1
|
Zhou X, Li Y, Yang Y, Wei L, Wang C, Xu J, Song J, Liu S, Bai J, Suo H. Regulatory effects of Poria cocos polysaccharides on gut microbiota and metabolites: evaluation of prebiotic potential. NPJ Sci Food 2025; 9:53. [PMID: 40263347 PMCID: PMC12015419 DOI: 10.1038/s41538-025-00416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Dietary polysaccharides have long been recognized for their capacity to modulate gut microbiota composition and metabolic activities, making them promising resources for functional food development. In this study, we investigated the effects of Poria cocos (P. cocos) polysaccharides on the structure and metabolism of human gut microbiota using an in vitro fecal fermentation model. Our results revealed that P. cocos polysaccharides were readily utilized by the gut microbiota, as evidenced by a significant decrease in pH and an increase in SCFAs concentrations. Notably, the relative abundance of beneficial bacteria (e.g., Lactobacillus and Bifidobacterium) increased, whereas that of potentially pathogenic taxa (e.g., Escherichia-Shigella and Bilophila) decreased. Furthermore, P. cocos polysaccharides enhanced the production of key microbial metabolites, significantly upregulating compounds such as L-cystine and etelcalcetide. Collectively, these findings underscore the beneficial role of P. cocos polysaccharides in promoting intestinal health and highlight their potential as prebiotics in the functional food industry.
Collapse
Affiliation(s)
- Xu Zhou
- College of Food Science, Southwest University, Chongqing, China
| | - Yangyou Li
- Animal Experimental Center, North Sichuan Medical College, Nanchong City, China
| | - Yuhan Yang
- College of Food Science, Southwest University, Chongqing, China
| | - Li Wei
- College of Food Science, Southwest University, Chongqing, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| | - Shijian Liu
- College of Food Science, Southwest University, Chongqing, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Du G, Liu Y, Zhang J, Fang S, Wang C. Microwave-assisted extraction of dandelion root polysaccharides: Extraction process optimization, purification, structural characterization, and analysis of antioxidant activity. Int J Biol Macromol 2025; 299:139732. [PMID: 39805431 DOI: 10.1016/j.ijbiomac.2025.139732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
This study aimed to establish a microwave-assisted method (MAE) for the efficient extraction of polysaccharides from dandelion roots. This study investigated the molecular structure and bioactivity of the polysaccharides from dandelion roots. Extraction conditions were optimized using response surface methodology (RSM). The microwave extraction conditions were set to an extraction time of 42 min, an extraction temperature of 80 °C, and a solid-liquid ratio (g/mL) of 1:33. Under the optimized conditions, the highest dandelion root polysaccharides (DRP) yield was achieved (24.85 ± 0.457 %). Water-pure DRP (DRPw) and NaCl-pure DRP (DRPs) were purified by activated carbon decolorization and DEAE fiber column chromatography. The molecular weights of DRPw and DRPs were 8653 Da and 5930 Da, respectively. The Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses confirmed the existence of α- and β-pyranose in DRPw and DRPs. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that DRPw and DRPs were semi-crystalline substances with irregular shapes and rough surfaces. Bioactivity assays revealed the good antioxidant activities of DRPw and DRPs. The present study provides useful information about DRP as natural antioxidants for the benefit of food.
Collapse
Affiliation(s)
- Guojun Du
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, PR China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, PR China
| | - Yuxuan Liu
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, PR China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, PR China
| | - Jingwen Zhang
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, PR China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, PR China
| | - Sen Fang
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, PR China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, PR China
| | - Cuntang Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, PR China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, PR China.
| |
Collapse
|
3
|
Ayokun-Nun Ajao A, Calphonia Shilaluke K, Sonnyboy Mothogoane M, Ntsamaeeng Moteetee A. The Pantropical Genus Rhynchosia Lour. (Fabaceae: Cajaninae): Diversity of Medicinal Uses, Phytochemistry, Pharmacology, and Toxicology. Chem Biodivers 2025; 22:e202401436. [PMID: 39294101 DOI: 10.1002/cbdv.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
The pantropical genus Rhynchosia belongs to the family Fabaceae and consists of approximately 230 species distributed mainly in Africa, America, and Asia. Several species of the genus have been used ethnomedicinally since 300-400 AD. This review presents for the first time a global overview of the extent of ethnomedicinal uses of species in the genus in addition to their phytochemistry, pharmacological activities, and toxicology. Online databases such as NCBI, PubMed, Science Direct, Scopus, SpringerLink, Taylor and Francis Online, etc., were used to source for publications on Rhynchosia species. Based on this review, 30 species (19 %) are traditionally used for treating an array of ailments around the globe, most especially in Africa and Asia. Flavonoids are the most detected/isolated phytochemicals from the Rhynchosia species. Pharmacological activities such as anticancer, antidiabetic, anti-hyperlipidemic, antifungal, antioxidant, anti-inflammatory, antinociceptive, butyrylcholinesterase, as well as eye-protective and melanogenic effects were elicited by the extracts and isolated compounds from Rhynchosia species. Toxicity tests have only been carried out on R. sublobata and R. elegans extracts. Future studies should focus on the toxicological evaluation and validation of ethnomedicinal claims on the traditional uses of Rhynchosia species that have not been pharmacologically tested.
Collapse
Affiliation(s)
- Abdulwakeel Ayokun-Nun Ajao
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
| | - Kolwane Calphonia Shilaluke
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
| | - Mashiane Sonnyboy Mothogoane
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
- South African National Biodiversity Institute, National Herbarium, Private Bag X101, Pretoria, 0001, South Africa
| | - Annah Ntsamaeeng Moteetee
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
4
|
Yao Q, Pu L, Dong B, Zhu D, Wu W, Yang Q. Effects of ultrasonic degradation on physicochemical and antioxidant properties of Gleditsia sinensis seed polysaccharides. Carbohydr Res 2024; 545:109272. [PMID: 39293243 DOI: 10.1016/j.carres.2024.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In this study, two degraded polysaccharides from Gleditsia sinensis seed were obtained under ultrasonic power treatments of 300 and 450 W. The physicochemical properties, structural characteristics, and antioxidant activities of the degraded and undegraded polysaccharides were studied and compared. Ion exchange chromatography and methylation analysis showed that the polysaccharides had similar basic structural features and were composed of the same monosaccharide units before and after degradation, but the ultrasonic treatment increased the total monosaccharide content and changed the Mannose/Galactose value. Furthermore, with the increase in the ultrasonic power, the molecular weight and intrinsic viscosity of polysaccharides decreased, and the micromorphology became looser. The scavenging capacities for 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals and the reducing ability were significantly increased by the ultrasonic treatment. In conclusion, ultrasonic treatment may be an effective way to improve the antioxidant activities of polysaccharides from G. sinensis seed, and further studies on its antioxidant mechanism are still needed.
Collapse
Affiliation(s)
- Qiuping Yao
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China.
| | - Longlin Pu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Boyu Dong
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Dequan Zhu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Wenwen Wu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Qiong Yang
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| |
Collapse
|
5
|
Kherroubi S, Morjen M, Teka N, Mraihi F, Srairi-Abid N, Le Cerf D, Marrakchi N, Majdoub H, Cherif JK, Jebali J, Ternane R. Chemical characterization and pharmacological properties of polysaccharides from Allium roseum leaves: In vitro and in vivo assays. Int J Biol Macromol 2024; 277:134302. [PMID: 39094866 DOI: 10.1016/j.ijbiomac.2024.134302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Allium roseum is amongst the most important wild medicinal plants. It is known for its diverse biological properties, including antioxidant, antibacterial and antidiabetic activities. In this work, the polysaccharides (PARLs) were ultrasonically extracted from Allium roesum leaves then purified and analyzed by several techniques. Chemical composition and GC-MS analysis showed that the obtained polysaccharides were composed mainly of glucose (40.20 %), mannose (25.30 %), fructose (10.60 %) and galacturonic acid (15.11 %). Moreover, PARLs exhibited a potent antioxidant effect with higher capacities up to 69.61 % and 71.72 % for DPPH and ABTS free radicals, respectively. Furthermore, PARLs significantly modulated inflammatory response by reducing TNF-α, IL-6, and IL-8 pro-inflammatory mediators and promoting the anti-inflammatory IL-10 mediator in LPS stimulated THP-1 derived macrophages. The in-vivo tests proved that the extract was able to decrease carrageenan-induced rat paw swelling by around 68.15 % after 4 h of treatment. PARLs, significantly reduced the growth of U87 (glioblastoma) and IGROV-1 cancer cells with IC50 values of about 4.27 and 7.89 mg/mL respectively. This research clearly shows that Allium roseum polysaccharides can be used as natural antioxidants with anti-inflammatory and anticancer properties.
Collapse
Affiliation(s)
- Sara Kherroubi
- University of Carthage, Faculty of Sciences of Bizerte, LR05ES09 Laboratory of Application of Chemistry to Natural Resources and Substances and the Environment (LACReSNE), Bizerte 7021, Tunisia
| | - Maram Morjen
- University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01 Laboratory of Biomolecules, Venoms and Theranostic Applications (LBVAT), Tunis 1002, Tunisia
| | - Nesrine Teka
- University of Monastir, Faculty of Sciences of Monastir, LR11ES55 Laboratory of Interfaces and Advanced Materials (LIMA), Monastir 5000, Tunisia
| | - Farouk Mraihi
- University of Carthage, Faculty of Sciences of Bizerte, LR05ES09 Laboratory of Application of Chemistry to Natural Resources and Substances and the Environment (LACReSNE), Bizerte 7021, Tunisia
| | - Najet Srairi-Abid
- University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01 Laboratory of Biomolecules, Venoms and Theranostic Applications (LBVAT), Tunis 1002, Tunisia
| | - Didier Le Cerf
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS (UMR 6270 & FR 3038), 76000 Rouen, France
| | - Naziha Marrakchi
- University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01 Laboratory of Biomolecules, Venoms and Theranostic Applications (LBVAT), Tunis 1002, Tunisia; University of Tunis El Manar, Medicine School of Tunis, La Rabta, Tunis 1007, Tunisia
| | - Hatem Majdoub
- University of Monastir, Faculty of Sciences of Monastir, LR11ES55 Laboratory of Interfaces and Advanced Materials (LIMA), Monastir 5000, Tunisia.
| | - Jamila Kalthoum Cherif
- University of Carthage, Faculty of Sciences of Bizerte, LR05ES09 Laboratory of Application of Chemistry to Natural Resources and Substances and the Environment (LACReSNE), Bizerte 7021, Tunisia
| | - Jed Jebali
- University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01 Laboratory of Biomolecules, Venoms and Theranostic Applications (LBVAT), Tunis 1002, Tunisia.
| | - Riadh Ternane
- University of Carthage, Faculty of Sciences of Bizerte, LR05ES09 Laboratory of Application of Chemistry to Natural Resources and Substances and the Environment (LACReSNE), Bizerte 7021, Tunisia
| |
Collapse
|
6
|
Jia X, Huang Y, Liu G, Li Z, Tan Q, Zhong S. The Use of Polysaccharide AOP30 from the Rhizome of Alpinia officinarum Hance to Alleviate Lipopolysaccharide-Induced Intestinal Epithelial Barrier Dysfunction and Inflammation via the TLR4/NfκB Signaling Pathway in Caco-2 Cell Monolayers. Nutrients 2024; 16:2151. [PMID: 38999898 PMCID: PMC11243348 DOI: 10.3390/nu16132151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Alpinia officinarum Hance is rich in carbohydrates and is flavored by natives. The polysaccharide fraction 30 is purified from the rhizome of A. officinarum Hance (AOP30) and shows excellent immunoregulatory ability when administered to regulate immunity. However, the effect of AOP30 on the intestinal epithelial barrier is not well understood. Therefore, the aim of this study is to investigate the protective effect of AOP30 on the intestinal epithelial barrier using a lipopolysaccharide (LPS)-induced intestinal epithelial barrier dysfunction model and further explore its underlying mechanisms. Cytotoxicity, transepithelial electrical resistance (TEER) values, and Fluorescein isothiocyanate (FITC)-dextran flux are measured. Simultaneously, the protein and mRNA levels of tight junction (TJ) proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1, are determined using Western blotting and reverse-transcription quantitative polymerase chain reaction methods, respectively. The results indicate that AOP30 restores the LPS-induced decrease in the TEER value and cell viability. Furthermore, it increases the mRNA and protein expression of ZO-1, Occludin, and Claudin-1. Notably, ZO-1 is the primary tight junction protein altered in response to LPS-induced intestinal epithelial dysfunction. Additionally, AOP30 downregulates the production of TNFα via the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Collectively, the findings of this study indicate that AOP30 can be developed as a functional food ingredient or natural therapeutic agent for addressing intestinal epithelial barrier dysfunction. It sheds light on the role of AOP30 in improving intestinal epithelial function.
Collapse
Affiliation(s)
- Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yun Huang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guanghuo Liu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zipeng Li
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qiwei Tan
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
7
|
Febriansah R, Hertiani T, Widada J, Taher M, Damayanti E, Mustofa M. Isolation of active compounds from Streptomyces sennicomposti GMY01 and cytotoxic activity on breast cancer cells line. Heliyon 2024; 10:e24195. [PMID: 38293453 PMCID: PMC10826645 DOI: 10.1016/j.heliyon.2024.e24195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The occurrence of resistance to anticancer and the emergence of serious side effects due to chemotherapy is one of the main problems in cancer treatment, including breast cancer. The need for effective anticancer with a specific target is urgently required. Streptomyces are widely known as the potential producers of new anticancer molecules. Previously reported that the methanol extract of Streptomyces sennicomposti GMY01 isolated from Krakal Coast, Gunungkidul had very strong cytotoxic activity against MCF-7 and T47D breast cancer cells with IC50 values of 0.6 and 1.3 μg/mL, respectively. The following study aimed to isolate and identify active compounds of the S. sennicomposti GMY01 and evaluate its cytotoxic activity. The study was started by re-culturing and re-fermented optimization of S. sennicomposti GMY01 in a larger volume, then the bacteria were extracted using methanol following the bioassay-guided isolation of the extract obtained. The active compounds obtained were then structurally determined using UV/Vis spectroscopy, Fourier Transform-Infrared (FT-IR), Liquid Chromatography-Mass Spectroscopy (LC-MS), 1H NMR, and 13C NMR and analyzed for their cytotoxic activity using MTT assay on MCF-7 and normal Vero cells line. The results showed that the culture of the S. sennicomposti GMY01 using Starch Nitrate Broth (SNB) media yields the best results compared to other culture media. An active anticancer compound namely mannotriose was successfully isolated from the methanol extract with an IC50 value of 5.6 μg/mL and 687 μg/mL against the MCF-7 and Vero cells lines, respectively, indicating that this compound showed strong cytotoxic activity with high selectivity.
Collapse
Affiliation(s)
- Rifki Febriansah
- School of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Indonesia
| | - Triana Hertiani
- Pharmacognosy and Phytochemistry Laboratory, Pharmaceutical Biology Department, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| | - Jaka Widada
- Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Malaysia
| | - Ema Damayanti
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta, Indonesia 55681
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| |
Collapse
|
8
|
Wang D, Zhang Z, Zhao L, Yang L, Lou C. Recent advances in natural polysaccharides against hepatocellular carcinoma: A review. Int J Biol Macromol 2023; 253:126766. [PMID: 37689300 DOI: 10.1016/j.ijbiomac.2023.126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor of the digestive system that poses a serious threat to human life and health. Chemotherapeutic drugs commonly used in the clinic have limited efficacy and heavy adverse effects. Therefore, it is imperative to find effective and safe alternatives, and natural polysaccharides (NPs) fit the bill. This paper summarizes in detail the anti-HCC activity of NPs in vitro, animal and clinical trials. Furthermore, the addition of NPs can reduce the deleterious effects of chemotherapeutic drugs such as immunotoxicity, bone marrow suppression, oxidative stress, etc. The potential mechanisms are related to induction of apoptosis and cell cycle arrest, block of angiogenesis, invasion and metastasis, stimulation of immune activity and targeting of MircoRNA. And on this basis, we further elucidate that the anti-HCC activity may be related to the monosaccharide composition, molecular weight (Mw), conformational features and structural modifications of NPs. In addition, due to its good physicochemical properties, it is widely used as a drug carrier in the delivery of chemotherapeutic drugs and small molecule components. This review provides a favorable theoretical basis for the application of the anti-HCC activity of NPs.
Collapse
Affiliation(s)
- Dazhen Wang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Zhengfeng Zhang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Lu Zhao
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Liu Yang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - ChangJie Lou
- Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
9
|
Xiao Z, Yan C, Jia C, Li Y, Li Y, Li J, Yang X, Zhan X, Ma C. Structural characterization of chia seed polysaccharides and evaluation of its immunomodulatory and antioxidant activities. Food Chem X 2023; 20:101011. [PMID: 38144771 PMCID: PMC10740084 DOI: 10.1016/j.fochx.2023.101011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
This study aims to extract an active heteropolysaccharide Chia seed polysaccharide (CSP-A) and further purified by DEAE Sepharose Fast Flow and Sepharose CL-6B chromatographic column, characterize its structure, and evaluate its antioxidant and immunomodulatory activities. Structural analysis revealed that CSP-A was composed of d-mannose, d-glucuronic acid and d-xylose in a molar ratio of 1:3:4 with molecular weight of 1.688 × 105 Da, owning 4 sugar residues of β-d-Manp-(1→, →4)-α-d-GlcpA-(1→, →2,4)-β-d-Xylp-(1→, and → 4)-β-d-Manp-(1 →. Congo red assay and microscopic characteristics showed that CSP-A in its solution may possess a helical conformation. In vitro experiments showed that CSP-A had moderate DPPH· and OH· scavenging activities. CSP-A also enhanced the phagocytosis ability of RAW 264.7 cells and prompted the release of NO, TNF-α, IL-6 and IL-1β from RAW 264.7 cells, which indicated CSP-A had immune regulation effect. This experiment provides scientific basis for further utilization and development of chia seeds, a kind of functional food.
Collapse
Affiliation(s)
- Zhijun Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changyang Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chunxue Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Li
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yuanlin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinxin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xueyan Zhan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhua Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
10
|
Cui Y, Wang R, Cao S, Ismael M, Wang X, Lü X. A galacturonic acid-rich polysaccharide from Diospyros kaki peel: Isolation, characterization, rheological properties and antioxidant activities in vitro. Food Chem 2023; 416:135781. [PMID: 36871504 DOI: 10.1016/j.foodchem.2023.135781] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
This research elucidated the structural characteristics and antioxidant activity of a galacturonic acid-rich polysaccharide (PPP-2) isolated from Diospyros kaki peel. PPP-2 was extracted by subcritical water and subsequently purified by DEAE-Sepharose FF column. PPP-2 (12.28 kDa) mainly contained galacturonic acid, arabinose, and galactose with the molar ratios of 87.15: 5.86: 4.31. The structural characteristics of PPP-2 were revealed through FT-IR, UV, XRD, AFM, SEM, Congo red, methylation, GC/MS assay and NMR spectrum. PPP-2 owned the triple helical structure and degradation temperature of 251.09 ℃. The backbone of PPP-2 was formed by →4)-α-d-GalpA-6-OMe-(1→ and →4)-α-d-GalpA-(1→ with the side chains of →5)-α-l-Araf-(1→, →3)-α-l-Araf-(1→, →3,6)-β-d-Galp-(1→ and α-l-Araf-(1→. Moreover, the inhibitory concentration (IC50) of PPP-2 to ABTS•+, DPPH•, superoxide radical and hydroxyl radical were 1.96, 0.91, 3.63, and 4.08 mg/mL, respectively. Our results suggested that PPP-2 might be a novel candidate of natural antioxidant in pharmaceuticals or functional food.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Ruiling Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Siyue Cao
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Mohamedelfatieh Ismael
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
11
|
Widada J, Damayanti E, Mustofa M, Dinoto A, Febriansah R, Hertiani T. Marine-Derived Streptomyces sennicomposti GMY01 with Anti-Plasmodial and Anticancer Activities: Genome Analysis, In Vitro Bioassay, Metabolite Profiling, and Molecular Docking. Microorganisms 2023; 11:1930. [PMID: 37630491 PMCID: PMC10458361 DOI: 10.3390/microorganisms11081930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
To discover novel antimalarial and anticancer compounds, we carried out a genome analysis, bioassay, metabolite profiling, and molecular docking of marine sediment actinobacteria strain GMY01. The whole-genome sequence analysis revealed that Streptomyces sp. GMY01 (7.9 Mbp) is most similar to Streptomyces sennicomposti strain RCPT1-4T with an average nucleotide identity (ANI) and ANI based on BLAST+ (ANIb) values of 98.09 and 97.33% (>95%). An in vitro bioassay of the GMY01 bioactive on Plasmodium falciparum FCR3, cervical carcinoma of HeLa cell and lung carcinoma of HTB cells exhibited moderate activity (IC50 value of 46.06; 27.31 and 33.75 µg/mL) with low toxicity on Vero cells as a normal cell (IC50 value of 823.3 µg/mL). Metabolite profiling by LC-MS/MS analysis revealed that the active fraction of GMY01 contained carbohydrate-based compounds, C17H29NO14 (471.15880 Da) as a major compound (97.50%) and mannotriose (C18H32O16; 504.16903 Da, 1.96%) as a minor compound. Molecular docking analysis showed that mannotriose has a binding affinity on glutathione reductase (GR) and glutathione-S-transferase (GST) of P. falciparum and on autophagy proteins (mTORC1 and mTORC2) of cancer cells. Streptomyces sennicomposti GMY01 is a potential bacterium producing carbohydrate-based bioactive compounds with anti-plasmodial and anticancer activities and with low toxicity to normal cells.
Collapse
Affiliation(s)
- Jaka Widada
- Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ema Damayanti
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul 55861, Indonesia;
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gajah Mada, Yogyakarta 55281, Indonesia;
| | - Achmad Dinoto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia;
| | - Rifki Febriansah
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah, Yogyakarta 55183, Indonesia;
| | - Triana Hertiani
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| |
Collapse
|
12
|
Lin TY, Wu YT, Chang HJ, Huang CC, Cheng KC, Hsu HY, Hsieh CW. Anti-Inflammatory and Anti-Oxidative Effects of Polysaccharides Extracted from Unripe Carica papaya L. Fruit. Antioxidants (Basel) 2023; 12:1506. [PMID: 37627501 PMCID: PMC10451988 DOI: 10.3390/antiox12081506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
This study evaluated the antioxidative and anti-inflammatory activities of polysaccharides extracted from unripe Carica papaya L. (papaya) fruit. Three papaya polysaccharide (PP) fractions, namely PP-1, PP-2, and PP-3, with molecular weights of 2252, 2448, and 3741 kDa, containing abundant xylose, galacturonic acid, and mannose constituents, respectively, were obtained using diethylaminoethyl-Sepharose™ anion exchange chromatography. The antioxidant capacity of the PPs, hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay revealed that the PP-3 fraction had the highest antioxidant activity, with an EC50 (the concentration for 50% of the maximal effect) of 0.96 mg/mL, EC50 of 0.10 mg/mL, and Abs700 nm of 1.581 for the hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay, respectively. In addition, PP-3 significantly decreased reactive oxygen species production by 45.3%, NF-κB activation by 32.0%, and tumor necrosis factor-alpha and interleukin-6 generation by 33.5% and 34.4%, respectively, in H2O2-induced human epidermal keratinocytes. PP-3 exerts potent antioxidative and anti-inflammatory effects; thus, it is a potential biofunctional ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Yun-Ting Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Hui-Ju Chang
- Department of Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Executive Yuan, Taichung City 426017, Taiwan;
| | - Chun-Chen Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| | - Hsien-Yi Hsu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| |
Collapse
|
13
|
Leng X, Li J, Miao W, Liu Y, Haider MS, Song M, Fang J, Li Q. Comparison of physicochemical characteristics, antioxidant and immunomodulatory activities of polysaccharides from wine grapes. Int J Biol Macromol 2023; 239:124164. [PMID: 37011744 DOI: 10.1016/j.ijbiomac.2023.124164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
In this study, an efficient ultrasonic-assisted extraction method was used for the extraction and optimization of four wine grape polysaccharides. A three-level, three-factor Box Behnken Design combined with the response surface approach was used to optimize the extraction conditions. Their physicochemical properties, molecular structure, antioxidant activity, immunomodulatory activity and hepatoprotective effects were examined and compared. These findings suggest that the four wine grape polysaccharides share similar basic structural features and monosaccharide composition. Furthermore, four wine grape polysaccharides exhibited antioxidant and immunomodulatory activities in a concentration-dependent manner. Moldova (MD) polysaccharide displayed better antioxidant activity and immunomodulatory ability. Furthermore, MD polysaccharide has a significant therapeutic effect on CCl4-induced rat liver injury by improving the antioxidant defense system and inhibiting oxidative stress, indicating that MD has a hepatoprotective effect. Taken together, the MD wine grape polysaccharide may have potential applications in prevention of liver disease in the functional food and pharmaceutical industries.
Collapse
|
14
|
Luo B, Wang Z, Chen J, Chen X, Li J, Li Y, Li R, Liu X, Song B, Cheong KL, Zhong S. Physicochemical Characterization and Antitumor Activity of Fucoidan and Its Degraded Products from Sargassum hemiphyllum (Turner) C. Agardh. Molecules 2023; 28:2610. [PMID: 36985583 PMCID: PMC10057303 DOI: 10.3390/molecules28062610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Fucoidan has many biological functions, including anti-tumor activity. Additionally, it has been suggested that low-molecular-weight fucoidans have greater bioactivities. This study aimed to examine the degradation, purification, physicochemical characterization and in vitro antitumor activity of fucoidan from Sargassum hemiphyllum (Turner) C. Agardh. Fucoidan was isolated using DEAE-cellulose-52 (F1, F2), Vc-H2O2 degration, and Sepharose CL-6B gel (DF1, DF2) from crude Sargassum fucoidans. Physicochemical characteristics of four isolated fucoidans were examined using chemical and monosaccharide composition, average molecular weight (Mw), and FTIR. Furthermore, the anti-proliferative effects of purified fucoidans on human hepatocellular carcinoma cells (HepG2), human Burkitt Lymphoma cells (MCF-7), human uterine carcinoma cells (Hela) and human lung cancer cells (A549) were analyzed by MTT method. The apoptosis of HepG2 cells was detected by flow cytometry. Our data suggest that the contents of polysaccharide, L-fucose and sulfate of DF2 were the highest, which were 73.93%, 23.02% and 29.88%, respectively. DF1 has the smallest molecular weight (14,893 Da) followed by DF2 (21,292 Da). The four fractions are mainly composed of fucose, mannose and rhamnose, and the infrared spectra are similar, all of which contain polysaccharide and sulfate characteristic absorption peaks. The results of MTT assay showed that the four fractions had inhibitory effects on HepG2 and A549 in the range of 0.5-8 mg/mL, and the four fractions had strong cytotoxic effects on HepG2 cells. DF2 had the best inhibitory effect on HepG2 (IC50 = 2.2 mg/mL). In general, the antitumor activity of Sargassum fucoidans is related to the content of L-fucose, sulfate and molecular weight, and Sargassum fucoidan has the best inhibitory effect on HepG2 hepatocellular carcinoma cells. Furthermore, when compared to MCF-7, Hela, and A549 cells, Sargassum fucoidans had the best capacity to reduce the viability of human hepatocellular carcinoma cells (HepG2) and to induce cell apoptosis, proving itself to have a good potential in anti-liver cancer therapy.
Collapse
Affiliation(s)
- Baozhen Luo
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuehua Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
| | - Jiarui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China;
| | - Rui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaofei Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Bingbing Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
15
|
Wu Q, Er-Bu A, Liang X, He C, Yin L, Xu F, Zou Y, Yin Z, Yue G, Li L, Song X, Tang H, Zhang W, Lv C, Jing B, Sang G, Rangnanjia C. Isolation, structure identification, and immunostimulatory effects in vitro and in vivo of polysaccharides from Onosma hookeri Clarke var. longiforum Duthie. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:328-338. [PMID: 35871477 DOI: 10.1002/jsfa.12145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This study characterized an acidic polysaccharide (OHC-LDPA) isolated from the medicinal and edible homologous plant Onosma hookeri Clarke var. longiforum Duthie. The structure of OHC-LDPA was elucidated based on the analysis of infrared, one-/two-dimensional nuclear magnetic resonance, and gas chromatography-mass spectrometry data. The immunostimulatory effects of OHC-LDPA were identified by both in vitro and in vivo models. RESULTS The structure of OHC-LDPA was elucidated as a typical pectin polysaccharide, consisting of galacturonic acid, galactose, arabinose, and rhamnose as the primary sugars, with linear galacturonic acid as the main chain and arabinogalacturonic acid as the main branched components. OHC-LDPA could significantly stimulate the proliferation and phagocytosis of RAW264.7 macrophages and the release of nitric oxide in vitro. Also, it could accelerate the recovery of spleen and thymus indexes, enhance the splenic lymphocyte proliferation responses, and restore the levels of interleukin-2, interleukin-10, interferon-γ, and immunoglobulin G in the serum in a cyclophosphamide-induced immunosuppressed-mice model. In addition, OHC-LDPA could restore the intestinal mucosal immunity and reduce the inflammatory damage. CONCLUSION OHC-LDPA could improve the immunity both in vitro and in vivo and could be used as a potential immunostimulant agent. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Aga Er-Bu
- Medical College, Tibet University, Lasa, P. R. China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Funeng Xu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huaqiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Geng Sang
- Graduate school, Tibet Medical University, Lasa, P. R. China
| | - Car Rangnanjia
- Graduate school, Tibet Medical University, Lasa, P. R. China
| |
Collapse
|
16
|
Ji X, Wang Z, Hao X, Zhu Y, Lin Y, Li G, Guo X. Structural characterization of a new high molecular weight polysaccharide from jujube fruit. Front Nutr 2022; 9:1012348. [PMID: 36466429 PMCID: PMC9713635 DOI: 10.3389/fnut.2022.1012348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
From Ziziphus Jujuba cv. Muzao fruit, a new polysaccharide (PZMP3-1) with high molecular weight was isolated. Constructional characterization revealed that PZMP3-1 comprized 2.56 rhamnose, 7.70 arabinoses, 3.73 galactose, and 6.73 galactose, and it has a 241 kDa average molecular weight. The principal structural components of PZMP3-1 were 1,2,4 and 1,4-linked GalpA, 1,4-linked Galp, 1,3 and 1,5-linked Araf, and 1-linked Rhap based on methylation and nuclear magnetic resonance spectroscopy (NMR) analyses. X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM) structural analysis of PZMP3-1 revealed a tangled and branching pattern. Overall, these structural results suggested that PZMP3-1 could have unique bioactivities and be widely used in nutritional supplements.
Collapse
Affiliation(s)
- Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Zhiwen Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, China
| | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Yan Lin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Guoli Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, China
| | - Xudan Guo
- Basic Medical College, Hebei University of Chinese Medicine, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei TCM Formula Preparation Technology Innovation Center, Shijiazhuang, China
| |
Collapse
|
17
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
18
|
Teka N, Lazreg H, Horchani M, Rihouey C, Le Cerf D, Ben Jannet H, Majdoub H. Characterization, α-Amylase Inhibition and In Silico Docking Study of Polysaccharides Extracted from Rosy Garlic (Allium roseum) Bulbs. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Ma Y, Wang Z, Arifeen MZU, Xue Y, Yuan S, Liu C. Structure and bioactivity of polysaccharide from a subseafloor strain of Schizophyllum commune 20R-7-F01. Int J Biol Macromol 2022; 222:610-619. [PMID: 36167101 DOI: 10.1016/j.ijbiomac.2022.09.189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
Fungal polysaccharide is a kind of biomacromolecule with multiple biological activities, which has a wide application prospect and may play an important role in organisms to cope with extreme environments. Herein, we reported an extracellular polysaccharide (EPS) produced by Schizophyllum commune 20R-7-F01 that was isolated from subseafloor sediments at ~2 km below the seafloor, obtained during expedition 337. The monosaccharide of EPS was glucose and its molecular weight was 608.8 kDa. Methylation and NMR analysis indicated that the backbone of the EPS was (1 → 3)-β-D-glucan with a side chain (1 → 6) β-D-glucan linking at every third residue. Bio-active assays revealed that the EPS had potent antioxidant activity and could promote RAW264.7 cells viability and phagocytosis. These results suggest that fungi derived from sediments below seafloor are important and new source of polysaccharides and may be involved in the adaptation of fungi to anoxic subseafloor extreme ecosystem.
Collapse
Affiliation(s)
- Yunan Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Muhammad Zain Ul Arifeen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Sheng Yuan
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
20
|
Structure and physicochemical properties of polysaccharides from Poria cocos extracted by deep eutectic solvent. Glycoconj J 2022; 39:475-486. [PMID: 35840804 DOI: 10.1007/s10719-022-10073-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/10/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Poria cocos, a famous traditional Chinese medicine and a well-known food or food supplement, has shown therapeutic potential against cancer and the uneasiness of the mind. In addition, polysaccharides (PCPs) in this fungus were found to be various bioactive. In this work, one such PCP, PCP-1, extracted by deep eutectic solvent (DES) and separated using Sephadex G-15 columns, was characterized using GC-MS, HPGPC, FT-IR, and NMR, while also tested for physicochemical properties. Results indicated that PCP-1 contained 96.89 ± 3.21% total sugars and was a glucan with molecular weight of 3.2 kD. The main glycosidic linkage was 1,3-linked Glcp with 96.82 mol% content and a triple helix structure, and β-D-Glcp-(1 → linkage connected to the main chain through an O-6 atom was the backbone structure. In terms of the physicochemical property, PCP-1 was soluble in water, but not in organic solvent, and processed a relative high water-holding capacity (8.64 ± 0.14 g/g) and low oil-holding capacity (2.52 ± 0.21 g/g). In addition, in vitro, PCP-1 was found to have the ability of scavenging DPPH, hydroxyl free radical, superoxide anion radical and reducing ferric at different levels. This research would be useful for the further application of PCP-1.
Collapse
|
21
|
Tang Z, Lin W, Chen Y, Feng S, Qin Y, Xiao Y, Chen H, Liu Y, Chen H, Bu T, Li Q, Cai Y, Yao H, Ding C. Extraction, Purification, Physicochemical Properties, and Activity of a New Polysaccharide From Cordyceps cicadae. Front Nutr 2022; 9:911310. [PMID: 35757258 PMCID: PMC9218675 DOI: 10.3389/fnut.2022.911310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The polysaccharides from C. cicadae were extracted by ultrasonically-assisted enzymatic extraction (UAEE). Response surface analysis was used to determine the optimum parameters as follows: addition of enzymes, 0.71%; extraction temperature, 60°C; extraction time, 18 min; liquid-solid ratio, 46:1 (mL/g). The extraction yield of polysaccharide was 3.66 ± 0.87%. A novel polysaccharide fraction (JCH-a1) from C. cicadae was extracted and then purified by cellulose DEAE-32 and Sephadex G-100 anion exchange chromatography. The analysis results showed that the molar ratio of galactose, glucose, and mannose in JCH-a1 cells (60.7 kDa) was 0.89:1:0.39. JCH-a1 with a triple helix contains more α-glycosides and has strong thermal stability. Moreover, JCH-a1 showed strong antioxidant activity and acted as a strong inhibitor of α-glucosidase in vitro. In addition, JCH-a1 can prolong the lifespan of C. elegans. The present study might provide a basis for further study of JCH-a1 as an antioxidant and hypoglycemic food or drug.
Collapse
Affiliation(s)
- Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yusheng Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Shiling Feng
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Qinfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Chunbang Ding
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
22
|
Zongo AWS, Zogona D, Zhang Z, Youssef M, Zhou P, Chen Y, Geng F, Chen Y, Li J, Li B. Immunomodulatory activity of Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr seed polysaccharide fraction through the activation of the MAPK signaling pathway in RAW264.7 macrophages. Food Funct 2022; 13:4664-4677. [PMID: 35377370 DOI: 10.1039/d1fo04432j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr seed (SMS) is a wild legume used as food and medicine in many African countries. In the current study, a novel polysaccharide (SMSP2) was extracted from SMS using hot water and purified with DEAE-52 cellulose. Its structure was characterized, and the immunomodulatory activity and possible molecular mechanism in murine macrophage RAW264.7 were explored. The results revealed that SMSP2 was a uronic acid-rich polysaccharide (51.6%, w/w) with a molecular weight of 52.07 kDa. The neutral sugars were mainly arabinose, xylose, mannose, and galactose at a molar ratio of 1.00 : 0.84 : 0.90 : 0.07. Interestingly, SMSP2 treatment markedly promoted macrophage proliferation and phagocytosis and induced the expression of inflammatory mediators, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10. SMSP2-induced macrophage stimulation occurs through the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, macrophage surface complement receptor 3 (CR3) might play an important role in SMSP2-induced macrophage activation. This study revealed that SMSP2 is a potent immunomodulator, which could be used as a functional food and a pharmaceutical adjuvant in treating immune-compromising diseases.
Collapse
Affiliation(s)
- Abel Wend-Soo Zongo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Daniel Zogona
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Ziyang Zhang
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Peiyuan Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuanyuan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
23
|
Borovkova VS, Malyar YN, Sudakova IG, Chudina AI, Skripnikov AM, Fetisova OY, Kazachenko AS, Miroshnikova AV, Zimonin DV, Ionin VA, Seliverstova AA, Samoylova ED, Issaoui N. Molecular Characteristics and Antioxidant Activity of Spruce ( Picea abies) Hemicelluloses Isolated by Catalytic Oxidative Delignification. Molecules 2022; 27:266. [PMID: 35011498 PMCID: PMC8746494 DOI: 10.3390/molecules27010266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Spruce (Piceaabies) wood hemicelluloses have been obtained by the noncatalytic and catalytic oxidative delignification in the acetic acid-water-hydrogen peroxide medium in a processing time of 3-4 h and temperatures of 90-100 °C. In the catalytic process, the H2SO4, MnSO4, TiO2, and (NH4)6Mo7O24 catalysts have been used. A polysaccharide yield of up to 11.7 wt% has been found. The hemicellulose composition and structure have been studied by a complex of physicochemical methods, including gas and gel permeation chromatography, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The galactose:mannose:glucose:arabinose:xylose monomeric units in a ratio of 5:3:2:1:1 have been identified in the hemicelluloses by gas chromatography. Using gel permeation chromatography, the weight average molar mass Mw of hemicelluloses has been found to attain 47,654 g/mol in noncatalytic delignification and up to 42,793 g/mol in catalytic delignification. Based on the same technique, a method for determining the α and k parameters of the Mark-Kuhn-Houwink equation for hemicelluloses has been developed; it has been established that these parameters change between 0.33-1.01 and 1.57-472.17, respectively, depending on the catalyst concentration and process temperature and time. Moreover, the FTIR spectra of the hemicellulose samples contain all the bands characteristic of heteropolysaccharides, specifically, 1069 cm-1 (C-O-C and C-O-H), 1738 cm-1 (ester C=O), 1375 cm-1 (-C-CH3), 1243 cm-1 (-C-O-), etc. It has been determined by the thermogravimetric analysis that the hemicelluloses isolated from spruce wood are resistant to heating to temperatures of up to ~100 °C and, upon further heating, start destructing at an increasing rate. The antioxidant activity of the hemicelluloses has been examined using the compounds simulating the 2,2-diphenyl-2-picrylhydrazyl free radicals.
Collapse
Affiliation(s)
- Valentina S. Borovkova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Yuriy N. Malyar
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Irina G. Sudakova
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Anna I. Chudina
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Andrey M. Skripnikov
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Olga Yu. Fetisova
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Alexander S. Kazachenko
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Angelina V. Miroshnikova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Dmitriy V. Zimonin
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Vladislav A. Ionin
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Anastasia A. Seliverstova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
| | - Ekaterina D. Samoylova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia;
| |
Collapse
|
24
|
Pei Y, Yang S, Xiao Z, Zhou C, Hong P, Qian ZJ. Structural Characterization of Sulfated Polysaccharide Isolated From Red Algae ( Gelidium crinale) and Antioxidant and Anti-Inflammatory Effects in Macrophage Cells. Front Bioeng Biotechnol 2021; 9:794818. [PMID: 34869300 PMCID: PMC8637441 DOI: 10.3389/fbioe.2021.794818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Gelidium crinale, the red algae belonging to Geliaceae Gelidium, is a traditional edible and industrial alga in China. A sulfated polysaccharide (GNP) is successfully separated from Gelidium crinale by acid extraction and two-step column chromatography. Chemical analysis showed that the molecular weight of GNP was 25.8 kDa and the monosaccharide composition had the highest galactose content and confirmed the presence and content (16.5%) of sulfate by Fourier transform infrared spectroscopy (FT-IR) spectrometry as well as barium chloride-gelatin methods. In addition, the effect of GNP on lipopolysaccharide (LPS)-induced oxidative stress and inflammation in macrophages was also evaluated. The research results showed that GNP had fairly strong scavenging activities on 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical, hydroxyl radical, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and had Fe2+-chelating ability in a dose-dependent manner. At the same time, it significantly inhibits the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the production of pro-inflammatory cytokines in RAW 264.7 cells induced by LPS through blocking the mitogen-activated protein kinase (MAPK)/nuclear factor kappa beta (NF-κB) signaling pathway. These results indicate that GNP may be a latent component anti-inflammation in pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Yu Pei
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Shengtao Yang
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhenbang Xiao
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| |
Collapse
|
25
|
Shahin SM, Jaleel A, Alyafei MAM. The Essential Oil-Bearing Plants in the United Arab Emirates (UAE): An Overview. Molecules 2021; 26:6486. [PMID: 34770890 PMCID: PMC8587291 DOI: 10.3390/molecules26216486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Essential Oils (EOs) are expensive hydrocarbons produced exclusively by specific species in the plant kingdom. Their applications have deep roots in traditional herbal medicine, which lacks scientific evidence. Nowadays, more than ever, there is a growing global interest in research-based discoveries that maintain and promote health conditions. Consequently, EOs became a much attractive topic for both research and industry, with revenues reaching billions of dollars annually. In this work, we provide key guidance to all essential oil-bearing plants growing in the United Arab Emirates (UAE). The comprehensive data were collected following an extensive, up-to-date literature review. The results identified 137 plant species, including indigenous and naturalized ones, in the UAE, citing over 180 published research articles. The general overview included plant botanical names, synonyms, common names (Arabic and English), families and taxonomic authority. The study acts as a baseline and accelerator for research, industry and discoveries in multiple disciplines relying on essential oil-bearing plants.
Collapse
Affiliation(s)
- Suzan Marwan Shahin
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.M.S.); (A.J.)
- Research and Development Head, Umm Al Quwain University, Umm Al Quwain 536, United Arab Emirates
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.M.S.); (A.J.)
| | - Mohammed Abdul Muhsen Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.M.S.); (A.J.)
| |
Collapse
|
26
|
Polysaccharide extracted from Althaea officinalis L. root: New studies of structural, rheological and antioxidant properties. Carbohydr Res 2021; 510:108438. [PMID: 34597979 DOI: 10.1016/j.carres.2021.108438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022]
Abstract
A water-soluble acidic polysaccharide (AOP-2) from Althaea officinalis L. root was isolated by water extraction and purified by ion exchange chromatography (Cellulose DEAE-52) and gel filtration (Sephadex G-200). The structure characteristics of AOP-2 was determined by gel permeation chromatography (GPC), high performance liquid chromatography (HPLC), fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR) spectrum and gas chromatography-mass spectrometry (GC_MS). The results indicated that the AOP-2 was an acidic hetropolysaccharide with the molecular weight of 639.27 kDa. The AOP-2 composed of 51% galacturonic acid, 32.56% rhamnose, 12.73% glucose and 3.71% galactose. It could be found that the main backbone chain of AOP-2 consisted of →3)-α-D-GalpA-(1→, →3)-α-D-Rhap-(1→ and→3,4)-β-D-Galp-(1→ with branches of →4)-α-D-Rhap-(1→, →4)-α-D-Glcp-(1→ and α-D-Rhap-(1 → . Thermal analysis revealed that the AOP-2 had high thermal stability and according to the results obtained from XRD analysis, it had a semi-crystalline structure. The results of Steady-shear flow and dynamical viscoelasticity showed that AOP-2 solutions exhibited shear-thinning behavior with high viscosity and a weak gel-like behavior at concentrations above 1% in linear viscoelastic region. In addition, it showed relatively high antioxidant property.
Collapse
|
27
|
Hwang J, Zhang W, Dhananjay Y, An EK, Kwak M, You S, Lee PCW, Jin JO. Astragalus membranaceus polysaccharides potentiate the growth-inhibitory activity of immune checkpoint inhibitors against pulmonary metastatic melanoma in mice. Int J Biol Macromol 2021; 182:1292-1300. [PMID: 34000307 DOI: 10.1016/j.ijbiomac.2021.05.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Astragalus membranaceus (A. membranaceus) is commonly used in various herbal formulations to treat several human and animal diseases. Polysaccharides, which are the major bioactive components in the A. membranaceus, exhibit various bioactive properties. However, the ability of A. membranaceus polysaccharides (APS) to activate the mucosal immune response has not been examined. We examined the effect of intranasal administration of APS on mucosal immune cell activation and the growth-inhibitory activity against pulmonary metastatic melanoma in mice by combination treatment with immune checkpoint blockade. The intranasal treatment of APS increased the number of lineage-CD11c+ dendritic cell (DCs) in the mesenteric lymph nodes (mLN) through the upregulation of CC-chemokine receptor 7 expression. Moreover, intranasal treatment of APS activated DCs, which further stimulated natural killer (NK) and T cells in the mLN. The APS/anti-PD-L1 antibody combination inhibited the pulmonary infiltration of B16 melanoma cells. The depletion of NK cells and CD8 T cells in mice mitigated the anti-cancer effect of this combination, thereby highlighting the critical role of NK cells and CD8 T cells in mediating anti-cancer immunity. These findings demonstrated that APS could be used as a topical mucosal adjuvant to enhance the immune check point inhibitor anti-cancer effect.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yadav Dhananjay
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
28
|
Li Y, Assani I, Wang J, Wang C, Sun B, Liu L, Wang M, Chen Z, Liao Z. Extraction, Purification, Characterization, and Bioactive Properties of Polysaccharides from
Sphallerocarpus gracilis. STARCH-STARKE 2021. [DOI: 10.1002/star.202100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Li
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering and Jiangsu Province Hi‐Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Israa Assani
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering and Jiangsu Province Hi‐Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Jia‐Wei Wang
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering and Jiangsu Province Hi‐Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Chun‐Gu Wang
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering and Jiangsu Province Hi‐Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Bo Sun
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering and Jiangsu Province Hi‐Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Ling‐Fei Liu
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering and Jiangsu Province Hi‐Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Mu‐Xuan Wang
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering and Jiangsu Province Hi‐Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Zhi Chen
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai‐Tibetan Plateau in Qinghai Province Xining 810008 China
| | - Zhi‐Xin Liao
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering and Jiangsu Province Hi‐Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| |
Collapse
|
29
|
Laka K, Mapheto K, Mbita Z. Selective in vitro cytotoxicity effect of Drimia calcarata bulb extracts against p53 mutant HT-29 and p53 wild-type Caco-2 colorectal cancer cells through STAT5B regulation. Toxicol Rep 2021; 8:1265-1279. [PMID: 34195018 PMCID: PMC8233163 DOI: 10.1016/j.toxrep.2021.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is the fourth leading cause of oncological-related deaths and the third most diagnosed malignancy, worldwide. The emergence of chemoresistance is a fundamental drawback of colorectal cancer therapies and there is an urgent need for novel plant-derived therapeutics. In this regard, other compounds are needed to improve the efficacy of treatment against colorectal cancer. Medicinal plants have been effectively used by traditional doctors for decades to treat various ailments with little to no side effects. Drimia calcarata (D. calcarata) is one of the plants used by Pedi people in South Africa to treat a plethora of ailments. However, the anticancer therapeutic use of D. calcarata is less understood. Thus, this study was aimed at evaluating the potential anticancer activities of D. calcarata extracts against human colorectal cancer cells. The phytochemical analysis and antioxidant activity were analysed using LC-MS, DPPH, and FRAP. The inhibitory effects and IC50 values of D. calcarata extracts were determined using the MTT assay. Induction of cellular apoptosis was assessed using fluorescence microscopy, the Muse® Cell Analyser, and gene expression analysis by Polymerase Chain Reaction (PCR). Water extract (WE) demonstrated high phenolic, tannin, and flavonoid contents than the methanol extract (ME). LC-MS data demonstrated strong differences between the ME and WE. Moreover, WE showed the best antioxidant activity than ME. The MTT data showed that both ME and WE had no significant activity against human embryonic kidney Hek 293 cell line that served as non-cancer control cells. Caco-2 cells demonstrated high sensitivity to the ME and demonstrated resistance toward the WE, while HT-29 cells exhibited sensitivity to both D. calcarata extracts. The expression of apoptosis regulatory genes assessed by PCR revealed an upregulation of p53 by ME, accompanied by downregulation of Bcl-2 and high expression of Bax after treatment with curcumin. The Bax gene was undetected in HT-29 cells. The methanol extract induced mitochondrial-mediated apoptosis in colorectal Caco-2 and HT-29 cells and WE induced the extrinsic apoptotic pathway in HT-29 cells. ME downregulated STAT1, 3, and 5B in HT-29 cells. The D. calcarata bulb extracts, therefore, contain potential anticancer agents that can be further targeted for cancer therapeutics.
Collapse
Affiliation(s)
- K. Laka
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - K.B.F. Mapheto
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - Z. Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| |
Collapse
|
30
|
Guo R, Li X, Ma X, Sun X, Kou Y, Zhang J, Li D, Liu Y, Zhang H, Wu Y. Macromolecular and thermokinetic properties of a galactomannan from Sophora alopecuroides L. seeds: A study of molecular aggregation. Carbohydr Polym 2021; 262:117890. [PMID: 33838792 DOI: 10.1016/j.carbpol.2021.117890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022]
Abstract
The molecular aggregation of a galactomannan (NSAP-25) from Sophora alopecuroides L. seeds was investigated, where three polydisperse systems were confirmed during particle size analysis, indicating existence of different aggregates composed of random coil chains revealed by circular dichroism. Morphologically, NSAP-25 aggregate of various sizes (200-1200 nm) was possibly multi-stranded and formed by ellipsoid-like particles (20-60 nm) composed of compact coil chain, exhibiting extended amorphous structure with chain-like branches intertwined. Hence, NSAP-25 aggregation was inevitable, which exerted an unignorable effect on augmenting flexibility (β↓, γ↓, α↓ and Lp/ML↓) and compactness (ρ↓, df↑ and C∞↓) of branched random coil chain based on macromolecular analysis, especially when concentration increased. Moreover, it could be relevant to thermokinetic behavior of random nucleation and subsequent growth (A2 model and negative ΔS*) as well as good thermal stability (IPDT, ITS, t0.05, Tm and Tp), thus conferring potential applications for NSAP-25 in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Rui Guo
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xujiao Li
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xianda Ma
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xianbao Sun
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuxing Kou
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jun'ai Zhang
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Deshun Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China.
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China.
| | - Hui Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yan Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
31
|
Abstract
Cancer is one of the leading causes of death and one of the most important public health problems in the world. And every year, millions of new cancers and hundreds of thousands of cancer-related deaths are reported worldwide. In recent decades, a number of biologically active polysaccharides and polysaccharide-protein complexes have been isolated from plants, lichen, algae, yeast, fungi and mushroom, and due to their antitumor and immunomodulatory properties, these compounds have received considerable attention. Overall, the two key mechanisms by which polysaccharides act on tumor cells are direct action (inhibition of cancer cell growth and induction of programmed cell death/apoptosis) and indirect action (stimulation of immunity). Immunosuppressive effects are recognizable in both cancer patients and tumor bearing animals, suggesting that the immune system plays an important role in the immune surveillance of cancer cells. Thus, enhancement of the host immune response has been evaluated as a possible way of inhibiting tumor growth without damaging the host. In addition to their therapeutic and prophylactic properties, the polysaccharides are effective and less toxic than chemotherapy. The anticancer activity and immunomodulatory effects of most polysaccharides have shown the promising and real potential for the benefits of human health.
Collapse
Affiliation(s)
- Anley Teferra Kiddane
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Republic of Korea.,Research Institute for Basic Sciences, Pukyong National University, Busan, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Republic of Korea.,Research Institute for Basic Sciences, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
32
|
Novotna B, Polesny Z, Pinto-Basto MF, Van Damme P, Pudil P, Mazancova J, Duarte MC. Medicinal plants used by 'root doctors', local traditional healers in Bié province, Angola. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112662. [PMID: 32147477 DOI: 10.1016/j.jep.2020.112662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study is one of the first post-civil war efforts to document traditional botanical knowledge in Bié province, central Angola, in a first step to bring more studies on the use of medicinal plant resources in this area so as to bring new insights into Angolan bio-cultural diversity. AIM OF THE STUDY Examine the variety of plant species used for medical purposes, as well as characterize their social and cultural values. Also, it is aimed to compare their uses in the studied region with those in Sub-Saharan Africa and report new ethnomedicinal uses. MATERIALS AND METHODS We documented traditional medicinal plant knowledge among professional herbalists in two areas in Bié province through participatory observation, semi-structured interviews and transect walks. Ethnobotanical information was quantified based on Use Reports to (1) rate traditional knowledge; and (2) determine most useful taxa. RESULTS In total, 10 traditional healers shared information on their knowledge. A total of 87 plant species distributed among 57 genera and 36 botanical families were documented with Fabaceae being the best-represented family with 18 species, followed by Phyllanthaceae (6), Apocynaceae (5), Asteraceae (5), Rubiaceae (5), Lamiaceae (4), and Ochnaceae (3). Most medicinal plants are usually gathered at a distance from human settlements because of the belief in the higher efficacy of 'wild' plants shared by all herbalists. Roots are the most common plant part used (79%), explaining why the consulted herbalists call themselves 'root doctors'. CONCLUSIONS The culturally most important medicinal species identified in this study, i.e. Securidaca longepedunculata, Garcinia huillensis, Annona stenophylla, Afzelia quanzensis and Strychnos cocculoides, were previously reported for the same use in neighbouring countries and elsewhere in Africa. Our study also indicates that there are several locally valuable species that have not yet been studied for their medical potential, to name a few: Alvesia rosmarinifolia, Diplorhynchus condylocarpon, Eriosema affine, Paropsia brazzaeana, Rhus squalida, Sclerocroton cornutus or Xylopia tomentosa. Moreover, the ethnomedicinal use of 26 species was reported for the first time to sub-Saharan Africa. CLASSIFICATION Ethnopharmacological field studies.
Collapse
Affiliation(s)
- Barbora Novotna
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic; Department of General Anthropology, Faculty of Humanities, Charles University, U Kříže 8, 158 00, Praha 5, Jinonice, Czech Republic.
| | - Zbynek Polesny
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| | | | - Patrick Van Damme
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic; Laboratory of Tropical and Subtropical Agronomy and Ethnobotany, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Petr Pudil
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| | - Jana Mazancova
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| | - Maria Cristina Duarte
- CE3C - Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
33
|
Zhang H, Zou P, Zhao H, Qiu J, Regenstein JM, Yang X. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis. Carbohydr Polym 2020; 251:117078. [PMID: 33142621 DOI: 10.1016/j.carbpol.2020.117078] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The polysaccharides (PKP-E) extracted from the pinecones of Pinus koraiensis were studied, which was fractionated using DEAE-52 cellulose and Sephadex G-100. Four novel polysaccharide fractions were obtained, which were PKP-E-1-1, -1-2, -2-1, and -2-2, respectively. The structural features were characterized using HPGPC, monosaccharide composition analysis, Congo red test, periodate oxidation, Smith degradation, FTIR and NMR spectroscopy. The results showed the 4 purified fractions were non-triple helical structured heteropolysaccharides and composed of l-rhamnose, l-arabinose, d-mannose, d-glucose, and d-galactose. The fractions were mainly linked by 1→6 or 1→ glycosidic bonds and the backbone of 4 fractions was probably composed of→2, 6)-β-d-Man-(1→ and α-d-GalpA-(1→), which resembles pectin. Moreover, the antioxidant activities of the polysaccharides were measured by scavenging radical capacity tests. The PKP-E-2-1 was the most stable and active fraction, and the respective IC50 for the hydroxyl and ABTS·+ radicals were 3.0 and 23.6 mg/mL.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Pan Zou
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China; Tianjin Institute of Quality Standard and Testing Technology for Agro-product, Tianjin Academy of Agricultural Sciences, Tianjin, 300380, China
| | - Haitian Zhao
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Junqiang Qiu
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | | | - Xin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| |
Collapse
|
34
|
Isolation, physical, structural characterization and in vitro prebiotic activity of a galactomannan extracted from endosperm splits of Chinese Sesbania cannabina seeds. Int J Biol Macromol 2020; 162:1217-1226. [PMID: 32574735 DOI: 10.1016/j.ijbiomac.2020.06.177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to identify and determine the physical and structural characterization of the water-soluble galactomannan extracted from endosperm splits of Chinese S. cannabina seeds. The Sesbania galactomannan (SP) was extracted and purified using a novel method with a high yield (40.3 ± 7.2%). The molecular structure of SP was determined by monosaccharide composition, FTIR and NMR spectroscopy. The structural data showed that SP was galactomannan which composed by a β-(1/4)-linked mannose backbone with galactopyranosyl residues attached through α-(1/6) linkages. The constant mannose/galactose (M/G) ratio and average molecular weight (Mw) of SP was 1.6:1 and 2.16 × 105 g/mol, respectively. The physical results revealed that SP had many branches on the backbone and existed as a random coil state in aqueous solution. SP was a good biopolymer which had smooth and clearer surface with homogeneous composition, and had some degree of crystallinity and prebiotic activity. As a consequence, SP could be a potential prebiotic and was expected to be suitable for applications in food, pharmaceutical, biomedical or cosmetic industries as a promising new biomaterial.
Collapse
|
35
|
Zeng F, Chen W, He P, Zhan Q, Wang Q, Wu H, Zhang M. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels. Carbohydr Polym 2020; 246:116551. [PMID: 32747236 DOI: 10.1016/j.carbpol.2020.116551] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/26/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022]
Abstract
Chinese water chestnut peels are a kind of vegetable processing waste containing many active components such as polysaccharides, the structure of which remains unknown. To elucidate the structure of polysaccharides from Chinese water chestnut peels, two polysaccharides named WVP-1 and WVP-2 were isolated. WVP-1 (3.16 kDa) consisted of mannose (1.75 %), glucose (84.69 %), galactose (6.32 %), and arabinose (7.24 %), while WVP-2 (56.97 kDa) was composed of mannose (3.18 %), rhamnose (1.52 %), glucuronic acid (1.42 %), galacturonic acid (4.83 %), glucose (11.51 %), galactose (36.02 %), and arabinose (41.53 %). Linkage and NMR data indicated that WVP-1 was composed mainly of →4)-α-d-Glcp(1→ and a certain proportion of →3)-β-d-Glcp-(1→, including linear and branched polysaccharides simultaneously. WVP-2 was a pectin-like polysaccharide with →4)-α-d-GalpA6Me-(1→ units and the branch points of →3,4)-α-l-Arap-(1→, →3,6)-β-d-Galp-(1→. WVP-2 exhibited stronger potential antioxidant and immunomodulatory activities than WVP-1 in vitro. These results provide a foundation for the further study of polysaccharides from Chinese water chestnut peels.
Collapse
Affiliation(s)
- Fanke Zeng
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Wenbo Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Ping He
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Qiping Zhan
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Qian Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| |
Collapse
|
36
|
Rheological and physicochemical properties of polysaccharides extracted from stems of Dendrobium officinale. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105706] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Eco-physiological responses of desert and riverain legume plant species to extreme environmental stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Wu M, Feng H, Song J, Chen L, Xu Z, Xia W, Zhang W. Structural elucidation and immunomodulatory activity of a neutral polysaccharide from the Kushui Rose (Rosa setate x Rosa rugosa) waste. Carbohydr Polym 2020; 232:115804. [DOI: 10.1016/j.carbpol.2019.115804] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 01/22/2023]
|
39
|
Fierascu RC, Fierascu I, Ortan A, Georgiev MI, Sieniawska E. Innovative Approaches for Recovery of Phytoconstituents from Medicinal/Aromatic Plants and Biotechnological Production. Molecules 2020; 25:E309. [PMID: 31940923 PMCID: PMC7024203 DOI: 10.3390/molecules25020309] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
Continuously growing demand for plant derived therapeutic molecules obtained in a sustainable and eco-friendly manner favors biotechnological production and development of innovative extraction techniques to obtain phytoconstituents. What is more, improving and optimization of alternative techniques for the isolation of high value natural compounds are issues having both social and economic importance. In this critical review, the aspects regarding plant biotechnology and green downstream processing, leading to the production and extraction of increased levels of fine chemicals from both plant cell, tissue, and organ culture or fresh plant materials and the remaining by-products, are discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
- National Institute for Research & Development in Chemistry and Petrochemistry, ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
- National Institute for Research & Development in Chemistry and Petrochemistry, ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Alina Ortan
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
| | - Milen I. Georgiev
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
- Group of Plant Cell Biotechnology and Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Elwira Sieniawska
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland;
| |
Collapse
|
40
|
Kang YY, Tu YB, Zhu C, Meng XF, Yan Y, Wu CH, Li YF. Two new stilbenoids from Bletilla striata. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1170-1176. [PMID: 30585518 DOI: 10.1080/10286020.2018.1526787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Two new stilbenoids bletilol D (1) and bletilol E (2), together with five known compounds were isolated from Bletilla striata. Three of them (3, 4, and 7) were obtained from this genus for the first time. Their structures were elucidated by spectroscopic methods and comparing with data reported in literatures. The cytotoxic activities of compounds 1-7 against MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines were evaluated by MTT assay. Compound 2 showed weak cytotoxicity against MCF-7 and A549 cell lines with IC50 values of 36.32 ± 1.17 and 36.48 ± 1.12 μM, respectively, and 5 exhibited weak cytotoxicity against MCF-7 cell line with IC50 value of 57.09 ± 2.03 μM.
Collapse
Affiliation(s)
- Yun-Yao Kang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yan-Bei Tu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Zhu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xue-Fei Meng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yang Yan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chuan-Hai Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yan-Fang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
41
|
Lin S, Li HY, Yuan Q, Nie XR, Zhou J, Wei SY, Du G, Zhao L, Wang SP, Zhang Q, Chen H, Qin W, Wu DT. Structural characterization, antioxidant activity, and immunomodulatory activity of non-starch polysaccharides from Chuanminshen violaceum collected from different regions. Int J Biol Macromol 2019; 143:902-912. [PMID: 31715239 DOI: 10.1016/j.ijbiomac.2019.09.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 01/17/2023]
Abstract
Chuanminshen violaceum has been used as an important traditional Chinese medicine and a popular tonic food in China. Polysaccharides are considered the major bioactive components in C. violaceum. In this study, in order well understand the chemical structures and bioactivities of non-starch polysaccharides in C. violaceum (CVPs), the physicochemical structures, antioxidant activities, and immunomodulatory activities of CVPs in C. violaceum collected from different regions of China were investigated and compared. Results showed that the constituent monosaccharides and Fourier transform infrared spectra of CVPs in C. violaceum collected from different regions were similar. However, their molar ratios of constituent monosaccharides, molecular weights, and contents of uronic acids were different. Furthermore, CVPs exerted remarkable antioxidant activities (ABTS and nitric oxide radical scavenging capacities) and immunomodulatory activities (promoted production of nitric oxide, IL-6, and TNF-α from RAW 264.7 macrophages in vitro). Meanwhile, the antioxidant and immunomodulatory activities of CVPs extracted from C. violaceum also varied by cultivated regions. Moreover, results indicated that the antioxidant and immunomodulatory activities of CVPs were closely correlated to their α-1,4-d-galactosiduronic linkages. Results are helpful for better understanding of the structure-bioactivity relationships of CVPs, and beneficial for the improvement of their applications in pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Shang Lin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Hong-Yi Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Qin Yuan
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Xi-Rui Nie
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Jia Zhou
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Si-Yu Wei
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Gang Du
- Sichuan Provincial Institute for Food and Drug Control, Chengdu, Sichuan, China
| | - Li Zhao
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qing Zhang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Hong Chen
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Wen Qin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
42
|
Wang Y, Chen J, Han Q, Luo Q, Zhang H, Wang Y. Construction of doxorubicin-conjugated lentinan nanoparticles for enhancing the cytotoxocity effects against breast cancer cells. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Zhou Y, Ma W, Wang L, Sun W, Li M, Zhang W, Liu Y, Song X, Fan Y. Characterization and antioxidant activity of the oligo-maltose fraction from Polygonum Cillinerve. Carbohydr Polym 2019; 226:115307. [PMID: 31582055 DOI: 10.1016/j.carbpol.2019.115307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 01/16/2023]
Abstract
In this study, Polygonum Cillinerve polysaccharide (PCP) was extracted, and characterized by high performance gel permeation chromatography, high performance liquid chromatography, fourier transform infrared spectroscopy, nuclear magnetic resonance and mass spectroscopy. The results showed that PCP was composed of glucose, it was α-D-glucan and the backbone of PCP was consisted of repeating units of (1→4)-α-D-Glucose. In addition, the antioxidant potential of PCP was assessed in vitro. The results showed that PCP had strong hydroxyl radical scavenging ability, some DPPH scavenging ability and good reducing power. Moreover, the results of the enzyme-linked immunosorbent assays showed that PCP at 15.625-0.975 μg/mL could significantly improve the level of superoxide dismutase and glutathione peroxidase, and could significantly decrease the level of myeloperoxidase, malondialdehyde and xanthine oxidase in macrophages. These results indicated that PCP could potentially be developed as a natural antioxidant.
Collapse
Affiliation(s)
- Yu Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Libo Wang
- College of Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenjing Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Meng Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
44
|
Jia X, Zhang C, Bao J, Wang K, Tu Y, Wan JB, He C. Flavonoids from Rhynchosia minima root exerts anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells via MAPK/NF-κB signaling pathway. Inflammopharmacology 2019; 28:289-297. [DOI: 10.1007/s10787-019-00632-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
|
45
|
Abbasiliasi S, Tan JS, Bello B, Ibrahim TAT, Tam YJ, Ariff A, Mustafa S. Prebiotic efficacy of coconut kernel cake’s soluble crude polysaccharides on growth rates and acidifying property of probiotic lactic acid bacteria in vitro. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1649603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Sahar Abbasiliasi
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, University Sains Malaysia, Gelugor, Malaysia
| | - Bashirat Bello
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Yew Joon Tam
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Arbakariya Ariff
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
46
|
Patel MK, Tanna B, Gupta H, Mishra A, Jha B. Physicochemical, scavenging and anti-proliferative analyses of polysaccharides extracted from psyllium (Plantago ovata Forssk) husk and seeds. Int J Biol Macromol 2019; 133:190-201. [DOI: 10.1016/j.ijbiomac.2019.04.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
|
47
|
Extraction optimization, preliminary characterization, and bioactivities of polysaccharides from Silybum marianum meal. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-018-0018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Li R, Jia X, Wang Y, Li Y, Cheng Y. The effects of extrusion processing on rheological and physicochemical properties of sesbania gum. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Wang BH, Cao JJ, Zhang B, Chen HQ. Structural characterization, physicochemical properties and α-glucosidase inhibitory activity of polysaccharide from the fruits of wax apple. Carbohydr Polym 2019; 211:227-236. [DOI: 10.1016/j.carbpol.2019.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
|
50
|
Wang L, Li T, Liu F, Liu D, Xu Y, Yang Y, Zhao Y, Wei H. Ultrasonic-assisted enzymatic extraction and characterization of polysaccharides from dandelion (Taraxacum officinale) leaves. Int J Biol Macromol 2019; 126:846-856. [DOI: 10.1016/j.ijbiomac.2018.12.232] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 11/30/2022]
|