1
|
Duan Z, Li L, Zhan Q, Chen J, Li Q, Liu R, Tu Y. Mitochondria-Targeting Type-I Photodynamic Therapy Based on Phenothiazine for Realizing Enhanced Immunogenic Cancer Cell Death via Mitochondrial Oxidative Stress. Int J Nanomedicine 2025; 20:125-139. [PMID: 39802375 PMCID: PMC11721160 DOI: 10.2147/ijn.s494970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Photo-immunotherapy faces challenges from poor immunogenicity and low response rate due to hypoxic microenvironment. This study presents Rh-PTZ, a small organic molecule with a D-π-A structure, that simultaneously amplifies mitochondria-targeted type-I PDT-dependent immune stimulation for the treatment of hypoxic cancer. Methods The hydrophobic Rh-PTZ was encapsulated into F127 to prepare Rh-PTZ nanoparticles (Rh-PTZ NPs). The type-I ROS generation ability, mitochondrial targeting capacity, and ICD triggering effect mediated by Rh-PTZ NPs under LED light irradiation were investigated. Based on a 4T1 subcutaneous tumor model, the in vivo biological safety assessment, in vivo NIR fluorescent imaging, and the efficacy of PDT were assessed. Results Rh-PTZ could efficiently accumulate in the mitochondrial site and induce O2 •- and •OH burst in situ under LED light irradiation, thereby causing severe mitochondrial dysfunction. Rh-PTZ can amplify mitochondrial stress-caused immunogenic cell death (ICD) to stimulate the immune response, promote the maturation of sufficient dendritic cells (DCs), enhance the infiltration of immune cells, and alleviate the tumor immunosuppressive microenvironment. Conclusion The mitochondria-targeting type-I PDT holds promise to enhance photo-immunotherapy for hypoxia tumor treatment and overcoming the limitations of traditional immunotherapy.
Collapse
Affiliation(s)
- Zeyu Duan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Lie Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qiyu Zhan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Jian Chen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qiyan Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Ruiyuan Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yinuo Tu
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People’s Republic of China
| |
Collapse
|
2
|
Klosowski EM, de Souza BTL, Nanami LF, Bizerra PFV, Mito MS, Esquissato GNM, Constantin RP, Joia BM, Menezes PVMDC, Caetano W, Pereira PCDS, Gonçalves RS, Garcia FP, Bidoia DL, Nakamura TU, Nakamura CV, Ishii-Iwamoto EL, Dos Santos WD, Ferrarese-Filho O, Marchiosi R, Constantin RP. Unraveling the intrinsic and photodynamic effects of aluminum chloride phthalocyanine on bioenergetics and oxidative state in rat liver mitochondria. Toxicol Appl Pharmacol 2025; 494:117157. [PMID: 39551162 DOI: 10.1016/j.taap.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Previous research has revealed that mitochondria are an important target for photodynamic therapy (PDT), which might be employed as a therapeutic approach for several malignancies, including hepatocellular carcinoma (HCC). In this study, we investigated both intrinsic toxicity and photodynamic effects of the photosensitizer (PS) aluminum chloride phthalocyanine (AlClPc) on mitochondrial functions. Several aspects of mitochondrial bioenergetics, structure, and oxidative state were investigated in the isolated mitochondria obtained from rat liver by differential centrifugation. Additionally, experiments were conducted to demonstrate the intrinsic and photodynamic effects of AlClPc on the viability of HepG2 cells. AlClPc interacted with mitochondria regardless of photostimulation; however, at the maximum utilized concentration (40 μM), photostimulation reduced its interaction with mitochondria. Although AlClPc hindered catalase (CAT) and glutathione reductase (GR) activities intrinsically, it had no discernable capacity to generate oxidative stress or impact bioenergetics in mitochondria without photostimulation, as one would anticipate from an ideal PS. When exposed to light, however, AlClPc had a substantially unfavorable influence on mitochondrial function, strengthening its intrinsic inhibitory action on CAT, producing oxidative stress, and jeopardizing mitochondrial bioenergetics. In terms of oxidative stress parameters, AlClPc induced lipid peroxidation and decreased the level of reduced glutathione (GSH) in mitochondria. Regarding bioenergetics, AlClPc promoted oxidative phosphorylation uncoupling and photodynamic inactivation of complex I, complex II, and the FoF1-ATP synthase complex, lowering mitochondrial ATP production. Lastly, AlClPc exhibited a concentration-dependent decrease in the viability of HepG2 cells, regardless of the presence or absence of photostimulation. While the harmful photodynamic effects of AlClPc on mitochondrial bioenergetics hold promise for treating HCC and other malignancies, the inherent toxic impacts on HepG2 cells underscore the need for caution in its application for this purpose.
Collapse
Affiliation(s)
- Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Letícia Fernanda Nanami
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | | | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Breno Miguel Joia
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Paulo Cesar de Souza Pereira
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Francielle Pelegrin Garcia
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Danielle Lazarin Bidoia
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Tânia Ueda Nakamura
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Celso Vataru Nakamura
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| |
Collapse
|
3
|
Chen L, He Y, Lan J, Li Z, Gu D, Nie W, Zhang T, Ding Y. Advancements in nano drug delivery system for liver cancer therapy based on mitochondria-targeting. Biomed Pharmacother 2024; 180:117520. [PMID: 39395257 DOI: 10.1016/j.biopha.2024.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Based on poor efficacy and non-specific toxic side effects of conventional drug therapy for liver cancer, nano-based drug delivery system (NDDS) offers the advantage of drug targeting delivery. Subcellular targeting of nanomedicines on this basis enables more precise and effective termination of tumor cells. Mitochondria, as the crucial cell powerhouse, possesses distinctive physical and chemical properties in hepatoma cells different from that in hepatic cells, and controls apoptosis, tumor metastasis, and cellular drug resistance in hepatoma cells through metabolism and dynamics, which serves as a good choice for drug targeting delivery. Thus, mitochondria-targeting NDDS have become a recent research focus, showcasing the design of cationic nanoparticles, metal nanoparticles, mitochondrial peptide modification and so on. Although many studies have shown good results regarding anti-tumor efficacy, it is a long way to go before the successful translation of clinical application. Based on these, we summarized the specificity and importance of mitochondria in hepatoma cells, and reviewed the current mitochondria-targeting NDDS for liver cancer therapy, aiming to provide a better understanding for current development process, strengths and weaknesses of mitochondria-targeting NDDS as well as informing subsequent improvements and developments.
Collapse
Affiliation(s)
- Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghao Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenlong Nie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Feng N, Zhang R, Wen X, Wang W, Zhang N, Zheng J, Zhang L, Liu N. RABIF promotes hepatocellular carcinoma progression through regulation of mitophagy and glycolysis. Commun Biol 2024; 7:1333. [PMID: 39414994 PMCID: PMC11484875 DOI: 10.1038/s42003-024-07028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
The RAB interacting factor (RABIF) is a putative guanine nucleotide exchange factor that also functions as a RAB-stabilizing holdase chaperone. It has been implicated in pathogenesis of several cancers. However, the functional role and molecular mechanism of RABIF in hepatocellular carcinoma (HCC) are not entirely known. Here, we demonstrate an upregulation of RABIF in patients with HCC, correlating with a poor prognosis. RABIF inhibition results in decreased HCC cell growth both in vitro and in vivo. Our study reveals that depleting RABIF attenuates the STOML2-PARL-PGAM5 axis-mediated mitophagy. Consequently, this reduction in mitophagy results in diminished mitochondrial reactive oxygen species (mitoROS) production, thereby alleviating the HIF1α-mediated downregulation of glycolytic genes HK1, HKDC1, and LDHB. Additionally, we illustrate that RABIF regulates glucose uptake by controlling RAB10 expression. Importantly, the knockout of RABIF or blockade of mitophagy sensitizes HCC cells to sorafenib. This study uncovers a previously unrecognized role of RABIF crucial for HCC growth and identifies it as a potential therapeutic target.
Collapse
Affiliation(s)
- Ning Feng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rui Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nie Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Pathology and Laboratory of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
5
|
Ke R, Kumar S, Singh SK, Rana A, Rana B. Molecular insights into the role of mixed lineage kinase 3 in cancer hallmarks. Biochim Biophys Acta Rev Cancer 2024; 1879:189157. [PMID: 39032538 DOI: 10.1016/j.bbcan.2024.189157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as β-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Wang ZH, Wang J, Liu F, Sun S, Zheng Q, Hu X, Yin Z, Xie C, Wang H, Wang T, Zhang S, Wang YP. THAP3 recruits SMYD3 to OXPHOS genes and epigenetically promotes mitochondrial respiration in hepatocellular carcinoma. FEBS Lett 2024; 598:1513-1531. [PMID: 38664231 DOI: 10.1002/1873-3468.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/27/2024]
Abstract
Mitochondria harbor the oxidative phosphorylation (OXPHOS) system to sustain cellular respiration. However, the transcriptional regulation of OXPHOS remains largely unexplored. Through the cancer genome atlas (TCGA) transcriptome analysis, transcription factor THAP domain-containing 3 (THAP3) was found to be strongly associated with OXPHOS gene expression. Mechanistically, THAP3 recruited the histone methyltransferase SET and MYND domain-containing protein 3 (SMYD3) to upregulate H3K4me3 and promote OXPHOS gene expression. The levels of THAP3 and SMYD3 were altered by metabolic cues. They collaboratively supported liver cancer cell proliferation and colony formation. In clinical human liver cancer, both of them were overexpressed. THAP3 positively correlated with OXPHOS gene expression. Together, THAP3 cooperates with SMYD3 to epigenetically upregulate cellular respiration and liver cancer cell proliferation.
Collapse
Affiliation(s)
- Zi-Hao Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Sijun Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaotian Hu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zihan Yin
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Chengmei Xie
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, China
| | - Shengjie Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yi-Ping Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
7
|
Tao S, Cui D, Cheng H, Liu X, Jiang Z, Chen H, Gao Y. High expression of TBRG4 in relation to unfavorable outcome and cell ferroptosis in hepatocellular carcinoma. BMC Cancer 2024; 24:194. [PMID: 38347489 PMCID: PMC10860303 DOI: 10.1186/s12885-024-11943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of malignant liver tumor with poor prognosis. In this study, we investigated the expression of transforming growth factor beta regulator 4 (TBRG4) in HCC and its effects on the proliferation, invasion, and metastasis of HCC cells, and analyzed the possible molecular mechanisms. METHOD Downloading the expression and clinical information of HCC samples in the TCGA database, analyzing the expression differences of TBRG4 by bioinformatics methods, analyzing the clinical relevance and prognostic significance. Performing GO, KEGG and GSEA enrichment analysis on the TBRG4-related gene set in patient HCC tissues. Applying cell counting, scratch test and Transwell experiment to study the biological function of TBRG4 in HCC. Mitochondrial membrane potential, apoptosis and ROS levels were evaluated to assess cell iron death. Western blot, RT-PCR, laser confocal microscopy and co-immunoprecipitation were used to detect and analyze the downstream signaling pathways and interacting molecules of TBRG4. RESULTS Bioinformatics analysis revealed that TBRG4 was abnormally highly expressed in HCC tumor tissues and was associated with poor prognosis and metastasis in HCC patients. GO and KEGG functional enrichment analysis showed that TBRG4 was related to oxidative stress and NADH dehydrogenase (ubiquinone) activity. GSEA enrichment analysis showed that TBRG4 was associated with Beta catenin independent wnt signaling and B cell receptor. Functional experiments confirmed that knocking down TBRG4 could inhibit the proliferation, migration, and invasion of HCC cells. Mechanistically, TBRG4 inhibited the function of HCC cells through the DDX56/p-AKT/GSK3β signaling pathway. In addition, interference with TBRG4 expression could reduce the mitochondrial membrane potential and accumulate ROS in HCC cells, leading to increased ferroptosis. Co-IP analysis showed that TBRG4 specifically bound to Beclin1. CONCLUSION TBRG4 is highly expressed in HCC tumor tissues and is associated with poor prognosis. It may regulate the proliferation, invasion, and metastasis of HCC cells through the DDX56/p-AKT/GSK3β signaling pathway. TBRG4 may interact with Beclin1 to regulate the ferroptosis of HCC cells.
Collapse
Affiliation(s)
- Shanchun Tao
- Blood Transfusion Department, Fuyang Normal University Affiliated Second Hospital, Fuyang, Anhui, 236000, China
| | - Di Cui
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Huimin Cheng
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Xiaofei Liu
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Zhaobin Jiang
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Hongwei Chen
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, 236037, China.
| | - Yong Gao
- Department of Clinical Laboratory, Fuyang Second People's Hospital, Fuyang Infectious Disease Clinical College, Anhui Medical University, Fuyang, Anhui, 236015, China.
| |
Collapse
|
8
|
Wang C, Li T, Wang Z, Li Y, Liu Y, Xu M, Zhang Z, Deng Y, Cai L, Zhang C, Li C. Nano-modulators with the function of disrupting mitochondrial Ca 2+ homeostasis and photothermal conversion for synergistic breast cancer therapy. J Nanobiotechnology 2023; 21:465. [PMID: 38049882 PMCID: PMC10694906 DOI: 10.1186/s12951-023-02220-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Breast cancer treatment has been a global puzzle, and apoptosis strategies based on mitochondrial Ca2+ overload have attracted extensive attention. However, various limitations of current Ca2+ nanogenerators make it difficult to maintain effective Ca2+ overload concentrations. Here, we constructed a multimodal Ca2+ nano-modulator that, for the first time, combined photothermal therapy (PTT) and mitochondrial Ca2+ overload strategies to inhibit tumor development. By crosslinking sodium alginate (SA) on the surface of calcium carbonate (CaCO3) nanoparticles encapsulating with Cur and ICG, we prepared a synergistic Ca2+ nano-regulator SA/Cur@CaCO3-ICG (SCCI). In vitro studies have shown that SCCI further enhanced photostability while preserving the optical properties of ICG. After uptake by tumor cells, SCCI can reduce mitochondrial membrane potential and down-regulate ATP production by producing large amounts of Ca2+ at low pH. Near-infrared light radiation (NIR) laser irradiation made the tumor cells heat up sharply, which not only accelerated the decomposition of CaCO3, but also produced large amounts of reactive oxygen species (ROS) followed by cell apoptosis. In vivo studies have revealed that the Ca2+ nano-regulators had excellent targeting, biocompatibility, and anti-tumor effects, which can significantly inhibit the proliferation of tumor cells and play a direct killing effect. These findings indicated that therapeutic strategies based on ionic interference and PTT had great therapeutic potential, providing new insights into antitumor therapy.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Sichuan Province, Luzhou, China
| | - Zhen Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China
| | - Yao Li
- Department of Science and Technology, Southwest Medical University, Luzhou, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China
| | - Yiping Deng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China
| | - Liang Cai
- Nuclear Medicine Department of the First Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chunxiang Zhang
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, No.1, Section 1, Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
9
|
Zhao Q, Zhang C, Zhang X, Wang S, Guo T, Yin Y, Zhang H, Li Z, Si Y, Lu Y, Cheng S, Ding W. ZNF281 inhibits mitochondrial biogenesis to facilitate metastasis of hepatocellular carcinoma. Cell Death Discov 2023; 9:396. [PMID: 37880213 PMCID: PMC10600106 DOI: 10.1038/s41420-023-01691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Zinc finger protein 281 (ZNF281) has been shown to promote tumor progression. However, the underlying mechanism remains to be further elucidated. In this study, ZNF281 knockdown increased the expression of mitochondrial transcription factor A (TFAM) in hepatocellular carcinoma (HCC) cells, accompanied with increment of mitochondrial content, oxygen consumption rate (OCR) and levels of TCA cycle intermetabolites. Mechanistic investigation revealed that ZNF281 suppressed the transcription of TFAM, nuclear respiratory factor 1 (NRF1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Furthermore, ZNF281 interacted with NRF1 and PGC-1α, and was recruited onto the promoter regions of TFAM, TFB1M and TFB2M repressing their expression. Knockdown of TFAM reversed ZNF281 depletion induced up-regulation of mitochondrial biogenesis and function, as well as impaired epithelial mesenchymal transition, invasion and metastasis of HCC cells. Our research uncovered a novel suppressive function of ZNF281 on mitochondrial biogenesis through inhibition of the NRF1/PGC-1α-TFAM axis, which may hold therapeutic potentials for HCC.
Collapse
Affiliation(s)
- Qingfang Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Chenguang Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Xialu Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing You' An Hospital, Capital Medical University, Beijing, 100069, China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuzhe Yin
- The Sixth Clinical Medical School, Capital Medical University, Beijing, 100069, China
| | - Hui Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yang Si
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yabin Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shan Cheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Ding
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Qu H, Liu J, Zhang D, Xie R, Wang L, Hong J. Glycolysis in Chronic Liver Diseases: Mechanistic Insights and Therapeutic Opportunities. Cells 2023; 12:1930. [PMID: 37566009 PMCID: PMC10417805 DOI: 10.3390/cells12151930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic liver diseases (CLDs) cover a spectrum of liver diseases, ranging from nonalcoholic fatty liver disease to liver cancer, representing a growing epidemic worldwide with high unmet medical needs. Glycolysis is a conservative and rigorous process that converts glucose into pyruvate and sustains cells with the energy and intermediate products required for diverse biological activities. However, abnormalities in glycolytic flux during CLD development accelerate the disease progression. Aerobic glycolysis is a hallmark of liver cancer and is responsible for a broad range of oncogenic functions including proliferation, invasion, metastasis, angiogenesis, immune escape, and drug resistance. Recently, the non-neoplastic role of aerobic glycolysis in immune activation and inflammatory disorders, especially CLD, has attracted increasing attention. Several key mediators of aerobic glycolysis, including HIF-1α and pyruvate kinase M2 (PKM2), are upregulated during steatohepatitis and liver fibrosis. The pharmacological inhibition or ablation of PKM2 effectively attenuates hepatic inflammation and CLD progression. In this review, we particularly focused on the glycolytic and non-glycolytic roles of PKM2 in the progression of CLD, highlighting the translational potential of a glycolysis-centric therapeutic approach in combating CLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China; (H.Q.)
| |
Collapse
|
11
|
Ma J, Zhu J, Li J, Liu J, Kang X, Yu J. Enhanced E6AP-mediated ubiquitination of ENO1 via LINC00663 contributes to radiosensitivity of breast cancer by regulating mitochondrial homeostasis. Cancer Lett 2023; 560:216118. [PMID: 36871813 DOI: 10.1016/j.canlet.2023.216118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023]
Abstract
Radiotherapy has shown measurable efficacy in breast cancer (BC). Elucidating the mechanisms and developing effective strategies against resistance, which is a major challenge, is crucial. Mitochondria, which regulate homeostasis of the redox environment, have emerged as a radiotherapeutic target. However, the mechanism via which mitochondria are controlled under radiation remains elusive. Here, we identified alpha-enolase (ENO1), as a prognostic marker for the efficacy of BC radiotherapy. ENO1 enhances radio-therapeutic resistance in BC via reducing the production of reactive oxygen species (ROS) and apoptosis in vitro and in vivo through modulation of mitochondrial homeostasis. Moreover, LINC00663 was identified as an upstream regulator of ENO1, which regulates radiotherapeutic sensitivity by downregulating ENO1 expression in BC cells. LINC00663 regulates ENO1 protein stability by enhancing the E6AP-mediated ubiquitin-proteasome pathway. In BC patients, LINC00663 expression is negatively correlated with ENO1 expression. Among patients treated with IR, those who did not respond to radiotherapy expressed lower levels of LINC00663 than those sensitive to radiotherapy. Our work established LINC00663/ENO1 critical to regulate IR-resistance in BC. Inhibition of ENO1 with a specific inhibitor or supplement of LINC00663 could be potential sensitizing therapeutic strategies for BC.
Collapse
Affiliation(s)
- Jianli Ma
- Shandong University Cancer Center, Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junwen Zhu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingtong Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ji Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaofeng Kang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Jinming Yu
- Shandong University Cancer Center, Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
12
|
Ge C, Luo M, Guo K, Zhu D, Han N, Wang T, Zhao X. Role of PIVKA-II in screening for malignancies at a hepatobiliary and pancreatic disease center: A large-scale real-world study. ILIVER 2022; 1:209-216. [DOI: 10.1016/j.iliver.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Tang M, Xu H, Huang H, Kuang H, Wang C, Li Q, Zhang X, Ge Y, Song M, Zhang X, Wang Z, Ma C, Kang J, Zhang W, Wang Y, Zhang B, Zhang X, Chen Y, Cong M, Melino G, Wang X, Zhou F, Sun Q, Shi H. Metabolism-Based Molecular Subtyping Endows Effective Ketogenic Therapy in p53-Mutant Colon Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201992. [PMID: 36031388 PMCID: PMC9561794 DOI: 10.1002/advs.202201992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Although targeting cancer metabolism is a promising therapeutic strategy, clinical success depends on accurate molecular and metabolic subtyping. Here, this study reports two metabolism-based molecular subtypes associated with the ketogenic treatment of colon cancer: glycolytic (glycolysis+ /ketolysis- ) and ketolytic (glycolysis+ /ketolysis+ ), which are manifested by distinct profiles of metabolic enzymes and mitochondrial dysfunction, and by different responses to ketone-containing interventions in vitro and in vivo. Notably, the glycolytic subtype is able to be transformed into the ketolytic subtype in p53-mutated tumors upon glucose limitation, rendering resistance to ketogenic therapy associated with upregulation of ketolytic enzymes, such as OXCT1 by mutant p53. The allosteric activator of mutant p53 effectively blocks the rewired molecular expression and the reprogrammed metabolism, leading to the suppression of tumor growth. The findings highlight the utility of metabolic subtyping to guide ketogenic therapy in colon cancer and identify mutant p53 as a synthetic lethality target for ketogenic treatment.
Collapse
Affiliation(s)
- Meng Tang
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorsHubei Clinical Cancer Study CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Gastrointestinal Surgery/ Department of Clinical NutritionBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
- Key Laboratory of Cancer FSMP for State Market RegulationBeijing100038China
- Laboratory of Cell Engineering, Institute of BiotechnologyResearch Unit of Cell Death Mechanism, 2021RU008Chinese Academy of Medical Science20 Dongda StreetBeijing100071China
- Comprehensive Oncology DepartmentNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Hui Xu
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorsHubei Clinical Cancer Study CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Hongyan Huang
- Department of OncologyBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
| | - Hao Kuang
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorsHubei Clinical Cancer Study CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Radiation OncologySichuan Cancer HospitalChengdu610041China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Institute of BiotechnologyResearch Unit of Cell Death Mechanism, 2021RU008Chinese Academy of Medical Science20 Dongda StreetBeijing100071China
| | - Qinqin Li
- Department of Gastrointestinal Surgery/ Department of Clinical NutritionBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
| | - Xin Zhang
- Department of Pediatric Hematology and OncologyXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai200092China
| | - Yizhong Ge
- Department of Gastrointestinal Surgery/ Department of Clinical NutritionBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
- Key Laboratory of Cancer FSMP for State Market RegulationBeijing100038China
| | - Mengmeng Song
- Department of Gastrointestinal Surgery/ Department of Clinical NutritionBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
- Key Laboratory of Cancer FSMP for State Market RegulationBeijing100038China
| | - Xi Zhang
- Department of Gastrointestinal Surgery/ Department of Clinical NutritionBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
- Key Laboratory of Cancer FSMP for State Market RegulationBeijing100038China
| | - Ziwen Wang
- Department of Gastrointestinal Surgery/ Department of Clinical NutritionBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
- Key Laboratory of Cancer FSMP for State Market RegulationBeijing100038China
| | - Chaobing Ma
- Laboratory of Cell Engineering, Institute of BiotechnologyResearch Unit of Cell Death Mechanism, 2021RU008Chinese Academy of Medical Science20 Dongda StreetBeijing100071China
| | - Jinlin Kang
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorsHubei Clinical Cancer Study CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wanfang Zhang
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorsHubei Clinical Cancer Study CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - You Wang
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorsHubei Clinical Cancer Study CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Bo Zhang
- Department of OncologyBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
| | - Xiaowei Zhang
- Department of Gastrointestinal Surgery/ Department of Clinical NutritionBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
- Key Laboratory of Cancer FSMP for State Market RegulationBeijing100038China
| | - Yongbing Chen
- Department of Gastrointestinal Surgery/ Department of Clinical NutritionBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
- Key Laboratory of Cancer FSMP for State Market RegulationBeijing100038China
| | - Minghua Cong
- Comprehensive Oncology DepartmentNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Gerry Melino
- Department of Experimental MedicineTORUniversity of Rome“Tor Vergata”Rome50‐00133Italy
| | - Xiaobin Wang
- Department of PopulationFamilyand Reproductive HealthJohns Hopkins University Bloomberg School of Public Health; and Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMaryland21287USA
| | - Fuxiang Zhou
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorsHubei Clinical Cancer Study CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of BiotechnologyResearch Unit of Cell Death Mechanism, 2021RU008Chinese Academy of Medical Science20 Dongda StreetBeijing100071China
| | - Hanping Shi
- Department of Gastrointestinal Surgery/ Department of Clinical NutritionBeijing Shijitan HospitalCapital Medical UniversityBeijing10038China
- Key Laboratory of Cancer FSMP for State Market RegulationBeijing100038China
| |
Collapse
|
14
|
Li X, Peng X, Zhang C, Bai X, Li Y, Chen G, Guo H, He W, Zhou X, Gou X. Bladder Cancer-Derived Small Extracellular Vesicles Promote Tumor Angiogenesis by Inducing HBP-Related Metabolic Reprogramming and SerRS O-GlcNAcylation in Endothelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202993. [PMID: 36045101 PMCID: PMC9596856 DOI: 10.1002/advs.202202993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
A malformed tumour vascular network provokes the nutrient-deprived tumour microenvironment (TME), which conversely activates endothelial cell (EC) functions and stimulates neovascularization. Emerging evidence suggests that the flexible metabolic adaptability of tumour cells helps to establish a metabolic symbiosis among various cell subpopulations in the fluctuating TME. In this study, the authors propose a novel metabolic link between bladder cancer (BCa) cells and ECs in the nutrient-scarce TME, in which BCa-secreted glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1) via small extracellular vesicles (sEVs) reprograms glucose metabolism by increasing hexosamine biosynthesis pathway flux in ECs and thus enhances O-GlcNAcylation. Moreover, seryl-tRNA synthetase (SerRS) O-GlcNAcylation at serine 101 in ECs promotes its degradation by ubiquitination and impeded importin α5-mediated nuclear translocation. Intranuclear SerRS attenuates vascular endothelial growth factor transcription by competitively binding to the GC-rich region of the proximal promotor. Additionally, GFAT1 knockout in tumour cells blocks SerRS O-GlcNAcylation in ECs and attenuates angiogenesis both in vitro and in vivo. However, administration of GFAT1-overexpressing BCa cells-derived sEVs increase the angiogenetic activity in the ECs of GFAT1-knockout mice. In summary, this study suggests that inhibiting sEV-mediated GFAT1 secretion from BCa cells and targeting SerRS O-GlcNAcylation in ECs may serve as novel strategies for BCa antiangiogenetic therapy.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Centre for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiang Peng
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Chunlin Zhang
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xuesong Bai
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yang Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guo Chen
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Huixia Guo
- Centre for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Weiyang He
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiang Zhou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xin Gou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
15
|
Muresanu C, Khalchitsky S. Updated Understanding of the Causes of Cancer, and a New Theoretical Perspective of Combinational Cancer Therapies, a Hypothesis. DNA Cell Biol 2022; 41:342-355. [PMID: 35262416 DOI: 10.1089/dna.2021.1118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present an integrative understanding of cancer as a metabolic multifactorial, multistage disease. We focus on underlying genetics-environmental interactions, evidenced by telomere changes. A range of genetic and epigenetic factors, including physical agents and predisposing factors such as diet and lifestyle are included. We present a structured model of the causes of cancer, methods of investigations, approaches to cancer prevention, and polypharmaceutical multidisciplinary complex treatment within a framework of personalized medicine. We searched PubMed, National Cancer Institute online, and other databases for publications regarding causes of cancer, reports of novel mitochondrial reprogramming, epigenetic, and telomerase therapies and state-of-the-art investigations. We focused on multistep treatment protocols to enhance early detection of cancer, and elimination or neutralization of the causes and factors associated with cancer formation and progression.Our aim is to suggest a model therapeutic protocol that incorporates the patient's genome, metabolism, and immune system status; stage of tumor development; and comorbidity(ies), if any. Investigation and treatment of cancer is a challenge that requires further holistic studies that improve the quality of life and survival rates, but are most likely to aid prevention.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Cluj-Napoca, Romania.,Department of Ecology, Taxonomy and Nature Conservation, Institute of Biology, Romanian Academy, Bucharest, Romania
| | - Sergei Khalchitsky
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
16
|
Xiao MH, Lin YF, Xie PP, Chen HX, Deng JW, Zhang W, Zhao N, Xie C, Meng Y, Liu X, Zhuang SM, Zhu Y, Fang JH. Downregulation of a mitochondrial micropeptide, MPM, promotes hepatoma metastasis by enhancing mitochondrial complex I activity. Mol Ther 2022; 30:714-725. [PMID: 34478872 PMCID: PMC8821931 DOI: 10.1016/j.ymthe.2021.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/25/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
We and others have shown that MPM (micropeptide in mitochondria) regulates myogenic differentiation and muscle development. However, the roles of MPM in cancer development remain unknown. Here we revealed that MPM was downregulated significantly in human hepatocellular carcinoma (HCC) tissues and its decrease was associated with increased metastasis potential and HCC recurrence. Gain- and loss-of-function investigations disclosed that in vitro migration/invasion and in vivo liver/lung metastasis of hepatoma cells were repressed by restoring MPM expression and increased by silencing MPM. Mechanism investigations revealed that MPM interacted with NDUFA7. Mitochondrial complex I activity was inhibited by overexpressing MPM and enhanced by siMPM, and this effect of siMPM was attenuated by knocking down NDUFA7. The NAD+/NADH ratio, which was regulated by complex I, was reduced by MPM but increased by siMPM. Treatment with the NAD+ precursor nicotinamide abrogated the inhibitory effect of MPM on hepatoma cell migration. Further investigations showed that miR-17-5p bound to MPM and inhibited MPM expression. miR-17-5p upregulation was associated with MPM downregulation in HCC tissues. These findings indicate that a decrease in MPM expression may promote hepatoma metastasis by increasing mitochondrial complex I activity and the NAD+/NADH ratio.
Collapse
Affiliation(s)
- Man-Huan Xiao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Yi-Fang Lin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Peng-Peng Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Hua-Xing Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Jun-Wen Deng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Wei Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Na Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Yu Meng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China
| | - Xingguo Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China,Corresponding author: Shi-Mei Zhuang, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China.
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China,Corresponding author: Ying Zhu, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China.
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China,Corresponding author: Jian-Hong Fang, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road #135, Guangzhou 510275, P.R. China.
| |
Collapse
|
17
|
Zhao Y, Wang J, Zhang J, Sun Z, Niu R, Manthari RK, Ommati MM, Wang S, Wang J. Fluoride exposure induces mitochondrial damage and mitophagy via activation of the IL-17A pathway in hepatocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150184. [PMID: 34517333 DOI: 10.1016/j.scitotenv.2021.150184] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
As an environmental toxicant, the damage of fluoride to the body has attracted global attention. Because liver is an essential organ for fluoride accumulation and damage. Our previous studies revealed fluoride-induced hepatic injury through interleukin 17A (IL-17A) pathway, but the underlying cellular mechanism remains unclear. Hence, this research explored the mechanism of IL-17A pathway and mitophagy in fluoride-induced liver injury through the use of the mice fluorosis model, IL-17A addition fluorosis cell model, IL-17A gene knockout mice fluorosis model, flow cytometry, immunohistochemistry, fluorescence double staining, ELISA, western blotting, and other techniques. The results showed that fluoride reduced the bodyweight and liver coefficient, increased the bone fluoride content, the aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamate dehydrogenase (GDH) levels, caspase 8 and caspase 9 activities, and induced liver morphology and ultrastructure damage. Furthermore, the protein expression levels of IL-17A pathway key proteins, IL-17A, IL-17R, and Act1 were increased, but IκB was decreased after fluoride exposure. In addition, fluoride exposure elevated the mitochondrial depolarization percent, the mitochondria damage, the fluorescent spots of mitophagy, and the LC3II/LC3I protein relative expression level. To further verify the role of the IL-17A pathway in fluoride-induced hepatocyte mitochondrial damage and mitophagy disorder, the IL-17A was added and knocked out in cells of animals. The results showed that the addition of IL-17A aggravated fluoride-induced liver morphology and functional damage, activation of the IL-17A pathway, mitochondrial injury, and mitophagy, but the IL-17A knockout mitigated fluoride-induced changes. These results suggested that fluoride exposure induced mitochondrial damage and mitophagy through the IL-17A pathway in hepatocytes.
Collapse
Affiliation(s)
- Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Jinming Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; Department of Biotechnology, GITAM Institute of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
18
|
Shen J, Liu J, Li H, Bai L, Du Z, Geng R, Cao J, Sun P, Tang Z. Explore association of genes in PDL1/PD1 pathway to radiotherapy survival benefit based on interaction model strategy. Radiat Oncol 2021; 16:223. [PMID: 34794456 PMCID: PMC8600865 DOI: 10.1186/s13014-021-01951-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/08/2021] [Indexed: 02/25/2023] Open
Abstract
Purpose To explore the association of genes in “PD-L1 expression and PD-1 check point pathway in cancer” to radiotherapy survival benefit. Methods and materials Gene expression data and clinical information of cancers were downloaded from TCGA. Radiotherapy survival benefit was defined based on interaction model. Fast backward multivariate Cox regression was performed using stacking multiple interpolation data to identify radio-sensitive (RS) genes. Results Among the 73 genes in PD-L1/PD-1 pathway, we identified 24 RS genes in BRCA data set, 25 RS genes in STAD data set and 20 RS genes in HNSC data set, with some crossover genes. Theoretically, there are two types of RS genes. The expression level of Type I RS genes did not affect patients' overall survival (OS), but when receiving radiotherapy, patients with different expression level of Type I RS genes had varied survival benefit. Oppositely, Type II RS genes affected patients' OS. And when receiving radiotherapy, those with lower OS could benefit a lot. Type II RS genes in BRCA had strong positive correlation and closely biological interactions. When performing cluster analysis using these related Type II RS genes, patients could be divided into RS group and non-RS group in BRCA and METABRIC data sets. Conclusions Our study explored potential radio-sensitive biomarkers of several main cancer types in an important tumor immune checkpoint pathway and revealed a strong association between this pathway and radiotherapy survival benefit. New types of RS genes could be identified based on expanded definition to RS genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01951-x.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Jingfang Liu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Huijun Li
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Lu Bai
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Zixuan Du
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Ruirui Geng
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215006, China
| | - Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
19
|
Bian J, Zhang D, Wang Y, Qin H, Yang W, Cui R, Sheng J. Mitochondrial Quality Control in Hepatocellular Carcinoma. Front Oncol 2021; 11:713721. [PMID: 34589426 PMCID: PMC8473831 DOI: 10.3389/fonc.2021.713721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria participate in the progression of hepatocellular carcinoma (HCC) by modifying processes including but not limited to redox homeostasis, metabolism, and the cell death pathway. These processes depend on the health status of the mitochondria. Quality control processes in mitochondria can repair or eliminate “unhealthy mitochondria” at the molecular, organelle, or cellular level and form an efficient integrated network that plays an important role in HCC tumorigenesis, patient survival, and tumor progression. Here, we review the influence of mitochondria on the biological behavior of HCC. Based on this information, we further highlight the need for determining the role and mechanism of interaction between different levels of mitochondrial quality control in regulating HCC occurrence and progression as well as resistance development. This information may lead to the development of precision medicine approaches against targets involved in various mitochondrial quality control-related pathways.
Collapse
Affiliation(s)
- Jinda Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Qian L, Ren S, Xu Z, Zheng Y, Wu L, Yang Y, Wang Y, Li J, Yan S, Fang Z. Qian Yang Yu Yin Granule Improves Renal Injury of Hypertension by Regulating Metabolic Reprogramming Mediated by HIF-1α/PKM2 Positive Feedback Loop. Front Pharmacol 2021; 12:667433. [PMID: 34168560 PMCID: PMC8218631 DOI: 10.3389/fphar.2021.667433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Protection against hypoxia injury is an important therapeutic strategy for treating hypertensive nephropathy. In this study, the effects of Qian Yang Yu Yin granule (QYYY) on spontaneously hypertensive rats fed with high salt diet and HEK293T cells exposed to hypoxia were investigated. After eight weeks' treatment of QYYY, blood pressure, serum creatinine, serum cystatin C, blood urea nitrogen, urinary β2-microglobulin, urinary N-acetyl-β-glucosaminidase, and urinary microalbumin were assessed. The changes of hypoxia-inducible factor-1α (HIF-1α), pyruvate kinase M2 (PKM2), glucose transport 1 (GLUT1), lactate dehydrogenase A (LDH-A), connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1), ATP, lactate, pyruvate, and pathology were also assessed in vivo. HEK293T cells pre-treated with QYYY and/or HIF-1α over expressing cells were cultured in a three gas hypoxic incubator chamber (5% CO2, 1% O2, 94% N2) for 12 h and then the expressions of HIF-1α, PKM2, GLUT1, LDH-A, CTGF, TGF-β1, ATP, lactate, and pyruvate were detected. Our results showed that QYYY promoted the indicators of renal inflammation and fibrosis mediated by HIF-1α/PKM2 positive feedback loop in vivo and vitro. Our findings indicated that QYYY treated hypertensive nephropathy by regulating metabolic reprogramming mediated by HIF-1α/PKM2 positive feedback loop.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shihai Yan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhuyuan Fang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Melatonin Targets Metabolism in Head and Neck Cancer Cells by Regulating Mitochondrial Structure and Function. Antioxidants (Basel) 2021; 10:antiox10040603. [PMID: 33919790 PMCID: PMC8070770 DOI: 10.3390/antiox10040603] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming, which is characteristic of cancer cells that rapidly adapt to the hypoxic microenvironment and is crucial for tumor growth and metastasis, is recognized as one of the major mechanisms underlying therapeutic resistance. Mitochondria, which are directly involved in metabolic reprogramming, are used to design novel mitochondria-targeted anticancer agents. Despite being targeted by melatonin, the functional role of mitochondria in melatonin’s oncostatic activity remains unclear. In this study, we aim to investigate the role of melatonin in mitochondrial metabolism and its functional consequences in head and neck cancer. We analyzed the effects of melatonin on head and neck squamous cell carcinoma (HNSCC) cell lines (Cal-27 and SCC-9), which were treated with 100, 500, and 1500 µM of melatonin for 1, 3, and 5 days, and found a connection between a change of metabolism following melatonin treatment and its effects on mitochondria. Our results demonstrate that melatonin induces a shift to an aerobic mitochondrial metabolism that is associated with changes in mitochondrial morphology, function, fusion, and fission in HNSCC. We found that melatonin increases oxidative phosphorylation (OXPHOS) and inhibits glycolysis in HNSCC, resulting in increased ROS production, apoptosis, and mitophagy, and decreased cell proliferation. Our findings highlight new molecular pathways involved in melatonin’s oncostatic activity, suggesting that it could act as an adjuvant agent in a potential therapy for cancer patients. We also found that high doses of melatonin, such as those used in this study for its cytotoxic impact on HNSCC cells, might lead to additional effects through melatonin receptors.
Collapse
|
22
|
Dai X, Jiang W, Ma L, Sun J, Yan X, Qian J, Wang Y, Shi Y, Ni S, Yao N. A metabolism-related gene signature for predicting the prognosis and therapeutic responses in patients with hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:500. [PMID: 33850897 PMCID: PMC8039687 DOI: 10.21037/atm-21-927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) often has an insidious onset and rapid progression. Often, when the disease is first diagnosed, the opportune time for surgical intervention has already lapsed. In addition, the effects of systemic treatment is relatively unsatisfactory. Metabolic reprogramming is one of the hallmarks of cancer. This study aimed to identify a set of genes related to metabolism to construct a predictive model for the prognosis of HCC. Methods The transcriptomic and clinical data of 352 HCC patients were obtained from The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma (LIHC) dataset and divided into a training cohort (n=212) and a testing cohort (n=140) at a ratio of 6:4. Univariate Cox regression analysis and the LASSO Cox regression model were used to identify 5 genes to establish a risk score for predicting the prognosis of HCC patients. Subsequently, the molecular characteristics of the model were assessed and the ability of the model to predict the tumor immune microenvironment and patient response to immunotherapy and chemotherapy was also examined. Results The risk score model was constructed based on the five genes, methyltransferase-like protein 6 (METTL6), RNA polymerase III subunit G (POLR3G), phosphoribosyl pyrophosphate amidotransferase (PPAT), SET Domain Bifurcated 2 (SETDB2), and suppressor of variegation 3-9 homolog 2 (SUV39H2). The Kaplan-Meier survival analysis and time-dependent receiver operating characteristic (ROC) curves demonstrated that high-risk patients had a poorer overall survival (OS) compared to low-risk patients. he nomogram score had a better predictive ability compared to the common factors. Our results finally showed that high-risk cases were associated with cell proliferation and cell cycle related gene sets, high tumor protein P53 (TP53) mutation rate, suppressive immunity and increased sensitivity to cisplatin, gemcitabine and docetaxel. Meanwhile, low-risk cases were associated with cell cycle and immune response related pathways, low TP53 mutation rate, active immunity and more benefit from immunotherapy. Conclusions This study provided novel insights into the role of metabolism-related genes in HCC, and demonstrated that our model could be a promising prognostic biomarker for distinguishing the molecular and immune characteristics and inferring the potential response to chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Dai
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Jiang
- Department of Neurology, the Second People's Hospital of Wuxi, Wuxi, China
| | - Liang Ma
- Department of Chemotherapy, First People's Hospital of Yancheng, Yancheng, China
| | - Jie Sun
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodi Yan
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Qian
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shujie Ni
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
23
|
Guo W, Chen Z, Chen J, Feng X, Yang Y, Huang H, Liang Y, Shen G, Liang Y, Peng C, Li Y, Li G, Huang W, Zhao B, Hu Y. Biodegradable hollow mesoporous organosilica nanotheranostics (HMON) for multi-mode imaging and mild photo-therapeutic-induced mitochondrial damage on gastric cancer. J Nanobiotechnology 2020; 18:99. [PMID: 32690085 PMCID: PMC7370480 DOI: 10.1186/s12951-020-00653-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background CuS-modified hollow mesoporous organosilica nanoparticles (HMON@CuS) have been preferred as non-invasive treatment for cancer, as near infrared (NIR)-induced photo-thermal effect (PTT) and/or photo-dynamic effect (PDT) could increase cancer cells’ apoptosis. However, the certain role of HMON@CuS-produced-PTT&PDT inducing gastric cancer (GC) cells’ mitochondrial damage, remained unclear. Moreover, theranostic efficiency of HMON@CuS might be well improved by applying multi-modal imaging, which could offer an optimal therapeutic region and time window. Herein, new nanotheranostics agents were reported by Gd doped HMON decorated by CuS nanocrystals (called HMON@CuS/Gd). Results HMON@CuS/Gd exhibited appropriate size distribution, good biocompatibility, l-Glutathione (GSH) responsive degradable properties, high photo-thermal conversion efficiency (82.4%) and a simultaneous reactive oxygen species (ROS) generation effect. Meanwhile, HMON@CuS/Gd could efficiently enter GC cells, induce combined mild PTT (43–45 °C) and PDT under mild NIR power density (0.8 W/cm2). Surprisingly, it was found that PTT might not be the only factor of cell apoptosis, as ROS induced by PDT also seemed playing an essential role. The NIR-induced ROS could attack mitochondrial transmembrane potentials (MTPs), then promote mitochondrial reactive oxygen species (mitoROS) production. Meanwhile, mitochondrial damage dramatically changed the expression of anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (Bax). Since that, mitochondrial permeability transition pore (mPTP) was opened, followed by inducing more cytochrome c (Cyto C) releasing from mitochondria into cytosol, and finally activated caspase-9/caspase-3-depended cell apoptosis pathway. Our in vivo data also showed that HMON@CuS/Gd exhibited good fluorescence (FL) imaging (wrapping fluorescent agent), enhanced T1 imaging under magnetic resonance imaging (MRI) and infrared thermal (IRT) imaging capacities. Guided by FL/MRI/IRT trimodal imaging, HMON@CuS/Gd could selectively cause mild photo-therapy at cancer region, efficiently inhibit the growth of GC cells without evident systemic toxicity in vivo. Conclusion HMON@CuS/Gd could serve as a promising multifunctional nanotheranostic platform and as a cancer photo-therapy agent through inducing mitochondrial dysfunction on GC.
Collapse
Affiliation(s)
- Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhian Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Chen
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Xiaoli Feng
- Guangdong Provincial Stomatology Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yang Yang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Huilin Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanrui Liang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guodong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Chao Peng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China.
| | - Bingxia Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|