1
|
Liu Q, Zhu C, Li X, Qi L, Yan H, Zhou Y, Gao F. AmChi7, an AmWRKY59 - Activated chitinase, was involved in the adaption to winter climate in Ammopiptanthusmongolicus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109436. [PMID: 39733727 DOI: 10.1016/j.plaphy.2024.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus. Here, we analyzed the evolution and expression patterns of the chitinase gene family in A. mongolicus and investigated the function and regulatory mechanisms of the AmChi7 gene in response to abiotic stress. The chitinase gene family in A. mongolicus comprises 27 members, many of which arose through formed by tandem and segmental duplication. Several chitinase genes, including AmChi7 gene, were significantly upregulated in winter. Overexpression of AmChi7 gene enhanced the tolerance of yeast to freeze-thaw cycle and osmotic stress, and enhanced the tolerance of transgenic Arabidopsis to low-temperature and drought stress. Furthermore, AmWRKY59, a MeJA-induced transcription factor, bound to the W box element in the AmChi7 gene promoter, activating its expression in winter. It is speculated that chitinase AmChi7 accumulation in winter enhances adaptation to temperate winter climates in A. mongolicus. This study expands our understanding of the biological functions of chitinases and provides insights into the molecular mechanisms underlying winter climate adaptation in A. mongolicus.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Changxin Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xuting Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lanting Qi
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hongxi Yan
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Fei Gao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
2
|
Tsioka A, Psilioti Dourmousi K, Poulaki EG, Papoutsis G, Tjamos SE, Gkizi D. Biocontrol strategies against Botrytis cinerea in viticulture: evaluating the efficacy and mode of action of selected winemaking yeast strains. Lett Appl Microbiol 2024; 77:ovae026. [PMID: 38449374 DOI: 10.1093/lambio/ovae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024]
Abstract
Botrytis cinerea poses a recurring threat to viticulture, causing significant yield losses each year. The study explored the biocontrol capabilities of commercially used winemaking yeasts as a strategy to manage B. cinerea in grape berries. The winemaking yeast strains-Saccharomyces cerevisiae ES181, Saccharomyces pastorianus KBG6, S. cerevisiae BCS103, Lachancea thermotolerans Omega, and Torulaspora delbrueckii TD291-reduced B. cinerea growth and conidiation in vitro. Furthermore, they demonstrated a decreased disease severity and number of conidia in grape berries. Among these strains, S. cerevisiae BCS103 was the most effective, inducing the expression of the defense-related gene PR4 in berries. Its diffusible compounds and volatile organic compounds also reduced the expression of BcLTF2, a positive regulator of B. cinerea conidiogenesis. The examined winemaking yeast strains, especially S. cerevisiae BCS103, demonstrated effective inhibition of B. cinerea in vitro and in grape berries, influencing key defense genes and reducing BcLTF2 expression, offering potential solutions for disease management in viticulture. The study underscores the promise of commercially available winemaking yeast strains as eco-friendly tools against B. cinerea in viticulture. Leveraging their safety and existing use in winemaking offers a potential avenue for sustainable disease management.
Collapse
Affiliation(s)
- Artemis Tsioka
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos Street, 12243 Athens, Greece
| | | | - Eirini G Poulaki
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Georgios Papoutsis
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Sotirios E Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Danai Gkizi
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos Street, 12243 Athens, Greece
| |
Collapse
|
3
|
Xuan C, Feng M, Li X, Hou Y, Wei C, Zhang X. Genome-Wide Identification and Expression Analysis of Chitinase Genes in Watermelon under Abiotic Stimuli and Fusarium oxysporum Infection. Int J Mol Sci 2024; 25:638. [PMID: 38203810 PMCID: PMC10779513 DOI: 10.3390/ijms25010638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chitinases, which catalyze the hydrolysis of chitin, the primary components of fungal cell walls, play key roles in defense responses, symbiotic associations, plant growth, and stress tolerance. In this study, 23 chitinase genes were identified in watermelon (Citrullus lanatus [Thunb.]) and classified into five classes through homology search and phylogenetic analysis. The genes with similar exon-intron structures and conserved domains were clustered into the same class. The putative cis-elements involved in the responses to phytohormone, stress, and plant development were identified in their promoter regions. A tissue-specific expression analysis showed that the ClChi genes were primarily expressed in the roots (52.17%), leaves (26.09%), and flowers (34.78%). Moreover, qRT-PCR results indicate that ClChis play multifaceted roles in the interaction between plant/environment. More ClChi members were induced by Race 2 of Fusarium oxysporum f. sp. niveum, and eight genes were expressed at higher levels on the seventh day after inoculation with Races 1 and 2, suggesting that these genes play a key role in the resistance of watermelon to Fusarium wilt. Collectively, these results improve knowledge of the chitinase gene family in watermelon species and help to elucidate the roles played by chitinases in the responses of watermelon to various stresses.
Collapse
Affiliation(s)
- Changqing Xuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Mengjiao Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Yinjie Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
4
|
Kim JY, Kang HW. β-Aminobutyric Acid and Powdery Mildew Infection Enhanced the Activation of Defense-Related Genes and Salicylic Acid in Cucumber ( Cucumis sativus L.). Genes (Basel) 2023; 14:2087. [PMID: 38003030 PMCID: PMC10671336 DOI: 10.3390/genes14112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Powdery mildew disease, caused by Sphaerotheca fusca, is a major disease affecting cucumbers cultivated in greenhouses. This study was conducted to find defense genes induced by β-aminobutyric acid (BABA) and powdery mildew in cucumber. Disease severities of 25% and 5% were exhibited by the 2000 and 5000 mg/L BABA-treated cucumber, respectively. BABA did not affect the spore germination of the powdery mildew pathogen, showing that BABA is not an antifungal agent against the pathogen. In quantitative real-time PCR analysis, BABA-treated cucumber upregulated the transcriptional levels of the defense genes CsPAL, CsPR3, CsPR1, CsLOX1, CsLOX23, Cs LecRK6.1, CsWRKY20, and Cupi4 in cucumber to maximum levels at 48 h, whereas CsLecRK6.1 reached maximum expression after 24 h, and further, salicylic acid (SA) levels were significantly increased in BABA-treated cucumber plants. In addition, the cucumber infected with powdery mildew underwent a 1.6- to 47.3-fold enhancement in the defense genes PAL, PR3, PR1, Lox1, Lox 23, LecRK6.1, WRKY20, and Cupi4 compared to heathy cucumber. These results suggest that the BABA-induced defense response is associated with SA signaling pathway-dependent systemic acquired resistance (SAR) in cucumber, which is involved in plant resistance mechanisms.
Collapse
Affiliation(s)
- Ja-Yoon Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Hee-Wan Kang
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea;
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
5
|
Rai P, Prasad L, Rai PK. Fungal effectors versus defense-related genes of B. juncea and the status of resistant transgenics against fungal pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1139009. [PMID: 37360735 PMCID: PMC10285668 DOI: 10.3389/fpls.2023.1139009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Oilseed brassica has become instrumental in securing global food and nutritional security. B. juncea, colloquially known as Indian mustard, is cultivated across tropics and subtropics including Indian subcontinent. The production of Indian mustard is severely hampered by fungal pathogens which necessitates human interventions. Chemicals are often resorted to as they are quick and effective, but due to their economic and ecological unsustainability, there is a need to explore their alternatives. The B. juncea-fungal pathosystem is quite diverse as it covers broad-host range necrotrophs (Sclerotinia sclerotiorum), narrow-host range necrotrophs (Alternaria brassicae and A. brassicicola) and biotrophic oomycetes (Albugo candida and Hyaloperonospora brassica). Plants ward off fungal pathogens through two-step resistance mechanism; PTI which involves recognition of elicitors and ETI where the resistance gene (R gene) interacts with the fungal effectors. The hormonal signalling is also found to play a vital role in defense as the JA/ET pathway is initiated at the time of necrotroph infection and SA pathway is induced when the biotrophs attack plants. The review discuss the prevalence of fungal pathogens of Indian mustard and the studies conducted on effectoromics. It covers both pathogenicity conferring genes and host-specific toxins (HSTs) that can be used for a variety of purposes such as identifying cognate R genes, understanding pathogenicity and virulence mechanisms, and establishing the phylogeny of fungal pathogens. It further encompasses the studies on identifying resistant sources and characterisation of R genes/quantitative trait loci and defense-related genes identified in Brassicaceae and unrelated species which, upon introgression or overexpression, confer resistance. Finally, the studies conducted on developing resistant transgenics in Brassicaceae have been covered in which chitinase and glucanase genes are mostly used. The knowledge gained from this review can further be used for imparting resistance against major fungal pathogens.
Collapse
Affiliation(s)
- Prajjwal Rai
- Division of Plant Pathology, Indian Agriculture Research Institute, New Delhi, India
| | - Laxman Prasad
- Division of Plant Pathology, Indian Agriculture Research Institute, New Delhi, India
| | - Pramod Kumar Rai
- Division of Plant Pathology, Directorate of Rapeseed-Mustard Research, Bharatpur, India
| |
Collapse
|
6
|
He T, Fan J, Jiao G, Liu Y, Zhang Q, Luo N, Ahmad B, Chen Q, Wen Z. Bioinformatics and Expression Analysis of the Chitinase Genes in Strawberry ( Fragaria vesca) and Functional Study of FvChi-14. PLANTS (BASEL, SWITZERLAND) 2023; 12:1543. [PMID: 37050169 PMCID: PMC10097121 DOI: 10.3390/plants12071543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Plant chitinases (EC 3.2.1.14) are pathogenesis-related (PR) proteins and are well studied in many plant species. However, little is known about the genomic organization and expression of chitinase genes in strawberries (Fragaria vesca). Here, 23 FvChi genes were identified in the genome of strawberry (F. vesca) and divided into GH18 and GH19 subfamilies based on phylogenetic relationships. A detailed bioinformatics analysis of the FvChi genes was performed, including gene physicochemical properties, chromosomal location, exon-intron distribution, domain arrangement, and subcellular localization. Twenty-two FvChi genes showed upregulation after Colletotrichum gloeosporioides infection. Following the exogenous application of SA, FvChi-3, 4, and 5 showed significant changes in expression. The ectopic expression of FvChi-14 in Arabidopsis thaliana increased resistance to C. higginsianum via controlling the SA and JA signaling pathway genes (AtPR1, AtICS1, AtPDF1.2, and AtLOX3). The FvChi-14 protein location was predicted in the cell wall or extracellular matrix. We speculate that FvChi-14 is involved in disease resistance by regulating the SA and JA signaling pathways. The findings of this study provide a theoretical reference for the functional studies of FvChi genes and new candidates for strawberry stress resistance breeding programs.
Collapse
Affiliation(s)
- Tiannan He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianshuai Fan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaozhen Jiao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qimeng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning Luo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bilal Ahmad
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhifeng Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Zhang J, Zhang H, Wang P, Chen J, Cao Y. Gene Expression, Hormone Signaling, and Nutrient Uptake in the Root Regermination of Grafted Watermelon Plants with Different Pumpkin Rootstocks. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:1051-1066. [PMID: 0 DOI: 10.1007/s00344-022-10613-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/19/2022] [Indexed: 05/20/2023]
|
8
|
Soares JM, Weber KC, Qiu W, Mahmoud LM, Grosser JW, Dutt M. Overexpression of the salicylic acid binding protein 2 (SABP2) from tobacco enhances tolerance against Huanglongbing in transgenic citrus. PLANT CELL REPORTS 2022; 41:2305-2320. [PMID: 36107199 DOI: 10.1007/s00299-022-02922-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Overexpression of the salicylic acid binding protein 2 (SABP2) gene from Tobacco results in enhanced tolerance to Huanglongbing (HLB; citrus greening disease) in transgenic sweet oranges. Huanglongbing (HLB), the most destructive citrus disease, is caused by Candidatus Liberibacter asiaticus (CaLas). Currently, no cure for this disease exists, and all commercially planted cultivars are highly susceptible. Salicylic Acid Binding Protein 2 (SABP2) is a well-characterized protein essential for establishing systemic acquired resistance (SAR) in tobacco. The constitutive over expression of SABP2 from tobacco (NtSABP2) in 'Hamlin' sweet orange resulted in the production of several transgenic lines with variable transcript levels. Transient expression of the NtSABP2-EGFP fusion protein in Nicotiana benthamiana plants demonstrated that NtSABP2 was cytosolic in its subcellular localization. In a long-term field study, we identified a SABP2 transgenic line with significantly reduced HLB symptoms that maintained a consistently low CaLas titer. Transcriptome analysis of this selected transgenic line demonstrated upregulation of several genes related to plant defense and SAR pathways. Genes, such as NPR family genes and those coding for monooxygenases and lipoxygenases, were upregulated in the 35S-NtSABP2 overexpressing line and might be candidates for incorporation into our citrus improvement program.
Collapse
Affiliation(s)
- Juliana M Soares
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Kyle C Weber
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Wenming Qiu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lamiaa M Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
- Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
9
|
Ishida K, Noutoshi Y. The function of the plant cell wall in plant-microbe interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:273-284. [PMID: 36279746 DOI: 10.1016/j.plaphy.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The plant cell wall is an interface of plant-microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant-microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall-physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources-in the context of plant-microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
10
|
Lv P, Zhang C, Xie P, Yang X, El-Sheikh MA, Hefft DI, Ahmad P, Zhao T, Bhat JA. Genome-Wide Identification and Expression Analyses of the Chitinase Gene Family in Response to White Mold and Drought Stress in Soybean (Glycine max). Life (Basel) 2022; 12:life12091340. [PMID: 36143377 PMCID: PMC9504482 DOI: 10.3390/life12091340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Chitinases are enzymes catalyzing the hydrolysis of chitin that are present on the cell wall of fungal pathogens. Here, we identified and characterized the chitinase gene family in cultivated soybean (Glycine max L.) across the whole genome. A total of 38 chitinase genes were identified in the whole genome of soybean. Phylogenetic analysis of these chitinases classified them into five separate clusters, I–V. From a broader view, the I–V classes of chitinases are basically divided into two mega-groups (X and Y), and these two big groups have evolved independently. In addition, the chitinases were unevenly and randomly distributed in 17 of the total 20 chromosomes of soybean, and the majority of these chitinase genes contained few introns (≤2). Synteny and duplication analysis showed the major role of tandem duplication in the expansion of the chitinase gene family in soybean. Promoter analysis identified multiple cis-regulatory elements involved in the biotic and abiotic stress response in the upstream regions (1.5 kb) of chitinase genes. Furthermore, qRT-PCR analysis showed that pathogenic and drought stress treatment significantly induces the up-regulation of chitinase genes belonging to specific classes at different time intervals, which further verifies their function in the plant stress response. Hence, both in silico and qRT-PCR analysis revealed the important role of the chitinases in multiple plant defense responses. However, there is a need for extensive research efforts to elucidate the detailed function of chitinase in various plant stresses. In conclusion, our investigation is a detailed and systematic report of whole genome characterization of the chitinase family in soybean.
Collapse
Affiliation(s)
- Peiyun Lv
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunting Zhang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Xie
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Yang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Daniel Ingo Hefft
- School of Chemical Engineering, Edgbaston Campus, University of Birmingham, Birmingham B15 2TT, UK
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India
- Correspondence: (P.A.); (T.Z.); (J.A.B.)
| | - Tuanjie Zhao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (P.A.); (T.Z.); (J.A.B.)
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (P.A.); (T.Z.); (J.A.B.)
| |
Collapse
|
11
|
Liu Z, Yu W, Zhang X, Huang J, Wang W, Miao M, Hu L, Wan C, Yuan Y, Wu B, Lyu M. Genome-Wide Identification and Expression Analysis of Chitinase-like Genes in Petunia axillaris. PLANTS (BASEL, SWITZERLAND) 2022; 11:1269. [PMID: 35567270 PMCID: PMC9100346 DOI: 10.3390/plants11091269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Chitinase (EC 3.2.1.14) is a kind of chitin-degrading glycosidase, which plays important roles in the abiotic and biotic defense of plants. In this study, we conducted whole-genome annotation, molecular evolution, and gene expression analyses on the chitinase-like (CTL) gene family members of Petunia axillaris. Thirty-three Petunia axillarischitinase-like genes (PaCTLs) were identified from the latest Petunia genome database. According to the phylogenetic analyses, these genes were divided into GH18 and GH19 subgroups and further subdivided into five classes (Class I to Class V). Conserved motif arrangements indicated their functional relevance within each group. The expansion and homeology analyses showed that gene replication events played an important role in the evolution of PaCTLs and the increase of the GH18 subgroup members was the main reason for the expansion of the PaCTL gene family in the evolution progress. By qRT-PCR analysis, we found that most of the PaCTLs showed a very low expression level in the normal growing plants. But lots of PaCTLs showed upregulated expression profiles when the plants suffered different abiotic stress conditions. Among them, five PaCTLs responded to high temperature and exhibited significantly upregulate expression level. Correspondingly, many hormone responses, as well as biotic and abiotic stress elements were found in the promoters of PaCTLs by using cis-acting element analysis. These results provide a foundation for the exploration of PaCTLs' function and enrich the evolutionary process of the CTL gene family.
Collapse
Affiliation(s)
- Zhuoyi Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
- College of Horticulture, South China Agriculture University, Guangzhou 510642, China
| | - Wenfei Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Xiaowen Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Jinfeng Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Wei Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Miao Miao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Li Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Chao Wan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Yuan Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Binghua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Meiling Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| |
Collapse
|
12
|
Zhu L, Yang Q, Yu X, Fu X, Jin H, Yuan F. Transcriptomic and Metabolomic Analyses Reveal a Potential Mechanism to Improve Soybean Resistance to Anthracnose. FRONTIERS IN PLANT SCIENCE 2022; 13:850829. [PMID: 35574068 PMCID: PMC9094087 DOI: 10.3389/fpls.2022.850829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Anthracnose, caused by Colletotrichum truncatum, leads to large-scale reduction in quality and yield in soybean production. Limited information is available regarding the molecular mechanisms of resistance to anthracnose in soybean. We conducted a transcriptomic and targeted metabolomic analysis of pods from two soybean lines, "Zhechun No. 3" (ZC3) and ZC-2, in response to C. truncatum infection. Factors contributing to the enhanced resistance of ZC-2 to anthracnose compared with that of ZC3, included signal transduction (jasmonic acid, auxin, mitogen-activated protein kinase, and Ca2+ signaling), transcription factors (WRKY and bHLH), resistance genes (PTI1, RPP13, RGA2, RPS6, and ULP2B), pathogenesis-related genes (chitinase and lipid transfer protein), and terpenoid metabolism. Targeted metabolomic analysis revealed that terpenoid metabolism responded more promptly and more intensely to C. truncatum infection in ZC-2 than in ZC3. In vitro antifungal activity and resistance induction test confirmed that jasmonic acid, auxin signaling and terpenoids played important roles in soybean resistance to anthracnose. This research is the first study to explore the molecular mechanisms of soybean resistance to anthracnose. The findings are important for in-depth analysis of molecular resistance mechanisms, discovery of resistance genes, and to expedite the breeding of anthracnose-resistant soybean cultivars.
Collapse
|
13
|
Bai X, Zhan G, Tian S, Peng H, Cui X, Islam MA, Goher F, Ma Y, Kang Z, Xu ZS, Guo J. Transcription factor BZR2 activates chitinase Cht20.2 transcription to confer resistance to wheat stripe rust. PLANT PHYSIOLOGY 2021; 187:2749-2762. [PMID: 34618056 PMCID: PMC8644182 DOI: 10.1093/plphys/kiab383] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 05/21/2023]
Abstract
The brassinosteroid pathway promotes a variety of physiological processes in plants and the brassinosteroid insensitive1-ethylmethane sulfonate suppressor (BES)/brassinazole-resistant (BZR) functions as one of its key regulators. We previously showed that the BES/BZR-type transcription factor TaBZR2 mediates the drought stress response in wheat (Triticum aestivum) by directly upregulating the transcriptional activity of glutathione S-transferase 1. However, the function of TaBZR2 in plants under biotic stresses is unknown. In this study, we found that transcript levels of TaBZR2 were upregulated in response to inoculation with wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst) and treatment with flg22 or an elicitor-like protein of Pst, Pst322. Wheat lines overexpressing TaBZR2 conferred increased resistance, whereas TaBZR2-RNAi lines exhibited decreased resistance to multiple races of Pst. TaBZR2 targeted the promoter of the chitinase gene TaCht20.2, activating its transcription. Knockdown of TaCht20.2 in wheat resulted in enhanced susceptibility to Pst, indicating the positive role of TaCht20.2 in wheat resistance. Upon Pst infection in vivo, the overexpression of TaBZR2 increased total chitinase activity, whereas RNAi-mediated silencing of TaBZR2 reduced total chitinase activity. Taken together, our results suggest that TaBZR2 confers broad-spectrum resistance to the stripe rust fungus by increasing total chitinase activity in wheat.
Collapse
Affiliation(s)
- Xingxuan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Shuxin Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Huan Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Xiaoyu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Md Ashraful Islam
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Youzhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
- Author for communication:
| |
Collapse
|
14
|
Orlando M, Buchholz PCF, Lotti M, Pleiss J. The GH19 Engineering Database: Sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19. PLoS One 2021; 16:e0256817. [PMID: 34699529 PMCID: PMC8547705 DOI: 10.1371/journal.pone.0256817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023] Open
Abstract
The glycoside hydrolase 19 (GH19) is a bifunctional family of chitinases and endolysins, which have been studied for the control of plant fungal pests, the recycle of chitin biomass, and the treatment of multi-drug resistant bacteria. The GH19 domain-containing sequences (22,461) were divided into a chitinase and an endolysin subfamily by analyzing sequence networks, guided by taxonomy and the substrate specificity of characterized enzymes. The chitinase subfamily was split into seventeen groups, thus extending the previous classification. The endolysin subfamily is more diverse and consists of thirty-four groups. Despite their sequence diversity, twenty-six residues are conserved in chitinases and endolysins, which can be distinguished by two specific sequence patterns at six and four positions, respectively. Their location outside the catalytic cleft suggests a possible mechanism for substrate specificity that goes beyond the direct interaction with the substrate. The evolution of the GH19 catalytic domain was investigated by large-scale phylogeny. The inferred evolutionary history and putative horizontal gene transfer events differ from previous works. While no clear patterns were detected in endolysins, chitinases varied in sequence length by up to four loop insertions, causing at least eight distinct presence/absence loop combinations. The annotated GH19 sequences and structures are accessible via the GH19 Engineering Database (GH19ED, https://gh19ed.biocatnet.de). The GH19ED has been developed to support the prediction of substrate specificity and the search for novel GH19 enzymes from neglected taxonomic groups or in regions of the sequence space where few sequences have been described yet.
Collapse
Affiliation(s)
- Marco Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
15
|
Gao JJ, Peng RH, Zhu B, Tian YS, Xu J, Wang B, Fu XY, Han HJ, Wang LJ, Zhang FJ, Zhang WH, Deng YD, Wang Y, Li ZJ, Yao QH. Enhanced phytoremediation of TNT and cobalt co-contaminated soil by AfSSB transformed plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112407. [PMID: 34119926 DOI: 10.1016/j.ecoenv.2021.112407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/23/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
2,4,6-trinitrotoluene (TNT) and cobalt (Co) contaminants have posed a severe environmental problem in many countries. Phytoremediation is an environmentally friendly technology for the remediation of these contaminants. However, the toxicity of TNT and cobalt limit the efficacy of phytoremediation application. The present research showed that expressing the Acidithiobacillus ferrooxidans single-strand DNA-binding protein gene (AfSSB) can improve the tolerance of Arabidopsis and tall fescue to TNT and cobalt. Compared to control plants, the AfSSB transformed Arabidopsis and tall fescue exhibited enhanced phytoremediation of TNT and cobalt separately contaminated soil and co-contaminated soil. The comet analysis revealed that the AfSSB transformed Arabidopsis suffer reduced DNA damage than control plants under TNT or cobalt exposure. In addition, the proteomic analysis revealed that AfSSB improves TNT and cobalt tolerance by strengthening the reactive superoxide (ROS) scavenging system and the detoxification system. Results presented here serve as strong theoretical support for the phytoremediation potential of organic and metal pollutants mediated by single-strand DNA-binding protein genes. SUMMARIZES: This is the first report that AfSSB enhances phytoremediation of 2,4,6-trinitrotoluene and cobalt separately contaminated and co-contaminated soil.
Collapse
Affiliation(s)
- Jian-Jie Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Bo Zhu
- Key Laboratory for the Conservation Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jing Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Bo Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiao-Yan Fu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hong-Juan Han
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Li-Juan Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fu-Jian Zhang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Wen-Hui Zhang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yong-Dong Deng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yu- Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Zhen-Jun Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
16
|
Khaleil MM, Alnoman MM, Elrazik ESA, Zagloul H, Khalil AMA. Essential Oil of Foeniculum vulgare Mill. as a Green Fungicide and Defense-Inducing Agent against Fusarium Root Rot Disease in Vicia faba L. BIOLOGY 2021; 10:biology10080696. [PMID: 34439929 PMCID: PMC8389234 DOI: 10.3390/biology10080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Plant extracts, including essential oils, are a viable alternative method for controlling plant diseases. This work deals with the exploitation of fennel seed essential oil (FSEO) to inhibit Fusarium solani and control Fusarium root rot disease in Vicai faba. In vitro FSEO inhibited mycelium growth by up to 80% at 400 µL/mL of FSEO. In vivo, the protective effects against Fusarium root rot disease were recorded when FSEO was applied to Vicia faba seeds. The FSEO reduced the disease severity from 98% in plants grown in infested soil with Fusarium solani to 60.1% in plants that previously had their seeds treated with FSEO. GC-MS spectrometry analyses showed that the major chemical components in the essential oil were D-limonene, menthol, estragole and 2-decenal. Applications of the essential oil resulted in increased total phenolic and flavonoid contents in leaves compared with untreated inoculated (control) plants. The defense-related genes, such as defensin and chitinase, were differentially expressed. This study revealed that the essential oil of fennel seed was effective as a control agent against Fusarium root rot in broad beans. Abstract Fusarium solani, the causative agent of root rot disease is one of the major constraints of faba bean (Vicia faba L.) yield worldwide. Essential oils have become excellent plant growth stimulators besides their antifungal properties. Foeniculum vulgare Mill. (fennel) is a familiar medicinal plant that has inhibitory effects against phytopathogenic fungi. Herein, different concentrations of fennel seed essential oil (FSEO) (12.5, 25, 50, 100, 200 and 400 μL/mL) were examined against F. solani KHA10 (accession number MW444555) isolated from rotted roots of faba bean in vitro and in vivo. The chemical composition of FSEO, through gas chromatography/mass spectroscopy, revealed 10 major compounds. In vitro, FSEO inhibited F. solani with a minimum inhibitory concentration (MIC) of 25 µL/mL. In vivo, FSEO suppressed Fusarium root rot disease in Vicia faba L. by decreasing the disease severity (61.2%) and disease incidence (50%), and acted as protective agent (32.5%) of Vicia faba L. Improvements in morphological and biochemical parameters were recorded in FSEO-treated faba seeds. Moreover, the expression level of the defense-related genes defensin and chitinase was noticeably enhanced in treated plants. This study suggested using FSEO as a promising antifungal agent against F. solani not only to control root rot disease but also to enhance plant growth and activate plant defense.
Collapse
Affiliation(s)
- Mona M. Khaleil
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr 46429, Saudi Arabia;
- Correspondence: (M.M.K.); (A.M.A.K.); Tel.: +966-542374238 (M.M.K.); +966-580770171 (A.M.A.K.)
| | - Maryam M. Alnoman
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr 46429, Saudi Arabia;
| | - Elsayed S. Abd Elrazik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications New Borg EL-Arab, Alexandria 21934, Egypt;
| | - Hayat Zagloul
- Chemistry Department, Faculty of Science, Taibah University, Yanbu El Bahr 46429, Saudi Arabia;
| | - Ahmed Mohamed Aly Khalil
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr 46429, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt
- Correspondence: (M.M.K.); (A.M.A.K.); Tel.: +966-542374238 (M.M.K.); +966-580770171 (A.M.A.K.)
| |
Collapse
|
17
|
Cabre L, Peyrard S, Sirven C, Gilles L, Pelissier B, Ducerf S, Poussereau N. Identification and characterization of a new soybean promoter induced by Phakopsora pachyrhizi, the causal agent of Asian soybean rust. BMC Biotechnol 2021; 21:27. [PMID: 33765998 PMCID: PMC7995590 DOI: 10.1186/s12896-021-00684-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phakopsora pachyrhizi is a biotrophic fungal pathogen responsible for the Asian soybean rust disease causing important yield losses in tropical and subtropical soybean-producing countries. P. pachyrhizi triggers important transcriptional changes in soybean plants during infection, with several hundreds of genes being either up- or downregulated. RESULTS Based on published transcriptomic data, we identified a predicted chitinase gene, referred to as GmCHIT1, that was upregulated in the first hours of infection. We first confirmed this early induction and showed that this gene was expressed as early as 8 h after P. pachyrhizi inoculation. To investigate the promoter of GmCHIT1, transgenic soybean plants expressing the green fluorescence protein (GFP) under the control of the GmCHIT1 promoter were generated. Following inoculation of these transgenic plants with P. pachyrhizi, GFP fluorescence was detected in a limited area located around appressoria, the fungal penetration structures. Fluorescence was also observed after mechanical wounding whereas no variation in fluorescence of pGmCHIT1:GFP transgenic plants was detected after a treatment with an ethylene precursor or a methyl jasmonate analogue. CONCLUSION We identified a soybean chitinase promoter exhibiting an early induction by P. pachyrhizi located in the first infected soybean leaf cells. Our results on the induction of GmCHIT1 promoter by P. pachyrhizi contribute to the identification of a new pathogen inducible promoter in soybean and beyond to the development of a strategy for the Asian soybean rust disease control using biotechnological approaches.
Collapse
Affiliation(s)
- L. Cabre
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Bayer SAS Crop Science Division, UMR 5240 MAP, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet BP 99163, 69263 Lyon Cedex 09, France
| | - S. Peyrard
- Bayer SAS, Crop Science Division, 14 Impasse Pierre Baizet, BP 99163, 69263 Lyon Cedex 09, France
| | - C. Sirven
- Bayer SAS, Crop Science Division, 14 Impasse Pierre Baizet, BP 99163, 69263 Lyon Cedex 09, France
| | - L. Gilles
- Bayer SAS, Crop Science Division, 14 Impasse Pierre Baizet, BP 99163, 69263 Lyon Cedex 09, France
- Present address: Limagrain, Biopôle Clermont-Limagne, Rue Henri Mondor, 63360 Saint Beauzire, France
| | - B. Pelissier
- Bayer SAS, Crop Science Division, 14 Impasse Pierre Baizet, BP 99163, 69263 Lyon Cedex 09, France
| | - S. Ducerf
- Bayer SAS, Crop Science Division, 14 Impasse Pierre Baizet, BP 99163, 69263 Lyon Cedex 09, France
| | - N. Poussereau
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Bayer SAS Crop Science Division, UMR 5240 MAP, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet BP 99163, 69263 Lyon Cedex 09, France
| |
Collapse
|
18
|
Zheng T, Zhang K, Sadeghnezhad E, Jiu S, Zhu X, Dong T, Liu Z, Guan L, Jia H, Fang J. Chitinase family genes in grape differentially expressed in a manner specific to fruit species in response to Botrytis cinerea. Mol Biol Rep 2020; 47:7349-7363. [PMID: 32914265 DOI: 10.1007/s11033-020-05791-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/28/2020] [Indexed: 01/03/2023]
Abstract
Chitinases (Chi), an important resistance-related protein, act against fungal pathogens by catalyzing the fungal cell wall, whereas are involved in different biological pathways in grape. In this study, we found 42 Chi family genes in Vitis vinifera L. (VvChis) and evaluated their expression levels after Botrytis infection, stress hormones like ethylene (ETH) and methyl-jasmonate (MeJA), and abiotic stresses like salinity and temperature changes in ripened fruits. VvChis were categorized into five groups including A, B, C, D, and E belonged to glycoside hydrolase family 18 and 19 (GH18 and GH19) according to genes structure, which expression analysis showed distinct temporal and spatial expression patterns changed in different tissues and various development stages. Different responsive elements to biotic and abiotic stresses were determined in the promoter regions of VvChis, specially elicitor-responsive element that was conserved among all VvChis genes. The expression levels of VvChis in groups A, B, and E increased after Botrytis cinerea infection in leaves and berries. Meanwhile, VvChis in glycoside hydrolase family 18 (GH18) were up-regulated under MeJA and ETH treatment, although the induction of VvChis by low temperature was more significant than high temperature. The expression of VvChis was also positively correlated with the concentration of NaCl treatment. Furthermore, differential gene-overexpression of VvChi5, VvChi17, VvChi22, VvChi26, and VvChi31 in strawberry and tomato fruits demonstrated the involvement of various isoforms in resistance to Botrytis infection through antioxidant system and lignin accumulation, which led to a reduction of damage. Among different isoforms of VvChis, we confirmed the interaction of Chi17 with Metallothionein (MTL) as oxidative stress protection, which suggests VvChis can modulate oxidative stress during postharvest storage in ripened fruits.
Collapse
Affiliation(s)
- Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Songtao Jiu
- Department of Plant Science, Shanghai Jiao Tong University, Shanghai City, 200030, Shanghai, People's Republic of China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
19
|
Jose S, Abbey J, Jaakola L, Percival D. Selection and validation of reliable reference genes for gene expression studies from Monilinia vaccinii-corymbosi infected wild blueberry phenotypes. Sci Rep 2020; 10:11688. [PMID: 32678232 PMCID: PMC7366731 DOI: 10.1038/s41598-020-68597-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/19/2020] [Indexed: 01/24/2023] Open
Abstract
Monilinia blight disease caused by Monilinia vaccinii-corymbosi (Reade) Honey (M.vc) causes severe damage and economic losses in wild blueberry growing regions. Molecular mechanisms regulating defence responses of wild blueberry phenotypes towards this causal fungus are not yet fully known. A reliable quantification of gene expression using quantitative real time PCR (qPCR) is fundamental for measuring changes in target gene expression. A crucial aspect of accurate normalisation is the choice of appropriate reference genes. This study evaluated the expression stability of seven candidate reference genes (GAPDH, UBC9, UBC28, TIP41, CaCSa, PPR and RH8) in floral tissues of diploid and tetraploid wild blueberry phenotypes challenged with M.vc. The expression stability was calculated using five algorithms: geNorm, NormFinder, BestKeeper, deltaCt and RefFinder. The results indicated that UBC9 and GAPDH were the most stable reference genes, while RH8 and PPR were the least stable ones. To further validate the suitability of the analyzed reference genes, the expression level of a pathogenesis related protein gene (i.e., PR3) was analysed for both phenotypes at four time points of infection. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in wild blueberry species.
Collapse
Affiliation(s)
- Sherin Jose
- Wild Blueberry Research Program, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| | - Joel Abbey
- Wild Blueberry Research Program, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Laura Jaakola
- Climate Laboratory Holt, Department of Arctic and Marine Biology, The Arctic University of Norway, 9037, Tromsø, Norway.,NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway
| | - David Percival
- Wild Blueberry Research Program, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
20
|
Pathak RK, Baunthiyal M, Pandey D, Kumar A. Computational analysis of microarray data of Arabidopsis thaliana challenged with Alternaria brassicicola for identification of key genes in Brassica. J Genet Eng Biotechnol 2020; 18:17. [PMID: 32607787 PMCID: PMC7326868 DOI: 10.1186/s43141-020-00032-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/30/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alternaria blight, a recalcitrant disease caused by Alternaria brassicae and Alternaria brassicicola, has been recognized for significant losses of oilseed crops especially rapeseed-mustard throughout the world. Till date, no resistance source is available against the disease; hence, plant breeding methods cannot be used to develop disease-resistant varieties. Therefore, in the present study, efforts have been made to identify resistance and defense-related genes as well as key components of JA-SA-ET-mediated pathway involved in resistance against Alternaria brasscicola through computational analysis of microarray data and network biology approach. Microarray profiling data from wild type and mutant Arabidopsis plants challenged with Alternaria brassicicola along with control plant were obtained from the Gene Expression Omnibus (GEO) database. The data analysis, including DEGs extraction, functional enrichment, annotation, and network analysis, was used to identify genes associated with disease resistance and defense response. RESULTS A total of 2854 genes were differentially expressed in WT9C9; among them, 1327 genes were upregulated and 1527 genes were downregulated. A total of 1159 genes were differentially expressed in JAM9C9; among them, 809 were upregulated and 350 were downregulated. A total of 2516 genes were differentially expressed in SAM9C9; among them, 1355 were upregulated and 1161 were downregulated. A total of 1567 genes were differentially expressed in ETM9C9; among them, 917 were upregulated and 650 were downregulated. Besides, a total of 2965 genes were differentially expressed in contrast WT24C24; among them, 1510 genes were upregulated and 1455 genes were downregulated. A total of 4598 genes were differentially expressed in JAM24C24; among them, 2201 were upregulated and 2397 were downregulated. A total of 3803 genes were differentially expressed in SAM24C24; among them, 1819 were upregulated and 1984 were downregulated. A total of 4164 genes were differentially expressed in ETM24C24; among them, 1895 were upregulated and 2269 were downregulated. The upregulated genes of Arabidopsis thaliana were mapped and annotated with CDS sequences of Brassica rapa obtained from PlantGDB database. Additionally, PPI network of these genes were constructed to investigate the key components of hormone-mediated pathway involved in resistance during pathogenesis. CONCLUSION The obtained information from present study can be used to engineer resistance to Alternaria blight caused by Alternaria brasscicola through molecular breeding or genetic manipulation-based approaches for improving Brassica oilseed productivity.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering & Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Mamta Baunthiyal
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering & Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Dinesh Pandey
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand 263145 India
| | - Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh 284003 India
| |
Collapse
|
21
|
Hashemi L, Golparvar AR, Nasr-Esfahani M, Golabadi M. Expression analysis of defense-related genes in cucumber (Cucumis sativus L.) against Phytophthora melonis. Mol Biol Rep 2020; 47:4933-4944. [DOI: 10.1007/s11033-020-05520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022]
|
22
|
Scala V, Pietricola C, Farina V, Beccaccioli M, Zjalic S, Quaranta F, Fornara M, Zaccaria M, Momeni B, Reverberi M, Iori A. Tramesan Elicits Durum Wheat Defense against the Septoria Disease Complex. Biomolecules 2020; 10:biom10040608. [PMID: 32295231 PMCID: PMC7225966 DOI: 10.3390/biom10040608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022] Open
Abstract
The Septoria Leaf Blotch Complex (SLBC), caused by the two ascomycetes Zymoseptoria tritici and Parastagonospora nodorum, can reduce wheat global yearly yield by up to 50%. In the last decade, SLBC incidence has increased in Italy; notably, durum wheat has proven to be more susceptible than common wheat. Field fungicide treatment can efficiently control these pathogens, but it leads to the emergence of resistant strains and adversely affects human and animal health and the environment. Our previous studies indicated that active compounds produced by Trametes versicolor can restrict the growth of mycotoxigenic fungi and the biosynthesis of their secondary metabolites (e.g., mycotoxins). Specifically, we identified Tramesan: a 23 kDa α-heteropolysaccharide secreted by T. versicolor that acts as a pro-antioxidant molecule in animal cells, fungi, and plants. Foliar-spray of Tramesan (3.3 μM) on SLBC-susceptible durum wheat cultivars, before inoculation of causal agents of Stagonospora Nodorum Blotch (SNB) and Septoria Tritici Blotch (STB), significantly decreased disease incidence both in controlled conditions (SNB: -99%, STB: -75%) and field assays (SNB: -25%, STB: -30%). We conducted these tests were conducted under controlled conditions as well as in field. We showed that Tramesan increased the levels of jasmonic acid (JA), a plant defense-related hormone. Tramesan also increased the early expression (24 hours after inoculation - hai) of plant defense genes such as PR4 for SNB infected plants, and RBOH, PR1, and PR9 for STB infected plants. These results suggest that Tramesan protects wheat by eliciting plant defenses, since it has no direct fungicidal activity. In field experiments, the yield of durum wheat plants treated with Tramesan was similar to that of healthy untreated plots. These results encourage the use of Tramesan to protect durum wheat against SLBC.
Collapse
Affiliation(s)
- Valeria Scala
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Difesa e Certificazione, Via C.G. Bertero, 22, 00156 Roma, Italy;
| | - Chiara Pietricola
- Università Sapienza, Dip. Biologia Ambientale, P.le Aldo Moro 5, 00185 Roma, Italy; (C.P.); (V.F.); (M.B.)
| | - Valentina Farina
- Università Sapienza, Dip. Biologia Ambientale, P.le Aldo Moro 5, 00185 Roma, Italy; (C.P.); (V.F.); (M.B.)
| | - Marzia Beccaccioli
- Università Sapienza, Dip. Biologia Ambientale, P.le Aldo Moro 5, 00185 Roma, Italy; (C.P.); (V.F.); (M.B.)
| | - Slaven Zjalic
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Ulica Mihovila Pavlinovića bb, 23000 ZADAR, Croatia;
| | - Fabrizio Quaranta
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Ingegneria e Trasformazioni agroalimentari, Via Manziana 30, 00189 Roma, Italy; (F.Q.); (M.F.); (A.I.)
| | - Mauro Fornara
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Ingegneria e Trasformazioni agroalimentari, Via Manziana 30, 00189 Roma, Italy; (F.Q.); (M.F.); (A.I.)
| | - Marco Zaccaria
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA; (M.Z.); (B.M.)
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA; (M.Z.); (B.M.)
| | - Massimo Reverberi
- Università Sapienza, Dip. Biologia Ambientale, P.le Aldo Moro 5, 00185 Roma, Italy; (C.P.); (V.F.); (M.B.)
- Correspondence:
| | - Angela Iori
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Ingegneria e Trasformazioni agroalimentari, Via Manziana 30, 00189 Roma, Italy; (F.Q.); (M.F.); (A.I.)
| |
Collapse
|
23
|
Mir ZA, Ali S, Shivaraj SM, Bhat JA, Singh A, Yadav P, Rawat S, Paplao PK, Grover A. Genome-wide identification and characterization of Chitinase gene family in Brassica juncea and Camelina sativa in response to Alternaria brassicae. Genomics 2019; 112:749-763. [PMID: 31095998 DOI: 10.1016/j.ygeno.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Chitinases belong to the group of Pathogenesis-related (PR) proteins that provides protection against fungal pathogens. This study presents the, genome-wide identification and characterization of chitinase gene family in two important oilseed crops B. juncea and C. sativa belonging to family Brassicaceae. We have identified 47 and 79 chitinase genes in the genomes of B. juncea and C. sativa, respectively. Phylogenetic analysis of chitinases in both the species revealed four distinct sub-groups, representing different classes of chitinases (I-V). Microscopic and biochemical study reveals the role of reactive oxygen species (ROS) scavenging enzymes in disease resistance of B. juncea and C. sativa. Furthermore, qRT-PCR analysis showed that expression of chitinases in both B. juncea and C. sativa was significantly induced after Alternaria brassicae infection. However, the fold change in chitinase gene expression was considerably higher in C. sativa compared to B. juncea, which further proves their role in C. sativa disease resistance to A. brassicae. This study provides comprehensive analysis on chitinase gene family in B. juncea and C. sativa and in future may serve as a potential candidate for improving disease resistance in B. juncea through transgenic approach.
Collapse
Affiliation(s)
- Zahoor Ahmad Mir
- National Research Centre on Plant Biotechnology, NRCPB, New Delhi, India; Amity Institute of Biotechnology, Amity University Noida, India
| | - Sajad Ali
- National Research Centre on Plant Biotechnology, NRCPB, New Delhi, India; Centre of Research for Development, University of Kashmir, Srinagar, India
| | | | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Noida, India
| | - Prashant Yadav
- National Research Centre on Plant Biotechnology, NRCPB, New Delhi, India
| | - Sandhya Rawat
- National Research Centre on Plant Biotechnology, NRCPB, New Delhi, India
| | | | - Anita Grover
- National Research Centre on Plant Biotechnology, NRCPB, New Delhi, India.
| |
Collapse
|
24
|
Han Y, Song L, Peng C, Liu X, Liu L, Zhang Y, Wang W, Zhou J, Wang S, Ebbole D, Wang Z, Lu GD. A Magnaporthe Chitinase Interacts with a Rice Jacalin-Related Lectin to Promote Host Colonization. PLANT PHYSIOLOGY 2019; 179:1416-1430. [PMID: 30696749 PMCID: PMC6446787 DOI: 10.1104/pp.18.01594] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/18/2019] [Indexed: 05/21/2023]
Abstract
The genome of rice blast fungus (Magnaporthe oryzae) encodes 15 glycoside hydrolase 18 family chitinases. In this study, we characterized the function of an M. oryzae extracellular chitinase, MoChi1, and its interaction with a host protein, OsMBL1, a jacalin-related Mannose-Binding Lectin (MBL) in rice (Oryza sativa). Deletion of MoChi1 resulted in reduced aerial hyphal formation and reduced virulence in rice by activating the expression of defense-responsive genes. We confirmed MoChi1 interaction with rice OsMBL1 in vitro and in vivo. OsMBL1 was induced by pathogen-associated molecular patterns and M. oryzae infection. Overexpression of OsMBL1 led to activation of rice defense-responsive genes and a chitin-induced reactive oxygen species burst, thereby enhancing resistance to M. oryzae Knockdown of OsMBL1 enhances susceptibility of rice plants to M. oryzae Furthermore, MoChi1 suppressed chitin-induced reactive oxygen species in rice cells and competed with OsMBL1 for chitin binding. Taken together, our study reveals a mechanism in which MoChi1 targets a host lectin to suppress rice immunity.
Collapse
Affiliation(s)
- Yijuan Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Changlin Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihua Liu
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunhui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenzong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daniel Ebbole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
25
|
Purification of dual-functioning chitinases with hydrolytic and antifreeze activities from Hippophae rhamnoides seedlings. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00007-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Saganová M, Bokor B, Stolárik T, Pavlovič A. Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes. PLANTA 2018; 248:451-464. [PMID: 29767335 DOI: 10.1007/s00425-018-2917-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/11/2018] [Indexed: 05/09/2023]
Abstract
Nepenthes regulates enzyme activities by sensing stimuli from the insect prey. Protein is the best inductor mimicking the presence of an insect prey. Carnivorous plants of the genus Nepenthes have evolved passive pitcher traps for prey capture. In this study, we investigated the ability of chemical signals from a prey (chitin, protein, and ammonium) to induce transcription and synthesis of digestive enzymes in Nepenthes × Mixta. We used real-time PCR and specific antibodies generated against the aspartic proteases nepenthesins, and type III and type IV chitinases to investigate the induction of digestive enzyme synthesis in response to different chemical stimuli from the prey. Transcription of nepenthesins was strongly induced by ammonium, protein and live prey; chitin induced transcription only very slightly. This is in accordance with the amount of released enzyme and proteolytic activity in the digestive fluid. Although transcription of type III chitinase was induced by all investigated stimuli, a significant accumulation of the enzyme in the digestive fluid was found mainly after protein and live prey addition. Protein and live prey were also the best inducers for accumulation of type IV chitinase in the digestive fluid. Although ammonium strongly induced transcription of all investigated genes probably through membrane depolarization, strong acidification of the digestive fluid affected stability and abundance of both chitinases in the digestive fluid. The study showed that the proteins are universal inductors of enzyme activities in carnivorous pitcher plants best mimicking the presence of insect prey. This is not surprising, because proteins are a much valuable source of nitrogen, superior to chitin. Extensive vesicular activity was observed in prey-activated glands.
Collapse
Affiliation(s)
- Michaela Saganová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, 842 15, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, 842 15, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, 841 04, Bratislava, Slovakia
| | - Tibor Stolárik
- Department of Plant Physiology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
27
|
Silva NC, Conceição JG, Ventury KE, De Sá LF, Oliveira EA, Santos IS, Gomes VM, Costa MN, Ferreira AT, Perales J, Xavier-Filho J, Fernandes KV, Oliveira AE. Soybean seed coat chitinase as a defense protein against the stored product pest Callosobruchus maculatus. PEST MANAGEMENT SCIENCE 2018; 74:1449-1456. [PMID: 29250895 DOI: 10.1002/ps.4832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/10/2017] [Accepted: 12/10/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Chitinases (EC 3.2.1.14) are enzymes involved in the breaking of the β-1,4-glycosidic linkages of chitin. In insects, chitin is present mainly in the cuticle and in peritrophic membranes and peritrophic gel. Enzymes with the potential to damage peritrophic membranes and gel, such as chitinase, have been associated with plant defense systems. Identification and characterization of seed coat chitinase as a plant defense molecule may indicate a more effective target for manipulation strategies, which may lead to the prevention of consumption of embryonic tissues by larvae and consequently minimization of seed damage. RESULTS We studied the efficiency of soybean seed coat chitinase as a defense molecule against the insect Callosobruchus maculatus. The seed coat chitinase was isolated and identified by mass spectrometry, immunoreacted with an anti-chitinase antibody and shown to have activity against chitin azure and 4-methylumbelliferyl β-D-N,N',N''-triacetylchitotrioside. A chitinase fraction incorporated in artificial cotyledons at 0.1% reduced larval survival by approximately 77%, and at 0.5%, the reduction in larval mass was 60%. Fluorescein isothiocyanate (FITC)-labeled chitinase was detected in the guts and feces of larvae. At 25% in thick artificial seed coats, chitinase showed a high toxicity to larvae, with mortality of 90% and a reduction of larval mass of 87%. CONCLUSION Seed coat chitinase is an important seed defense molecule not only in the cotyledons but also in seed coats, acting as part of the array of defense mechanisms against Callosobruchus maculatus. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nadia Cm Silva
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Jamile G Conceição
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Kayan Eudorico Ventury
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Leonardo Fr De Sá
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Eduardo Ag Oliveira
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Izabela S Santos
- NUPEM, Universidade Federal do Rio de Janeiro-UFRJ, Macaé, RJ, Brazil
| | - Valdirene M Gomes
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Monique N Costa
- Laboratório de Toxinologia, Fundação Oswaldo Cruz, Rio de Janeiro-Brazil (FIOCRUZ-RJ), Rio de Janeiro, RJ, Brazil
| | - Andre Ts Ferreira
- Laboratório de Toxinologia, Fundação Oswaldo Cruz, Rio de Janeiro-Brazil (FIOCRUZ-RJ), Rio de Janeiro, RJ, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Fundação Oswaldo Cruz, Rio de Janeiro-Brazil (FIOCRUZ-RJ), Rio de Janeiro, RJ, Brazil
| | - Jose Xavier-Filho
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Kátia Vs Fernandes
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Antonia Ea Oliveira
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
28
|
Pusztahelyi T. Chitin and chitin-related compounds in plant-fungal interactions. Mycology 2018; 9:189-201. [PMID: 30181925 PMCID: PMC6115883 DOI: 10.1080/21501203.2018.1473299] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Chitin is the second abundant polysaccharide in the world after cellulose. It is a vital structural component of the fungal cell wall but not for plants. In plants, fungi are recognised through the perception of conserved microbe-associated molecular patterns (MAMPs) to induce MAMP-triggered immunity (MTI). Chitin polymers and their modified form, chitosan, induce host defence responses in both monocotyledons and dicotyledons. The plants' response to chitin, chitosan, and derived oligosaccharides depends on the acetylation degree of these compounds which indicates possible biocontrol regulation of plant immune system. There has also been a considerable amount of recent research aimed at elucidating the roles of chitin hydrolases in fungi and plants as chitinase production in plants is not considered solely as an antifungal resistance mechanism. We discuss the importance of chitin forms and chitinases in the plant-fungal interactions and their role in persistent and possible biocontrol. Abbreviations ET, ethylene; GAP, GTPase-activating protein; GEF, GDP/GTP exchange factor; JA, jasmonic acid; LysM, lysin motif; MAMP, microbe-associated molecular pattern; MTI, MAMP-triggered immunity; NBS, nucleotide-binding site; NBS-LRR, nucleotide-binding site leucine-rich repeats; PM, powdery mildew; PR, pathogenesis-related; RBOH, respiratory burst oxidase homolog; RLK, receptor-like kinase; RLP, receptor-like protein; SA, salicylic acid; TF, transcription factor.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Hungary
| |
Collapse
|