependymal glial cells. At the cellular level, the structural impairment of macroglia leads to swelling myelin protrusions that appear as electron-lucent circular profiles, explaining spongiform abnormalities associated with the neurodegenerative diseases described here. We propose to term this novel type of macroglia-mediated cell death "gliaptosis."
Collapse
Affiliation(s)
- Ruth Fabian‐Fine
- Department of BiologySaint Michael's CollegeColchesterVermontUSA
| | - Adam L. Weaver
- Department of BiologySaint Michael's CollegeColchesterVermontUSA
| | - Abigail G. Roman
- Department of BiologySaint Michael's CollegeColchesterVermontUSA
| | | | - John C. DeWitt
- Department of Pathology and Laboratory Medicine, Robert LarnerMD College of Medicine at the University of Vermont, University of Vermont Medical CenterBurlingtonVermontUSA
| |
Collapse
|
3
|
Simons M, Gibson EM, Nave KA. Oligodendrocytes: Myelination, Plasticity, and Axonal Support. Cold Spring Harb Perspect Biol 2024; 16:a041359. [PMID: 38621824 PMCID: PMC11444305 DOI: 10.1101/cshperspect.a041359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The myelination of axons has evolved to enable fast and efficient transduction of electrical signals in the vertebrate nervous system. Acting as an electric insulator, the myelin sheath is a multilamellar membrane structure around axonal segments generated by the spiral wrapping and subsequent compaction of oligodendroglial plasma membranes. These oligodendrocytes are metabolically active and remain functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of metabolites and macromolecules to and from the internodal periaxonal space under the myelin sheath. Increasing evidence indicates that oligodendrocyte numbers, specifically in the forebrain, and myelin as a dynamic cellular compartment can both respond to physiological demands, collectively referred to as adaptive myelination. This review summarizes our current understanding of how myelin is generated, how its function is dynamically regulated, and how oligodendrocytes support the long-term integrity of myelinated axons.
Collapse
Affiliation(s)
- Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 80802, Germany
- German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, Munich 81377, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford 94305, California, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37075, Germany
| |
Collapse
|
4
|
Craig GA, Ryan L, Thapar J, McNamara NB, Hoffmann A, Page D, Rose J, Cox SR, Miron VE. Reflective imaging of myelin integrity in the human and mouse central nervous systems. Front Cell Neurosci 2024; 18:1408182. [PMID: 39049821 PMCID: PMC11266064 DOI: 10.3389/fncel.2024.1408182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
The structural integrity of myelin sheaths in the central nervous system (CNS) is crucial for the maintenance of its function. Electron microscopy (EM) is the gold standard for visualizing individual myelin sheaths. However, the tissue processing involved can induce artifacts such as shearing of myelin, which can be difficult to distinguish from true myelin abnormalities. Spectral confocal reflectance (SCoRe) microscopy is an imaging technique that leverages the differential refractive indices of compacted CNS myelin in comparison to surrounding parenchyma to detect individual compact myelin internodes with reflected light, positioning SCoRe as a possible complementary method to EM to assess myelin integrity. Whether SCoRe is sensitive enough to detect losses in myelin compaction when myelin quantity is otherwise unaffected has not yet been directly tested. Here, we assess the capacity of SCoRe to detect differences in myelin compaction in two mouse models that exhibit a loss of myelin compaction without demyelination: microglia-deficient mice (Csf1r-FIRE Δ/Δ) and wild-type mice fed with the CSF1R inhibitor PLX5622. In addition, we compare the ability to detect compact myelin sheaths using SCoRe in fixed-frozen versus paraffin-embedded mouse tissue. Finally, we show that SCoRe can successfully detect individual sheaths in aged human paraffin-embedded samples of deep white matter regions. As such, we find SCoRe to be an attractive technique to investigate myelin integrity, with sufficient sensitivity to detect myelin ultrastructural abnormalities and the ability to perform equally well in tissue preserved using different methods.
Collapse
Affiliation(s)
- Georgina A. Craig
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy Ryan
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jessica Thapar
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - Niamh B. McNamara
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alana Hoffmann
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Danielle Page
- Lothian Birth Cohorts, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie Rose
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Simon R. Cox
- Lothian Birth Cohorts, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E. Miron
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Mercier O, Quilichini PP, Magalon K, Gil F, Ghestem A, Richard F, Boudier T, Cayre M, Durbec P. Transient demyelination causes long-term cognitive impairment, myelin alteration and network synchrony defects. Glia 2024; 72:960-981. [PMID: 38363046 DOI: 10.1002/glia.24513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
In the adult brain, activity-dependent myelin plasticity is required for proper learning and memory consolidation. Myelin loss, alteration, or even subtle structural modifications can therefore compromise the network activity, leading to functional impairment. In multiple sclerosis, spontaneous myelin repair process is possible, but it is heterogeneous among patients, sometimes leading to functional recovery, often more visible at the motor level than at the cognitive level. In cuprizone-treated mouse model, massive brain demyelination is followed by spontaneous and robust remyelination. However, reformed myelin, although functional, may not exhibit the same morphological characteristics as developmental myelin, which can have an impact on the activity of neural networks. In this context, we used the cuprizone-treated mouse model to analyze the structural, functional, and cognitive long-term effects of transient demyelination. Our results show that an episode of demyelination induces despite remyelination long-term cognitive impairment, such as deficits in spatial working memory, social memory, cognitive flexibility, and hyperactivity. These deficits were associated with a reduction in myelin content in the medial prefrontal cortex (mPFC) and hippocampus (HPC), as well as structural myelin modifications, suggesting that the remyelination process may be imperfect in these structures. In vivo electrophysiological recordings showed that the demyelination episode altered the synchronization of HPC-mPFC activity, which is crucial for memory processes. Altogether, our data indicate that the myelin repair process following transient demyelination does not allow the complete recovery of the initial myelin properties in cortical structures. These subtle modifications alter network features, leading to prolonged cognitive deficits in mice.
Collapse
Affiliation(s)
- Océane Mercier
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascale P Quilichini
- U1106 after INS, Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Karine Magalon
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Florian Gil
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Antoine Ghestem
- U1106 after INS, Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Richard
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Thomas Boudier
- Aix Marseille Univ, Turing Centre for Living Systems, Marseille, France
| | - Myriam Cayre
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascale Durbec
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| |
Collapse
|
6
|
Creekmore BC, Kixmoeller K, Black BE, Lee EB, Chang YW. Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling. Nat Commun 2024; 15:2660. [PMID: 38531877 PMCID: PMC10965902 DOI: 10.1038/s41467-024-47066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Ultrastructure of human brain tissue has traditionally been examined using electron microscopy (EM) following fixation, staining, and sectioning, which limit resolution and introduce artifacts. Alternatively, cryo-electron tomography (cryo-ET) allows higher resolution imaging of unfixed cellular samples while preserving architecture, but it requires samples to be vitreous and thin enough for transmission EM. Due to these requirements, cryo-ET has yet to be employed to investigate unfixed, never previously frozen human brain tissue. Here we present a method for generating lamellae in human brain tissue obtained at time of autopsy that can be imaged via cryo-ET. We vitrify the tissue via plunge-freezing and use xenon plasma focused ion beam (FIB) milling to generate lamellae directly on-grid at variable depth inside the tissue. Lamellae generated in Alzheimer's disease brain tissue reveal intact subcellular structures including components of autophagy and potential pathologic tau fibrils. Furthermore, we reveal intact compact myelin and functional cytoplasmic expansions. These images indicate that plasma FIB milling with cryo-ET may be used to elucidate nanoscale structures within the human brain.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Chen J, Yu Y, Wang S, Shen Y, Tian Y, Rizzello L, Luo K, Tian X, Wang T, Xiong L. Nanoscale myelinogenesis image in developing brain via super-resolution nanoscopy by near-infrared emissive curcumin-BODIPY derivatives. J Nanobiotechnology 2024; 22:106. [PMID: 38468300 DOI: 10.1186/s12951-024-02377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the intricate nanoscale architecture of neuronal myelin during central nervous system development is of utmost importance. However, current visualization methods heavily rely on electron microscopy or indirect fluorescent method, lacking direct and real-time imaging capabilities. Here, we introduce a breakthrough near-infrared emissive curcumin-BODIPY derivative (MyL-1) that enables direct visualization of myelin structure in brain tissues. The remarkable compatibility of MyL-1 with stimulated emission depletion nanoscopy allows for unprecedented super-resolution imaging of myelin ultrastructure. Through this innovative approach, we comprehensively characterize the nanoscale myelinogenesis in three dimensions over the course of brain development, spanning from infancy to adulthood in mouse models. Moreover, we investigate the correlation between myelin substances and Myelin Basic Protein (MBP), shedding light on the essential role of MBP in facilitating myelinogenesis during vertebral development. This novel material, MyL-1, opens up new avenues for studying and understanding the intricate process of myelinogenesis in a direct and non-invasive manner, paving the way for further advancements in the field of nanoscale neuroimaging.
Collapse
Affiliation(s)
- Junyang Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000, Guizhou, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610000, China
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifan Yu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Siyou Wang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yu Shen
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
- The National Institute of Molecular Genetics (INGM), Via Francesco Sforza 35, 20122, Milan, Italy
| | - Kui Luo
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Xiaohe Tian
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000, Guizhou, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610000, China.
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghua Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000, Guizhou, China.
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liulin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
8
|
Creekmore BC, Kixmoeller K, Black BE, Lee EB, Chang YW. Native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557623. [PMID: 37745569 PMCID: PMC10516044 DOI: 10.1101/2023.09.13.557623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Ultrastructure of human brain tissue has traditionally been examined using electron microscopy (EM) following chemical fixation, staining, and mechanical sectioning, which limit attainable resolution and introduce artifacts. Alternatively, cryo-electron tomography (cryo-ET) offers the potential to image unfixed cellular samples at higher resolution while preserving their native structures, but it requires samples to be frozen free from crystalline ice and thin enough to image via transmission EM. Due to these requirements, cryo-ET has yet to be employed to investigate the native ultrastructure of unfixed, never previously frozen human brain tissue. Here we present a method for generating lamellae in human brain tissue obtained at time of autopsy that can be imaged via cryo-ET. We vitrify the tissue directly on cryo-EM grids via plunge-freezing, as opposed to high pressure freezing which is generally used for thick samples. Following vitrification, we use xenon plasma focused ion beam (FIB) milling to generate lamellae directly on-grid. In comparison to gallium FIB, which is commonly used for biological samples, xenon plasma FIB is powerful enough to efficiently mill large volume samples, such as human brain tissue. Additionally, our approach allows for lamellae to be generated at variable depth inside the tissue as opposed to being limited to starting at the surface of the tissue. Lamellae generated in Alzheimer's disease brain tissue and imaged by cryo-ET reveal intact subcellular structures including components of autophagy and potential tau fibrils. Furthermore, we visualize myelin revealing intact compact myelin and functional cytoplasmic expansions such as cytoplasmic channels and the inner tongue. From these images we also measure the dimensions of myelin membranes, providing insight into how myelin basic protein forces out oligodendrocyte cytoplasm to form compact myelin and tightly links intracellular polar head groups of the oligodendrocyte plasma membrane. This approach provides a first view of unfixed, never previously frozen human brain tissue prepared by cryo-plasma FIB milling and imaged at high resolution by cryo-ET.
Collapse
Affiliation(s)
- Benjamin C. Creekmore
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B. Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Georgiadis M, Menzel M, Reuter JA, Born DE, Kovacevich SR, Alvarez D, Taghavi HM, Schroeter A, Rudin M, Gao Z, Guizar-Sicairos M, Weiss TM, Axer M, Rajkovic I, Zeineh MM. Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering. Acta Biomater 2023; 164:317-331. [PMID: 37098400 PMCID: PMC10811447 DOI: 10.1016/j.actbio.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Abstract
Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons. X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods. STATEMENT OF SIGNIFICANCE: To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.
Collapse
Affiliation(s)
- Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Miriam Menzel
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany; Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Jan A Reuter
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Donald E Born
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Dario Alvarez
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Aileen Schroeter
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Zirui Gao
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - Thomas M Weiss
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, USA
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Ivan Rajkovic
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, USA
| | - Michael M Zeineh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Arinrad S, Depp C, Siems SB, Sasmita AO, Eichel MA, Ronnenberg A, Hammerschmidt K, Lüders KA, Werner HB, Ehrenreich H, Nave KA. Isolated catatonia-like executive dysfunction in mice with forebrain-specific loss of myelin integrity. eLife 2023; 12:70792. [PMID: 36892455 PMCID: PMC9998085 DOI: 10.7554/elife.70792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
A key feature of advanced brain aging includes structural defects of intracortical myelin that are associated with secondary neuroinflammation. A similar pathology is seen in specific myelin mutant mice that model 'advanced brain aging' and exhibit a range of behavioral abnormalities. However, the cognitive assessment of these mutants is problematic because myelin-dependent motor-sensory functions are required for quantitative behavioral readouts. To better understand the role of cortical myelin integrity for higher brain functions, we generated mice lacking Plp1, encoding the major integral myelin membrane protein, selectively in ventricular zone stem cells of the mouse forebrain. In contrast to conventional Plp1 null mutants, subtle myelin defects were restricted to the cortex, hippocampus, and underlying callosal tracts. Moreover, forebrain-specific Plp1 mutants exhibited no defects of basic motor-sensory performance at any age tested. Surprisingly, several behavioral alterations reported for conventional Plp1 null mice (Gould et al., 2018) were absent and even social interactions appeared normal. However, with novel behavioral paradigms, we determined catatonia-like symptoms and isolated executive dysfunction in both genders. This suggests that loss of myelin integrity has an impact on cortical connectivity and underlies specific defects of executive function. These observations are likewise relevant for human neuropsychiatric conditions and other myelin-related diseases.
Collapse
Affiliation(s)
- Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constanze Depp
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Maria A Eichel
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Katja A Lüders
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
11
|
Zhang Y, Zhang M, Xie Z, Ding Y, Huang J, Yao J, Lv Y, Zuo J. Research Progress and Direction of Novel Organelle-Migrasomes. Cancers (Basel) 2022; 15:cancers15010134. [PMID: 36612129 PMCID: PMC9817827 DOI: 10.3390/cancers15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Migrasomes are organelles that are similar in structure to pomegranates, up to 3 μm in diameter, and contain small vesicles with a diameter of 50-100 nm. These membranous organelles grow at the intersections or tips of retracting fibers at the back of migrating cells. The process by which cells release migrasomes and their contents outside the cell is called migracytosis. The signal molecules are packaged in the migrasomes and released to the designated location by migrasomes to activate the surrounding cells. Finally, the migrasomes complete the entire process of information transmission. In this sense, migrasomes integrate time, space, and specific chemical information, which are essential for regulating physiological processes such as embryonic development and tumor invasion and migration. In this review, the current research progress of migrasomes, including the discovery of migrasomes and migracytosis, the structure of migrasomes, and the distribution and functions of migrasomes is discussed. The migratory marker protein TSPAN4 is highly expressed in various cancers and is associated with cancer invasion and migration. Therefore, there is still much research space for the pathogenesis of migratory bodies and cancer. This review also makes bold predictions and prospects for the research directions of the combination of migrasomes and clinical applications.
Collapse
Affiliation(s)
- Yu Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Minghui Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Zhuoyi Xie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Yubo Ding
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Jialu Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Jingwei Yao
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Yufan Lv
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Jianhong Zuo
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
- Clinical Laboratory, The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421900, China
- Correspondence:
| |
Collapse
|
12
|
Meschkat M, Steyer AM, Weil MT, Kusch K, Jahn O, Piepkorn L, Agüi-Gonzalez P, Phan NTN, Ruhwedel T, Sadowski B, Rizzoli SO, Werner HB, Ehrenreich H, Nave KA, Möbius W. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun 2022; 13:1163. [PMID: 35246535 PMCID: PMC8897471 DOI: 10.1038/s41467-022-28720-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Myelin, the electrically insulating sheath on axons, undergoes dynamic changes over time. However, it is composed of proteins with long lifetimes. This raises the question how such a stable structure is renewed. Here, we study the integrity of myelinated tracts after experimentally preventing the formation of new myelin in the CNS of adult mice, using an inducible Mbp null allele. Oligodendrocytes survive recombination, continue to express myelin genes, but they fail to maintain compacted myelin sheaths. Using 3D electron microscopy and mass spectrometry imaging we visualize myelin-like membranes failing to incorporate adaxonally, most prominently at juxta-paranodes. Myelinoid body formation indicates degradation of existing myelin at the abaxonal side and the inner tongue of the sheath. Thinning of compact myelin and shortening of internodes result in the loss of about 50% of myelin and axonal pathology within 20 weeks post recombination. In summary, our data suggest that functional axon-myelin units require the continuous incorporation of new myelin membranes. Myelin is formed of proteins of long half-lives. The mechanisms of renewal of such a stable structure are unclear. Here, the authors show that myelin integrity requires continuous myelin synthesis at the inner tongue, contributing to the maintenance of a functional axon-myelin unit.
Collapse
Affiliation(s)
- Martin Meschkat
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Abberior Instruments GmbH, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Imaging Centre, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marie-Theres Weil
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Jahn
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Piepkorn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Nhu Thi Ngoc Phan
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Boguslawa Sadowski
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Silvio O Rizzoli
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hannelore Ehrenreich
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
13
|
Yong Y, Hunter-Chang S, Stepanova E, Deppmann C. Axonal spheroids in neurodegeneration. Mol Cell Neurosci 2021; 117:103679. [PMID: 34678457 PMCID: PMC8742877 DOI: 10.1016/j.mcn.2021.103679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022] Open
Abstract
Axonal spheroids are bubble-like biological features that form on most degenerating axons, yet little is known about their influence on degenerative processes. Their formation and growth has been observed in response to various degenerative triggers such as injury, oxidative stress, inflammatory factors, and neurotoxic molecules. They often contain cytoskeletal elements and organelles, and, depending on the pathological insult, can colocalize with disease-related proteins such as amyloid precursor protein (APP), ubiquitin, and motor proteins. Initial formation of axonal spheroids depends on the disruption of axonal and membrane tension governed by cytoskeleton structure and calcium levels. Shortly after spheroid formation, the engulfment signal phosphatidylserine (PS) is exposed on the outer leaflet of spheroid plasma membrane, suggesting an important role for axonal spheroids in phagocytosis and debris clearance during degeneration. Spheroids can grow until they rupture, allowing pro-degenerative factors to exit the axon into extracellular space and accelerating neurodegeneration. Though much remains to be discovered in this area, axonal spheroid research promises to lend insight into the etiologies of neurodegenerative disease, and may be an important target for therapeutic intervention. This review summarizes over 100 years of work, describing what is known about axonal spheroid structure, regulation and function.
Collapse
Affiliation(s)
- Yu Yong
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sarah Hunter-Chang
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Ekaterina Stepanova
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
14
|
Rupnik M, Baker D, Selwood DL. Oligodendrocytes, BK channels and remyelination. F1000Res 2021; 10:781. [PMID: 34909188 PMCID: PMC8596180 DOI: 10.12688/f1000research.53422.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 11/09/2023] Open
Abstract
Oligodendrocytes wrap multiple lamellae of their membrane, myelin, around axons of the central nervous system (CNS), to improve impulse conduction. Myelin synthesis is specialised and dynamic, responsive to local neuronal excitation. Subtle pathological insults are sufficient to cause significant neuronal metabolic impairment, so myelin preservation is necessary to safeguard neural networks. Multiple sclerosis (MS) is the most prevalent demyelinating disease of the CNS. In MS, inflammatory attacks against myelin, proposed to be autoimmune, cause myelin decay and oligodendrocyte loss, leaving neurons vulnerable. Current therapies target the prominent neuroinflammation but are mostly ineffective in protecting from neurodegeneration and the progressive neurological disability. People with MS have substantially higher levels of extracellular glutamate, the main excitatory neurotransmitter. This impairs cellular homeostasis to cause excitotoxic stress. Large conductance Ca2 +-activated K + channels (BK channels) could preserve myelin or allow its recovery by protecting cells from the resulting excessive excitability. This review evaluates the role of excitotoxic stress, myelination and BK channels in MS pathology, and explores the hypothesis that BK channel activation could be a therapeutic strategy to protect oligodendrocytes from excitotoxic stress in MS. This could reduce progression of neurological disability if used in parallel to immunomodulatory therapies.
Collapse
Affiliation(s)
- Maddalena Rupnik
- Wolfson Insitute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - David Baker
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, WC1E 6BT, UK
| | - David L. Selwood
- Wolfson Insitute for Biomedical Research, University College London, London, WC1E 6BT, UK
| |
Collapse
|
15
|
Rupnik M, Baker D, Selwood DL. Oligodendrocytes, BK channels and the preservation of myelin. F1000Res 2021; 10:781. [PMID: 34909188 PMCID: PMC8596180 DOI: 10.12688/f1000research.53422.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Oligodendrocytes wrap multiple lamellae of their membrane, myelin, around axons of the central nervous system (CNS), to improve impulse conduction. Myelin synthesis is specialised and dynamic, responsive to local neuronal excitation. Subtle pathological insults are sufficient to cause significant neuronal metabolic impairment, so myelin preservation is necessary to safeguard neural networks. Multiple sclerosis (MS) is the most prevalent demyelinating disease of the CNS. In MS, inflammatory attacks against myelin, proposed to be autoimmune, cause myelin decay and oligodendrocyte loss, leaving neurons vulnerable. Current therapies target the prominent neuroinflammation but are mostly ineffective in protecting from neurodegeneration and the progressive neurological disability. People with MS have substantially higher levels of extracellular glutamate, the main excitatory neurotransmitter. This impairs cellular homeostasis to cause excitotoxic stress. Large conductance Ca2 +-activated K + channels (BK channels) could preserve myelin or allow its recovery by protecting cells from the resulting excessive excitability. This review evaluates the role of excitotoxic stress, myelination and BK channels in MS pathology, and explores the hypothesis that BK channel activation could be a therapeutic strategy to protect oligodendrocytes from excitotoxic stress in MS. This could reduce progression of neurological disability if used in parallel to immunomodulatory therapies.
Collapse
Affiliation(s)
- Maddalena Rupnik
- Wolfson Insitute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - David Baker
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, WC1E 6BT, UK
| | - David L. Selwood
- Wolfson Insitute for Biomedical Research, University College London, London, WC1E 6BT, UK
| |
Collapse
|
16
|
Abstract
Myelination of axons provides the structural basis for rapid saltatory impulse propagation along vertebrate fiber tracts, a well-established neurophysiological concept. However, myelinating oligodendrocytes and Schwann cells serve additional functions in neuronal energy metabolism that are remarkably similar to those of axon-ensheathing glial cells in unmyelinated invertebrates. Here we discuss myelin evolution and physiological glial functions, beginning with the role of ensheathing glia in preventing ephaptic coupling, axoglial metabolic support, and eliminating oxidative radicals. In both vertebrates and invertebrates, axoglial interactions are bidirectional, serving to regulate cell fate, nerve conduction, and behavioral performance. One key step in the evolution of compact myelin in the vertebrate lineage was the emergence of the open reading frame for myelin basic protein within another gene. Several other proteins were neofunctionalized as myelin constituents and help maintain a healthy nervous system. Myelination in vertebrates became a major prerequisite of inhabiting new ecological niches.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| |
Collapse
|
17
|
Rajani RM, Dupré N, Domenga-Denier V, Van Niel G, Heiligenstein X, Joutel A. Characterisation of early ultrastructural changes in the cerebral white matter of CADASIL small vessel disease using high-pressure freezing/freeze-substitution. Neuropathol Appl Neurobiol 2021; 47:694-704. [PMID: 33483954 DOI: 10.1111/nan.12697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
AIMS The objective of this study was to elucidate the early white matter changes in CADASIL small vessel disease. METHODS We used high-pressure freezing and freeze substitution (HPF/FS) in combination with high-resolution electron microscopy (EM), immunohistochemistry and confocal microscopy of brain specimens from control and CADASIL (TgNotch3R169C ) mice aged 4-15 months to study white matter lesions in the corpus callosum. RESULTS We first optimised the HPF/FS protocol in which samples were chemically prefixed, frozen in a sample carrier filled with 20% polyvinylpyrrolidone and freeze-substituted in a cocktail of tannic acid, osmium tetroxide and uranyl acetate dissolved in acetone. EM analysis showed that CADASIL mice exhibit significant splitting of myelin layers and enlargement of the inner tongue of small calibre axons from the age of 6 months, then vesiculation of the inner tongue and myelin sheath thinning at 15 months of age. Immunohistochemistry revealed an increased number of oligodendrocyte precursor cells, although only in older mice, but no reduction in the number of mature oligodendrocytes at any age. The number of Iba1 positive microglial cells was increased in older but not in younger CADASIL mice, but the number of activated microglial cells (Iba1 and CD68 positive) was unchanged at any age. CONCLUSION We conclude that early WM lesions in CADASIL affect first and foremost the myelin sheath and the inner tongue, suggestive of a primary myelin injury. We propose that those defects are consistent with a hypoxic/ischaemic mechanism.
Collapse
Affiliation(s)
- Rikesh M Rajani
- Institute of Psychiatry and Neurosciences of Paris, Inserm U1266, Université de Paris, Paris, France
| | - Nicolas Dupré
- Institute of Psychiatry and Neurosciences of Paris, Inserm U1266, Université de Paris, Paris, France
| | - Valérie Domenga-Denier
- Institute of Psychiatry and Neurosciences of Paris, Inserm U1266, Université de Paris, Paris, France
| | - Guillaume Van Niel
- Institute of Psychiatry and Neurosciences of Paris, Inserm U1266, Université de Paris, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | | | - Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, Inserm U1266, Université de Paris, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.,Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
18
|
Dieterich S, Prévost S, Dargel C, Sottmann T, Giesselmann F. Synergistic structures in lyotropic lamellar gels. SOFT MATTER 2020; 16:10268-10279. [PMID: 33026039 DOI: 10.1039/d0sm01473g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work we present a systematic study on the microstructure of soft materials which combine the anisotropy of lyotropic liquid crystals with the mechanical stability of a physical gel. Systematic small-angle neutron (SANS) and X-ray (SAXS) scattering experiments were successfully used to characterize the lyotropic lamellar phase (Lα) of the system D2O -n-decanol - SDS which was gelled by two low molecular weight organogelators, 1,3:2,4-dibenzylidene-d-sorbitol (DBS) and 12-hydroxyoctadecanoic acid (12-HOA). Surprisingly, a pronounced shoulder appeared in the scattering curves of the lamellar phase gelled with 12-HOA, whereas the curves of the DBS-gelled Lα phase remained almost unchanged compared to the ones of the gelator-free Lα phase. The appearance of this additional shoulder strongly indicates the formation of a synergistic structure, which neither exists in the gelator-free Lα phase nor in the isotropic binary gel. By comparing the thicknesses of the 12-HOA (25-30 nm) and DBS (4-8 nm) gel fibers with the lamellar repeat distance (7.5 nm), we suggest that the synergistic structure originates from the minimization of the elastic free energy of the lamellar phase. In the case of 12-HOA, where the fiber diameter is significantly larger than the lamellar repeat distance, energetically unfavored layer ends can be prevented, when the layers cylindrically enclose the gel fibers. Interestingly, such structures mimic similar schemes found in neural cells, where axons are surrounded by lamellar myelin sheets.
Collapse
Affiliation(s)
- Sonja Dieterich
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
19
|
Structural myelin defects are associated with low axonal ATP levels but rapid recovery from energy deprivation in a mouse model of spastic paraplegia. PLoS Biol 2020; 18:e3000943. [PMID: 33196637 PMCID: PMC7704050 DOI: 10.1371/journal.pbio.3000943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/30/2020] [Accepted: 10/22/2020] [Indexed: 11/19/2022] Open
Abstract
In several neurodegenerative disorders, axonal pathology may originate from impaired oligodendrocyte-to-axon support of energy substrates. We previously established transgenic mice that allow measuring axonal ATP levels in electrically active optic nerves. Here, we utilize this technique to explore axonal ATP dynamics in the Plpnull/y mouse model of spastic paraplegia. Optic nerves from Plpnull/y mice exhibited lower and more variable basal axonal ATP levels and reduced compound action potential (CAP) amplitudes, providing a missing link between axonal pathology and a role of oligodendrocytes in brain energy metabolism. Surprisingly, when Plpnull/y optic nerves are challenged with transient glucose deprivation, both ATP levels and CAP decline slower, but recover faster upon reperfusion of glucose. Structurally, myelin sheaths display an increased frequency of cytosolic channels comprising glucose and monocarboxylate transporters, possibly facilitating accessibility of energy substrates to the axon. These data imply that complex metabolic alterations of the axon–myelin unit contribute to the phenotype of Plpnull/y mice. Imaging of ATP dynamics in the optic nerve axons of mice lacking the major myelin protein PLP (a model of spastic paraplegia) reveals complex alterations in the metabolic interaction between oligodendrocytes and axons, associated with structural deficits of myelin.
Collapse
|
20
|
Wolfe T, Hoffman K, Hogan MK, Salazar B, Tang X, Chaboub L, Quini CC, Lu ZL, Horner PJ. Quantification of Myelinated Nerve Fraction and Degeneration in Spinal Cord Neuropil by SHIFT MRI. J Magn Reson Imaging 2020; 53:1162-1174. [PMID: 33098256 DOI: 10.1002/jmri.27397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Neurodegeneration is a complex cellular process linked to prompt changes in myelin integrity and gradual neuron loss. Current imaging techniques offer estimations of myelin volumes in lesions/remyelinated areas but are limited to detect subtle injury. PURPOSE To investigate whether measurements detected by a signal hierarchically isolated as a function of time-to-echo (SHIFT) MRI technique can determine changes in myelin integrity and fiber axolemma. STUDY TYPE Prospective animal model. ANIMAL MODEL Surgically demyelinated spinal cord (SC) injury model in rodents (n = 6). FIELD STRENGTH/SEQUENCE Gradient-echo spin-echo at 3T. ASSESSMENT Multicompartment T2 relaxations were computed by SHIFT MRI in 75-microns-resolution images of the SC injury penumbra region 2 weeks post-trauma. G-ratio and axolemma delamination were assessed by transmission electron microscopy (TEM) in intact and injured samples. SC myelinated nerve fraction was computed by SHIFT MRI prospectively and assessed histologically. STATISTICAL TESTS Relations between SHIFT-isolated T2 -components and TEM measurements were studied using linear regression and t-tests. Pearson's correlation and significance were computed to determine the SHIFT's sensitivity to detect myelinated fibers ratio in gray matter. Regularized least-squares-based ranking analysis was employed to determine SHIFT MRI's ability to discern intact and injured myelinated nerves. RESULTS Biexponential signals isolated by SHIFT MRI for intact vs. lesion penumbra exhibited changes in T2 , shifting from intermediate components (25 ± 2 msec) to long (43 ± 11 msec) in white matter, and similarly in gray matter regions-of-interest (31 ± 2 to 46 ± 16 msec). These changes correlated highly with TEM g-ratio and axon delamination measurements (P < 0.05). Changes in short T2 components were observed but not statistically significant (8.5 ± 0.5 to 7 ± 3 msec, P = 0.445, and 4.0 ± 0.9 to 7 ± 3 msec, P = 0.075, respectively). SHIFT MRI's ability to detect myelinated fibers within gray matter was confirmed (P < 0.001). DATA CONCLUSION Changes detected by SHIFT MRI are associated with abnormal intermembrane spaces formed upon mild injury, directly correlated with early neuro integrity loss. Level of Evidence 1 Technical Efficacy Stage 2.
Collapse
Affiliation(s)
- Tatiana Wolfe
- Center for Neuroregneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Kristopher Hoffman
- Center for Neuroregneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew K Hogan
- Center for Neuroregneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Betsy Salazar
- Center for Neuroregneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Xiufeng Tang
- Center for Neuroregneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Lesley Chaboub
- Center for Neuroregneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Caio C Quini
- Department of Biological Physics, Universidade Estadual Paulista UNESP, Botucatu, Sao Paulo, Brazil
| | - Zhong-Lin Lu
- Division of Arts and Sciences, NYU Shanghai, Shanghai, China, NYU-ECNU Institute of Cognitive Neuroscience at NYU Shanghai, Shanghai, China, Center for Neural Science and Department of Psychology, New York University, New York, USA
| | - Philip J Horner
- Center for Neuroregneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
21
|
Jelescu IO, Palombo M, Bagnato F, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods 2020; 344:108861. [PMID: 32692999 PMCID: PMC10163379 DOI: 10.1016/j.jneumeth.2020.108861] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.
Collapse
|
22
|
Steyer AM, Ruhwedel T, Nardis C, Werner HB, Nave KA, Möbius W. Pathology of myelinated axons in the PLP-deficient mouse model of spastic paraplegia type 2 revealed by volume imaging using focused ion beam-scanning electron microscopy. J Struct Biol 2020; 210:107492. [PMID: 32156581 PMCID: PMC7196930 DOI: 10.1016/j.jsb.2020.107492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 11/26/2022]
Abstract
Advances in electron microscopy including improved imaging techniques and state-of-the-art detectors facilitate imaging of larger tissue volumes with electron microscopic resolution. In combination with genetic tools for the generation of mouse mutants this allows assessing the three-dimensional (3D) characteristics of pathological features in disease models. Here we revisited the axonal pathology in the central nervous system of a mouse model of spastic paraplegia type 2, the Plp-/Y mouse. Although PLP is a bona fide myelin protein, the major hallmark of the disease in both SPG2 patients and mouse models are axonal swellings comprising accumulations of numerous organelles including mitochondria, gradually leading to irreversible axonal loss. To assess the number and morphology of axonal mitochondria and the overall myelin preservation we evaluated two sample preparation techniques, chemical fixation or high-pressure freezing and freeze substitution, with respect to the objective of 3D visualization. Both methods allowed visualizing distribution and morphological details of axonal mitochondria. In Plp-/Y mice the number of mitochondria is 2-fold increased along the entire axonal length. Mitochondria are also found in the excessive organelle accumulations within axonal swellings. In addition, organelle accumulations were detected within the myelin sheath and the inner tongue. We find that 3D electron microscopy is required for a comprehensive understanding of the size, content and frequency of axonal swellings, the hallmarks of axonal pathology.
Collapse
Affiliation(s)
- Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christos Nardis
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
23
|
Abstract
Rapid and efficient saltatory action potential conduction depends on the myelin sheath and clustered Na+ channels at nodes of Ranvier. A new study convincingly shows that the periaxonal space is a necessary conductive component to accurately model myelinated axon physiology and saltatory conduction.
Collapse
Affiliation(s)
- Brian C Lim
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Cohen CCH, Popovic MA, Klooster J, Weil MT, Möbius W, Nave KA, Kole MHP. Saltatory Conduction along Myelinated Axons Involves a Periaxonal Nanocircuit. Cell 2020; 180:311-322.e15. [PMID: 31883793 PMCID: PMC6978798 DOI: 10.1016/j.cell.2019.11.039] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/24/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022]
Abstract
The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space.
Collapse
Affiliation(s)
- Charles C H Cohen
- Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Marko A Popovic
- Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Jan Klooster
- Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Marie-Theres Weil
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Maarten H P Kole
- Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
25
|
Functional Electron Microscopy, "Flash and Freeze," of Identified Cortical Synapses in Acute Brain Slices. Neuron 2020; 105:992-1006.e6. [PMID: 31928842 PMCID: PMC7083231 DOI: 10.1016/j.neuron.2019.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/20/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022]
Abstract
How structural and functional properties of synapses relate to each other is a fundamental question in neuroscience. Electrophysiology has elucidated mechanisms of synaptic transmission, and electron microscopy (EM) has provided insight into morphological properties of synapses. Here we describe an enhanced method for functional EM (“flash and freeze”), combining optogenetic stimulation with high-pressure freezing. We demonstrate that the improved method can be applied to intact networks in acute brain slices and organotypic slice cultures from mice. As a proof of concept, we probed vesicle pool changes during synaptic transmission at the hippocampal mossy fiber-CA3 pyramidal neuron synapse. Our findings show overlap of the docked vesicle pool and the functionally defined readily releasable pool and provide evidence of fast endocytosis at this synapse. Functional EM with acute slices and slice cultures has the potential to reveal the structural and functional mechanisms of transmission in intact, genetically perturbed, and disease-affected synapses. Functional EM may be applied to acute brain slices and organotypic slice cultures Docked vesicle pool and RRP are overlapping Smaller-diameter vesicles have higher release probability than larger vesicles Endocytic pits after moderate stimulation suggest fast endocytosis
Collapse
|
26
|
Li M, Cui MM, Kenechukwu NA, Gu YW, Chen YL, Zhong SJ, Gao YT, Cao XY, Wang L, Liu FM, Wen XR. Rosmarinic acid ameliorates hypoxia/ischemia induced cognitive deficits and promotes remyelination. Neural Regen Res 2020; 15:894-902. [PMID: 31719255 PMCID: PMC6990785 DOI: 10.4103/1673-5374.268927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rosmarinic acid, a common ester extracted from Rosemary, Perilla frutescens, and Salvia miltiorrhiza Bunge, has been shown to have protective effects against various diseases. This is an investigation into whether rosmarinic acid can also affect the changes of white matter fibers and cognitive deficits caused by hypoxic injury. The right common carotid artery of 3-day-old rats was ligated for 2 hours. The rats were then prewarmed in a plastic container with holes in the lid, which was placed in 37°C water bath for 30 minutes. Afterwards, the rats were exposed to an atmosphere with 8% O2 and 92% N2 for 30 minutes to establish the perinatal hypoxia/ischemia injury models. The rat models were intraperitoneally injected with rosmarinic acid 20 mg/kg for 5 consecutive days. At 22 days after birth, rosmarinic acid was found to improve motor, anxiety, learning and spatial memory impairments induced by hypoxia/ischemia injury. Furthermore, rosmarinic acid promoted the proliferation of oligodendrocyte progenitor cells in the subventricular zone. After hypoxia/ischemia injury, rosmarinic acid reversed to some extent the downregulation of myelin basic protein and the loss of myelin sheath in the corpus callosum of white matter structure. Rosmarinic acid partially slowed down the expression of oligodendrocyte marker Olig2 and myelin basic protein and the increase of oligodendrocyte apoptosis marker inhibitors of DNA binding 2. These data indicate that rosmarinic acid ameliorated the cognitive dysfunction after perinatal hypoxia/ischemia injury by improving remyelination in corpus callosum. This study was approved by the Animal Experimental Ethics Committee of Xuzhou Medical University, China (approval No. 20161636721) on September 16, 2017.
Collapse
Affiliation(s)
- Man Li
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Miao-Miao Cui
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | | | - Yi-Wei Gu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu-Lin Chen
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Si-Jing Zhong
- Xuzhou Medical University Clinical Medical College, Xuzhou, Jiangsu Province, China
| | - Yu-Ting Gao
- Department of Clinical Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue-Yan Cao
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Li Wang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fu-Min Liu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiang-Ru Wen
- Research Center for Neurobiology and Department of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
27
|
Edgar JM, Smith RS, Duncan ID. Transmission Electron Microscopy and Morphometry of the CNS White Matter. Methods Mol Biol 2020; 2143:233-261. [PMID: 32524485 DOI: 10.1007/978-1-0716-0585-1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transmission electron microscopy of central nervous system white matter has provided unparalleled access to the ultrastructural features of axons, their myelin sheaths, and the major cells of white matter; namely, oligodendrocytes, oligodendrocyte precursors, astrocytes, and microglia. In particular, it has been invaluable in elucidating pathological changes in axons and myelin following experimentally induced injury or genetic alteration, in animal models. While also of value in the examination of human white matter, the tissue is rarely fixed adequately for the types of detailed analyses that can be performed on well-preserved samples from animal models, perfusion fixed at the time of death. In this chapter we describe methods for obtaining, processing, and visualizing white matter samples using transmission electron microscopy of perfusion fixed tissue and for unbiased morphometry of white matter, with particular emphasis on axon and myelin pathology. Several advanced electron microscopy techniques are now available, but this method remains the most expedient and accessible for routine ultrastructural examination and morphometry.
Collapse
Affiliation(s)
- Julia M Edgar
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Goettingen, Germany.
| | - Rebecca Sherrard Smith
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ian D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
28
|
Sele M, Wernitznig S, Lipovšek S, Radulović S, Haybaeck J, Birkl-Toeglhofer AM, Wodlej C, Kleinegger F, Sygulla S, Leoni M, Ropele S, Leitinger G. Optimization of ultrastructural preservation of human brain for transmission electron microscopy after long post-mortem intervals. Acta Neuropathol Commun 2019; 7:144. [PMID: 31481118 PMCID: PMC6724377 DOI: 10.1186/s40478-019-0794-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022] Open
Abstract
Electron microscopy (EM) provides the necessary resolution to visualize the finer structures of nervous tissue morphology, which is important to understand healthy and pathological conditions in the brain. However, for the interpretation of the micrographs the tissue preservation is crucial. The quality of the tissue structure is mostly influenced by the post mortem interval (PMI), the time of death until the preservation of the tissue. Therefore, the aim of this study was to optimize the preparation-procedure for the human frontal lobe to preserve the ultrastructure as well as possible despite the long PMIs. Combining chemical pre- and post-fixation with cryo-fixation and cryo-substitution ("hybrid freezing"), it was possible to improve the preservation of the neuronal profiles of human brain samples compared to the "standard" epoxy resin embedding method. In conclusion short PMIs are generally desirable but up to a PMI of 16 h the ultrastructure can be preserved on an acceptable level with a high contrast using the "hybrid freezing" protocol described here.
Collapse
|
29
|
Erwig MS, Patzig J, Steyer AM, Dibaj P, Heilmann M, Heilmann I, Jung RB, Kusch K, Möbius W, Jahn O, Nave KA, Werner HB. Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin. eLife 2019; 8:43888. [PMID: 30672734 PMCID: PMC6344079 DOI: 10.7554/elife.43888] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Myelin serves as an axonal insulator that facilitates rapid nerve conduction along axons. By transmission electron microscopy, a healthy myelin sheath comprises compacted membrane layers spiraling around the cross-sectioned axon. Previously we identified the assembly of septin filaments in the innermost non-compacted myelin layer as one of the latest steps of myelin maturation in the central nervous system (CNS) (Patzig et al., 2016). Here we show that loss of the cytoskeletal adaptor protein anillin (ANLN) from oligodendrocytes disrupts myelin septin assembly, thereby causing the emergence of pathological myelin outfoldings. Since myelin outfoldings are a poorly understood hallmark of myelin disease and brain aging we assessed axon/myelin-units in Anln-mutant mice by focused ion beam-scanning electron microscopy (FIB-SEM); myelin outfoldings were three-dimensionally reconstructed as large sheets of multiple compact membrane layers. We suggest that anillin-dependent assembly of septin filaments scaffolds mature myelin sheaths, facilitating rapid nerve conduction in the healthy CNS.
Collapse
Affiliation(s)
- Michelle S Erwig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Payam Dibaj
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
30
|
Lüders KA, Nessler S, Kusch K, Patzig J, Jung RB, Möbius W, Nave KA, Werner HB. Maintenance of high proteolipid protein level in adult central nervous system myelin is required to preserve the integrity of myelin and axons. Glia 2019; 67:634-649. [PMID: 30637801 DOI: 10.1002/glia.23549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous system (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosynthesis of myelin membranes but required to prevent axonal pathology. This raises the question whether the exceptionally high level of PLP in myelin is required later in life, or whether high-level PLP expression becomes dispensable once myelin has been assembled. Both models require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine the rate of PLP turnover after developmental myelination has been completed, and to assess the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was about halved, probably reflecting that myelin is slowly turned over in the adult brain. Importantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological changes previously associated with the developmental lack of PLP, including myelin outfoldings, lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltration of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout adult life emerges as a requirement for the preservation of white matter integrity.
Collapse
Affiliation(s)
- Katja A Lüders
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
31
|
Dermentzaki G, Politi KA, Lu L, Mishra V, Pérez-Torres EJ, Sosunov AA, McKhann GM, Lotti F, Shneider NA, Przedborski S. Deletion of Ripk3 Prevents Motor Neuron Death In Vitro but not In Vivo. eNeuro 2019; 6:ENEURO.0308-18.2018. [PMID: 30815534 PMCID: PMC6391588 DOI: 10.1523/eneuro.0308-18.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence suggests that necroptosis, a form of programmed cell death (PCD), contributes to neurodegeneration in several disorders, including ALS. Supporting this view, investigations in both in vitro and in vivo models of ALS have implicated key molecular determinants of necroptosis in the death of spinal motor neurons (MNs). Consistent with a pathogenic role of necroptosis in ALS, we showed increased mRNA levels for the three main necroptosis effectors Ripk1, Ripk3, and Mlkl in the spinal cord of mutant superoxide dismutase-1 (SOD1G93A) transgenic mice (Tg), an established model of ALS. In addition, protein levels of receptor-interacting protein kinase 1 (RIPK1; but not of RIPK3, MLKL or activated MLKL) were elevated in spinal cord extracts from these Tg SOD1G93A mice. In postmortem motor cortex samples from sporadic and familial ALS patients, no change in protein levels of RIPK1 were detected. Silencing of Ripk3 in cultured MNs protected them from toxicity associated with SOD1G93A astrocytes. However, constitutive deletion of Ripk3 in Tg SOD1G93A mice failed to provide behavioral or neuropathological improvement, demonstrating no similar benefit of Ripk3 silencing in vivo. Lastly, we detected no genotype-specific myelin decompaction, proposed to be a proxy of necroptosis in ALS, in either Tg SOD1G93A or Optineurin knock-out mice, another ALS mouse model. These findings argue against a role for RIPK3 in Tg SOD1G93A-induced neurodegeneration and call for further preclinical investigations to determine if necroptosis plays a critical role in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Georgia Dermentzaki
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032
| | - Kristin A. Politi
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032
| | - Lei Lu
- Department of Neurology, Columbia University, New York, NY 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032
| | - Vartika Mishra
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032
| | - Eduardo J. Pérez-Torres
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032
| | | | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University, New York, NY 10032
| | - Francesco Lotti
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032
| | - Neil A. Shneider
- Department of Neurology, Columbia University, New York, NY 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032
| | - Serge Przedborski
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
- Department of Neurology, Columbia University, New York, NY 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032
| |
Collapse
|
32
|
Weil MT, Ruhwedel T, Meschkat M, Sadowski B, Möbius W. Transmission Electron Microscopy of Oligodendrocytes and Myelin. Methods Mol Biol 2019; 1936:343-375. [PMID: 30820909 DOI: 10.1007/978-1-4939-9072-6_20] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we describe protocols to study different aspects of oligodendrocytes and myelin using electron microscopy. First, we describe in detail how to prepare central nervous system tissue routinely by perfusion fixation of the animal and conventional embedding in Epon resin. Then, we explain how, with some modifications, chemically fixed tissue can be used for immunoelectron microscopy on cryosections. Chemical fixation and Epon embedding can also be applied to purified myelin to assess the quality of the preparation. Furthermore, we describe how cryopreparation by high-pressure freezing can be used to study the fine structure of myelin in nerve, brain, and spinal cord tissue. The differences in the structural appearance of oligodendrocytes and myelin between cryopreserved and conventionally processed samples are compared using representative images. Since primary cultured oligodendrocytes are used to study structure and function in vitro, we provide protocols for chemical fixation and Epon embedding of these cultures. Finally, we explain how the cytoskeleton of cultured oligodendrocytes can be visualized by using transmission electron microscopy on platinum-carbon replicas. In this chapter, we provide a wide range of protocols that can be applied to shed light on the different biological aspects of myelin and oligodendrocytes.
Collapse
Affiliation(s)
- Marie-Theres Weil
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Electron Microscopy Core Unit, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,AbbVie Deutschland GmbH and Co. KG, Ludwigshafen, Germany
| | - Torben Ruhwedel
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Electron Microscopy Core Unit, Göttingen, Germany
| | - Martin Meschkat
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Electron Microscopy Core Unit, Göttingen, Germany
| | - Boguslawa Sadowski
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Electron Microscopy Core Unit, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Wiebke Möbius
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Electron Microscopy Core Unit, Göttingen, Germany. .,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
33
|
Abstract
Neural plasticity in the adult central nervous system involves the adaptation of myelination, including the formation of novel myelin sheaths by adult-born oligodendrocytes. Yet, mature oligodendrocytes slowly but constantly turn over their pre-existing myelin sheaths, thereby establishing an equilibrium of replenishment and degradation that may also be subject to adaptation with consequences for nerve conduction velocity. In this short review we highlight selected approaches to the normal turnover of adult myelin in vivo, from injecting radioactive precursors of myelin constituents in the 1960s to current strategies involving isotope labeling and tamoxifen-induced gene targeting.
Collapse
Affiliation(s)
- Tobias J Buscham
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
34
|
Erwig MS, Hesse D, Jung RB, Uecker M, Kusch K, Tenzer S, Jahn O, Werner HB. Myelin: Methods for Purification and Proteome Analysis. Methods Mol Biol 2019; 1936:37-63. [PMID: 30820892 DOI: 10.1007/978-1-4939-9072-6_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Molecular characterization of myelin is a prerequisite for understanding the normal structure of the axon/myelin-unit in the healthy nervous system and abnormalities in myelin-related disorders. However, reliable molecular profiles necessitate very pure myelin membranes, in particular when considering the power of highly sensitive "omics"-data acquisition methods. Here, we recapitulate the history and recent applications of myelin purification. We then provide our laboratory protocols for the biochemical isolation of a highly pure myelin-enriched fraction from mouse brains and for its proteomic analysis. We also supply methodological modifications when investigating posttranslational modifications, RNA, or myelin from peripheral nerves. Notably, technical advancements in solubilizing myelin are beneficial for gel-based and gel-free myelin proteome analyses. We conclude this article by exemplifying the exceptional power of label-free proteomics in the mass-spectrometric quantification of myelin proteins.
Collapse
Affiliation(s)
- Michelle S Erwig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Marina Uecker
- Proteomics Group, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Goettingen, Germany.
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany.
| |
Collapse
|
35
|
Möbius W, Posthuma G. Sugar and ice: Immunoelectron microscopy using cryosections according to the Tokuyasu method. Tissue Cell 2018; 57:90-102. [PMID: 30201442 DOI: 10.1016/j.tice.2018.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/26/2018] [Accepted: 08/22/2018] [Indexed: 11/29/2022]
Abstract
Since the pioneering work of Kiyoteru Tokuyasu in the 70ths the use of thawed cryosections prepared according to the "Tokuyasu-method" for immunoelectron microscopy did not lose popularity. We owe this method a whole subcellular world described by discrete gold particles pointing at cargo, receptors and organelle markers on delicate images of the inner life of a cell. Here we explain the procedure of sample preparation, sectioning and immunolabeling in view of recent developments and the reasoning behind protocols including some historical perspective. Cryosections are prepared from chemically fixed and sucrose infiltrated samples and labeled with affinity probes and electron dense markers. These sections are ideal substrates for immunolabeling, since antigens are not exposed to organic solvent dehydration or masked by resin. Instead, the structures remain fully hydrated throughout the labeling procedure. Furthermore, target molecules inside dense intercellular structural elements, cells and organelles are accessible to antibodies from the section surface. For the validation of antibody specificity several approaches are recommended including knock-out tissue and reagent controls. Correlative light and electron microscopy strategies involving correlative probes are possible as well as correlation of live imaging with the underlying ultrastructure. By applying stereology, gold labeling can be quantified and evaluated for specificity.
Collapse
Affiliation(s)
- Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| | - George Posthuma
- Department of Cell Biology, Cell Microscopy Core, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Studying neurons and glia non-invasively via anomalous subdiffusion of intracellular metabolites. Brain Struct Funct 2018; 223:3841-3854. [DOI: 10.1007/s00429-018-1719-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/12/2018] [Indexed: 12/31/2022]
|
37
|
Stassart RM, Möbius W, Nave KA, Edgar JM. The Axon-Myelin Unit in Development and Degenerative Disease. Front Neurosci 2018; 12:467. [PMID: 30050403 PMCID: PMC6050401 DOI: 10.3389/fnins.2018.00467] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Axons are electrically excitable, cable-like neuronal processes that relay information between neurons within the nervous system and between neurons and peripheral target tissues. In the central and peripheral nervous systems, most axons over a critical diameter are enwrapped by myelin, which reduces internodal membrane capacitance and facilitates rapid conduction of electrical impulses. The spirally wrapped myelin sheath, which is an evolutionary specialisation of vertebrates, is produced by oligodendrocytes and Schwann cells; in most mammals myelination occurs during postnatal development and after axons have established connection with their targets. Myelin covers the vast majority of the axonal surface, influencing the axon's physical shape, the localisation of molecules on its membrane and the composition of the extracellular fluid (in the periaxonal space) that immerses it. Moreover, myelinating cells play a fundamental role in axonal support, at least in part by providing metabolic substrates to the underlying axon to fuel its energy requirements. The unique architecture of the myelinated axon, which is crucial to its function as a conduit over long distances, renders it particularly susceptible to injury and confers specific survival and maintenance requirements. In this review we will describe the normal morphology, ultrastructure and function of myelinated axons, and discuss how these change following disease, injury or experimental perturbation, with a particular focus on the role the myelinating cell plays in shaping and supporting the axon.
Collapse
Affiliation(s)
- Ruth M. Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Department of Neuropathology, University Medical Center Leipzig, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Julia M. Edgar
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
38
|
Janowska J, Sypecka J. Therapeutic Strategies for Leukodystrophic Disorders Resulting from Perinatal Asphyxia: Focus on Myelinating Oligodendrocytes. Mol Neurobiol 2018; 55:4388-4402. [PMID: 28660484 PMCID: PMC5884907 DOI: 10.1007/s12035-017-0647-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022]
Abstract
Perinatal asphyxia results from the action of different risk factors like complications during pregnancy, preterm delivery, or long and difficult labor. Nowadays, it is still the leading cause of neonatal brain injury known as hypoxic-ischemic encephalopathy (HIE) and resulting neurological disorders. A temporal limitation of oxygen, glucose, and trophic factors supply results in alteration of neural cell differentiation and functioning and/or leads to their death. Among the affected cells are oligodendrocytes, responsible for myelinating the central nervous system (CNS) and formation of white matter. Therefore, one of the major consequences of the experienced HIE is leukodystrophic diseases resulting from oligodendrocyte deficiency or malfunctioning. The therapeutic strategies applied after perinatal asphyxia are aimed at reducing brain damage and promoting the endogenous neuroreparative mechanisms. In this review, we focus on the biology of oligodendrocytes and discuss present clinical treatments in the context of their efficiency in preserving white matter structure and preventing cognitive and behavioral deficits after perinatal asphyxia.
Collapse
Affiliation(s)
- Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego str., 02-106, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego str., 02-106, Warsaw, Poland.
| |
Collapse
|
39
|
Campi G, Di Gioacchino M, Poccia N, Ricci A, Burghammer M, Ciasca G, Bianconi A. Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure. ACS NANO 2018; 12:729-739. [PMID: 29281257 DOI: 10.1021/acsnano.7b07897] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.
Collapse
Affiliation(s)
- Gaetano Campi
- Institute of Crystallography, CNR , via Salaria, Km 29.300, 00015 Monterotondo Roma, Italy
| | - Michael Di Gioacchino
- Institute of Crystallography, CNR , via Salaria, Km 29.300, 00015 Monterotondo Roma, Italy
- Rome International Center for Materials Science Superstripes (RICMASS) , Via dei Sabelli 119A, 00185 Roma, Italy
- Department of Science, Nanoscience section, Roma Tre University , Via della Vasca Navale 84, 00146 Roma, Italy
| | - Nicola Poccia
- Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Alessandro Ricci
- Rome International Center for Materials Science Superstripes (RICMASS) , Via dei Sabelli 119A, 00185 Roma, Italy
| | - Manfred Burghammer
- European Synchrotron Radiation Facility , 6 Rue Jules Horowitz, BP220, 38043 Grenoble Cedex, France
| | - Gabriele Ciasca
- Physics Institute, Catholic University of Sacred Heart , Largo F. Vito 1, 00168 Rome, Italy
| | - Antonio Bianconi
- Institute of Crystallography, CNR , via Salaria, Km 29.300, 00015 Monterotondo Roma, Italy
- Rome International Center for Materials Science Superstripes (RICMASS) , Via dei Sabelli 119A, 00185 Roma, Italy
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) , Kashirskoe shosse 31, 115409 Moscow, Russia
| |
Collapse
|
40
|
|
41
|
Saab AS, Nave KA. Myelin dynamics: protecting and shaping neuronal functions. Curr Opin Neurobiol 2017; 47:104-112. [PMID: 29065345 DOI: 10.1016/j.conb.2017.09.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 12/28/2022]
Abstract
Myelinating glial cells are well-known to insulate axons and to speed up action potential propagation. Through adjustments in the axonal coverage with myelin, myelin sheath thickness and possibly nodal/internode length oligodendrocytes are involved in fine-tuning the brain's computational power throughout life. Be it motor skill learning or social behaviors in higher vertebrates, proper myelination is critical in shaping brain functions. Neurons rely on their myelinating partners not only for setting conduction speed, but also for regulating the ionic environment and fueling their energy demands with metabolites. Also, long-term axonal integrity and neuronal survival are maintained by oligodendrocytes and loss of this well-coordinated axon-glial interplay contributes to neuropsychiatric diseases. Better insight into how myelination and oligodendrocyte functions are constantly fine-tuned in the adult CNS, which includes sensing of neuronal activity and adjusting glial metabolic support, will be critical for understanding higher brain functions and cognitive decline associated with myelin abnormalities in the aging brain.
Collapse
Affiliation(s)
- Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.
| |
Collapse
|
42
|
Pan S, Chan JR. Regulation and dysregulation of axon infrastructure by myelinating glia. J Cell Biol 2017; 216:3903-3916. [PMID: 29114067 PMCID: PMC5716274 DOI: 10.1083/jcb.201702150] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Pan and Chan discuss the role of myelinating glia in axonal development and the impact of demyelination on axon degeneration. Axon loss and neurodegeneration constitute clinically debilitating sequelae in demyelinating diseases such as multiple sclerosis, but the underlying mechanisms of secondary degeneration are not well understood. Myelinating glia play a fundamental role in promoting the maturation of the axon cytoskeleton, regulating axon trafficking parameters, and imposing architectural rearrangements such as the nodes of Ranvier and their associated molecular domains. In the setting of demyelination, these changes may be reversed or persist as maladaptive features, leading to axon degeneration. In this review, we consider recent insights into axon–glial interactions during development and disease to propose that disruption of the cytoskeleton, nodal architecture, and other components of axon infrastructure is a potential mediator of pathophysiological damage after demyelination.
Collapse
Affiliation(s)
- Simon Pan
- Department of Neurology, University of California, San Francisco, San Francisco, CA .,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, San Francisco, CA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
43
|
Correlated Disorder in Myelinated Axons Orientational Geometry and Structure. CONDENSED MATTER 2017. [DOI: 10.3390/condmat2030029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Varela-Echevarría A, Vargas-Barroso V, Lozano-Flores C, Larriva-Sahd J. Is There Evidence for Myelin Modeling by Astrocytes in the Normal Adult Brain? Front Neuroanat 2017; 11:75. [PMID: 28932188 PMCID: PMC5592641 DOI: 10.3389/fnana.2017.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
A set of astrocytic process associated with altered myelinated axons is described in the forebrain of normal adult rodents with confocal, electron microscopy, and 3D reconstructions. Each process consists of a protuberance that contains secretory organelles including numerous lysosomes which polarize and open next to disrupted myelinated axons. Because of the distinctive asymmetric organelle distribution and ubiquity throughout the forebrain neuropil, this enlargement is named paraxial process (PAP). The myelin envelope contiguous to the PAP displays focal disruption or disintegration. In routine electron microscopy clusters of large, confluent, lysosomes proved to be an effective landmark for PAP identification. In 3D assemblies lysosomes organize a series of interconnected saccules that open up to the plasmalemma next to the disrupted myelin envelope(s). Activity for acid hydrolases was visualized in lysosomes, and extracellularly at the PAP-myelin interface and/or between the glial and neuronal outer aspects. Organelles in astrocytic processes involved in digesting pyknotic cells and debris resemble those encountered in PAPs supporting a likewise lytic function of the later. Conversely, processes entangling tripartite synapses and glomeruli were devoid of lysosomes. Both oligodendrocytic and microglial processes were not associated with altered myelin envelopes. The possible roles of the PAP in myelin remodeling in the context of the oligodendrocyte-astrocyte interactions and in the astrocyte's secretory pathways are discussed.
Collapse
Affiliation(s)
- Alfredo Varela-Echevarría
- Department of Developmental Biology and Neurophysiology, Instituto de Neurobiología Universidad Nacional Autónoma de MéxicoQuerétaro, Mexico
| | - Víctor Vargas-Barroso
- Department of Developmental Biology and Neurophysiology, Instituto de Neurobiología Universidad Nacional Autónoma de MéxicoQuerétaro, Mexico
| | - Carlos Lozano-Flores
- Department of Developmental Biology and Neurophysiology, Instituto de Neurobiología Universidad Nacional Autónoma de MéxicoQuerétaro, Mexico
| | - Jorge Larriva-Sahd
- Department of Developmental Biology and Neurophysiology, Instituto de Neurobiología Universidad Nacional Autónoma de MéxicoQuerétaro, Mexico
| |
Collapse
|
45
|
Lüders KA, Patzig J, Simons M, Nave KA, Werner HB. Genetic dissection of oligodendroglial and neuronalPlp1function in a novel mouse model of spastic paraplegia type 2. Glia 2017; 65:1762-1776. [DOI: 10.1002/glia.23193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Katja A. Lüders
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Julia Patzig
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Mikael Simons
- Cellular Neuroscience; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Hauke B. Werner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| |
Collapse
|
46
|
Pathogenesis of white matter changes in cerebral small vessel diseases: beyond vessel-intrinsic mechanisms. Clin Sci (Lond) 2017; 131:635-651. [DOI: 10.1042/cs20160380] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 01/08/2023]
Abstract
Cerebral small vessel diseases (SVDs) are a leading cause of age and hypertension-related stroke and dementia. The salient features of SVDs visible on conventional brain magnetic resonance images include white matter hyperintensities (WMHs) on T2-weighted images, small infarcts, macrohemorrhages, dilated perivascular spaces, microbleeds and brain atrophy. Among these, WMHs are the most common and often the earliest brain tissue changes. Moreover, over the past two decades, large population- and patient-based studies have established the clinical importance of WMHs, notably with respect to cognitive and motor disturbances. Here, we seek to provide a new and critical look at the pathogenesis of SVD-associated white matter (WM) changes. We first review our current knowledge of WM biology in the healthy brain, and then consider the main clinical and pathological features of WM changes in SVDs. The most widely held view is that SVD-associated WM lesions are caused by chronic hypoperfusion, impaired cerebrovascular reactivity (CVR) or blood–brain barrier (BBB) leakage. Here, we assess the arguments for and against each of these mechanisms based on population, patient and experimental model studies, and further discuss other potential mechanisms. Specifically, building on two recent seminal studies that have uncovered an anatomical and functional relationship between oligodendrocyte progenitor cells and blood vessels, we elaborate on how small vessel changes might compromise myelin remodelling and cause WM degeneration. Finally, we propose new directions for future studies on this hot research topic.
Collapse
|
47
|
Arancibia-Cárcamo IL, Ford MC, Cossell L, Ishida K, Tohyama K, Attwell D. Node of Ranvier length as a potential regulator of myelinated axon conduction speed. eLife 2017; 6. [PMID: 28130923 PMCID: PMC5313058 DOI: 10.7554/elife.23329] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/24/2017] [Indexed: 12/30/2022] Open
Abstract
Myelination speeds conduction of the nerve impulse, enhancing cognitive power. Changes of white matter structure contribute to learning, and are often assumed to reflect an altered number of myelin wraps. We now show that, in rat optic nerve and cerebral cortical axons, the node of Ranvier length varies over a 4.4-fold and 8.7-fold range respectively and that variation of the node length is much less along axons than between axons. Modelling predicts that these node length differences will alter conduction speed by ~20%, similar to the changes produced by altering the number of myelin wraps or the internode length. For a given change of conduction speed, the membrane area change needed at the node is >270-fold less than that needed in the myelin sheath. Thus, axon-specific adjustment of node of Ranvier length is potentially an energy-efficient and rapid mechanism for tuning the arrival time of information in the CNS. DOI:http://dx.doi.org/10.7554/eLife.23329.001 Information is transmitted around the nervous system as electrical signals passing along nerve cells. A fatty substance called myelin, which is wrapped around the nerve cells, increases the speed with which the signals travel along the nerve cells. This allows us to think and move faster than we would otherwise be able to do. The electrical signals start at small “nodes” between areas of myelin wrapping. Originally it was thought that we learn things mainly as a result of changes in the strength of connections between nerve cells, but recently it has been proposed that changes in myelin wrapping could also contribute to learning. Arancibia-Cárcamo, Ford, Cossell et al. investigated how much node structure varies in rat nerve cells, and whether differences in the length of nodes can fine-tune the activity of the nervous system. The experiments show that rat nerve cells do indeed have nodes with a range of different lengths. Calculations show that this could result in electrical signals moving at different speeds through different nerve cells. These findings raise the possibility that nerve cells actively alter the length of their nodes in order to alter their signal speed. The next step is to try to show experimentally that this happens during learning in animals. DOI:http://dx.doi.org/10.7554/eLife.23329.002
Collapse
Affiliation(s)
- I Lorena Arancibia-Cárcamo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Marc C Ford
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Lee Cossell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Kinji Ishida
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Japan
| | - Koujiro Tohyama
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Japan.,Department of Physiology, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
48
|
Abstract
Myelination by oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system is essential for nervous system function and health. Despite its importance, we have a relatively poor understanding of the molecular and cellular mechanisms that regulate myelination in the living animal, particularly in the CNS. This is partly due to the fact that myelination commences around birth in mammals, by which time the CNS is complex and largely inaccessible, and thus very difficult to image live in its intact form. As a consequence, in recent years much effort has been invested in the use of smaller, simpler, transparent model organisms to investigate mechanisms of myelination in vivo. Although the majority of such studies have employed zebrafish, the Xenopus tadpole also represents an important complementary system with advantages for investigating myelin biology in vivo. Here we review how the natural features of zebrafish embryos and larvae and Xenopus tadpoles make them ideal systems for experimentally interrogating myelination by live imaging. We outline common transgenic technologies used to generate zebrafish and Xenopus that express fluorescent reporters, which can be used to image myelination. We also provide an extensive overview of the imaging modalities most commonly employed to date to image the nervous system in these transparent systems, and also emerging technologies that we anticipate will become widely used in studies of zebrafish and Xenopus myelination in the near future.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - David A Lyons
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
49
|
Abstract
Myelin is a lipid-rich sheath formed by the spiral wrapping of specialized glial cells around axon segments. Myelinating glia allow for rapid transmission of nerve impulses and metabolic support of axons, and the absence of or disruption to myelin results in debilitating motor, cognitive, and emotional deficits in humans. Because myelin is a jawed vertebrate innovation, zebrafish are one of the simplest vertebrate model systems to study the genetics and development of myelinating glia. The morphogenetic cellular movements and genetic program that drive myelination are conserved between zebrafish and mammals, and myelin develops rapidly in zebrafish larvae, within 3-5days postfertilization. Myelin ultrastructure can be visualized in the zebrafish from larval to adult stages via transmission electron microscopy, and the dynamic development of myelinating glial cells may be observed in vivo via transgenic reporter lines in zebrafish larvae. Zebrafish are amenable to genetic and pharmacological screens, and screens for myelinating glial phenotypes have revealed both genes and drugs that promote myelin development, many of which are conserved in mammalian glia. Recently, zebrafish have been employed as a model to understand the complex dynamics of myelinating glia during development and regeneration. In this chapter, we describe these key methodologies and recent insights into mechanisms that regulate myelination using the zebrafish model.
Collapse
Affiliation(s)
- M D'Rozario
- Washington University School of Medicine, St. Louis, MO, United States
| | - K R Monk
- Washington University School of Medicine, St. Louis, MO, United States; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
50
|
Thakurela S, Garding A, Jung RB, Müller C, Goebbels S, White R, Werner HB, Tiwari VK. The transcriptome of mouse central nervous system myelin. Sci Rep 2016; 6:25828. [PMID: 27173133 PMCID: PMC4865983 DOI: 10.1038/srep25828] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/21/2016] [Indexed: 01/03/2023] Open
Abstract
Rapid nerve conduction in the CNS is facilitated by insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics remains elusive. Here we performed a comprehensive transcriptome analysis (RNA-seq) of myelin biochemically purified from mouse brains at various ages and find a surprisingly large pool of transcripts enriched in myelin. Further computational analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesting a highly selective incorporation of mRNAs into the myelin compartment. The mRNA-pool in myelin displays maturation-dependent dynamic changes of composition, abundance, and functional associations; however ageing-dependent changes after 6 months were minor. We suggest that this transcript pool enables myelin turnover and the local adaptation of individual pre-existing myelin sheaths.
Collapse
Affiliation(s)
| | - Angela Garding
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ramona B. Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christina Müller
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | |
Collapse
|