1
|
Akhmetshina A, Schooltink L, Amor M, Kuentzel KB, Rainer S, Nandy A, Habisch H, Madl T, Rendina-Ruedy E, Leithner K, Vujić N, Kratky D. Loss or inhibition of lysosomal acid lipase in vitro leads to cholesteryl ester accumulation without affecting muscle formation or mitochondrial function. BBA ADVANCES 2024; 7:100135. [PMID: 39839442 PMCID: PMC11745973 DOI: 10.1016/j.bbadva.2024.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025] Open
Abstract
Skeletal muscle (SM) is essential for movement, stability, and overall body function, and it readily adapts to changes in energy demand. Myogenesis is energy-intensive and involves complex molecular and cellular events. We recently demonstrated that the absence of lysosomal acid lipase (LAL) in vivo significantly impacts the SM phenotype, primarily by disrupting energy homeostasis and reducing ATP production. As systemic LAL deficiency affects multiple organs, we hypothesized that the altered SM phenotype resulted from systemic rather than SM-specific loss of LAL activity. To distinguish between systemic and cell-intrinsic effects, we used primary myoblasts isolated from Lal-deficient (-/-) mice as well as C2C12 cells treated with the pharmacological inhibitor of LAL, Lalistat-2. We found a significant accumulation of cholesteryl esters in both models studied, highlighting the central role of LAL in lipid catabolism in the SM. However, lipid accumulation was absent under lipoprotein-deficient culture conditions. Neither genetic loss nor pharmacological inhibition of LAL affected myofiber formation or mitochondrial function in vitro, in contrast to what we observed in SM isolated from Lal-/- mice. Tracing [13C6]-labeled glucose in both cell culture models revealed only minor changes in tricarboxylic acid cycle metabolites. These results suggest that although LAL plays an essential role in lipid metabolism, its impact on the processes involved in muscle differentiation and cellular energy production is minor. We conclude that the cell-intrinsic effects of Lal-/- SM are unlikely to drive the SM phenotype observed in vivo.
Collapse
Affiliation(s)
- Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laszlo Schooltink
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Katharina B. Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ananya Nandy
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hansjoerg Habisch
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Elizabeth Rendina-Ruedy
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Katharina Leithner
- BioTechMed-Graz, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
2
|
Zhang J, Zha X, Yang G, Ma X, La Y, Wu X, Guo X, Chu M, Bao P, Yan P, Liang C. Polymorphisms of TXK and PLCE1 Genes and Their Correlation Analysis with Growth Traits in Ashidan Yaks. Animals (Basel) 2024; 14:3506. [PMID: 39682472 DOI: 10.3390/ani14233506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The tyrosine protein kinase (TXK) gene, as a member of the non-receptor tyrosine kinase Tec family, plays a vital role in signal transduction mediation. Phospholipase C epsilon 1 (PLCE1), a membrane-associated enzyme, is of paramount importance for the differentiation of myoblasts and the normal functioning of muscle tissue. In recent years, both of these genes have been reported to be associated with the economic traits of animals. This study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) in the TXK and PLCE1 genes and growth traits in Ashidan yaks and to search for potential molecular marker loci that can influence Ashidan yak breeding. A cGPS liquid microarray was utilized to genotype 232 Ashidan yaks and to analyze correlations between two SNP loci in the TXK and PLCE1 genes and yak body weight, body height, body length, and chest circumference at different periods. The results indicated that the g.55,999,531C>T locus of the TXK gene and the g.342,350T>G locus of the PLCE1 gene were significantly correlated with the growth traits of Ashidan yaks. Among these, individuals with the CC genotype at the g.55,999,531C>T locus showed a significantly higher body length at 6 months old compared to TT individuals, and those with the CT genotype at 12 months old had a significantly higher chest circumference than TT individuals. At the g.342,350T>G locus, the body height of GG genotype individuals at 18 months of age was significantly higher than that of TT genotype individuals and TG genotype individuals. The above findings can be used as theoretical support for the subsequent improvement of Ashidan yak breeding.
Collapse
Affiliation(s)
- Juanxiang Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xita Zha
- Qinghai Qilian County Animal Husbandry and Veterinary Workstation, Qilian 810400, China
| | - Guowu Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoming Ma
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Qinghai Qilian County Animal Husbandry and Veterinary Workstation, Qilian 810400, China
| |
Collapse
|
3
|
Vásquez W, Toro CA, Cardozo CP, Cea LA, Sáez JC. Pathophysiological role of connexin and pannexin hemichannels in neuromuscular disorders. J Physiol 2024. [PMID: 39173050 DOI: 10.1113/jp286173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
A growing body of research has provided evidence that de novo expression of connexin hemichannels and upregulation of pannexin hemichannels (Cx HCs and Panx HCs, respectively) in the cytoplasmic membrane of skeletal muscle (sarcolemma) are critical steps in the pathogenesis of muscle dysfunction of many genetic and acquired muscle diseases. This review provides an overview of the current understanding of the molecular mechanisms regulating the expression of Cx and Panx HCs in skeletal muscle, as well as their roles in both muscle physiology and pathologies. Additionally, it addresses existing gaps in knowledge and outlines future challenges in the field.
Collapse
Affiliation(s)
- Walter Vásquez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Neurociencias, Centro Interdisciplinario De Neurociencia De Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos A Toro
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis A Cea
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario De Neurociencia De Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
4
|
Molina BG, Fuentes J, Alemán C, Sánchez S. Merging BioActuation and BioCapacitive properties: A 3D bioprinted devices to self-stimulate using self-stored energy. Biosens Bioelectron 2024; 251:116117. [PMID: 38350239 DOI: 10.1016/j.bios.2024.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Biofabrication of three-dimensional (3D) cultures through the 3D Bioprinting technique opens new perspectives and applications of cell-laden hydrogels. However, to continue with the progress, new BioInks with specific properties must be carefully designed. In this study, we report the synthesis and 3D Bioprinting of an electroconductive BioInk made of gelatin/fibrinogen hydrogel, C2C12 mouse myoblast and 5% w/w of conductive poly (3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs). The influence of PEDOT NPs, incorporated in the cell-laden BioInk, not only showed a positive effect in cells viability, differentiation and myotube functionalities, also allowed the printed constructs to behaved as BioCapacitors. Such devices were able to electrochemically store a significant amount of energy (0.5 mF/cm2), enough to self-stimulate as BioActuator, with typical contractions ranging from 27 to 38 μN, during nearly 50 min. The biofabrication of 3D constructs with the proposed electroconductive BioInk could lead to new devices for tissue engineering, biohybrid robotics or bioelectronics.
Collapse
Affiliation(s)
- Brenda G Molina
- Departament D'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. C, 08019, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| | - Judith Fuentes
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Carlos Alemán
- Departament D'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. C, 08019, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
5
|
Zabłocki K, Górecki DC. The Role of P2X7 Purinoceptors in the Pathogenesis and Treatment of Muscular Dystrophies. Int J Mol Sci 2023; 24:ijms24119434. [PMID: 37298386 DOI: 10.3390/ijms24119434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Muscular dystrophies are inherited neuromuscular diseases, resulting in progressive disability and often affecting life expectancy. The most severe, common types are Duchenne muscular dystrophy (DMD) and Limb-girdle sarcoglycanopathy, which cause advancing muscle weakness and wasting. These diseases share a common pathomechanism where, due to the loss of the anchoring dystrophin (DMD, dystrophinopathy) or due to mutations in sarcoglycan-encoding genes (LGMDR3 to LGMDR6), the α-sarcoglycan ecto-ATPase activity is lost. This disturbs important purinergic signaling: An acute muscle injury causes the release of large quantities of ATP, which acts as a damage-associated molecular pattern (DAMP). DAMPs trigger inflammation that clears dead tissues and initiates regeneration that eventually restores normal muscle function. However, in DMD and LGMD, the loss of ecto-ATPase activity, that normally curtails this extracellular ATP (eATP)-evoked stimulation, causes exceedingly high eATP levels. Thus, in dystrophic muscles, the acute inflammation becomes chronic and damaging. The very high eATP over-activates P2X7 purinoceptors, not only maintaining the inflammation but also tuning the potentially compensatory P2X7 up-regulation in dystrophic muscle cells into a cell-damaging mechanism exacerbating the pathology. Thus, the P2X7 receptor in dystrophic muscles is a specific therapeutic target. Accordingly, the P2X7 blockade alleviated dystrophic damage in mouse models of dystrophinopathy and sarcoglycanopathy. Therefore, the existing P2X7 blockers should be considered for the treatment of these highly debilitating diseases. This review aims to present the current understanding of the eATP-P2X7 purinoceptor axis in the pathogenesis and treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
6
|
Mechanical Disturbance of Osteoclasts Induces ATP Release That Leads to Protein Synthesis in Skeletal Muscle through an Akt-mTOR Signaling Pathway. Int J Mol Sci 2022; 23:ijms23169444. [PMID: 36012713 PMCID: PMC9408906 DOI: 10.3390/ijms23169444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Muscle and bone are tightly integrated through mechanical and biochemical signals. Osteoclasts are cells mostly related to pathological bone loss; however, they also start physiological bone remodeling. Therefore, osteoclast signals released during bone remodeling could improve both bone and skeletal muscle mass. Extracellular ATP is an autocrine/paracrine signaling molecule released by bone and muscle cells. Then, in the present work, it was hypothesized that ATP is a paracrine mediator released by osteoclasts and leads to skeletal muscle protein synthesis. RAW264.7-derived osteoclasts were co-cultured in Transwell® chambers with flexor digitorum brevis (FDB) muscle isolated from adult BalbC mice. The osteoclasts at the upper chamber were mechanically stimulated by controlled culture medium perturbation, resulting in a two-fold increase in protein synthesis in FDB muscle at the lower chamber. Osteoclasts released ATP to the extracellular medium in response to mechanical stimulation, proportional to the magnitude of the stimulus and partly dependent on the P2X7 receptor. On the other hand, exogenous ATP promoted Akt phosphorylation (S473) in isolated FDB muscle in a time- and concentration-dependent manner. ATP also induced phosphorylation of proteins downstream Akt: mTOR (S2448), p70S6K (T389) and 4E-BP1 (T37/46). Exogenous ATP increased the protein synthesis rate in FDB muscle 2.2-fold; this effect was blocked by Suramin (general P2X/P2Y antagonist), LY294002 (phosphatidylinositol 3 kinase inhibitor) and Rapamycin (mTOR inhibitor). These blockers, as well as apyrase (ATP metabolizing enzyme), also abolished the induction of FDB protein synthesis evoked by mechanical stimulation of osteoclasts in the co-culture model. Therefore, the present findings suggest that mechanically stimulated osteoclasts release ATP, leading to protein synthesis in isolated FDB muscle, by activating the P2-PI3K-Akt-mTOR pathway. These results open a new area for research and clinical interest in bone-to-muscle crosstalk in adaptive processes related to muscle use/disuse or in musculoskeletal pathologies.
Collapse
|
7
|
Contingent intramuscular boosting of P2XR7 axis improves motor function in transgenic ALS mice. Cell Mol Life Sci 2021; 79:7. [PMID: 34936028 PMCID: PMC8695421 DOI: 10.1007/s00018-021-04070-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons and severe muscle atrophy without effective treatment. Most research on the disease has been focused on studying motor neurons and supporting cells of the central nervous system. Strikingly, the recent observations have suggested that morpho-functional alterations in skeletal muscle precede motor neuron degeneration, bolstering the interest in studying muscle tissue as a potential target for the delivery of therapies. We previously showed that the systemic administration of the P2XR7 agonist, 2′(3′)-O‐(4-benzoylbenzoyl) adenosine 5-triphosphate (BzATP), enhanced the metabolism and promoted the myogenesis of new fibres in the skeletal muscles of SOD1G93A mice. Here we further corroborated this evidence showing that intramuscular administration of BzATP improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of infiltrating macrophages. The preservation of the skeletal muscle retrogradely propagated along with the motor unit, suggesting that backward signalling from the muscle could impinge on motor neuron death. In addition to providing the basis for a suitable adjunct multisystem therapeutic approach in ALS, these data point out that the muscle should be at the centre of ALS research as a target tissue to address novel therapies in combination with those oriented to the CNS.
Collapse
|
8
|
Chen L, Hassani Nia F, Stauber T. Ion Channels and Transporters in Muscle Cell Differentiation. Int J Mol Sci 2021; 22:13615. [PMID: 34948411 PMCID: PMC8703453 DOI: 10.3390/ijms222413615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Investigations on ion channels in muscle tissues have mainly focused on physiological muscle function and related disorders, but emerging evidence supports a critical role of ion channels and transporters in developmental processes, such as controlling the myogenic commitment of stem cells. In this review, we provide an overview of ion channels and transporters that influence skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed.
Collapse
Affiliation(s)
- Lingye Chen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| | - Tobias Stauber
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| |
Collapse
|
9
|
Suarez-Berumen K, Collins-Hooper H, Gromova A, Meech R, Sacco A, Dash PR, Mitchell R, Shestopalov VI, Woolley TE, Vaiyapuri S, Patel K, Makarenkova HP. Pannexin 1 Regulates Skeletal Muscle Regeneration by Promoting Bleb-Based Myoblast Migration and Fusion Through a Novel Lipid Based Signaling Mechanism. Front Cell Dev Biol 2021; 9:736813. [PMID: 34676213 PMCID: PMC8523994 DOI: 10.3389/fcell.2021.736813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Adult skeletal muscle has robust regenerative capabilities due to the presence of a resident stem cell population called satellite cells. Muscle injury leads to these normally quiescent cells becoming molecularly and metabolically activated and embarking on a program of proliferation, migration, differentiation, and fusion culminating in the repair of damaged tissue. These processes are highly coordinated by paracrine signaling events that drive cytoskeletal rearrangement and cell-cell communication. Pannexins are a family of transmembrane channel proteins that mediate paracrine signaling by ATP release. It is known that Pannexin1 (Panx1) is expressed in skeletal muscle, however, the role of Panx1 during skeletal muscle development and regeneration remains poorly understood. Here we show that Panx1 is expressed on the surface of myoblasts and its expression is rapidly increased upon induction of differentiation and that Panx1-/- mice exhibit impaired muscle regeneration after injury. Panx1-/- myoblasts activate the myogenic differentiation program normally, but display marked deficits in migration and fusion. Mechanistically, we show that Panx1 activates P2 class purinergic receptors, which in turn mediate a lipid signaling cascade in myoblasts. This signaling induces bleb-driven amoeboid movement that in turn supports myoblast migration and fusion. Finally, we show that Panx1 is involved in the regulation of cell-matrix interaction through the induction of ADAMTS (Disintegrin-like and Metalloprotease domain with Thrombospondin-type 5) proteins that help remodel the extracellular matrix. These studies reveal a novel role for lipid-based signaling pathways activated by Panx1 in the coordination of myoblast activities essential for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Katia Suarez-Berumen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,West Anaheim Medical Center, Anaheim, CA, United States
| | | | - Anastasia Gromova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University, Adelaide, SA, Australia
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Phil R Dash
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, United States.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Thomas E Woolley
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
10
|
Comas F, Moreno-Navarrete JM. The Impact of H 2S on Obesity-Associated Metabolic Disturbances. Antioxidants (Basel) 2021; 10:antiox10050633. [PMID: 33919190 PMCID: PMC8143163 DOI: 10.3390/antiox10050633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Over the last several decades, hydrogen sulfide (H2S) has gained attention as a new signaling molecule, with extensive physiological and pathophysiological roles in human disorders affecting vascular biology, immune functions, cellular survival, metabolism, longevity, development, and stress resistance. Apart from its known functions in oxidative stress and inflammation, new evidence has emerged revealing that H2S carries out physiological functions by targeting proteins, enzymes, and transcription factors through a post-translational modification known as persulfidation. This review article provides a critical overview of the current state of the literature addressing the role of H2S in obesity-associated metabolic disturbances, with particular emphasis on its mechanisms of action in obesity, diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Correspondence: ; Tel.: +(34)-872-98-70-87
| |
Collapse
|
11
|
Maruta H, Yamashita H. Acetic acid stimulates G-protein-coupled receptor GPR43 and induces intracellular calcium influx in L6 myotube cells. PLoS One 2020; 15:e0239428. [PMID: 32997697 PMCID: PMC7526932 DOI: 10.1371/journal.pone.0239428] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Short chain fatty acids (SCFAs) produced endogenously in the gut by bacterial fermentation of dietary fiber have been studied as nutrients that act as signaling molecules to activate G-protein coupled receptors (GPCRs) such as GPR41 and GPR43. GPR43 functioning involves the suppression of lipid accumulation and maintaining body energy homeostasis, and is activated by acetic acid or propionic acid. Previously, we reported that the orally administered acetic acid improves lipid metabolism in liver and skeletal muscles and suppresses obesity, thus improving glucose tolerance. Acetic acid stimulates AMP-activated protein kinase (AMPK) through its metabolic pathway in skeletal muscle cells. We hypothesized that acetic acid would stimulate GPR43 in skeletal muscle cells and has function in modulating gene expression related to muscle characteristics through its signal pathway. The objective of the current study was to clarify this effect of acetic acid. The GPR43 expression, observed in the differentiated myotube cells, was increased upon acetic acid treatment. Acetic acid induced the intracellular calcium influx in the cells and this induction was significantly inhibited by the GPR43-specific siRNA treatment. The calcineurin molecule is activated by calcium/calmodulin and is associated with proliferation of slow-twitch fibers. Calcineurin was activated by acetic acid treatment and inhibited by the concomitant treatment with GPR43-siRNA. Acetic acid induced nuclear localization of myocyte enhancer factor 2A (MEF2A), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and nuclear factor of activated t cells c1 (NFATc1). However, these localizations were abolished by the treatment with GPR43-siRNA. It was concluded that acetic acid plays a role in the activation of GPR43 and involves the proliferation of slow-twitch fibers in L6 skeletal muscles through the calcium-signaling pathway caused by induction of intracellular calcium influx.
Collapse
Affiliation(s)
- Hitomi Maruta
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, Japan
| | - Hiromi Yamashita
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, Japan
- Graduate School of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, Japan
- * E-mail:
| |
Collapse
|
12
|
eATP/P2X7R Axis: An Orchestrated Pathway Triggering Inflammasome Activation in Muscle Diseases. Int J Mol Sci 2020; 21:ijms21175963. [PMID: 32825102 PMCID: PMC7504480 DOI: 10.3390/ijms21175963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
In muscle ATP is primarily known for its function as an energy source and as a mediator of the "excitation-transcription" process, which guarantees muscle plasticity in response to environmental stimuli. When quickly released in massive concentrations in the extracellular space as in presence of muscle membrane damage, ATP acts as a damage-associated molecular pattern molecule (DAMP). In experimental murine models of muscular dystrophies characterized by membrane instability, blockade of eATP/P2X7 receptor (R) purinergic signaling delayed the progression of the dystrophic phenotype dampening the local inflammatory response and inducing Foxp3+ T Regulatory lymphocytes. These discoveries highlighted the relevance of ATP as a harbinger of immune-tissue damage in muscular genetic diseases. Given the interactions between the immune system and muscle regeneration, the comprehension of ATP/purinerigic pathway articulated organization in muscle cells has become of extreme interest. This review explores ATP release, metabolism, feedback control and cross-talk with members of muscle inflammasome in the context of muscular dystrophies.
Collapse
|
13
|
Blanchard C, Boué-Grabot E, Massé K. Comparative Embryonic Spatio-Temporal Expression Profile Map of the Xenopus P2X Receptor Family. Front Cell Neurosci 2019; 13:340. [PMID: 31402854 PMCID: PMC6676501 DOI: 10.3389/fncel.2019.00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/10/2019] [Indexed: 01/27/2023] Open
Abstract
P2X receptors are ATP-gated cations channels formed by the homo or hetero-trimeric association from the seven cloned subunits (P2X1-7). P2X receptors are widely distributed in different organs and cell types throughout the body including the nervous system and are involved in a large variety of physiological but also pathological processes in adult mammals. However, their expression and function during embryogenesis remain poorly understood. Here, we report the cloning and the comparative expression map establishment of the entire P2X subunit family in the clawed frog Xenopus. Orthologous sequences for 6 mammalian P2X subunits were identified in both X. laevis and X. tropicalis, but not for P2X3 subunit, suggesting a potential loss of this subunit in the Pipidae family. Three of these genes (p2rx1, p2rx2, and p2rx5) exist as homeologs in the pseudoallotetraploid X. laevis, making a total of 9 subunits in this species. Phylogenetic analyses demonstrate the high level of conservation of these receptors between amphibian and other vertebrate species. RT-PCR revealed that all subunits are expressed during the development although zygotic p2rx6 and p2rx7 transcripts are mainly detected at late organogenesis stages. Whole mount in situ hybridization shows that each subunit displays a specific spatio-temporal expression profile and that these subunits can therefore be grouped into two groups, based on their expression or not in the developing nervous system. Overlapping expression in the central and peripheral nervous system and in the sensory organs suggests potential heteromerization and/or redundant functions of P2X subunits in Xenopus embryos. The developmental expression of the p2rx subunit family during early phases of embryogenesis indicates that these subunits may have distinct roles during vertebrate development, especially embryonic neurogenesis.
Collapse
Affiliation(s)
- Camille Blanchard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Eric Boué-Grabot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Karine Massé
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
14
|
Bosutti A, Bernareggi A, Massaria G, D'Andrea P, Taccola G, Lorenzon P, Sciancalepore M. A "noisy" electrical stimulation protocol favors muscle regeneration in vitro through release of endogenous ATP. Exp Cell Res 2019; 381:121-128. [PMID: 31082374 DOI: 10.1016/j.yexcr.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023]
Abstract
An in vitro system of electrical stimulation was used to explore whether an innovative "noisy" stimulation protocol derived from human electromyographic recordings (EMGstim) could promote muscle regeneration. EMGstim was delivered to cultured mouse myofibers isolated from Flexor Digitorum Brevis, preserving their satellite cells. In response to EMGstim, immunostaining for the myogenic regulatory factor myogenin, revealed an increased percentage of elongated myogenin-positive cells surrounding the myofibers. Conditioned medium collected from EMGstim-treated cell cultures, promoted satellite cells differentiation in unstimulated myofiber cell cultures, suggesting that extracellular soluble factors could mediate the process. Interestingly, the myogenic effect of EMGstim was mimicked by exogenously applied ATP (0.1 μM), reduced by the ATP diphosphohydrolase apyrase and prevented by blocking endogenous ATP release with carbenoxolone. In conclusion, our results show that "noisy" electrical stimulations favor muscle progenitor cell differentiation most likely via the release of endogenous ATP from contracting myofibres. Our data also suggest that "noisy" stimulation protocols could be potentially more efficient than regular stimulations to promote in vivo muscle regeneration after traumatic injury or in neuropathological diseases.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Annalisa Bernareggi
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Gabriele Massaria
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy; Area Science Park, Padriciano, 99, I-34149, Trieste, Italy
| | - Paola D'Andrea
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Giuliano Taccola
- Department of Neuroscience, SISSA, Via Bonomea 265, 34136, Trieste, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, 33100, Udine, Italy
| | - Paola Lorenzon
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Marina Sciancalepore
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy.
| |
Collapse
|
15
|
Róg J, Oksiejuk A, Gosselin MRF, Brutkowski W, Dymkowska D, Nowak N, Robson S, Górecki DC, Zabłocki K. Dystrophic mdx mouse myoblasts exhibit elevated ATP/UTP-evoked metabotropic purinergic responses and alterations in calcium signalling. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1138-1151. [PMID: 30684640 DOI: 10.1016/j.bbadis.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 02/08/2023]
Abstract
Pathophysiology of Duchenne Muscular Dystrophy (DMD) is still elusive. Although progressive wasting of muscle fibres is a cause of muscle deterioration, there is a growing body of evidence that the triggering effects of DMD mutation are present at the earlier stage of muscle development and affect myogenic cells. Among these abnormalities, elevated activity of P2X7 receptors and increased store-operated calcium entry myoblasts have been identified in mdx mouse. Here, the metabotropic extracellular ATP/UTP-evoked response has been investigated. Sensitivity to antagonist, effect of gene silencing and cellular localization studies linked these elevated purinergic responses to the increased expression of P2Y2 but not P2Y4 receptors. These alterations have physiological implications as shown by reduced motility of mdx myoblasts upon treatment with P2Y2 agonist. However, the ultimate increase in intracellular calcium in dystrophic cells reflected complex alterations of calcium homeostasis identified in the RNA seq data and with significant modulation confirmed at the protein level, including a decrease of Gq11 subunit α, plasma membrane calcium ATP-ase, inositol-2,4,5-trisphosphate-receptor proteins and elevation of phospholipase Cβ, sarco-endoplamatic reticulum calcium ATP-ase and sodium‑calcium exchanger. In conclusion, whereas specificity of dystrophic myoblast excitation by extracellular nucleotides is determined by particular receptor overexpression, the intensity of such altered response depends on relative activities of downstream calcium regulators that are also affected by Dmd mutations. Furthermore, these phenotypic effects of DMD emerge as early as in undifferentiated muscle. Therefore, the pathogenesis of DMD and the relevance of current therapeutic approaches may need re-evaluation.
Collapse
Affiliation(s)
- Justyna Róg
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Aleksandra Oksiejuk
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Maxime R F Gosselin
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Wojciech Brutkowski
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Neurobiology Center Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Samuel Robson
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK; Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
16
|
Guo L, Cui H, Zhao G, Liu R, Li Q, Zheng M, Guo Y, Wen J. Intramuscular preadipocytes impede differentiation and promote lipid deposition of muscle satellite cells in chickens. BMC Genomics 2018; 19:838. [PMID: 30477424 PMCID: PMC6258484 DOI: 10.1186/s12864-018-5209-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background Skeletal muscle satellite cells (MSC) are crucial for postnatal growth and regeneration of skeletal muscle. An interaction exists between MSC and intramuscular preadipocytes (IMPA). This study is the first to investigate the effects of IMPA on MSC in chickens and unveil the molecular mechanisms by transcriptome analysis. Results Primary MSC and IMPA were isolated from the pectoralis major muscle of 7-day-old chickens. After both cell types reached confluence, MSC were cultured alone or co-cultured with IMPA for 2 or 4 d. MSC treated for 2 d were subjected to RNA-seq. A total of 1653 known differentially expressed genes (DEG) were identified between co-cultured and mono-cultured MSC (|log2 FC| ≥ 1, FDR < 0.01). Based on Gene Ontology analysis, 48 DEG related to muscle development were screened, including the key genes MYOD1, MYOG, PAX7, and TMEM8C. The 44 DEG related to lipid deposition included the key genes CD36, FABP4, ACSBG2, CYP7A1 and PLIN2. Most of the DEG related to muscle development were downregulated in co-cultured MSC, and DEG related to lipid deposition were upregulated. Immunofluorescence of MHC supported IMPA impeding differentiation of MSC, and Oil Red O staining showed concurrent promotion of lipid deposition. Pathway analysis found that several key genes were enriched in JNK/MAPK and PPAR signaling, which may be the key pathways regulating differentiation and lipid deposition in MSC. Additionally, pathways related to cell junctions may also contribute to the effect of IMPA on MSC. Conclusions The present study showed that IMPA impeded differentiation of MSC while promoting their lipid deposition. Pathway analysis indicated that IMPA might inhibit differentiation via the JNK/MAPK pathway, and promote lipid deposition via the PPAR pathway. This study supplies insights into the effect of IMPA on MSC, providing new clues on exposing the molecular mechanisms underlying the interplay between skeletal muscle and intramuscular fat in chickens. Electronic supplementary material The online version of this article (10.1186/s12864-018-5209-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liping Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Yuming Guo
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China. .,State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| |
Collapse
|
17
|
Pannexin 1 inhibits rhabdomyosarcoma progression through a mechanism independent of its canonical channel function. Oncogenesis 2018; 7:89. [PMID: 30459312 PMCID: PMC6246549 DOI: 10.1038/s41389-018-0100-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive soft tissue sarcoma of childhood thought to arise from impaired differentiation of skeletal muscle progenitors. We have recently identified Pannexin 1 (PANX1) channels as a novel regulator of skeletal myogenesis. In the present study, we determined that PANX1 transcript and protein levels are down-regulated in embryonal (eRMS) and alveolar RMS (aRMS) patient-derived cell lines and primary tumor specimens as compared to differentiated skeletal muscle myoblasts and tissue, respectively. While not sufficient to overcome the inability of RMS to reach terminal differentiation, ectopic expression of PANX1 in eRMS (Rh18) and aRMS (Rh30) cells significantly decreased their proliferative and migratory potential. Furthermore, ectopic PANX1 abolished 3D spheroid formation in eRMS and aRMS cells and induced regression of established spheroids through induction of apoptosis. Notably, PANX1 expression also significantly reduced the growth of human eRMS and aRMS tumor xenografts in vivo. Interestingly, PANX1 does not form active channels when expressed in eRMS (Rh18) and aRMS (Rh30) cells and the addition of PANX1 channel inhibitors did not alter or reverse the PANX1-mediated reduction of cell proliferation and migration. Moreover, expression of channel-defective PANX1 mutants not only disrupted eRMS and aRMS 3D spheroids, but also inhibited in vivo RMS tumor growth. Altogether our findings suggest that PANX1 alleviates RMS malignant properties in vitro and in vivo through a process that is independent of its canonical channel function.
Collapse
|
18
|
Ding J, Peng Z, Wu D, Miao J, Liu B, Wang L. A transcriptomics study of differentiated C2C12 myoblasts identified novel functional responses to 17β-estradiol. Cell Biol Int 2018; 42:965-974. [PMID: 29570902 DOI: 10.1002/cbin.10962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/17/2018] [Indexed: 11/11/2022]
Affiliation(s)
- JingJing Ding
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| | - ZhaoHong Peng
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| | - Di Wu
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| | - JiaNing Miao
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| | - Bo Liu
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| | - LiLi Wang
- Medical Research Center of Shengjing Hospital; China Medical University; Shenyang 110004 China
| |
Collapse
|
19
|
Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 925:57-73. [PMID: 27518505 DOI: 10.1007/5584_2016_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To discuss current knowledge on the role of connexins and pannexins in the musculoskeletal system. RECENT FINDINGS Connexins and pannexins are crucial for the development and maintenance of both bone and skeletal muscle. In bone, the presence of connexin and more recently of pannexin channels in osteoblasts, osteoclasts, and osteocytes has been described and shown to be essential for normal skeletal development and bone adaptation. In skeletal muscles, connexins and pannexins play important roles during development and regeneration through coordinated regulation of metabolic functions via cell-to-cell communication. Further, under pathological conditions, altered expression of these proteins can promote muscle atrophy and degeneration by stimulating inflammasome activity. In this review, we highlight the important roles of connexins and pannexins in the development, maintenance, and regeneration of musculoskeletal tissues, with emphasis on the mechanisms by which these molecules mediate chemical (e.g., ATP and prostaglandin E2) and physical (e.g., mechanical stimulation) stimuli that target the musculoskeletal system and their involvement in the pathophysiological changes in both genetic and acquired diseases.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA
| | - Bruno A Cisterna
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
21
|
Rai M, Demontis F. Systemic Nutrient and Stress Signaling via Myokines and Myometabolites. Annu Rev Physiol 2016; 78:85-107. [DOI: 10.1146/annurev-physiol-021115-105305] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mamta Rai
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105;
| | - Fabio Demontis
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105;
| |
Collapse
|
22
|
Young CNJ, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, Gorecki DC. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy 2015; 11:113-30. [PMID: 25700737 PMCID: PMC4502824 DOI: 10.4161/15548627.2014.994402] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
P2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotubes from the Dmdmdx mouse model of Duchenne muscular dystrophy, we found ATP-induced P2RX7-dependent autophagic flux, leading to CASP3-CASP7-independent cell death. P2RX7-evoked autophagy was triggered by LP formation but not Ca2+ influx or MAPK1-MAPK3 phosphorylation, 2 canonical P2RX7-evoked signals. Phosphoproteomics, protein expression inference and signaling pathway prediction analysis of P2RX7 signaling mediators pointed to HSPA2 and HSP90 proteins. Indeed, specific HSP90 inhibitors prevented LP formation, LC3-II accumulation, and cell death in myoblasts and myotubes but not in macrophages. Pharmacological blockade or genetic ablation of p2rx7 also proved protective against ATP-induced death of muscle cells, as did inhibition of autophagy with 3-MA. The functional significance of the P2RX7 LP is one of the great unknowns of purinergic signaling. Our data demonstrate a novel outcome—autophagy—and show that molecules entering through the LP can be targeted to phagophores. Moreover, we show that in muscles but not in macrophages, autophagy is needed for the formation of this LP. Given that P2RX7-dependent LP and HSP90 are critically interacting in the ATP-evoked autophagic death of dystrophic muscles, treatments targeting this axis could be of therapeutic benefit in this debilitating and incurable form of muscular dystrophy.
Collapse
Key Words
- 3-MA, 3-methyladenine
- ACTB, actin, β
- ATP
- BECN1, Beclin 1, autophagy-related
- BzATP, 2′(3′)-O-(4-benzoylbenzoyl)adenosine 5′-triphosphate
- CASP, caspase
- DAPC, dystrophin associated protein complex
- DMD
- DMD, Duchenne muscular dystrophy
- Dmdmdx p2rx7−/− double-mutant mouse model
- Dmdmdx, C57BL/10ScSn-Dmdmdx/J mouse model of DMD
- EtBr, ethidium bromide
- GA, geldanamycin
- HSP70
- HSP90
- HSP90, heat shock protein 90
- HSPA2/HSP70, heat shock protein 2
- LC3
- LDH, lactate dehydrogenase
- LP, large pore, P2RX7-dependent
- LY, Lucifer Yellow
- MAP1LC3B/LC3, microtubule-associated protein 1 light chain 3 β
- MAPK, mitogen-activated protein kinase
- P2RX7
- P2RX7, purinergic receptor P2X, ligand-gated ion channel, 7
- PtdIns3K, phosphatidylinositol 3-kinase, class III
- Wt, C57BL/10ScSn wild-type mouse
- autophagy
- cell death
- eATP, extracellular ATP
- purinoceptors
Collapse
Affiliation(s)
- Christopher N J Young
- a Molecular Medicine Laboratory; Institute of Biomedical and Biomolecular Sciences; School of Pharmacy and Biomedical Sciences ; University of Portsmouth ; Portsmouth , UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Bernareggi A, Luin E, Pavan B, Parato G, Sciancalepore M, Urbani R, Lorenzon P. Adenosine enhances acetylcholine receptor channel openings and intracellular calcium 'spiking' in mouse skeletal myotubes. Acta Physiol (Oxf) 2015; 214:467-80. [PMID: 25683861 DOI: 10.1111/apha.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/23/2014] [Accepted: 02/11/2015] [Indexed: 12/26/2022]
Abstract
AIMS The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor-mediated effects on the autocrine-mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium 'spikes' generated in differentiating mouse myotubes in vitro. METHODS Cell-attached patch-clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells. RESULTS The endogenous extracellular adenosine and the adenosine receptor-mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor-driven intracellular [Ca(2+) ]i 'spikes'. The pharmacological characterization of the adenosine receptor-mediated effects suggested a prevalent involvement of the A2B adenosine receptor subtype. CONCLUSION We propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle.
Collapse
Affiliation(s)
- A. Bernareggi
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - E. Luin
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - B. Pavan
- Department of Life Sciences and Biotechnology; University of Ferrara; Via L. Borsari 46 Ferrara I-44121 Italy
| | - G. Parato
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - M. Sciancalepore
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - R. Urbani
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
| | - P. Lorenzon
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| |
Collapse
|
24
|
Sáez JC, Cisterna BA, Vargas A, Cardozo CP. Regulation of pannexin and connexin channels and their functional role in skeletal muscles. Cell Mol Life Sci 2015; 72:2929-35. [PMID: 26084874 PMCID: PMC11113819 DOI: 10.1007/s00018-015-1968-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022]
Abstract
Myogenic precursor cells express connexins (Cx) and pannexins (Panx), proteins that form different membrane channels involved in cell-cell communication. Cx channels connect either the cytoplasm of adjacent cells, called gap junction channels (GJC), or link the cytoplasm with the extracellular space, termed hemichannels (HC), while Panx channels only support the latter. In myoblasts, Panx1 HCs play a critical role in myogenic differentiation, and Cx GJCs and possibly Cx HCs coordinate metabolic responses during later steps of myogenesis. After innervation, myofibers do not express Cxs, but still express Panx1. In myotubes and innervated myofibers, Panx1 HCs allow release of adenosine triphosphate and thus they might be involved in skeletal muscle plasticity. In addition, Panx1 HCs present in adult myofibers mediate adenosine triphosphate release and glucose uptake required for potentiation of muscle contraction. Under pathological conditions, such as upon denervation and spinal cord injury, levels of Panx1 are upregulated. However, Panx1(-/-) mice show similar degree of atrophy as denervated wild-type muscles. Skeletal muscles also express Cx HCs in the sarcolemma after denervation or spinal cord injury, plus other non-selective membrane channels, including purinergic P2X7 receptors and transient receptor potential type V2 channels. The absence of Cx43 and Cx45 is sufficient to drastically reduce denervation atrophy. Moreover, inflammatory cytokines also induce the expression of Cxs in myofibers, suggesting the expression of these Cxs as a common factor for myofiber degeneration under diverse pathological conditions. Inhibitors of skeletal muscle Cx HCs could be promising tools to prevent muscle wasting induced by conditions associated with synaptic dysfunction and inflammation.
Collapse
Affiliation(s)
- Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile,
| | | | | | | |
Collapse
|
25
|
Riquelme MA, Cea LA, Vega JL, Puebla C, Vargas AA, Shoji KF, Subiabre M, Sáez JC. Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation. Front Cell Dev Biol 2015; 3:25. [PMID: 26000275 PMCID: PMC4422085 DOI: 10.3389/fcell.2015.00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/17/2015] [Indexed: 11/13/2022] Open
Abstract
The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i). Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs) as well as connexin (Cx) and/or pannexin (Panx) hemichannels and channels (Cx HChs and Panx Chs), respectively, which are known to permeate Ca2+. Reserve cells (RCs) are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs), did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs, and Panx Chs.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Luis A Cea
- Program of Anatomy and Developmental Biology, Institute of Biomedical Science, Faculty of Medicine, University of Chile Santiago, Chile
| | - José L Vega
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Experimental Physiology Laboratory (EPhyL), Instituto Antofagasta, Universidad de Antofagasta Antofagasta, Chile
| | - Carlos Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Aníbal A Vargas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Kenji F Shoji
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mario Subiabre
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
26
|
Cisterna BA, Cardozo C, Sáez JC. Neuronal involvement in muscular atrophy. Front Cell Neurosci 2014; 8:405. [PMID: 25540609 PMCID: PMC4261799 DOI: 10.3389/fncel.2014.00405] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022] Open
Abstract
The innervation of skeletal myofibers exerts a crucial influence on the maintenance of muscle tone and normal operation. Consequently, denervated myofibers manifest atrophy, which is preceded by an increase in sarcolemma permeability. Recently, de novo expression of hemichannels (HCs) formed by connexins (Cxs) and other none selective channels, including P2X7 receptors (P2X7Rs), and transient receptor potential, sub-family V, member 2 (TRPV2) channels was demonstrated in denervated fast skeletal muscles. The denervation-induced atrophy was drastically reduced in denervated muscles deficient in Cxs 43 and 45. Nonetheless, the transduction mechanism by which the nerve represses the expression of the above mentioned non-selective channels remains unknown. The paracrine action of extracellular signaling molecules including ATP, neurotrophic factors (i.e., brain-derived neurotrophic factor (BDNF)), agrin/LDL receptor-related protein 4 (Lrp4)/muscle-specific receptor kinase (MuSK) and acetylcholine (Ach) are among the possible signals for repression for connexin expression. This review discusses the possible role of relevant factors in maintaining the normal functioning of fast skeletal muscles and suppression of connexin hemichannel expression.
Collapse
Affiliation(s)
- Bruno A. Cisterna
- Departamento de Fisiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Christopher Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical CenterBronx, NY, USA
- Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de ChileSantiago, Chile
- Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
27
|
Antigny F, Konig S, Bernheim L, Frieden M. Inositol 1,4,5 trisphosphate receptor 1 is a key player of human myoblast differentiation. Cell Calcium 2014; 56:513-21. [PMID: 25468730 DOI: 10.1016/j.ceca.2014.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022]
Abstract
Cytosolic Ca(2+) signals are fundamental for the early and late steps of myoblast differentiation and are, as in many cells, generated by Ca(2+) release from internal stores as well as by plasma membrane Ca(2+) entry. Our recent studies identified the store-operated Ca(2+) channels, Orai1 and TRPC1&C4, as crucial for the early steps of human myogenesis and for the late fusion events. In the present work, we assessed the role of the inositol-1,4,5 tris-phosphate receptor (IP3R) type 1 during human myoblast differentiation. We demonstrated, using siRNA strategy that IP3R1 is required for the expression of muscle-specific transcription factors such as myogenin and MEF2 (myocyte enhancer factor 2), and for the formation of myotubes. The knockdown of IP3R1 strongly reduced endogenous spontaneous Ca(2+) transients, and attenuated store-operated Ca(2+) entry. As well, two Ca(2+)-dependent key enzymes of muscle differentiation, NFAT and CamKII are down-regulated upon siIP3R1 treatment. On the contrary, the overexpression of IP3R1 accelerated myoblasts differentiation. These findings identify Ca(2+) release mediated by IP3R1 as an essential mechanism during the early steps of myoblast differentiation.
Collapse
MESH Headings
- Calcium/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/drug effects
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- MEF2 Transcription Factors/physiology
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/physiology
- Myogenin/physiology
- NFATC Transcription Factors/physiology
- RNA, Small Interfering/pharmacology
Collapse
Affiliation(s)
- Fabrice Antigny
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Stéphane Konig
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Laurent Bernheim
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Maud Frieden
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland; Department of Cell Physiology and Metabolism, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
28
|
Langlois S, Xiang X, Young K, Cowan BJ, Penuela S, Cowan KN. Pannexin 1 and pannexin 3 channels regulate skeletal muscle myoblast proliferation and differentiation. J Biol Chem 2014; 289:30717-30731. [PMID: 25239622 PMCID: PMC4215249 DOI: 10.1074/jbc.m114.572131] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pannexins constitute a family of three glycoproteins (Panx1, -2, and -3) forming single membrane channels. Recent work demonstrated that Panx1 is expressed in skeletal muscle and involved in the potentiation of contraction. However, Panxs functions in skeletal muscle cell differentiation, and proliferation had yet to be assessed. We show here that Panx1 and Panx3, but not Panx2, are present in human and rodent skeletal muscle, and their various species are differentially expressed in fetal versus adult human skeletal muscle tissue. Panx1 levels were very low in undifferentiated human primary skeletal muscle cells and myoblasts (HSMM) but increased drastically during differentiation and became the main Panx expressed in differentiated cells. Using HSMM, we found that Panx1 expression promotes this process, whereas it was impaired in the presence of probenecid or carbenoxolone. As for Panx3, its lower molecular weight species were prominent in adult skeletal muscle but very low in the fetal tissue and in undifferentiated skeletal muscle cells and myoblasts. Its overexpression (∼43-kDa species) induced HSMM differentiation and also inhibited their proliferation. On the other hand, a ∼70-kDa immunoreactive species of Panx3, likely glycosylated, sialylated, and phosphorylated, was highly expressed in proliferative myoblasts but strikingly down-regulated during their differentiation. Reduction of its endogenous expression using two Panx3 shRNAs significantly inhibited HSMM proliferation without triggering their differentiation. In summary, our results demonstrate that Panx1 and Panx3 are co-expressed in human skeletal muscle myoblasts and play a pivotal role in dictating the proliferation and differentiation status of these cells.
Collapse
Affiliation(s)
- Stéphanie Langlois
- Department of Surgery, Division of Paediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada,; Apoptosis Research Center, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
| | - Xiao Xiang
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada,; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Kelsey Young
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
| | - Bryce J Cowan
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia V5Z 4E8, Canada, and
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kyle N Cowan
- Department of Surgery, Division of Paediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada,; Apoptosis Research Center, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada,; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada,.
| |
Collapse
|
29
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
30
|
Fontes-Oliveira CC, Busquets S, Fuster G, Ametller E, Figueras M, Olivan M, Toledo M, López-Soriano FJ, Qu X, Demuth J, Stevens P, Varbanov A, Wang F, Isfort RJ, Argilés JM. A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitation-contraction coupling together with additional muscle alterations. Muscle Nerve 2013; 49:233-48. [DOI: 10.1002/mus.23893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Cibely Cristine Fontes-Oliveira
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Gemma Fuster
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Elisabet Ametller
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Maite Figueras
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Mireia Olivan
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Xiaoyan Qu
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Jeffrey Demuth
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Paula Stevens
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Alex Varbanov
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Feng Wang
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Robert J. Isfort
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
31
|
Young CNJ, Sinadinos A, Gorecki DC. P2X receptor signaling in skeletal muscle health and disease. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/wmts.96] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Anthony Sinadinos
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| | - Dariusz C. Gorecki
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| |
Collapse
|
32
|
De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc Natl Acad Sci U S A 2013; 110:16229-34. [PMID: 24043768 DOI: 10.1073/pnas.1312331110] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Denervation of skeletal muscles induces atrophy, preceded by changes in sarcolemma permeability of causes not yet completely understood. Here, we show that denervation-induced Evans blue dye uptake in vivo of fast, but not slow, myofibers was acutely inhibited by connexin (Cx) hemichannel/pannexin1 (Panx1) channel and purinergic ionotropic P2X7 receptor (P2X7R) blockers. Denervated myofibers showed up-regulation of Panx1 and de novo expression of Cx39, Cx43, and Cx45 hemichannels as well as P2X7Rs and transient receptor potential subfamily V, member 2, channels, all of which are permeable to small molecules. The sarcolemma of freshly isolated WT myofibers from denervated muscles also showed high hemichannel-mediated permeability that was slightly reduced by blockade of Panx1 channels or the lack of Panx1 expression, but was completely inhibited by Cx hemichannel or P2X7R blockers, as well as by degradation of extracellular ATP. However, inhibition of transient receptor potential subfamily V, member 2, channels had no significant effect on membrane permeability. Moreover, activation of the transcription factor NFκB and higher mRNA levels of proinflammatory cytokines (TNF-α and IL-1β) were found in denervated WT but not Cx43/Cx45-deficient muscles. The atrophy observed after 7 d of denervation was drastically reduced in Cx43/Cx45-deficient but not Panx1-deficient muscles. Therefore, expression of Cx hemichannels and P2X7R promotes a feed-forward mechanism activated by extracellular ATP, most likely released through hemichannels, that activates the inflammasome. Consequently, Cx hemichannels are potential targets for new therapeutic agents to prevent or reduce muscle atrophy induced by denervation of diverse etiologies.
Collapse
|
33
|
Riquelme MA, Cea LA, Vega JL, Boric MP, Monyer H, Bennett MVL, Frank M, Willecke K, Sáez JC. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology 2013; 75:594-603. [PMID: 23583931 DOI: 10.1016/j.neuropharm.2013.03.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
Abstract
During repetitive stimulation of skeletal muscle, extracellular ATP levels raise, activating purinergic receptors, increasing Ca2+ influx, and enhancing contractile force, a response called potentiation. We found that ATP appears to be released through pannexin1 hemichannels (Panx1 HCs). Immunocytochemical analyses and function were consistent with pannexin1 localization to T-tubules intercalated with dihydropyridine and ryanodine receptors in slow (soleus) and fast (extensor digitorum longus, EDL) muscles. Isolated myofibers took up ethidium (Etd+) and released small molecules (as ATP) during electrical stimulation. Consistent with two glucose uptake pathways, induced uptake of 2-NBDG, a fluorescent glucose derivative, was decreased by inhibition of HCs or glucose transporter (GLUT4), and blocked by dual blockade. Adult skeletal muscles apparently do not express connexins, making it unlikely that connexin hemichannels contribute to the uptake and release of small molecules. ATP release, Etd+ uptake, and potentiation induced by repetitive electrical stimulation were blocked by HC blockers and did not occur in muscles of pannexin1 knockout mice. MRS2179, a P2Y1R blocker, prevented potentiation in EDL, but not soleus muscles, suggesting that in fast muscles ATP activates P2Y1 but not P2X receptors. Phosphorylation on Ser and Thr residues of pannexin1 was increased during potentiation, possibly mediating HC opening. Opening of Panx1 HCs during repetitive activation allows efflux of ATP, influx of glucose and possibly Ca2+ too, which are required for potentiation of contraction. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8, Chile
| | - Luis A Cea
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8, Chile; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - José L Vega
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8, Chile; Laboratorio de Fisiología Experimental (EPhyL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile; Department of Clinical Neurobioloy, University of Heidelberg, 6012 Heidelberg, Germany
| | - Mauricio P Boric
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8, Chile
| | - Hannah Monyer
- Laboratorio de Fisiología Experimental (EPhyL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile; Department of Clinical Neurobioloy, University of Heidelberg, 6012 Heidelberg, Germany
| | - Michael V L Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marina Frank
- Life and Medical Sciences Institute, Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Klaus Willecke
- Life and Medical Sciences Institute, Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8, Chile; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
34
|
Sciancalepore M, Luin E, Parato G, Ren E, Giniatullin R, Fabbretti E, Lorenzon P. Reactive oxygen species contribute to the promotion of the ATP-mediated proliferation of mouse skeletal myoblasts. Free Radic Biol Med 2012; 53:1392-8. [PMID: 22917975 DOI: 10.1016/j.freeradbiomed.2012.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/09/2012] [Accepted: 08/02/2012] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) and extracellular adenosine 5'-triphosphate (ATP) participate in autocrine and paracrine regulation in skeletal muscle. However, the link between these two signaling systems is not well established. Here, we studied cell proliferation as a possible consequence of the trophic effect of ATP in cultured skeletal mouse myoblasts and we tested the possibility that low concentrations of ROS represent the intermediate signaling molecule mediating this effect. Exposure to 10 μM ATP increased proliferation of mouse myoblasts by ~20%. ATP also induced intracellular Ca(2+) oscillations, which were independent of extracellular Ca(2+). Both effects of ATP were prevented by suramin, a broad-spectrum purinergic P2 receptor antagonist. In contrast, the adenosine receptor blocker CGS-15943 did not modify the ATP-mediated effects. Consistent with this, adenosine per se did not change myoblast growth, indicating the direct action of ATP via P2 receptor activation. The proliferative effect of ATP was prevented after depletion of hydrogen peroxide (H(2)O(2)) by the peroxidase enzyme catalase. Low-micromolar concentrations of exogenous H(2)O(2) mimicked the stimulatory effect of ATP on myoblast growth. DCF imaging revealed ATP-induced catalase and DPI-sensitive ROS production in myoblasts. In conclusion, our results indicate that extracellular ATP controls mouse myoblast proliferation via induction of ROS generation.
Collapse
Affiliation(s)
- Marina Sciancalepore
- Department of Life Sciences and Centre for Neuroscience (BRAIN), University of Trieste, I-34127 Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Young CNJ, Brutkowski W, Lien CF, Arkle S, Lochmüller H, Zabłocki K, Górecki DC. P2X7 purinoceptor alterations in dystrophic mdx mouse muscles: relationship to pathology and potential target for treatment. J Cell Mol Med 2012; 16:1026-37. [PMID: 21794079 PMCID: PMC4365874 DOI: 10.1111/j.1582-4934.2011.01397.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal inherited muscle disorder. Pathological characteristics of DMD skeletal muscles include, among others, abnormal Ca(2+) homeostasis and cell signalling. Here, in the mdx mouse model of DMD, we demonstrate significant P2X7 receptor abnormalities in isolated primary muscle cells and cell lines and in dystrophic muscles in vivo. P2X7 mRNA expression in dystrophic muscles was significantly up-regulated but without alterations of specific splice variant patterns. P2X7 protein was also up-regulated and this was associated with altered function of P2X7 receptors producing increased responsiveness of cytoplasmic Ca(2+) and extracellular signal-regulated kinase (ERK) phosphorylation to purinergic stimulation and altered sensitivity to NAD. Ca(2+) influx and ERK signalling were stimulated by ATP and BzATP, inhibited by specific P2X7 antagonists and insensitive to ivermectin, confirming P2X7 receptor involvement. Despite the presence of pannexin-1, prolonged P2X7 activation did not trigger cell permeabilization to propidium iodide or Lucifer yellow. In dystrophic mice, in vivo treatment with the P2X7 antagonist Coomassie Brilliant Blue reduced the number of degeneration-regeneration cycles in mdx skeletal muscles. Altered P2X7 expression and function is thus an important feature in dystrophic mdx muscle and treatments aiming to inhibit P2X7 receptor might slow the progression of this disease.
Collapse
Affiliation(s)
- Christopher N J Young
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Cea LA, Riquelme MA, Cisterna BA, Puebla C, Vega JL, Rovegno M, Sáez JC. Connexin- and pannexin-based channels in normal skeletal muscles and their possible role in muscle atrophy. J Membr Biol 2012; 245:423-36. [PMID: 22850938 DOI: 10.1007/s00232-012-9485-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/28/2012] [Indexed: 12/13/2022]
Abstract
Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca(2+) concentration and release of diverse metabolites (e.g., NAD(+) and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.
Collapse
Affiliation(s)
- Luis A Cea
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile,
| | | | | | | | | | | | | |
Collapse
|
37
|
Gomes AF, Guimarães EV, Carvalho L, Correa JR, Mendonça-Lima L, Barbosa HS. Toxoplasma gondii down modulates cadherin expression in skeletal muscle cells inhibiting myogenesis. BMC Microbiol 2011; 11:110. [PMID: 21592384 PMCID: PMC3116462 DOI: 10.1186/1471-2180-11-110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/18/2011] [Indexed: 01/06/2023] Open
Abstract
Background Toxoplasma gondii belongs to a large and diverse group of obligate intracellular parasitic protozoa. Primary culture of mice skeletal muscle cells (SkMC) was employed as a model for experimental toxoplasmosis studies. The myogenesis of SkMC was reproduced in vitro and the ability of T. gondii tachyzoite forms to infect myoblasts and myotubes and its influence on SkMC myogenesis were analyzed. Results In this study we show that, after 24 h of interaction, myoblasts (61%) were more infected with T. gondii than myotubes (38%) and inhibition of myogenesis was about 75%. The role of adhesion molecules such as cadherin in this event was investigated. First, we demonstrate that cadherin localization was restricted to the contact areas between myocytes/myocytes and myocytes/myotubes during the myogenesis process. Immunofluorescence and immunoblotting analysis of parasite-host cell interaction showed a 54% reduction in cadherin expression at 24 h of infection. Concomitantly, a reduction in M-cadherin mRNA levels was observed after 3 and 24 h of T. gondii-host cell interaction. Conclusions These data suggest that T. gondii is able to down regulate M-cadherin expression, leading to molecular modifications in the host cell surface that interfere with membrane fusion and consequently affect the myogenesis process.
Collapse
Affiliation(s)
- Alessandra F Gomes
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, (Av, Brasil 4365), Rio de Janeiro (21040-361), Brazil
| | | | | | | | | | | |
Collapse
|
38
|
García J. The calcium channel α2/δ1 subunit interacts with ATP5b in the plasma membrane of developing muscle cells. Am J Physiol Cell Physiol 2011; 301:C44-52. [PMID: 21490313 DOI: 10.1152/ajpcell.00405.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The α2/δ1 and α(1)1.1 subunits are present at a 1:1 ratio in the dihydropyridine receptor (DHPR) from adult skeletal muscle. In contrast, during early myotube development α2/δ1 is present at higher levels than α(1)1.1 and localizes at the ends of the cells, suggesting that α2/δ1 may have a role independent from DHPRs. We sought to identify binding partners of α2/δ1 at a period when levels of α(1)1.1 are low. Analysis of protein complexes in their native configuration established that α2/δ1 may be associating with ATP5b, a subunit of a mitochondrial ATP synthase complex. This interaction was confirmed with fluorescence resonance energy transfer and coimmunoprecipitation. The association of α2/δ1 and ATP5b occurs in intracellular membranes and at the plasma membrane, where they form a functional signaling complex capable of accelerating the rate of decline of calcium transients. The acceleration of decay was more evident when myotubes were stimulated with a train of pulses. Our data indicate that the α2/δ1 subunit is not only part of the DHPR but that it may interact with other cellular components in developing myotubes, such as the ATP5b in its atypical localization in the plasma membrane.
Collapse
Affiliation(s)
- Jesús García
- Dept. of Physiology and Biophysics, Univ. of Illinois at Chicago, 835 South Wolcott Ave., MC 901, Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Martinello T, Baldoin MC, Morbiato L, Paganin M, Tarricone E, Schiavo G, Bianchini E, Sandonà D, Betto R. Extracellular ATP signaling during differentiation of C2C12 skeletal muscle cells: role in proliferation. Mol Cell Biochem 2011; 351:183-96. [PMID: 21308481 DOI: 10.1007/s11010-011-0726-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 01/05/2011] [Indexed: 02/06/2023]
Abstract
Evidence shows that extracellular ATP signals influence myogenesis, regeneration and physiology of skeletal muscle. Present work was aimed at characterizing the extracellular ATP signaling system of skeletal muscle C2C12 cells during differentiation. We show that mechanical and electrical stimulation produces substantial release of ATP from differentiated myotubes, but not from proliferating myoblasts. Extracellular ATP-hydrolyzing activity is low in myoblasts and high in myotubes, consistent with the increased expression of extracellular enzymes during differentiation. Stimulation of cells with extracellular nucleotides produces substantial Ca(2+) transients, whose amplitude and shape changed during differentiation. Consistently, C2C12 cells express several P2X and P2Y receptors, whose level changes along with maturation stages. Supplementation with either ATP or UTP stimulates proliferation of C2C12 myoblasts, whereas excessive doses were cytotoxic. The data indicate that skeletal muscle development is accompanied by major functional changes in extracellular ATP signaling.
Collapse
Affiliation(s)
- Tiziana Martinello
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Martelly I, Singabraya D, Vandebrouck A, Papy-Garcia D, Cognard C, Raymond G, Guillet-Deniau I, Courty J, Constantin B. Glycosaminoglycan mimetics trigger IP3-dependent intracellular calcium release in myoblasts. Matrix Biol 2010; 29:317-29. [PMID: 20193761 DOI: 10.1016/j.matbio.2010.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/05/2010] [Accepted: 02/05/2010] [Indexed: 11/18/2022]
Abstract
Glycosaminoglycans (GAG) are sulfated polysaccharides that play an important role in regulating cell functions. GAG mimetics called RGTAs (for ReGeneraTing Agents) have been shown to stimulate tissue repair. In particular they accelerate myogenesis, in part via their heparin-mimetic property towards growth factors. RGTAs also increase activity of calcium-dependent intracellular protease suggesting an effect on calcium cellular homeostasis. This effect was presently investigated on myoblasts in vitro using one member of the RGTA family molecule named OTR4120. We have shown that OTR4120 or heparin induced transient increases of intracellular calcium concentration ([Ca(2+)]i) in pre-fusing myoblasts from both mouse SolD7 cell line and rat skeletal muscle satellite cells grown in primary culture by mobilising sarcoplasmic reticulum store. This [Ca(2+)]i was not mediated by ryanodine receptors but instead resulted from stimulation of the Inositol-3 phosphate-phospholipase C activation pathway. OTR4120-induced calcium transient was not mediated through an ATP, nor a tyrosine kinase, nor an acetylcholine receptor but principally through serotonin 5-HT2A receptor. This original finding shows that the GAG mimetic can induce calcium signal through serotonin receptors and the IP3 pathway may be relevant to its ability to favour myoblast differentiation. It supports a novel and unexpected function of GAGs in the regulation of calcium homeostasis.
Collapse
Affiliation(s)
- Isabelle Martelly
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), UMR 7149-CNRS, Université Paris-Est Créteil, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Buvinic S, Almarza G, Bustamante M, Casas M, López J, Riquelme M, Sáez JC, Huidobro-Toro JP, Jaimovich E. ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J Biol Chem 2009; 284:34490-505. [PMID: 19822518 DOI: 10.1074/jbc.m109.057315] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca(2+) concentration, with an EC(50) value of 7.8 +/- 3.1 microm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 mum suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y(2) receptor and pannexin-1. As reported previously for electrical stimulation, 500 mum ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca(2+) homeostasis and muscle physiology.
Collapse
Affiliation(s)
- Sonja Buvinic
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Casilla 70005, Santiago 7, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sánchez HA, Orellana JA, Verselis VK, Sáez JC. Metabolic inhibition increases activity of connexin-32 hemichannels permeable to Ca2+ in transfected HeLa cells. Am J Physiol Cell Physiol 2009; 297:C665-78. [PMID: 19587218 PMCID: PMC2740400 DOI: 10.1152/ajpcell.00200.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/01/2009] [Indexed: 02/08/2023]
Abstract
Numerous cell types express functional connexin (Cx) hemichannels (HCs), and membrane depolarization and/or exposure to a divalent cation-free bathing solution (DCFS) have been shown to promote HC opening. However, little is known about conditions that can promote HC opening in the absence of strong depolarization and when extracellular divalent cation concentrations remain at physiological levels. Here the effects of metabolic inhibition (MI), an in vitro model of ischemia, on the activity of mouse Cx32 HCs were examined. In HeLa cells stably transfected with mouse Cx32 (HeLa-Cx32), MI induced an increase in cellular permeability to ethidium (Etd). The increase in Etd uptake was directly related to an increase in levels of Cx32 HCs present at the cell surface. Moreover, MI increased membrane currents in HeLa-Cx32 cells. Underlying these currents were channels exhibiting a unitary conductance of approximately 90 pS, consistent with Cx32 HCs. These currents and Etd uptake were blocked by HC inhibitors. The increase in Cx32 HC activity was preceded by a rapid reduction in mitochondrial membrane potential and a rise in free intracellular Ca(2+) concentration ([Ca(2+)](i)). The increase in free [Ca(2+)](i) was prevented by HC blockade or exposure to extracellular DCFS and was virtually absent in parental HeLa cells. Moreover, inhibition of Cx32 HCs expressed by HeLa cells in low-confluence cultures drastically reduced cell death induced by oxygen-glucose deprivation, which is a more physiological model of ischemia-reperfusion. Thus HC blockade could reduce the increase in free [Ca(2+)](i) and cell death induced by ischemia-like conditions in cells expressing Cx32 HCs.
Collapse
Affiliation(s)
- Helmuth A Sánchez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | |
Collapse
|
43
|
Avdonin PV, Surkov KV, Sukhanova IF, Ruegg UT. Expression and functional role of the protein Orai-1 in skeletal myoblasts and myotubes. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2008. [DOI: 10.1134/s1990747808040107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Low SE, Kuwada JY, Hume RI. Amino acid variations resulting in functional and nonfunctional zebrafish P2X(1) and P2X (5.1) receptors. Purinergic Signal 2008; 4:383-92. [PMID: 18850305 PMCID: PMC2583207 DOI: 10.1007/s11302-008-9124-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/11/2008] [Indexed: 11/24/2022] Open
Abstract
Several zebrafish P2X receptors (zP2X(1), zP2X(2), and zP2X(5.1)) have been reported to produce little or no current although their mammalian orthologs produce functional homomeric receptors. We isolated new cDNA clones for these P2X receptors that revealed sequence variations in each. The new variants of zP2X(1) and zP2X(5.1) produced substantial currents when expressed by Xenopus oocytes, however the new variant of zP2X(2) was still nonfunctional. zP2X(2) lacks two lysine residues essential for ATP responsiveness in other P2X receptors; however introduction of these two lysines was insufficient to allow this receptor to function as a homotrimer. We also tested whether P2X signaling is required for myogenesis or synaptic communication at the zebrafish neuromuscular junction. We found that embryonic skeletal muscle expressed only one P2X receptor, P2X(5.1). Antisense knockdown of P2X(5.1) eliminated skeletal muscle responsiveness to ATP but did not prevent myogenesis or behaviors that require functional transmission at the neuromuscular junction.
Collapse
Affiliation(s)
- Sean E. Low
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave, Ann Arbor, MI 48109-1048 USA
| | - John Y. Kuwada
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave, Ann Arbor, MI 48109-1048 USA
| | - Richard I. Hume
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave, Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
45
|
Choo HJ, Kim BW, Kwon OB, Lee CS, Choi JS, Ko YG. Secretion of adenylate kinase 1 is required for extracellular ATP synthesis in C2C12 myotubes. Exp Mol Med 2008; 40:220-8. [PMID: 18446060 DOI: 10.3858/emm.2008.40.2.220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Extracellular ATP (exATP) has been known to be a critical ligand regulating skeletal muscle differentiation and contractibility. ExATP synthesis was greatly increased with the high level of adenylate kinase 1 (AK1) and ATP synthase beta during C2C12 myogenesis. The exATP synthesis was abolished by the knock-down of AK1 but not by that of ATP synthase beta in C2C12 myotubes, suggesting that AK1 is required for exATP synthesis in myotubes. However, membrane-bound AK1beta was not involved in exATP synthesis because its expression level was decreased during myogenesis in spite of its localization in the lipid rafts that contain various kinds of receptors and mediate cell signal transduction, cell migration, and differentiation. Interestingly, cytoplasmic AK1 was secreted from C2C12 myotubes but not from C2C12 myoblasts. Taken together all these data, we can conclude that AK1 secretion is required for the exATP generation in myotubes.
Collapse
Affiliation(s)
- Hyo-Jung Choo
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Yamanouchi K, Yada E, Ishiguro N, Nishihara M. 18alpha-glycyrrhetinic acid induces phenotypic changes of skeletal muscle cells to enter adipogenesis. Cell Physiol Biochem 2007; 20:781-90. [PMID: 17982260 DOI: 10.1159/000110438] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2007] [Indexed: 11/19/2022] Open
Abstract
The importance of connexins is implicated in proliferation and differentiation of cells. In skeletal muscle cells, connexin43 (Cx43) has been identified as the major connexin, and gap-junctional communication mediated by connexins has been shown to be required for their myogenic differentiation. In addition, inhibition of connexin function has been shown to induce transdifferentiation of osteoblasts to an adipocytic phenotype. In the present study, we examined whether the inhibition of connexin function could induce phenotypic changes in skeletal muscle cells. Treatment of skeletal muscle cells with an inhibitor of connexin function, 18alpha-glycyrrhetinic acid (AGRA), resulted in a reduction in the number of MyoD-positive cells and complete inhibition of myotube formation, concomitantly with an increase in the number of C/EBPalpha-positive cells. AGRA-treated cells cultured in adipogenic differentiation medium could give rise to mature adipocytes that express both PPARgamma and C/EBPalpha. The presence of AGRA during adipogenic differentiation did not inhibit adipogenesis of skeletal muscle cells. AGRA treatment did not affect Cx43 expression in skeletal muscle cells but reduced its phosphorylation. These results indicate that inhibition of connexin function induces phenotypic changes of skeletal muscle cells to enter adipogenesis.
Collapse
Affiliation(s)
- Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan.
| | | | | | | |
Collapse
|
47
|
Gorbe A, Krenacs T, Cook JE, Becker DL. Myoblast proliferation and syncytial fusion both depend on connexin43 function in transfected skeletal muscle primary cultures. Exp Cell Res 2007; 313:1135-48. [PMID: 17331498 DOI: 10.1016/j.yexcr.2007.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 11/03/2006] [Accepted: 01/04/2007] [Indexed: 12/12/2022]
Abstract
Muscles are formed by fusion of individual postmitotic myoblasts to form multinucleated syncytial myotubes. The process requires a well-coordinated transition from proliferation, through migratory alignment and cycle exit, to breakdown of apposed membranes. Connexin43 protein and cell-cycle inhibitor levels are correlated, and gap junction blockers can delay muscle regeneration, so a coordinating role for gap junctions has been proposed. Here, wild-type and dominant-negative connexin43 variants (wtCx43, dnCx43) were introduced into rat myoblasts in primary culture through pIRES-eGFP constructs that made transfected cells fluoresce. GFP-positive cells and vitally-stained nuclei were counted on successive days to reveal differences in proliferation, and myotubes were counted to reveal differences in fusion. Individual transfected cells were injected with Cascade Blue, which permeates gap junctions, mixed with FITC-dextran, which requires cytoplasmic continuity to enter neighbouring cells. Myoblasts transfected with wtCx43 showed more gap-junctional coupling than GFP-only controls, began fusion sooner as judged by the incidence of cytoplasmic coupling, and formed more myotubes. Myoblasts transfected with dnCx43 remained proliferative for longer than either GFP-only or wtCx43 myoblasts, showed less coupling, and underwent little fusion into myotubes. These results highlight the critical role of gap-junctional coupling in myotube formation.
Collapse
Affiliation(s)
- Aniko Gorbe
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | |
Collapse
|
48
|
Juretić N, Urzúa U, Munroe DJ, Jaimovich E, Riveros N. Differential gene expression in skeletal muscle cells after membrane depolarization. J Cell Physiol 2007; 210:819-30. [PMID: 17146758 DOI: 10.1002/jcp.20902] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is a highly plastic tissue with a remarkable capacity to adapt itself to challenges imposed by contractile activity. Adaptive response, that include hypertrophy and activation of oxidative mechanisms have been associated with transient changes in transcriptional activity of specific genes. To define the set of genes regulated by a depolarizing stimulus, we used 22 K mouse oligonucleotide microarrays. Total RNA from C2C12 myotubes was obtained at 2, 4, 18, and 24 h after high K+ stimulation. cDNA from control and depolarized samples was labeled with cyanine 3 or 5 dyes prior to microarray hybridization. Loess normalization followed by statistical analysis resulted in 423 differentially expressed genes using an unadjusted P-value < or = 0.01 as cut off. Depolarization affects transcriptional activity of a limited number of genes, mainly associated with metabolism, cell communication and response to stress. A number of genes related to Ca2+ signaling pathways are induced at 4 h, reinforcing the potential role of Ca2+ in early steps of signal transduction that leads to gene expression. Significant changes in the expression of molecules involved in muscle cell structure were observed; K+-depolarization increased Tnni1 and Acta1 mRNA levels in both differentiated C2C12 and rat skeletal muscle cells in primary culture. Of these two, depolarization induced slow Ca2+ transients appear to have a role only in the regulation of Tnni1 transcriptional activity. We suggest that depolarization induced expression of a small set of genes may underlie Ca2+ dependent plasticity of skeletal muscle cells.
Collapse
Affiliation(s)
- Nevenka Juretić
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
49
|
Yeung D, Zablocki K, Lien CF, Jiang T, Arkle S, Brutkowski W, Brown J, Lochmuller H, Simon J, Barnard EA, Górecki DC. Increased susceptibility to ATP via alteration of P2X receptor function in dystrophic mdx mouse muscle cells. FASEB J 2006; 20:610-20. [PMID: 16581969 DOI: 10.1096/fj.05-4022com] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pathological cellular hallmarks of Duchenne muscular dystrophy (DMD) include, among others, abnormal calcium homeostasis. Changes in the expression of specific receptors for extracellular ATP in dystrophic muscle have been recently documented: here, we demonstrate that at the earliest, myoblast stage of developing dystrophic muscle a purinergic dystrophic phenotype arises. In myoblasts of a dystrophin-negative muscle cell line established from the mdx mouse model of DMD but not in normal myoblasts, exposure to extracellular ATP triggered a strong increase in cytoplasmic Ca2+ concentrations. Influx of extracellular Ca2+ was stimulated by ATP and BzATP and inhibited by zinc, Coomassie Brilliant Blue-G, and KN-62, demonstrating activation of P2X7 receptors. Significant expression of P2X4 and P2X7 proteins was immunodetected in dystrophic myoblasts. Therefore, full-length dystrophin appears, surprisingly, to play an important role in myoblasts in controlling responses to ATP. Our results suggest that altered function of P2X receptors may be an important contributor to pathogenic Ca2+ entry in dystrophic mouse muscle and may have implications for the pathogenesis of muscular dystrophies. Treatments aiming at inhibition of specific ATP receptors could be of a potential therapeutic benefit.
Collapse
Affiliation(s)
- Davy Yeung
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, Portsmouth, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bidaud I, Monteil A, Nargeot J, Lory P. Properties and role of voltage-dependent calcium channels during mouse skeletal muscle differentiation. J Muscle Res Cell Motil 2006; 27:75-81. [PMID: 16538437 DOI: 10.1007/s10974-006-9058-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 02/04/2006] [Indexed: 11/30/2022]
Abstract
Skeletal muscle differentiation depends on calcium ions, but it is yet unclear whether calcium entry through voltage-dependent calcium channels (VDCCs) contributes to the myoblast fusion process. In this study, we investigate whether calcium influx through functional T-type VDCCs precedes and affects mouse satellite cell fusion. We report here on the properties and the role of the VDCCs expressed in differentiating mouse muscular cells using both the C2C12 cell line and primary cultures of satellite cells. We present electrophysiological and biochemical evidence demonstrating that T-type and L-type VDCCs are not present in C2C12 and primary cultures of mouse satellite cells prior to the fusion stage. Although mRNA for the T-type Ca(V)3.2 subunit was detected in differentiated C2C12 cells, no T-type calcium currents could be recorded, while both T-type and L-type calcium currents were detected after the fusion process in primary cultures. In addition, chronic application of 30 microM nickel, known to inhibit T-type Ca(V)3.2 channels, did not alter the fusion of C2C12 cells and mouse satellite cells in primary culture. Overall, the data indicate that, unlike in humans, Ca(V)3.2 T-type calcium channels play no role in mouse satellite cell fusion.
Collapse
MESH Headings
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, T-Type/drug effects
- Calcium Channels, T-Type/genetics
- Calcium Channels, T-Type/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line
- Male
- Mice
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Nickel/pharmacology
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/metabolism
Collapse
Affiliation(s)
- Isabelle Bidaud
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II, 141, rue de la Cardonille, 34094 Montpellier cedex 05, France
| | | | | | | |
Collapse
|