1
|
Islam T, Xu B, Bian Z. Anti-inflammatory and gut microbiota regulatory effects of ultrasonic degraded polysaccharides from Auricularia auricula-judae in DSS-induced colitis mice. ULTRASONICS SONOCHEMISTRY 2025; 117:107339. [PMID: 40215791 PMCID: PMC12008650 DOI: 10.1016/j.ultsonch.2025.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Auricularia auricula-judae is a widely cultivated mushroom species known for its edible and medicinal properties. Polysaccharides have been the focus of research because of their potential bioactivities; nonetheless, the structural complexity and molecular weight have hindered a complete understanding of their bioactivities. In this study, AP-1 polysaccharide was isolated from A. auricula-judae and subjected to ultrasonic degradation at different time points to improve their anti-inflammatory effects. The results showed that when AP-1 was degraded for 9 min (AP-2) and 20 min (AP-3), the NO inhibition rate was significantly increased in LPS-stimulated RAW 264.7 cells. The structural and physiochemical properties of native and degraded polysaccharides were analyzed, and it was found that the degradation process significantly reduced molecular weight and altered the particle size, viscosity, crystallinity, and helical structure. Furthermore, native and degraded polysaccharides (AP-1, AP-2, and AP-3) anti-inflammatory effects were investigated in the DSS-induced colitis mouse model. Degraded polysaccharides resulted in significant improvements, including recovery from weight loss, reduced disease activity, shortened colon length, and decreased inflammation, while AP-3 showed the most promising effects. Gut microbiota 16S rRNA sequencing revealed that AP-3 potentially increases healthy gut microbiota and inhibits unhealthy gut microbiota. Overall, this study demonstrates that ultrasonic degradation could be a great technique to modify polysaccharides' MW and physiochemical properties to improve anti-inflammatory and gut microbiota regulatory effects.
Collapse
Affiliation(s)
- Tahidul Islam
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Cao W, Lv Q, Yu J, He S, Hou X, Zhou L, Wang C, Gu Y, Wang G, Wu J, Han J. Structural analysis and anti-hepatic fibrosis effects of a homogeneous polysaccharide from Radix Puerariae lobatae (Willd.) Ohwi roots. Int J Biol Macromol 2025; 298:140028. [PMID: 39828154 DOI: 10.1016/j.ijbiomac.2025.140028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Radix Pueraria lobata (Willd.) Ohwi, renowned for its medicinal properties, has garnered significant research interest, particularly in its polysaccharide components. In this study, a novel water-soluble polysaccharide (50PLP) was isolated and characterized from P. lobata. Structural analysis revealed 50PLP (Mw = 341.2 kDa) consists of Gal and Glc monosaccharides, with predominant linkages of (1 → 4)-α-d-glucose, (1 → 3,4)-α-d-glucose, and (1 → 4,6)-α-d-glucose. In vivo experiments demonstrated the therapeutic potential of 50PLP in hepatic fibrosis, as evidenced by enhanced antioxidant capacity, reduced oxidative stress, and alleviated inflammatory damage in liver tissues of mice. Moreover, 50PLP improved colon permeability and modulated intestinal microbiota, promoting microbial balance and positively influencing bacterial composition. Mechanistic studies demonstrated that 50PLP supports intestinal homeostasis by increasing short-chain fatty acid levels and regulating gut microbiota composition. These findings suggest 50PLP as a promising therapeutic agent for treating hepatic fibrosis, providing a scientific basis for the clinical application of P. lobata in medical interventions.
Collapse
Affiliation(s)
- Wen Cao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| | - Qiuyue Lv
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
| | - Jie Yu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| | - Shihan He
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| | - Xuefeng Hou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
| | - Lutan Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
| | - Chunfei Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, UK
| | - Guodong Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China
| | - Jiangping Wu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China.
| | - Jun Han
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China; Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu 241002, China; Wuhu Modern Technology Research and Development Center of Chinese herbal Medicines and Functional Foods, Anhui College of Traditional Chinese Medicine, Wuhu 241002, China.
| |
Collapse
|
3
|
Zhang Y, Li X, Xu S, Li J, Shi L, Wang Z, Chen P, Jia L, Zhang J. The acetylation of Ganoderma applanatum polysaccharides on ameliorating T2DM-induced hepatic and colonic injuries by modulating the Nrf2/keap1-TLR4/NFκB-Bax/Bcl-2 pathways. Int J Biol Macromol 2025; 294:140055. [PMID: 39828155 DOI: 10.1016/j.ijbiomac.2025.140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
It was imperative to discover and utilize high-efficiency, non-toxic substances for the prevention and management of type 2 diabetes mellitus (T2DM) and its associated complications, given the escalating prevalence and significant global health burden. In the present study, the acetylated Ganoderma applanatum polysaccharide (A-GAP) was successfully obtained and characterized, demonstrating excellent efficacy in ameliorating organ damage induced by T2DM through targeted modulation of the gut-liver axis. The physiological and molecular biological findings indicated that A-GAP may modulate the Nrf2/Keap1-TLR4/NFκB-Bax/Bcl-2 signaling pathway network, thereby mitigating oxidative stress and the subsequent inflammatory response, ultimately alleviating the inhibitory effects of IRS and insulin resistance. Besides, the regulatory impact of A-GAP on the gut-liver axis had been confirmed by its ability to maintain intestinal barrier integrity and increase levels of intestinal tight junction proteins, effectively preventing endotoxin translocation to the liver. This discovery highlighted the potential of A-GAP as a promising option for functional or nutritional foods and pharmaceuticals in managing T2DM and its complications, showcasing the significance of acetylation in enhancing the bioactivities of natural substances.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xiaoxu Li
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Shungao Xu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Jinyi Li
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Lian Shi
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Zhiying Wang
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Peiying Chen
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Le Jia
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
| | - Jianjun Zhang
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
4
|
Zhang B, Wei X, Du P, Luo H, Hu L, Guan L, Chen G. Structural Characterization of Polysaccharides from Noni ( Morinda citrifolia L.) Juice and Their Preventive Effect on Oxidative Stress Activity. Molecules 2025; 30:1103. [PMID: 40076328 PMCID: PMC11902223 DOI: 10.3390/molecules30051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Polysaccharides are very promising molecules in the field of pharmacotherapy. Knowing this, the aim of this study was to extract, characterize, and evaluate the action of the polysaccharides in noni juice, using biological models of Type 2 diabetes mellitus processes. In this study, one polysaccharide named NJSPd-1 was separated from fermented noni fruit juice. The characterization assay showed that NJSPd-1 had a molecular weight (Mw) of 18,545 Da. NJSPd-1 consisted of galacturonic acid, galactose, rhamnose, and arabinose, with a molar ratio of 28.79:20.34:19.80:18.84 according to HPGPC analysis, and the glycosidic bond mainly included →4)-α-D-GalAp-(1→, 4)-β-D-Glcp-(1→, →2)-α-L-Rhap-(1→, and →3)-α-L-Araf-(1→. The prevention of oxidative stress activities by NJSPd-1 was evaluated using high-glucose-induced oxidative stress in HepG2 cells. In vitro results showed that NJSPd-1 influenced the downregulation of the proteins and genes Nrf2, Keap1, HO-1, and NQO1 in HepG2 cells. These results suggest that NJSPd-1 exerted a protective effect against oxidative stress in HepG2 cells by activating the Nrf2/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Bin Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China; (X.W.)
| | - Xiaoyu Wei
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China; (X.W.)
| | - Peiwen Du
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China; (X.W.)
| | - Huangqun Luo
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China; (X.W.)
| | - Lanfang Hu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China; (X.W.)
| | - Liping Guan
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China; (X.W.)
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
5
|
Wu Q, Liang B, Wang J, Dai Y. Ultrasound-Assisted Extraction of Polysaccharides from Lyophyllum decastes: Structural Analysis and Bioactivity Assessment. Molecules 2025; 30:961. [PMID: 40005271 PMCID: PMC11858794 DOI: 10.3390/molecules30040961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
This study employed ultrasound-assisted extraction (UAE) to isolate polysaccharides from Lyophyllum decastes, which were subsequently fractionated into two components, LDP-A1 and LDP-B1, using DEAE cellulose-52 and Sephacryl S-500. The structural characteristics of the polysaccharides were preliminarily analyzed using high-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Congo red staining. The results indicate significant differences between LDP-A1 and LDP-B1 in terms of molecular weight, monosaccharide composition, and structural features. LDP-A1 (2.27 × 106 Da) exhibits a significantly higher molecular weight compared to LDP-B1 (9.80 × 105 Da), with distinct differences in monosaccharide types and content. Both polysaccharides contain β-glycosidic bonds. LDP-B1 adopts a sheet-like structure with an amorphous internal arrangement and a triple-helix configuration, whereas LDP-A1 is rod-shaped, with a crystalline internal structure, and lacks the triple-helix configuration. In terms of biological activity, both polysaccharides exhibit certain activities, but LDP-B1 shows significantly stronger activity in antioxidant, hypoglycemic, anti-inflammatory, and anticancer effects. In summary, LDPs exhibit significant biological activity, especially outstanding performance in antioxidant, hypoglycemic, anti-inflammatory, and anticancer effects, proving their potential for development in functional foods and pharmaceuticals. Their unique structural characteristics and diverse biological activities provide a solid theoretical foundation for further exploration of LDPs in health promotion and disease prevention, opening up new research directions and application prospects.
Collapse
Affiliation(s)
- Qiong Wu
- College of Food Science and Engineering, Changchun University, Changchun 130012, China; (B.L.); (J.W.)
| | - Bin Liang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China; (B.L.); (J.W.)
| | - Jiaming Wang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China; (B.L.); (J.W.)
| | - Yonggang Dai
- Jilin Academy of Agricultural Sciences, Changchun 130012, China;
| |
Collapse
|
6
|
Yassin S, Elsohafy SM, El-Hawiet A, Abdel-Kader MS, Ghareeb DA, Darwish FA, Amer ME. Comparative phytochemical and pharmacological analysis of two cultivars of Annona squamosa L. cultivated in Egypt. NPJ Sci Food 2025; 9:8. [PMID: 39814794 PMCID: PMC11735784 DOI: 10.1038/s41538-024-00368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
This study compared two Annona squamosa L. cultivars, Abdelrazik (Annona A.) and Balady (Annona B.), in terms of their chemical profile, in vitro cytotoxicity against HCT-116 and A549 cell lines, and total acetogenin. In addition, the two cultivars pulp were compared regarding carbohydrates and magnesium ions content and immunomodulating activity. The two cultivars were also differentiated genetically by DNA barcoding using the universal primer matK and the specific primer Annona squamosa matK. The results showed that Annona A. seeds had higher acetogenin content and exhibited more potent cytotoxic activity against the two cell lines. In contrast, Annona B. pulp had higher carbohydrate content and lower magnesium ions content. The splenic lymphocyte proliferation assay revealed that Annona A. pulp extract was slightly more active as an immunostimulant. The specific primer used for DNA barcoding was more effective for species identification, while the universal primer was better for cultivar differentiation. Overall, our findings indicate the potential for using active compounds of Annona squamosa L. cultivars to develop new therapeutic agents for cancer therapy and immune enhancement.
Collapse
Affiliation(s)
- Safaa Yassin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Samah M Elsohafy
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amr El-Hawiet
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged S Abdel-Kader
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Doaa A Ghareeb
- Department of Biochemistry, Biological Screening and Preclinical Trial Laboratory, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Fikria A Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Masouda E Amer
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Moussa AY, Siddiqui SA, Elhawary EA, Guo K, Anwar S, Xu B. Phytochemical constituents, bioactivities, and applications of custard apple (Annona squamosa L.): A narrative review. Food Chem 2024; 459:140363. [PMID: 39089196 DOI: 10.1016/j.foodchem.2024.140363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
Annona squamosa L. (Annonaceae) is a versatile tree with an edible fruit showing abundant medicinal and industrial applications. The nutritional values of this plant are due to carbohydrates, proteins, amino acids, and vitamins. Ethnopharmacological uses referred to treatment of dysentery, headlice, cancer sores, purgative, and tonic effects. The main reported biological activities for A. squamosa L. were cytotoxic, antidiabetic, antimicrobial, antiparasitic, antioxidant, antimalarial, molluscidal, anthelmintic and insecticidal activities, and its chemical classes encompassed alkaloids, diterpenes, acetogenins, and cyclopeptides. The nutritional content of A. squamosa L. and their main chemical components, biological effects, and the different applications were discussed in this review. This comprehensive review strived to compile all the relevant data in the period between 1990 and 2023 covering databases PubMed, ScienceDirect, Web of Science, Googlescholar and Reaxys concerning A. squamosa L. different parts with their reported phytochemical constituents and biological activities to integrate a better understanding of the medicinal values.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | | | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Kai Guo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China
| | - Sidra Anwar
- Swinburne University of Technology, Melbourne, Australia
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China.
| |
Collapse
|
8
|
Zhou S, Wen X, Zhao Y, Bai X, Qin X, Chu W. Structural elucidation of a Acanthopanax senticosus polysaccharide CQ-1 and its hepatoprotective activity via gut health regulation and antioxidative defense. Int J Biol Macromol 2024; 281:136343. [PMID: 39374720 DOI: 10.1016/j.ijbiomac.2024.136343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/14/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Acanthopanax senticosus has proven health benefits, particularly for liver damage. The objective of this study was to elucidate the protective effects and the underlying mechanisms of action of A. senticosus against metabolic dysfunction-associated fatty liver disease (MAFLD). A novel homogeneous water-soluble polysaccharide, CQ-1, was successfully isolated and purified from A. senticosus root. The main chain structure of CQ-1 was identified as →2)-α-L-Rha-(1 → 4)-α-D-GalAp-(1 → 6)-β-D-Galp-(1→. Additionally, branched chains comprising an arabinosyl residue, galactosyl residue, and galacturonic acidic residue were identified as being attached to →2,4)-α-L-Rha-(1→, →3,6)-β-D-Galp-(1→, and →3,4)-α-D-GalAp-(1→, respectively. CQ-1 exhibited antioxidant and prebiotic activities in vitro. CQ-1 increased antioxidant capacity and reduced serum pro-inflammatory cytokines in mice. Additionally, CQ-1 has been shown to enhance the diversity and composition of the gut microbiota, thereby facilitating the restoration of gut function. These include improving intestinal barrier function and increasing short-chain fatty acid levels in mice. Our study has shown that CQ-1 has a hepatoprotective effect in MAFLD mice, and we have proposed that CQ-1 may be a promising strategy for the treatment of MAFLD.
Collapse
Affiliation(s)
- Shuxin Zhou
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xin Wen
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yang Zhao
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinfeng Bai
- Shandong Provincial Third Hospital, Shandong University, Jinan, China.
| | - Xianjin Qin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Weihua Chu
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
9
|
Liu W, Zhang J, Li Y, Nakajima A, Lee D, Xu J, Guo Y. Structure, anti-cancer properties, and potential mechanism of a biological active polysaccharide from Platycodon grandiflorum. Int J Biol Macromol 2024; 281:136153. [PMID: 39362438 DOI: 10.1016/j.ijbiomac.2024.136153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/29/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Polysaccharides serve as a source of energy for organisms and play a crucial role in various life activities, exhibiting a wide array of biological functions. To develop bioactive polysaccharides for combating cancer, PGP40-2B, a homogeneous polysaccharide with a molecular weight of 7.05 × 103 g/mol, has been isolated from Platycodon grandiflorum, which is a traditional medicinal and edible plant with multiple functions. PGP40-2B was found to be mainly formed from several fragments including →2)-α-l-Araf-(1→, →5)-α-l-Araf-(1→, →3,4)-α-l-Rhap-(1→, →4)-α-d-GalpA-(1→, →6)-α-d-Glcp-(1→, and α-d-Galp-(1→. In addition to the structural characteristics characterized by various techniques, PGP40-2B was biologically assessed using zebrafish models and was found to exhibit in vivo antitumor effects. Subsequent mechanism studies suggested that the antitumor activity in vivo of PGP40-2B was not caused by cytotoxic mechanisms but was related to its targeting of vascular endothelial growth factor (VEGF) and programmed cell death protein 1 (PD-1) to inhibit angiogenesis and activate immunity.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
10
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
11
|
Wen R, Luo L, Zhang R, Zhou X, Wang W, Gong L. Structural Characterization of Polygonatum Cyrtonema Polysaccharide and Its Immunomodulatory Effects on Macrophages. Molecules 2024; 29:2076. [PMID: 38731567 PMCID: PMC11085417 DOI: 10.3390/molecules29092076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-β-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (R.W.); (L.L.); (R.Z.); (X.Z.)
| | - Limin Gong
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (R.W.); (L.L.); (R.Z.); (X.Z.)
| |
Collapse
|
12
|
Zhang Y, Wang H, Zheng Y, Wu Z, Liu J, Cheng F, Wang K. Degradation of Angelica sinensis polysaccharide: Structures and protective activities against ethanol-induced acute liver injury. Carbohydr Polym 2024; 328:121745. [PMID: 38220331 DOI: 10.1016/j.carbpol.2023.121745] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Angelica sinensis polysaccharide (ASP) possesses diverse bioactivities; however, its metabolic fate following oral administration remains poorly understood. To intuitively determine its intestinal digestion behavior after oral administration, ASP was labeled with fluorescein, and it was found to accumulate and be degraded in the cecum and colon. Therefore, we investigated the in vitro enzymatic degradation behavior and identified the products. The results showed that ASP could be degraded into fragments with molecular weights similar to those of the fragments observed in vivo. Structural characterization revealed that ASP is a highly branched acid heteropolysaccharide with AG type II domains, and its backbone is predominantly composed of 1,3-Galp, →3,6)-Galp-(1→6)-Galp-(1→, 1,4-Manp, 1,4-Rhap, 1,3-Glcp, 1,2,3,4-Galp, 1,3,4,6-Galp, 1,3,4-GalAp and 1,4-GlcAp, with branches of Araf, Glcp and Galp. In addition, the high molecular weight enzymatic degradation products (ASP H) maintained a backbone structure almost identical to that of ASP, but exhibited only partial branch changes. Then, the results of ethanol-induced acute liver injury experiments revealed that ASP and ASP H reduced the expression of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and malondialdehyde (MDA) and increased the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) levels, thereby relieving ethanol-induced acute liver injury.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Haoyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yuheng Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China.
| |
Collapse
|
13
|
Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3259-3276. [PMID: 38308635 DOI: 10.1021/acs.jafc.3c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Polysaccharides are an important class of biomolecules derived from several sources. However, the inherent structure of polysaccharides prevents them from exhibiting favorable physicochemical properties, which restricts their development in agriculture, industry, food, and biomedicine. This paper systematically summarizes the changes in the primary and advanced structures of modified polysaccharides, and focuses on the effects of various modification methods on the hydrophobicity, rheological properties, emulsifying properties, antioxidant activity, hypoglycemic, and hypolipidemic activities of polysaccharides. Then there is a list the applications of modified polysaccharides in treating heavy metal pollutants, purifying water resources, improving beverage stability and bread quality, and precisely delivering the drug. When summarized and reviewed, the information above can shed further light on the relationship between polysaccharide structure and function. Determining the structure-activity relationship provides a scientific basis for the direction of molecular modifications of polysaccharides.
Collapse
Affiliation(s)
- Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
14
|
Zheng Y, Li X, Lin D, Wu J, Tian Y, Chen H, Rui W. Structural elucidation of a non-starch polysaccharides from Lilii Bulbus and its protective effects against corticosterone-induced neurotoxicity in PC12 cells. Glycoconj J 2024; 41:57-65. [PMID: 38153598 DOI: 10.1007/s10719-023-10145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Lilii Bulbus is a folk medicine for both culinary and medicinal purpose. In traditional medicine theory, Lilii Bulbus is usually used as an complementary therapy for nourishing the heart and lung, clearing heat in the treatment of mental instability and depression. In this study, NLPS-1a (Mw = 2610 Da, DP = 16), a water-soluble non-starch Lilii Bulbus polysaccharides, was isolated and purified. Structural analysis showed that NLPS-1a mainly contained Man and Glc with a molar ratio of 11.137 and 9.427. The glycosidic linkages of NLPS-1a were 1,3-Manp (59.93%), 1,2-Glcp (37.93%), T-Glcp (1.21%) and T-Manp (0.93%), indicating the highly-linear structures. In addition, NLPS-1a could significantly repair the injury of PC12 cells induced by corticosterone (CORT), reduce Lactate dehydrogenase (LDH) leakage and decrease the cell apoptosis in a dose-dependent manner. Above all, the results indicated that NLPS-1a had protective effects against CORT-induced neurotoxicity in PC12 cells, and might be a natural antidepressant, which enriched the study of the metabolic mechanism between herbal polysaccharides and antidepressant.
Collapse
Affiliation(s)
- Yili Zheng
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China
| | - Xueying Li
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China
| | - Danna Lin
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China
| | - Jian Wu
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China
| | - Yufei Tian
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences , Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China.
- Key Laboratory of Digital Quality Evaluation of Chinese, Materia Medica of State Administration of TCM, Guangzhou, Guangdong, 510006, P.R. China.
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, 510006, P.R. China.
| | - Wen Rui
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China.
- Key Laboratory of Digital Quality Evaluation of Chinese, Materia Medica of State Administration of TCM, Guangzhou, Guangdong, 510006, P.R. China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
15
|
Zhu Y, Cui M, Liu Y, Ma Z, Xi J, Tian Y, Hu J, Song C, Fan L, Li Q. Uptake Quantification of Antigen Carried by Nanoparticles and Its Impact on Carrier Adjuvanticity Evaluation. Vaccines (Basel) 2023; 12:28. [PMID: 38250841 PMCID: PMC10818693 DOI: 10.3390/vaccines12010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Nanoparticles have been identified in numerous studies as effective antigen delivery systems that enhance immune responses. However, it remains unclear whether this enhancement is a result of increased antigen uptake when carried by nanoparticles or the adjuvanticity of the nanoparticle carriers. Consequently, it is important to quantify antigen uptake by dendritic cells in a manner that is free from artifacts in order to analyze the immune response when antigens are carried by nanoparticles. In this study, we demonstrated several scenarios (antigens on nanoparticles or inside cells) that are likely to contribute to the generation of artifacts in conventional fluorescence-based quantification. Furthermore, we developed the necessary assay for accurate uptake quantification. PLGA NPs were selected as the model carrier system to deliver EsxB protein (a Staphylococcus aureus antigen) in order to testify to the feasibility of the established method. The results showed that for the same antigen uptake amount, the antigen delivered by PLGA nanoparticles could elicit 3.6 times IL-2 secretion (representative of cellular immune response activation) and 1.5 times IL-12 secretion (representative of DC maturation level) compared with pure antigen feeding. The findings above give direct evidence of the extra adjuvanticity of PLGA nanoparticles, except for their delivery functions. The developed methodology allows for the evaluation of immune cell responses on an antigen uptake basis, thus providing a better understanding of the origin of the adjuvanticity of nanoparticle carriers. Ultimately, this research provides general guidelines for the formulation of nano-vaccines.
Collapse
Affiliation(s)
- Yupu Zhu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Minxuan Cui
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Yutao Liu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Zhengjun Ma
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Jiayue Xi
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Yi Tian
- Department of Oncology, Airforce Medical Center of PLA, 30th Fu Cheng Road, Beijing 100142, China;
| | - Jinwei Hu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Chaojun Song
- School of Life Science, Northwestern Polytechnical University, 127th Youyi West Road, Xi’an 710072, China;
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
16
|
Shu Y, Huang Y, Dong W, Fan X, Sun Y, Chen G, Zeng X, Ye H. The polysaccharides from Auricularia auricula alleviate non-alcoholic fatty liver disease via modulating gut microbiota and bile acids metabolism. Int J Biol Macromol 2023; 246:125662. [PMID: 37399869 DOI: 10.1016/j.ijbiomac.2023.125662] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The polysaccharides from Auricularia auricula (AAPs), containing a large number of O-acetyl groups that are related to the physiological and biological properties, seem to be potential prebiotics like other edible fungus polysaccharides. In the present study, therefore, the alleviating effects of AAPs and deacetylated AAPs (DAAPs, prepared from AAPs by alkaline treatment) on nonalcoholic fatty liver disease (NAFLD) induced by high-fat and high-cholesterol diet combined with carbon tetrachloride were investigated. The results revealed that both AAPs and DAAPs could effectively relieve liver injury, inflammation and fibrosis, and maintain intestinal barrier function. Both AAPs and DAAPs could modulate the disorder of gut microbiota and altered the composition of gut microbiota with enrichment of Odoribacter, Lactobacillus, Dorea and Bifidobacterium. Further, the alteration of gut microbiota, especially enhancement of Lactobacillus and Bifidobacterium, was contributed to the changes of bile acids (BAs) profile with increased deoxycholic acid (DCA). Farnesoid X receptor could be activated by DCA and other unconjugated BAs, which participated the BAs metabolism and alleviated the cholestasis, then protected against hepatitis in NAFLD mice. Interestingly, it was found that the deacetylation of AAPs negatively affected the anti-inflammation, thereby reducing the health benefits of A. auricula-derived polysaccharides.
Collapse
Affiliation(s)
- Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
17
|
Huang C, Tu W, Zhang M, Peng D, Guo Z, Huang W, Zhu J, Yu R, Song L, Wang Y. A novel heteropolysaccharide isolated from custard apple pulp and its immunomodulatory activity in mouse macrophages and dendritic cells. Heliyon 2023; 9:e18521. [PMID: 37554813 PMCID: PMC10404978 DOI: 10.1016/j.heliyon.2023.e18521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
In this study, a novel heteropolysaccharide (ASPA80-1) with an average molecular weight of 5.48 × 104 Da was isolated and structurally elucidated from custard apple pulp (Annona squamosa) through DEAE-cellulose, Sephadex G-100 and Sephacryl S-300 HR chromatography and spectral analysis. ASPA80-1 is a water-soluble polysaccharide and it is a polymer consisting of predominant amounts of (1 → 3)-linked-L-arabinose (Ara) residues, small amounts of (1 → 6)-linked-D-galactose (Gal), (1 → 3,5)-linked-L-arabinose (Ara) residues and terminal linked-L-arabinose (Ara) residues, trace amount of (1 → 4)-linked-D-glucose (Glc) residues and (1 → 2)-linked-L-rhamnose (Rham) residues. ASPA80-1 showed significant effect on antigen-presenting cells (APCs) activation. On the one hand, ASPA80-1 activated RAW264.7 macrophage cells by inducing morphology change, enhancing phagocytic ability, increasing nitric oxide (NO) secretion and promoting expression of major histocompatibility complex class II (MHC II) and cluster of differentiation 86 (CD 86). On the other hand, ASPA80-1 promoted the maturation of dendritic cells (DCs) by inducing longer dendrites, decreasing phagocytic ability and increasing MHC II and CD86 expression. Furthermore, mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways were activated after the intervention of ASPA80-1 on RAW264.7 cells or DCs. Thus, the novel heteropolysaccharide ASPA80-1 has the potential to be used as an immunoenhancing component in functional foods.
Collapse
Affiliation(s)
- Chunhua Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wensong Tu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Man Zhang
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Dan Peng
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhongyi Guo
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Weijuan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yurong Wang
- Department of Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
18
|
Wang W, Zhang Y, Liu X, Liu Z, Jia L, Zhang J. Polysaccharides from Oudemansiella radicata residues attenuate carbon tetrachloride-induced liver injury. Int J Biol Macromol 2023; 242:124823. [PMID: 37178886 DOI: 10.1016/j.ijbiomac.2023.124823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
In addition to fruiting bodies and mycelia, the mushroom residues have also been demonstrated to be rich in polysaccharides which have attracted academic attentions owing to their extensive bioactivities. Therefore, the present work aimed to investigate the potential hepatoprotective effects of Oudemansiella radicata residues polysaccharides (RPS). Our results demonstrated that RPS showed significantly protective effects against carbon tetrachloride (CCl4)-induced liver injury, and the possible mechanisms may be related with the predominant bioactivities of RPS containing anti-oxidation by activating the Nrf2 signal pathways, anti-inflammation by inhibiting NF-κB signal pathways and reducing the release of inflammatory cytokines, anti-apoptosis by regulating Bcl-2/Bax pathway, and anti-fibrosis by inhibiting the expressions of TGF-β1, Hyp and α-SMA, respectively. These findings suggested that RPS, a typical β-type glycosidic pyranose-polysaccharides, could be used as promising diet supplement or medication for the adjunctive treatment of hepatic diseases, and also contributed to promoting the recyclable utilization of mushroom residues.
Collapse
Affiliation(s)
- Wenshuai Wang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yaohan Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Xinchao Liu
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Zonghui Liu
- Tai 'an Maternal and Child Health Care Hospital, Taian 271000, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
19
|
Wen JJ, Li MZ, Chen CH, Hong T, Yang JR, Huang XJ, Geng F, Hu JL, Nie SP. Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota. Food Chem 2023; 404:134591. [DOI: 10.1016/j.foodchem.2022.134591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
|
20
|
Yuan P, Liu L, Aipire A, Zhao Y, Cai S, Wu L, Yang X, Aimaier A, Lu J, Li J. Evaluation and mechanism of immune enhancement effects of Pleurotus ferulae polysaccharides-gold nanoparticles. Int J Biol Macromol 2023; 227:1015-1026. [PMID: 36460244 DOI: 10.1016/j.ijbiomac.2022.11.277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
We previously demonstrated that Pleurotus ferulae polysaccharide (PFPS) promoted dendritic cell (DC) maturation through the TLR4 signaling pathway. To improve PFPS activity and bioavailability, gold nanoparticles with PFPS (PFPS-Au NPs) were synthesized. Of note, although the polysaccharide content of PFPS-Au NPs was only one tenth of PFPS, PFPS-Au NPs enhanced the immunostimulatory activities of PFPS in the maturation and function of dendritic cells (DCs) by TLR4 and NLRP3 signaling pathways, evidenced by stronger activation of the down-stream MAPK and NF-κB pathways and NLRP3 inflammasome pathway. More importantly, PFPS-Au NPs enhanced DC migration and murine immunity, particularly in type 1 T-helper cell responses. Moreover, the half-life of PFPS-Au NPs (2.217 ± 0.187 h) was longer than that of PFPS (1.39 ± 0.257 h) in the blood and the distribution of PFPS-Au NPs (19.8 %) in the spleen was significantly increased compared with PFPS (13.3 %), indicating the improved bioavailability in vivo. PFPS-Au NPs as an adjuvant promoted antigen-specific cellular immune responses to an HPV DC-based vaccine, which significantly inhibited the growth of TC-1 tumors in mice. All results suggest that the prepared Au NPs could enhance PFPS-immunostimulatory activity, which will pave the way for PFPS-Au NPs to be applied in clinical trials.
Collapse
Affiliation(s)
- Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Litong Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanan Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Shanshan Cai
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Linjia Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaofei Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Alimu Aimaier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
21
|
Jin M, Zhang W, Zhang X, Huang Q, Chen H, Ye M. Characterization, chemical modification and bioactivities of a polysaccharide from Stropharia rugosoannulata. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
22
|
Evaluation of the skin protective effects of niosomal-entrapped annona squamosa against UVA irradiation. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2231-2241. [PMID: 36030490 DOI: 10.1007/s43630-022-00291-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
Annona squamosa is a medicinal plant that has been used in folk medicine since antiquity. The goal of this study is to see how effective Annona squamosa leaf extract (A.S.L.E) or its niosomal-entrapped preparation is at protecting skin from UVA irradiation. The prepared niosomal-entrapped A.S.L.E has been characterized via spectrophotometry and transmission electron microscopy imaging. Furthermore, the entrapment efficiency and in vitro release of A.S.L.E were determined. In this study, ex vivo and freshly prepared samples from the dorsal region of the rats' skin were used as biological samples, which were divided into five groups: control UVA-unexposed, unprotected UVA-exposed, A.S.L.E-protected UVA-exposed, and niosomal-entrapped A.S.L.E UVA-exposed. UVA irradiation was performed by exposing the skin samples to a UVA-producing lamp for 4 h. Samples from various groups were then examined using FTIR spectroscopy, histopathology, and protein electrophoresis methods. The results showed that A.S.L.E has a skin protective effect against UVA irradiation. The niosomal-entrapped A.S.L.E was more effective than the native plant leaf extract in protecting skin from the damaging effects of UVA. Therefore, the nanotechnologically formulated preparation, niosomal-entrapped A.S.L.E, can be used as an effective photoprotector (sunscreen) against the adverse effects of UVA radiation.
Collapse
|
23
|
Mushroom Polysaccharides as Potential Candidates for Alleviating Neurodegenerative Diseases. Nutrients 2022; 14:nu14224833. [PMID: 36432520 PMCID: PMC9696021 DOI: 10.3390/nu14224833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a widespread and serious global public health burden, particularly among the older population. At present, effective therapies do not exist, despite the increasing understanding of the different mechanisms of NDs. In recent years, some drugs, such as galantamine, entacapone, riluzole, and edaravone, have been proposed for the treatment of different NDs; however, they mainly concentrate on symptom management and confer undesirable side effects and adverse reactions. Therefore, there is an urgent need to find novel drugs with fewer disadvantages and higher efficacy for the treatment of NDs. Mushroom polysaccharides are macromolecular complexes with multi-targeting bioactivities, low toxicity, and high safety. Some have been demonstrated to exhibit neuroprotective effects via their antioxidant, anti-amyloidogenic, anti-neuroinflammatory, anticholinesterase, anti-apoptotic, and anti-neurotoxicity activities, which have potential in the treatment of NDs. This review focuses on the different processes involved in ND development and progression, highlighting the neuroprotective activities and potential role of mushroom polysaccharides and summarizing the limitations and future perspectives of mushroom polysaccharides in the prevention and treatment of NDs.
Collapse
|
24
|
Lian Y, Zhu M, Yang B, Wang X, Zeng J, Yang Y, Guo S, Jia X, Feng L. Characterization of a novel polysaccharide from red ginseng and its ameliorative effect on oxidative stress injury in myocardial ischemia. Chin Med 2022; 17:111. [PMID: 36153627 PMCID: PMC9509600 DOI: 10.1186/s13020-022-00669-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Red ginseng (RG) was widely used as traditional Chinese medicine (TCM) or dietary supplement. However, few researches had been reported on the red ginseng polysaccharide (RGP). METHODS In this study, a novel heteropolysaccharide named RGP1-1 was fractionated sequentially by DEAE-52 column and Sephadex G-100 gel column. The primary structure of RGP1-1, including glycosyl linkages, molecular weight, monosaccharide composition, morphology and physicochemical property were conducted by nuclear magnetic resonance (NMR), gas chromatography-mass spectrometer (GC-MS), atomic force microscope (AFM), scanning electron microscope (SEM), differential scanning calorimetry-thermogravimetric analysis (DSC-TG) and so on. The effect of RGP1-1 in preventing and treating myocardial ischemia was evaluated by an animal model isoprenaline (ISO) induced mice. RESULTS RGP1-1, with a homogeneous molecular weight of 5655 Da, was composed of Glc and Gal in the ratio of 94.26:4.92. The methylation and NMR analysis indicated the backbone was composed of → 1)-Glcp-(4 → and → 1)-Galp-(4 →, branched partially at O-4 with α-D-Glcp-(1 → residue. Morphology and physicochemical property analysis revealed a triple-helical conformation, flaky and irregular spherical structure with molecule aggregations and stable thermal properties of RGP1-1. And it contained 6.82 mV zeta potential, 117.4 nm partical size and polymerization phenomenon. Furthermore, RGP1-1 possessed strong antioxidant activity in vitro and in vivo, RGP1-1 could decrease cardiomyocyte apoptosis and myocardium fibrosis of mice in histopathology and it could decrease significantly the serum levels of cardiac troponin (cTnI), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), malondialdehyde (MDA). Western blot analysis showed that RGP1-1 can increase the expression of main protein Nuclear factor E2-related factor 2(Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase-1(HO-1) and kelch-like ECH-associated protein1(keap1) in oxidative stress injure progress, and therefore regulate the pathway of Nrf2/HO-1. CONCLUSION The above findings indicated that RGP1-1 had an improving effect on ISO-induced myocardial ischemia injury in mice, as novel natural antioxidant and heart-protecting drugs.
Collapse
Affiliation(s)
- Yuanpei Lian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Changzhou, People's Republic of China, 213003
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xianfeng Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shuchen Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
25
|
Yang B, Luo Y, Sang Y, Kan J. Isolation, purification, structural characterization, and hypoglycemic activity assessment of polysaccharides from Hovenia dulcis (Guai Zao). Int J Biol Macromol 2022; 208:1106-1115. [PMID: 35378159 DOI: 10.1016/j.ijbiomac.2022.03.211] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Hovenia dulcis polysaccharides (HDPs) have a variety of important biological activities associated with potential applications in food engineering, pharmacy science, and health care. Herein, we isolated and purified polysaccharides from H. dulcis. Chemical composition analysis revealed that the purified polysaccharides (HDPs-2A) were composed of different molar ratios of mannose, Rha, GalA, GlcA, Glc, Gal, and Ara and had a molecular weight of 372.91 kDa. The structure of HDPs-2A was assessed by FT-IR, periodate oxidation, Smith degradation, methylation analysis, and NMR, allowing us to determine that the backbone of HDPs-2A is composed primarily of →5)-α-L-Araf-(1→, →5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →6)-β-D-Galp-(1→, →3,6)-β-D-Galp-(1→, T-β-D-Galp, →3)-β-D-Galp-(1→, and T-α-D-Glcp. The results of atomic force microscopy (AFM) showed that HDPs-2A present an irregular polymer particle morphology in water. X-ray diffraction (XRD) results showed that HDPs-2A have a single crystal structure. Finally, we demonstrated that HDPs-2A have a good therapeutic effect on a rat model of type 2 diabetes.
Collapse
Affiliation(s)
- Bing Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China.
| | - Yuxin Luo
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
26
|
Senthilkumar C, Kannan PR, Balashanmugam P, Raghunandhakumar S, Sathiamurthi P, Sivakumar S, A A, Mary SA, Madhan B. Collagen - Annona polysaccharide scaffolds with tetrahydrocurcumin loaded microspheres for antimicrobial wound dressing. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
27
|
Structure Identification of Two Polysaccharides from Morchella sextelata with Antioxidant Activity. Foods 2022; 11:foods11070982. [PMID: 35407069 PMCID: PMC8997402 DOI: 10.3390/foods11070982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Mushrooms of the Morchella genus exhibit a variety of biological activities. Two polysaccharides (MSP1-1, 389.0 kDa; MSP1-2, 23.4 kDa) were isolated from Morchella sextelata by subcritical water extraction and column chromatography fractionation. Methylation and nuclear magnetic resonance analysis determined MSP1-1 as a glucan with a backbone of (1→4)-α-D-glucan branched at O-6, and MSP1-2 as a galactomannan with coextracted α-glucan. Light scattering analysis and transmission electron microscopy revealed that MSP1-1 possessed a random coil chain and that MSP1-2 had a network chain. This is the first time that a network structure has been observed in a polysaccharide from M. sextelata. Despite the differences in their chemical structures and conformations, both MSP1-1 and MSP1-2 possessed good thermal stability and showed antioxidant activity. This study provides fundamental data on the structure-activity relationships of M. sextelata polysaccharides.
Collapse
|
28
|
Xie L, Huang Z, Qin L, Yu Q, Chen Y, Zhu H, Xie J. Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress. Int J Biol Macromol 2022; 204:103-115. [PMID: 35144010 DOI: 10.1016/j.ijbiomac.2022.01.192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 12/23/2022]
Abstract
The Cyclocarya paliurus polysaccharide (CP) was chemically modified to produce sulfated derivatives (S-CP) and carboxymethylated derivatives (CM-CP). Subsequently, the antioxidant activity, cytoprotective effect and antitumor activity of these derivatives were investigated to establish the relationship between their structure and functional activity. The results found that chemical modifications resulted in remarkable variations in the chemical compositions and apparent structures of CP. S-CP with the highest amount of glucose had the strongest antioxidant capacity to scavenge DPPH• and HO•, but CM-CP was lower than CP in terms of HO• scavenging. More importantly, S-CP and CM-CP more effectively protected RAW264.7 from H2O2-induced damage compared to CP by reducing the secretion of lactate dehydrogenase (LDH), intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), enhancing phagocytosis and superoxide dismutase (SOD) levels, and suppressing abnormal apoptosis. Further experiments showed that the anti-apoptotic effect of S-CP and CM-CP was in intimate association with down-regulation of Caspase-9/3 activities and alleviation of cell cycle arrest in the S phase. In addition, S-CP and CM-CP decreased the cell viability of tumor cells. These findings suggest that the type of functional group plays important roles in the biological function of the derivatives and provide a theoretical basis for the development of novel natural anti-oxidants or low-toxicity anti-tumor drugs.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Haibing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
29
|
Wang X, Zhou X, Wang K, Cao X. Structural characterisation and bioactivity of polysaccharides isolated from fermented Dendrobium officinale. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:280-290. [PMID: 34091920 DOI: 10.1002/jsfa.11356] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/26/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND A polysaccharide was purified in this study, which was acquired from the fermentation broth of Dendrobium officinale Kimura et Migo. We aimed to investigate the structural features and bioactivity of this polysaccharide. RESULTS The polysaccharide was purified and the main polysaccharide fraction (i.e., DOP-1) was obtained. High-performance gel permeation chromatography (HPGPC) revealed that the molecular weight of DOP-1 was 447.48 kDa. Galactose, glucose and mannose were found to be present in DOP-1 via monosaccharide composition analysis, at a ratio of 1:1.79:6.71. Methylation and nuclear magnetic resonance spectroscopic analysis indicated that the backbone of DOP-1 was →4)-α-d-Glcp-(1 → 4)-α-d-Manp-(1 → 4)-α-d-Manp-(1 → 4,6)-α-d-Manp-(1→, and its repeating units were also preliminarily established. In vitro tests proved that DOP-1 not only protects RAW264.7 macrophages from the cytotoxic effect induced by lipopolysaccharide (LPS), but also inhibits cytokines (i.e., interleukin-6 and tumour necrosis factor-α) induced by LPS. DOP-1 demonstrated good scavenging activity in vitro toward 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals, as well as good metal chelating activity. Therefore, DOP-1 has potential antioxidant applications. CONCLUSION The structural characteristics of DOP-1 support its favourable biological activities and lay a strong foundation for further exploration of its structure-activity relationships and activity development, providing experimental data for the development and utilisation of fermentation broth of D. officinale. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xilai Wang
- School of Food Science and Engineering, University of Hainan, Haikou, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, University of Hainan, Haikou, China
| | - Xin Zhou
- School of Food Science and Engineering, University of Hainan, Haikou, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, University of Hainan, Haikou, China
| | - Kai Wang
- School of Food Science and Engineering, University of Hainan, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, China
| | - Xianying Cao
- School of Food Science and Engineering, University of Hainan, Haikou, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, University of Hainan, Haikou, China
| |
Collapse
|
30
|
Liu J, Wu Y, Wang Y, Wu X, Li Y, Gao C, Liu Y, Zhang Q, Cai J, Su Z. Hepatoprotective effect of polysaccharide isolated from Sonneratia apetala fruits on acetaminophen-induced liver injury mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Yang X, Wei S, Lu X, Qiao X, Simal-Gandara J, Capanoglu E, Woźniak Ł, Zou L, Cao H, Xiao J, Tang X, Li N. A neutral polysaccharide with a triple helix structure from ginger: Characterization and immunomodulatory activity. Food Chem 2021; 350:129261. [PMID: 33610845 DOI: 10.1016/j.foodchem.2021.129261] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/08/2023]
Abstract
A neutral ginger polysaccharide fraction (NGP) was isolated from ginger, and its primary structures and immunomodulatory activity were investigated. The results showed that NGP had a low molecular weight of 6305 Da. NGP principally consisted of glucose (93.88%) together with minor levels of galactose (3.27%) and arabinose (1.67%). Besides, results of methylation analysis and 1D/2D NMR spectroscopy demonstrated that NGP was α-glucan which had the main chain of 1,4-linked α-d-Glcp and α-d-Glcp residues branched at C-6 position which was different from the common triple helical β-glucans. NGP also displayed a remarkable immunological activity on the RAW264.7 cells in vitro. It could significantly enhance the proliferation of macrophages without cytotoxicity and increase the production of immune substances (NO, TNF-α, IL-1β and IL-6). The secretion at the concentration of 200 μg/mL was 29.41 μM, 1496.71, 44.30 and 1889.83 pg/mL for each substance, respectively. The results indicated that NGP could be a potential immune agent and might provide meaningful information for further chain conformation and immune mechanism research.
Collapse
Affiliation(s)
- Xiaolong Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Siqing Wei
- Shandong Foreign Trade Vocational College, Tai'an 271018, China
| | - Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| | - Łukasz Woźniak
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02532 Warsaw, Poland.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaozhen Tang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
32
|
Structural differences of polysaccharides from Astragalus before and after honey processing and their effects on colitis mice. Int J Biol Macromol 2021; 182:815-824. [PMID: 33857512 DOI: 10.1016/j.ijbiomac.2021.04.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023]
Abstract
Honey-processed Astragalus is a dosage form of Radix Astragali processed with honey, which exhibits better efficacy of tonifying Qi than the raw product. Polysaccharides are its main water-soluble active components. This work was designed to study the structural differences of homogeneous honey-processed Astragalus polysaccharides (HAPS3a) and Astragalus polysaccharides (APS3a) and their effects on colitis mice. The results showed that HAPS3a (Mw = 2463.5 kDa) and APS3a (Mw = 3373.2 kDa) differed in molecular weight, monosaccharide compositions, glycosidic bonds and degree of branching (DB). Notably, the molar ratios of galactose and galacturonic acid in HAPS3a were 22.66% and 33.24%, while those in APS3a were 11.87% and 49.55%, respectively. The uronic acid residues 1,4-β-GalpA and 1,6-α-GlcpA of the backbone in APS3a were converted into the corresponding neutral residues in HAPS3a after honey processing. The different DB of HAPS3a (15.35%) and APS3a (25.13%) suggested that the chain conformation became smoother. The anti-inflammatory effects on colitis mice revealed that HAPS3a exhibited better effects than APS3a by protecting intestinal mucosa, regulating the expression of cytokines and influencing microbiota diversity. Taken together, the differences in anti-inflammatory activity might be related to structural differences caused by honey processing. Our findings have laid a foundation for the processing mechanism of Astragalus.
Collapse
|
33
|
Li L, Qiu Z, Dong H, Ma C, Qiao Y, Zheng Z. Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from the roots of Arctium lappa L.: A comparison. Int J Biol Macromol 2021; 182:187-196. [PMID: 33836197 DOI: 10.1016/j.ijbiomac.2021.03.177] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
In this work, we comparatively analyzed the structure and antioxidant activities of different polysaccharide fractions from Arctium lappa L. A total of four water-soluble polysaccharide fractions (ALP-1, ALP-2, ALP-3 and ALP-4) were obtained from the roots of Arctium lappa L. They differed in monosaccharide composition, molecular weight and linkage mode. ALP-1 and ALP-2 mainly consisted of fructose, with average molecular weights of 2.676 × 103 and 2.503 × 104 g/mol, respectively. ALP-3 and ALP-4 were mainly composed of fructose, arabinose and galactose, with average molecular weights of 9.709 × 104 and 6.790 × 104 g/mol, respectively. Furthermore, Fourier transform infrared spectrometry, methylation analysis and nuclear magnetic resonance spectroscopy suggested that the main polysaccharide ALP-1 had a linear chain of (1 → 2)-linked β-D-Fructofuranosyl backbone (n ≈ 15) linked to a terminal (1 → 2)-linked α-d-Glucopyranosyl at the non-reducing end. All five polysaccharides displayed high antioxidant ability, especially ALP-4 in H2O2-induced HepG2 cell model and ALP-1 in metronidazole [MET]-induced zebrafish model. These findings provided comparative information on the structure and biological activity of different burdock polysaccharides and highlighted their potential as antioxidants in functional foods.
Collapse
Affiliation(s)
- Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, PR China
| | - Chunxia Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, PR China
| | - Yiteng Qiao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China.
| |
Collapse
|
34
|
Song X, Cui W, Gao Z, Zhang J, Jia L. Structural characterization and amelioration of sulfated polysaccharides from Ganoderma applanatum residue against CCl 4-induced hepatotoxicity. Int Immunopharmacol 2021; 96:107554. [PMID: 33812257 DOI: 10.1016/j.intimp.2021.107554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022]
Abstract
Natural polysaccharides and their derivatives have attracted academic attention due to their extensive physiological activities. However, the hepatoprotective effects against carbon tetrachloride (CCl4) toxicity have not been well elucidated. The objectives of this study were to characterize the structural properties of sulfated Ganoderma applanatum residue polysaccharides (SGRP) and to evaluate their inhibitory effects on liver fibrosis caused by oxidative stress and inflammation. Our in vivo study showed that SGRP was hepatoprotective in CCl4-induced chronic liver injury mice. It reduced the histopathological damages, down-regulated CYP2E1 (cytochrome P450 2E1) expression, reduced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, improved the anti-oxidative and anti-inflammatory properties, inhibited TLR4/NF-κB signaling pathway, and reduced the release of inflammatory cytokines. The structural studies indicated that SGRP is a heteropolysaccharide with 7.8% sulfur content and α-linked residue. Our study projects SGRP as a potential candidate in anti-fibrosis treatment by using it as a food supplement or in medicines produced by pharmaceutical industries.
Collapse
Affiliation(s)
- Xinling Song
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Weijun Cui
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Zheng Gao
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
35
|
Meng-Zhao, Yi-Han, Li J, Qi-An, Ye X, Xiang-Li, Zhao Z, Yang-Zhang, Jing-He, Qihuan, Deng, Wang W. Structural characterization and antioxidant activity of an acetylated Cyclocarya paliurus polysaccharide (Ac-CPP 0.1). Int J Biol Macromol 2021; 171:112-122. [PMID: 33418037 DOI: 10.1016/j.ijbiomac.2020.12.201] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the primary structure of an acetylated Cyclocarya paliurus polysaccharide (Ac-CPP0.1) and its protective effect on H2O2-treated dendritic cells. The backbone of Ac-CPP0.1 was →3)-β-D-Galp-(1→, with some branches α-L-Araf-(1→ residues at O-6 and O-5, β-D-Galp-(1→ and 3,5,6)-β-D-Galf-(1 residues at O-4 and acetyl groups were substituted at the O-2 and O-6 positions of 3)-β-D-Galp-(1 residues. The CPP0.1 and Ac-CPP0.1 significantly increased the levels of superoxide dismutase, glutathione peroxidase and catalase on H2O2-treated dendritic cells. Meanwhile, both CPP0.1 and Ac-CPP0.1 up-regulated the expression of Nrf2 (NF-E2-related factor 2) and down-regulated the Keap1 (Kelch-like ECH-associated protein-1), but Ac-CPP0.1 had a better effect on antioxidant capacity. These results indicated that potential application of Ac-CPP0.1 as an antioxidant agent.
Collapse
Affiliation(s)
- Meng-Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi-Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing'en Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi-An
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ximei Ye
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiang-Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zitong Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yang-Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing-He
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qihuan
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Deng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
36
|
Characterization of a novel polysaccharide from Moutan Cortex and its ameliorative effect on AGEs-induced diabetic nephropathy. Int J Biol Macromol 2021; 176:589-600. [PMID: 33581205 DOI: 10.1016/j.ijbiomac.2021.02.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate the structure of a new heteropolysaccharide (MC-Pa) from Moutan Cortex (MC), and its protection on diabetic nephropathy (DN). The MC-Pa composed of D-glucose and L-arabinose (3.31:2.25) was characterized with homogeneous molecular weight of 1.64 × 105 Da, and the backbone was 4)-α-D-Glcp-(1 → 5-α-L-Araf-(1 → 3,5-α-L-Araf-(1→, branched partially at O-3 with α-L-Araf-(1 → residue with methylated-GC-MS and NMR. Furthermore, MC-Pa possessed strong antioxidant activity in vitro and inhibited the production of ROS caused by AGEs. In vivo, MC-Pa could alleviate mesangial expansion and tubulointerstitial fibrosis of DN rats in histopathology and MC-Pa could decrease significantly the serum levels of AGEs and RAGE. Western blot and immunohistochemical analysis showed that MC-Pa can reduce the expression of main protein (FN and Col IV) of extracellular-matrix, down-regulate the production of inflammatory factors (ICAM-1 and VCAM-1), and therefore regulate the pathway of TGF-β1. The above indicated that MC-Pa has an improving effect on DN.
Collapse
|
37
|
Huang Q, He W, Khudoyberdiev I, Ye CL. Characterization of polysaccharides from Tetrastigma hemsleyanum Diels et Gilg Roots and their effects on antioxidant activity and H 2O 2-induced oxidative damage in RAW 264.7 cells. BMC Chem 2021; 15:9. [PMID: 33546740 PMCID: PMC7866644 DOI: 10.1186/s13065-021-00738-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
This work presents an investigation on the composition and structure of polysaccharides from the roots of Tetrastigma hemsleyanum (THP) and its associated antioxidant activity. It further explores the protective effect of THP on RAW264.7 cells against cytotoxicity induced by H2O2. Ion chromatography (IC) revealed that THP contained glucose, arabinose, mannose, glucuronic acid, galactose and galacturonic acid, in different molar ratios. Furthermore, gel permeation chromatography-refractive index-multiangle laser light scattering (GPC-RI-MALS) was employed to deduce the relative molecular mass (Mw) of the polysaccharide, which was 177.1 ± 1.8 kDa. Fourier transform infrared spectroscopy (FT-IR) and Congo red binding assay highlighted that the THP had a steady α-triple helix conformation. Similarly, assays of antioxidant activity disclosed that THP had reasonable concentration-dependent hydroxyl radical and superoxide radical scavenging activities, peroxidation inhibition ability and ferrous ion chelating potency, in addition to a significant 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity. Moreover, THP could protect RAW264.7 cells against H2O2-induced cytotoxicity by decreasing intracellular ROS levels, reducing catalase (CAT) and superoxide dismutase (SOD) activities, increasing lactate dehydrogenase (LDH) activity and increment in malondialdehyde (MDA) level. Data retrieved from the in vitro models explicitly established the antioxidant capability of polysaccharides from T. hemsleyanum root extracts.
Collapse
Affiliation(s)
- Qi Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Wen He
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Ilkhomjon Khudoyberdiev
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Chun-Lin Ye
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China.
| |
Collapse
|
38
|
Characterization and Hepatoprotections of Ganoderma lucidum Polysaccharides against Multiple Organ Dysfunction Syndrome in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9703682. [PMID: 33613827 PMCID: PMC7876828 DOI: 10.1155/2021/9703682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/18/2020] [Accepted: 01/17/2021] [Indexed: 01/14/2023]
Abstract
Background The liver is one of the most commonly affected organs in multiple organ dysfunction syndrome (MODS). In recent years, there have been many studies on Ganoderma lucidum polysaccharides (GLP), but the role of GLP in MODS is still unclear. The purpose of this work was to explore the antioxidant, anti-inflammatory, and protective effects of GLP on the liver in MODS model mice. Methods The characteristic properties of GLP were processed by physicochemical analysis. The MODS models were successfully established with intraperitoneal injection of zymosan in Kunming strain mice. The antioxidant, anti-inflammatory, and hepatoprotective effects of GLP were processed both in vitro and in vivo by evaluating the oxidative parameters, inflammatory factors, and liver pathological observations. Results The characterization analysis revealed that GLP was a pyranose mainly composed of glucose with the molecular weights (Mw) of 8309 Da. The experimental results proved that GLP had potential hepatoprotection possibly by improving the antioxidant status (scavenging excessive oxygen radicals, increasing the antioxidant enzyme activities, and reducing the lipid peroxide), alleviating the inflammatory response (reducing the inflammatory factor levels), and guaranteeing the liver functions. Conclusions This research suggested that GLP had the potential to be developed as a natural medicine for the treatment of multiple organ failure.
Collapse
|
39
|
Meng-Zhao, Yi-Han, Li J, Qi-An, Ye X, Xiang-Li, Zhao Z, Yang-Zhang, Jing-He, Qihuan, Deng, Wang W. Structural characterization and antioxidant activity of an acetylated Cyclocarya paliurus polysaccharide (Ac-CPP0.1). Int J Biol Macromol 2021. [DOI: https://doi.org/10.1016/j.ijbiomac.2020.12.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Zhang Y, Li X, Yang Q, Zhang C, Song X, Wang W, Jia L, Zhang J. Antioxidation, anti-hyperlipidaemia and hepatoprotection of polysaccharides from Auricularia auricular residue. Chem Biol Interact 2020; 333:109323. [PMID: 33212049 DOI: 10.1016/j.cbi.2020.109323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
As hyperlipidemia was a pathological progress by lipid dysfunctions, the present object was to investigate the hypolipidemic and hepatoprotective effects of Auricularia auricular residue polysaccharides (RPS) against HFE (high-fat emulsion) toxicities in mice. The structure analysis showed that the RPS was pyranose-polysaccharides mainly composed of glucose with the weight-average molecular weight of 2.00 × 105 Da. The in vivo experiments demonstrated that the RPS had potential hepatoprotections by enhancing the antioxidant and anti-hyperlipidaemia status, and could inhibit the increasing body weights. Besides, the RPS could improve the glucose utilization with the oral glucose tolerance test (120 min) of 5.04 ± 0.12 mmol/L at the dose of 400 mg/kg bw. The results in present study demonstrated that RPS could be used as a functional foods and natural medicines against the HFE-induced hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - XuePing Li
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Qihang Yang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Chen Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Tai'an, 271018, PR China
| | - Xinling Song
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Wenshuai Wang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
41
|
Yuan P, Aipire A, Yang Y, Wei X, Fu C, Zhou F, Mahabati M, Li J, Li J. Comparison of the structural characteristics and immunostimulatory activities of polysaccharides from wild and cultivated Pleurotus feruleus. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Purification, structural characterization, and antioxidant activity of the COP-W1 polysaccharide from Codonopsis tangshen Oliv. Carbohydr Polym 2020; 236:116020. [DOI: 10.1016/j.carbpol.2020.116020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/16/2023]
|
43
|
Mohan K, Muralisankar T, Uthayakumar V, Chandirasekar R, Revathi N, Ramu Ganesan A, Velmurugan K, Sathishkumar P, Jayakumar R, Seedevi P. Trends in the extraction, purification, characterisation and biological activities of polysaccharides from tropical and sub-tropical fruits - A comprehensive review. Carbohydr Polym 2020; 238:116185. [PMID: 32299552 DOI: 10.1016/j.carbpol.2020.116185] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/06/2020] [Accepted: 03/14/2020] [Indexed: 01/04/2023]
Abstract
Tropical and sub-tropical fruits are tremendous sources of polysaccharides (PSs), which are of great interest in the human welfare system as natural medicines, food and cosmetics. This review paper aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of fruit polysaccharides (FPSs). The chemical structure and biological activities, such as immunomodulatory, anti-cancer, anti-oxidant, anti-inflammatory, anti-viral, anti-coagulant and anti-diabetic effects, of PSs extracted from 53 various fruits were compared and discussed. With this wide coverage, a total of 172 scientific articles were reviewed and discussed. This comprehensive survey from previous studies suggests that the FPSs are non-toxic and highly biocompatible. In addition, this review highlights that FPSs might be excellent functional foods as well as effective therapeutic drugs. Finally, the future research advances of FPSs are also described. The content of this review will promote human wellness-based food product development in the future.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India.
| | - Thirunavukkarasu Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | | | | | - Nagarajan Revathi
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India
| | - Abirami Ramu Ganesan
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, 5529, Fiji
| | - Kalamani Velmurugan
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, 641029, India
| | - Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Rajarajeswaran Jayakumar
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Palaniappan Seedevi
- Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636011, India
| |
Collapse
|
44
|
Li C, Peng D, Huang W, Ou X, Song L, Guo Z, Wang H, Liu W, Zhu J, Yu R. Structural characterization of novel comb-like branched α-d-glucan from Arca inflata and its immunoregulatory activities in vitro and in vivo. Food Funct 2020; 10:6589-6603. [PMID: 31552984 DOI: 10.1039/c9fo01395d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the current study, we identified and characterized a novel water-soluble polysaccharide (JNY2PW) with significant immunoregulatory effects and no apparent overall toxicity. JNY2PW, which was isolated from Arca inflata, belongs to a novel class of α-glucans with a molecular weight of 5.25 × 107 Da. Its backbone is composed of (1 → 4)-linked α-d-glucopyranosyl residues and a single (1 → 6)-α-d-glucopyranosyl branched unit for every five α-d-glucopyranosyl residues, showing a comb-like α-d-glucan with intensive short branches. Using in vitro models, we demonstrated that JNY2PW exerts significant immunoregulatory effects by promoting the production of nitric oxide, interleukin-6, and tumor necrosis factor α. The pathway involves the activation of the TLR4-MAPK/NF-κB signaling cassette in murine RAW264.7 macrophages. In an in vivo immunosuppressive mice model induced by cyclophosphamide treatment, we found that the JNY2PW treatment produced good antitumor activity, comparable to that of chemotherapy by doxycycline in murine breast carcinoma 4T1-bearing mice, but devoid of any observable side effects (e.g. weight loss) related with doxycycline treatment. The anti-tumor mechanism of JNY2PW may involve an overall enhancement in the immune responses of the mice to tumors. These results indicate that JNY2PW possesses potential as an adjuvant to existing chemotherapy and current immune-oncology treatment.
Collapse
Affiliation(s)
- Chunlei Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mutaillifu P, Bobakulov K, Abuduwaili A, Huojiaaihemaiti H, Nuerxiati R, Aisa HA, Yili A. Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra. Int J Biol Macromol 2020; 144:751-759. [DOI: 10.1016/j.ijbiomac.2019.11.245] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022]
|
46
|
Purification and structural characterization of polysaccharides isolated from Auricularia cornea var. Li. Carbohydr Polym 2020; 230:115680. [DOI: 10.1016/j.carbpol.2019.115680] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
|
47
|
Aipire A, Yuan P, Aimaier A, Cai S, Mahabati M, Lu J, Ying T, Zhang B, Li J. Preparation, Characterization, and Immuno-Enhancing Activity of Polysaccharides from Glycyrrhiza uralensis. Biomolecules 2020; 10:biom10010159. [PMID: 31963790 PMCID: PMC7022281 DOI: 10.3390/biom10010159] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/04/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Glycyrrhiza uralensis is a Chinese herbal medicine with various bioactivities. Three fractions (GUPS-I, GUPS-II and GUPS-III) of G. uralensis polysaccharides (GUPS) were obtained with molecular weights of 1.06, 29.1, and 14.9 kDa, respectively. The monosaccharide compositions of GUPS-II and GUPS-III were similar, while that of GUPS-I was distinctively different. The results of scanning electron microscopy, FT-IR, and NMR suggested that GUPS-II and GUPS-III were flaky with a smooth surface and contained α- and β-glycosidic linkages, while GUPS-I was granulated and contained only α-glycosidic linkages. Moreover, GUPS-II and GUPS-III exhibited better bioactivities on the maturation and cytokine production of dendritic cells (DCs) in vitro than that of GUPS-I. An in vivo experiment showed that only GUPS-II significantly enhanced the maturation of DCs. These results indicate that GUPS-II has the potential to be used in combination with cancer immunotherapy to enhance the therapeutic effect.
Collapse
Affiliation(s)
- Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Alimu Aimaier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Shanshan Cai
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Mahepali Mahabati
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Jun Lu
- School of Science, and School of Interprofessional Health Studies, Faculty of Health & Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand;
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
- Correspondence: ; Tel.: +86-991-858-3259; Fax: +86-991-858-3517
| |
Collapse
|
48
|
Zhang D, Wang C, Hou X, Yan C. Structural characterization and osteoprotective effects of a polysaccharide purified from Achyranthes bidentata. Int J Biol Macromol 2019; 139:1063-1073. [DOI: 10.1016/j.ijbiomac.2019.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|
49
|
Yuan F, Gao Z, Liu W, Li H, Zhang Y, Feng Y, Song X, Wang W, Zhang J, Huang C, Jia L. Characterization, Antioxidant, Anti-Aging and Organ Protective Effects of Sulfated Polysaccharides from Flammulina velutipes. Molecules 2019; 24:molecules24193517. [PMID: 31569331 PMCID: PMC6803911 DOI: 10.3390/molecules24193517] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
As an irreversible and complex degenerative physiological process, the treatment for aging seems strategically necessary, and polysaccharides play important roles against aging owing to their abundant bioactivities. In this paper, the antioxidant and anti-aging activities of Flammulina velutipes polysaccharides (FPS) and its sulfated FPS (SFPS) on d-galactose-induced aging mice were investigated. The in vitro antioxidant activities demonstrated that SFPS had strong reducing power and superior scavenging effects on 2, 2-diphenylpicrylhydrazyl (DPPH), hydroxyl radicals and the chelating activities of Fe2+. The in vivo animal experiments manifested that the SFPS showed superior antioxidant and protective abilities against the d-galactose-induced aging by increasing the antioxidant enzyme activities, decreasing lipid peroxidation, improving the inflammatory response and ameliorating the anile condition of mice. Furthermore, the structural analysis of SFPS was investigated through FT-IR, NMR, and HPLC analysis, and the results indicated that SFPS was a homogeneous heteropolysaccharide with a weight-average molecular weight of 2.81 × 103 Da. Furthermore, SFPS has also changed in characteristic functional groups and monosaccharide composition compared to FPS. These results suggested that sulfated modification could enhance the anti-oxidation, anti-aging and protective activities of F. velutipes polysaccharides, which may provide references for the development of functional foods and natural medicines.
Collapse
Affiliation(s)
- Fangfang Yuan
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Jinan 250100, China.
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Zheng Gao
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Wenbo Liu
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Huaping Li
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Yiwen Zhang
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Yanbo Feng
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Xinling Song
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Wenshuai Wang
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Jianjun Zhang
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Chunyan Huang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Jinan 250100, China.
| | - Le Jia
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| |
Collapse
|
50
|
Antioxidant and Hypolipidemic Activities of Acid-Depolymerised Exopolysaccharides by Termitomyces albuminosus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8915272. [PMID: 31583046 PMCID: PMC6754963 DOI: 10.1155/2019/8915272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
The acid-depolymerised exopolysaccharides (ADES) of Termitomyces albuminosus were obtained, and the major fraction of ADES1 was isolated and purified by DEAE-52 cellulose anion-exchange column chromatography. Physicochemical characterizations showed that ADES1 was an α- and a β-configuration with the molecular weight of 2.43 kDa, containing (1→3, 4)-linked-Glcp, (1→4)-linked-D-Glcp, (1→3)-linked-D-Xylp, (1→4)-linked-D-Manp, T-Glcp, (1→6)-linked-D-Galp, and (1→4)-linked-L-Arap. The in vivo assays showed that ADES1 could reduce lipid levels in the serum and liver, decrease serum enzyme activities, and improve antioxidant enzyme activities and p-AMPKα expressions in hyperlipidemic mice, which were also confirmed by histopathological observations. These data indicated that ADES1 might be considered as a novel substance to treat and prevent hyperlipidemia and as a hepatoprotective agent.
Collapse
|