1
|
Yu Q, Li W, Long J, Liang M, Jiang L, Lin X, He D, Wu Z, Xia X. Extraction, characterization, and biological activities of a novel polysaccharide extract from Fructus caryophylli. J Nat Med 2025:10.1007/s11418-025-01891-w. [PMID: 40121584 DOI: 10.1007/s11418-025-01891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
This study showed that Polysaccharide-rich Fructus caryophylli extracts (FCE) were prepared for investigation through hot water extraction. Glucose was found to be the significant monosaccharide by chemical analysis, which included Fourier transform-infrared (FT-IR), high-performance liquid chromatography (HPLC), and high-performance gel permeation chromatography (HPGPC). The average molecular weight of FCE was ranged from 15.19 and 208.53 kDa. The bioactivities of FCE, including antioxidant, whitening, tissue regeneration, and anti-wrinkle properties, were evaluated using both in vitro and in vivo tests. In vitro antioxidant experiments demonstrated scavenging of 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl radicals, and strong reducing power. FCE treatment effectively reduced oxidative stress in an in vivo antioxidant experiment involving zebrafish embryos exposed to a nonlethal dose of LPS, demonstrating its potent antioxidant potential. Furthermore, FCE exhibited promise in decreasing tyrosinase activity and total melanin content in zebrafish embryos, while promoting the relative expression levels of the elastin-regulating gene Eln1 RNA and the collagen-related gene col1a1a, thereby facilitating the positive stimulation of wound healing. This research provides valuable insights into the development of FCE as a novel functional raw material for applications in the food and cosmetics industries.
Collapse
Affiliation(s)
- Qingtao Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Infinitus (China) Company Ltd., Guangzhou, 510405, China
| | - Wenzhi Li
- Infinitus (China) Company Ltd., Guangzhou, 510405, China
| | - Jieyi Long
- Infinitus (China) Company Ltd., Guangzhou, 510405, China
| | - Ming Liang
- Infinitus (China) Company Ltd., Guangzhou, 510405, China
| | - Lingli Jiang
- Infinitus (China) Company Ltd., Guangzhou, 510405, China
| | - Xiaoliang Lin
- Infinitus (China) Company Ltd., Guangzhou, 510405, China
| | - Dongqing He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhuoyan Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300000, China.
| |
Collapse
|
2
|
Li N, Wu X, Yin Q, Dong Z, Zheng L, Qian Y, Sun Y, Chen Z, Zhai K. Extraction, Identification, and Antioxidant Activity of Flavonoids from Hylotelephium spectabile (Boreau) H. Ohba. Foods 2024; 13:2652. [PMID: 39272417 PMCID: PMC11394653 DOI: 10.3390/foods13172652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/15/2024] Open
Abstract
The extraction of total flavonoids from Hylotelephium spectabile (Boreau) H. Ohba (H. spectabile) leaves was studied through the use of a double enzyme-assisted ultrasonic method, and the extraction process was optimized using the Box-Behnken design. Eight different macroporous resins were screened for purification in single-factorial experiments, and the flavonoid compounds in the extract of H. spectabile leaves were identified using HPLC-MS. Through the evaluation of the total reducing capacity and capacity for reducing 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH), hydroxyl radicals (·OH), and 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), the in vitro antioxidant activities of the crude extracts of the total flavonoids and purified total flavonoids of H. spectabile leaves were investigated. The results showed that the most efficient conditions for flavonoid extraction were an ultrasonic extraction time of 60 min, an ethanol concentration of 35%, a liquid-to-material ratio of 20:1 mL/g, and an amount of enzyme (cellulose/pectinase = 1:1) of 1.5%, forming H. spectabile powder. Under these conditions, the total flavonoid extraction rate in the H. spectabile leaf extract was 4.22%. AB-8 resin showed superior performance in terms of purification, and the optimal adsorption and desorption times were 1.5 h and 3 h, respectively. The recommended parameters for purification included a liquid volume of 5.5 BV, a flow rate of 1.2 BV/min, a pH of 5, and a concentration of 0.8 mg/mL. The observed order for reducing capacity was ascorbic acid (VC) > rutin > purified total flavonoids > crude extract of total flavonoids. The purified total flavonoid extract from H. spectabile showed a good scavenging ability against DPPH, ·OH, and ABTS·+, suggesting strong antioxidant activity. Therefore, this study can serve as technical support and reference data for the further development and utilization of H. spectabile resources.
Collapse
Affiliation(s)
- Na Li
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Xiao Wu
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou 234000, China
| | - Qin Yin
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou 234000, China
| | - Zeng Dong
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou 234000, China
| | - Lele Zheng
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Yihui Qian
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Yulu Sun
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Ziping Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou 234000, China
| |
Collapse
|
3
|
Wu X, Li N, Dong Z, Yin Q, Zhou T, Zhu L, Yan H, Chen Z, Zhai K. Extraction, Purification, Sulfated Modification, and Biological Activities of Dandelion Root Polysaccharides. Foods 2024; 13:2393. [PMID: 39123584 PMCID: PMC11311827 DOI: 10.3390/foods13152393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, polysaccharides were extracted at a rate of 87.5% ± 1.5% from native dandelion roots, and the dandelion root polysaccharides (DRPs) were then chemically modified to obtain sulfated polysaccharides (SDRPs) with a degree of substitution of 1.49 ± 0.07. The effects of modification conditions, physicochemical characterizations, structural characteristics, antioxidant properties, hypoglycemic activity, and proliferative effects on probiotics of DRP derivatives were further investigated. Results showed that the optimum conditions for sulfation of DRPs included esterification reagents (concentrated sulfuric acid: n-butanol) ratio of 3:1, a reaction temperature of 0 °C, a reaction time of 1.5 h, and the involvement of 0.154 g of ammonium sulfate. The DRPs and SDRPs were composed of six monosaccharides, including mannose, glucosamine, rhamnose, glucose, galactose, and arabinose. Based on infrared spectra, the peaks of the characteristic absorption bands of S=O and C-O-S appeared at 1263 cm-1 and 836 cm-1. Compared with DRPs, SDRPs had a significantly lower relative molecular mass and a three-stranded helical structure. NMR analysis showed that sulfated modification mainly occurred on the hydroxyl group at C6. SDRPs underwent a chemical shift to higher field strength, with their characteristic signal peaking in the region of 1.00-1.62 ppm. Scanning electron microscopy (SEM) analysis indicated that the surface morphology of SDRPs was significantly changed. The structure of SDRPs was finer and more fragmented than DRPs. Compared with DRPs, SDRPs showed better free radical scavenging ability, higher Fe2+chelating ability, and stronger inhibition of α-glucosidase and α-amylase. In addition, SDRPs had an excellent promotional effect on the growth of Lactobacillus plantarum 10665 and Lactobacillus acidophilus. Therefore, this study could provide a theoretical basis for the development and utilization of DRPs.
Collapse
Affiliation(s)
- Xiao Wu
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (X.W.); (N.L.); (Z.D.); (Q.Y.); (T.Z.); (L.Z.); (H.Y.)
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou 234000, China
| | - Na Li
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (X.W.); (N.L.); (Z.D.); (Q.Y.); (T.Z.); (L.Z.); (H.Y.)
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Zeng Dong
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (X.W.); (N.L.); (Z.D.); (Q.Y.); (T.Z.); (L.Z.); (H.Y.)
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou 234000, China
| | - Qin Yin
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (X.W.); (N.L.); (Z.D.); (Q.Y.); (T.Z.); (L.Z.); (H.Y.)
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou 234000, China
| | - Tong Zhou
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (X.W.); (N.L.); (Z.D.); (Q.Y.); (T.Z.); (L.Z.); (H.Y.)
| | - Lixiang Zhu
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (X.W.); (N.L.); (Z.D.); (Q.Y.); (T.Z.); (L.Z.); (H.Y.)
| | - Hanxi Yan
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (X.W.); (N.L.); (Z.D.); (Q.Y.); (T.Z.); (L.Z.); (H.Y.)
| | - Ziping Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (X.W.); (N.L.); (Z.D.); (Q.Y.); (T.Z.); (L.Z.); (H.Y.)
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou 234000, China
| |
Collapse
|
4
|
Ling N, Tian H, Wang Q, Gao M, Xu G, Sun Y, Song D, Li W, Ji C. Advance in Hippophae rhamnoides polysaccharides: Extraction, structural characteristics, pharmacological activity, structure-activity relationship and application. Int J Biol Macromol 2024; 270:132420. [PMID: 38763246 DOI: 10.1016/j.ijbiomac.2024.132420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Hippophae rhamnoides (Sea buckthorn) is an excellent medicinal and edible plant owing to its high nutritional and health-promoting properties. As an important bioactive component, H. rhamnoides polysaccharides (HRPs) have aroused wide attention due to their various pharmacological activities, including hepatoprotective, immuno-modulatory, anti-inflammatory, anti-oxidant, anti-tumor, hypoglycemic, anti-obesity, and so on. Nevertheless, the development and utilization of HRP-derived functional food and medicines are constrained to a lack of comprehensive understanding of the structure-activity relationship, application, and safety of HRPs. This review systematically summarizes the advancements on the extraction, purification, structural characteristics, pharmacological activities and mechanisms of HRPs. The structure-activity relationship, safety evaluation, application, as well as the shortcomings of current research and promising prospects are also highlighted. This article aims to offer a comprehensive understanding of HRPs and lay a groundwork for future research and utilization of HRPs as multifunctional biomaterials and therapeutic agents.
Collapse
Affiliation(s)
- Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China.
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China
| | - Qiyao Wang
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China
| | - Guiguo Xu
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China
| | - Yuan Sun
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China
| | - Dongxue Song
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China
| | - Wenlan Li
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China.
| | - Chenfeng Ji
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin 150076, China.
| |
Collapse
|
5
|
Li Y, Zhao X, Wang J, Yu Q, Ren J, Jiang Z, Jiao L. Characterization and anti-aging activities of polysaccharide from Rana dybowskii Guenther. Front Pharmacol 2024; 15:1370631. [PMID: 38606177 PMCID: PMC11007062 DOI: 10.3389/fphar.2024.1370631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction: Rana dybowskii Guenther (RDG), as a traditional Chinese medicine, has been shown to have antioxidant effects. However, studies on the anti-aging effect of RDG are still limited. Methods: In this study, we prepared polysaccharides from the skin of RDG (RDGP) by hot water extraction, alcohol precipitation, ion-exchange chromatography and gel chromatography. The proteins were removed using the Sevage method in combination with an enzymatic method. The structural features were analyzed using high-performance gel permeation chromatography, β-elimination reaction and Fourier transform infrared spectra. The anti-aging effect of RDGP was investigated by using D-Gal to establish an aging model in mice, and pathological changes in the hippocampus were observed under a microscope. Results: We obtained the crude polysaccharide DGP from the skin of RDG, with a yield of 61.8%. The free protein was then removed by the Sevage method to obtain DGPI and deproteinated by enzymatic hydrolysis combined with the Sevage method to further remove the bound protein to obtain the high-purity polysaccharide DGPII. Then, DGPIa (1.03 × 105 Da) and DGPIIa (8.42 × 104 Da) were obtained by gel chromatography, monosaccharide composition analysis showed that they were composed of Man, GlcA, GalNAc, Glc, Gal, Fuc with molar ratios of 1: 4.22 : 1.55: 0.18 : 8.05: 0.83 and 0.74 : 1.78: 1: 0.28: 5.37 : 0.36, respectively. The results of the β-elimination reaction indicated the presence of O-glycopeptide bonds in DGPIa. The Morris water maze test indicated that mice treated with DGPIIa exhibited a significantly shorter escape latency and increased time spent in the target quadrant as well as an increase in the number of times they traversed the platform. Pathologic damage to the hippocampus was alleviated in brain tissue stained with hematoxylin-eosin. In addition, DGPIIa enhanced the activities of SOD, CAT, and GSH-Px and inhibited the level of MDA in the serum and brain tissues of aging mice. Discussion: These results suggest that RDGP has potential as a natural antioxidant and provide useful scientific information for anti-aging research.
Collapse
Affiliation(s)
- Yiping Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuyan Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- The Affiliated Hospital Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qi Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziye Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Li F, Fan H, Sun Q, Di Y, Xia H. Effects of Medium Additives on the Mycelial Growth and Polysaccharide Biosynthesis in Submerged Culture of Bjerkandera fumosa. Molecules 2024; 29:422. [PMID: 38257335 PMCID: PMC10818688 DOI: 10.3390/molecules29020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Medium additives have been shown to affect the synthesis of active products in fungi. This study investigated the effects of corn stalk, poplar sawdust, Tween-80, and oleic acid on mycelial biomass and physicochemical properties, as well as the bioactivity of polysaccharides, including exopolysaccharides (EPS) and intracellular polysaccharides (IPS), in the submerged culture of Bjerkandera fumosa. Results showed that the addition of corn stalk or poplar sawdust increased the production of EPS but decreased the production of IPS; Tween-80 had less effect on the production of EPS and IPS; and oleic acid stimulated polysaccharide production significantly. Polysaccharide property analysis showed that the addition of corn stalk or poplar sawdust promoted the production of high-molecular-weight components in polysaccharides and changed the monosaccharide composition of polysaccharides, as well as increased the mannose, glucuronic acid, and xylose contents of IPS. Tween-80 and oleic acid also changed the molecular weight distribution of polysaccharides but only slightly affected the composition of monosaccharides. The bioactivity assay indicated that the polysaccharides obtained by adding corn stalk possessed high hydroxyl radical scavenging and antitumor activities. The effect of poplar sawdust was slightly weaker than that of corn stalk. EPS and IPS obtained from a culture with Tween-80 and oleic acid possessed low antioxidant activity. Moreover, their antitumor activity was improved and lost, respectively. The results obtained in this work are useful for improving the understanding of the optimization and regulation of bioactive polysaccharide production in the submerged culture of B. fumosa.
Collapse
Affiliation(s)
| | | | | | | | - Hongmei Xia
- Engineering Research Center of Glycoconjugates Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (F.L.); (H.F.); (Q.S.); (Y.D.)
| |
Collapse
|
7
|
Qi X, Lu X, Han Y, Xing Y, Zheng Y, Cui C. Ginseng polysaccharide reduces autoimmune hepatitis inflammatory response by inhibiting PI3K/AKT and TLRs/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154859. [PMID: 37209603 DOI: 10.1016/j.phymed.2023.154859] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ginseng polysaccharides (GP) have been found to exhibit significant immune regulatory effects, making them a promising candidate for treating immune-related diseases. However, their mechanism of action in immune liver injury is not yet clear. The innovation of this study lies in exploring the mechanism of action of ginseng polysaccharides (GP) in immune liver injury. While GP has been previously identified for its immune regulatory effects, this study aims to provide a clearer understanding of its therapeutic potential for immune-related liver diseases. PURPOSE The purpose of this study is to characterize low molecular weight gingeng polysaccharides (LGP), investigate their effect on ConA-induced autoimmune hepatitis (AIH), and identify their potential molecular mechanisms. METHODS LGP was extracted and purified using water-alcohol precipitation, DEAE-52 cellulose column, and Sephadex G200. And its structure was analyzed. It was then evaluated for anti-inflammatory and hepatoprotective effects in ConA-induced cells and mice, assessing cellular viability and inflammation with Cell Counting Kit-8 (CCK-8), Reverse Transcription-polymerase Chain Reaction (RT-PCR), and Western Blot, and hepatic injury, inflammation, and apoptosis with various biochemical and staining methods. RESULTS LGP is a polysaccharide composed of glucose (Glu), galactose (Gal), and arabinose (Ara), with a molar ratio of 12.9:1.6:1.0. LGP has a low crystallinity amorphous powder structure and is free from impurities. LGP enhances cell viability and reduces inflammatory factors in ConA-induced RAW264.7 cells and inhibits inflammation and hepatocyte apoptosis in ConA-induced mice. LGP inhibits Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Toll-like receptors/Nuclear factor kappa B (TLRs/NF-κB) signaling pathways in vitro and in vivo to treat AIH. CONCLUSIONS LGP was successfully extracted and purified, exhibiting potential as a treatment for ConA-induced autoimmune hepatitis due to its ability to inhibit the PI3K/AKT and TLRs/NF-κB signaling pathways and protect liver cells from damage.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, School of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xintong Lu
- Department of Food Processing and Safety, College of Agricultural, Yanbian University, Yanji 133002, Jilin, China
| | - Yudi Han
- Food Science and Engineering, Convergence College, Yanbian University, Yanji 133002, Jilin, China
| | - Yibin Xing
- Department of Food Processing and Safety, College of Agricultural, Yanbian University, Yanji 133002, Jilin, China
| | - Yan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, School of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, School of Pharmacy, Yanbian University, Yanji 133002, Jilin, China; Department of Food Processing and Safety, College of Agricultural, Yanbian University, Yanji 133002, Jilin, China; Food Science and Engineering, Convergence College, Yanbian University, Yanji 133002, Jilin, China.
| |
Collapse
|
8
|
Qi X, Sun X, Wang M, Wang M, Qi Z, Cui C. Ginseng polysaccharides ameliorate abnormal lipid metabolism caused by acute alcoholic liver injury by promoting autophagy. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education Yanbian University Yanji China
| | - Xihan Sun
- Food Science and Engineering, Agricultural College Yanbian University Yanji China
| | - Muyao Wang
- Food Processing and Safety, Agricultural College Yanbian University Yanji China
| | - Mei Wang
- Dalian Academy of Agricultural Sciences Dalian China
| | - Zhanwen Qi
- Yanbian Han Gongfang Health Products Co., Ltd. Yanji China
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education Yanbian University Yanji China
- Food Science and Engineering, Agricultural College Yanbian University Yanji China
- Food Processing and Safety, Agricultural College Yanbian University Yanji China
| |
Collapse
|
9
|
Polysaccharides of Chinese bayberry pomace wine: Structural characteristics, antioxidant activity and influence on the bayberry wine. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
An F, Ren G, Wu J, Cao K, Li M, Liu Y, Liu Y, Hu X, Song M, Wu R. Extraction, purification, structural characterization, and antioxidant activity of a novel polysaccharide from Lonicera japonica Thunb. Front Nutr 2022; 9:1035760. [PMID: 36386958 PMCID: PMC9664063 DOI: 10.3389/fnut.2022.1035760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
A novel water-soluble polysaccharide (HEP-4) with a molecular weight of 1.98 × 105Da was extracted from honeysuckle. Structural characterization was performed using high-performance liquid chromatography (HPLC), gas chromatography, Fourier transform-infrared (FT-IR) spectrum, nucleus magnetic resonance (NMR) spectra, and scanning electron microscopy. The results showed that HEP-4 is primarily composed of mannose, rhamnose, galacturonic acid, glucose, galactose, and arabinose with a mole ratio of 6.74:1.56:1.04:14.21:4.31:5.4, and the major types of the glycosidic bond types of HEP-4 were 1-α-D-Glcp, 1,4-β-D-Glcp, 1-β-D-Arap, 1,3,4-β-D-Arap, and 1,3,6-β-D-Manp. The results of bioactivity experiments revealed that HEP-4 had antioxidant in vitro. In addition, HEP-4 inhibited H2O2-induced oxidative damage and increased the activity of HepG2 cells by reducing MDA levels and inhibiting ROS production. Meanwhile, HEP-4 significantly enhanced the activities of GSH-Px and CAT, indicating that HEP-4 exerts a protective effect on H2O2-induced oxidative stress. These results indicate that HEP-4 could be a potential natural antioxidant.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guangyu Ren
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Kaixin Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Engineering Research Center of Food Fermentation Technology, Liaoning, China,*Correspondence: Rina Wu,
| |
Collapse
|
11
|
Characterization of polysaccharide fractions from Allii macrostemonis bulbus and assessment of their antioxidant. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Novel Compound Polysaccharides from Chinese Herbal Medicines: Purification, Characterization, and Antioxidant Activities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9973419. [PMID: 35720177 PMCID: PMC9205717 DOI: 10.1155/2022/9973419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The present study investigated physicochemical properties and antioxidant activities in vivo and in vitro of purified compound polysaccharides (CPs-1) from Chinese herbal medicines, composed of lotus leaf, hawthorn, Fagopyrum tataricum, Lycium barbarum, Semen cassiae, and Poria cocos with the mass ratio of 2 : 4 : 2 : 1 : 1.5 : 1. The HPGPC profile and FT-IR spectra indicated that the average molecular weight of CPs-1 was 38.7 kDa and possessed the α- and β-D-pyranose, respectively. The methylation analysis and NMR spectrum demonstrated that CPs-1 had a →6)-β-D-Glcp-(1→6)-β-D-Glcp(1→ backbone. Furthermore, the antioxidant assays in vitro revealed that CPs-1 displayed high scavenging abilities for DPPH, hydroxyl, and reducing power, as well as ABTS and superoxide scavenging capacity. The antioxidant experiments in vivo revealed that CPs-1 could significantly enhance CAT, SOD, and GSH-Px activities and dramatically reduce MDA levels in liver and serum of high-fat mice. Therefore, CPs-1 could be potentially incorporated into pharmaceutical products or functional foods as a natural antioxidant.
Collapse
|
13
|
Cao W, Wang C, Mayhesumu X, Pan L, Dang Y, Yili A, Abuduwaili A, Mansur S. Isolation, Structural Elucidation, Antioxidant and Hypoglycemic Activity of Polysaccharides of Brassica rapa L. Molecules 2022; 27:molecules27093002. [PMID: 35566352 PMCID: PMC9104227 DOI: 10.3390/molecules27093002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this study was to investigate the effects of microwave ultrasonic-assisted extraction (MUAE) on the content, structure, and biological functions of Brassica rapa L. polysaccharide (BRP). Response surface methodology (RSM) was used to optimize the parameters of MUAE, and it obtained a polysaccharide with yield of 21.802%. Then, a neutral polysaccharide named BRP-1-1 with a molecular weight of 31.378 kDa was isolated and purified from BRP using DEAE-650 M and Sephadex G-100. The structures of the BRP-1-1 were elucidated through a combination of FT-IR, GC-MS, NMR, and methylation analysis. The results showed that BRP-1 consisted of mannose (Man) and glucose (Glu) in a molar ratio of 7.62:1. The backbone of BRP-1-1 mainly consisted of →6)-α-D-Glup-(1→4-β-D-Glup-(1→2)-α-D-Manp-(1→2)-α-D-Glup-(1→, the branch was [T-α-D-Manp-(1]n→. BRP-1-1 intervention significantly inhibited α-glucosidase activity; an inhibition rate of 44.623% was achieved at a concentration of 0.5 mg/mL. The results of the in vitro biological activity showed that BRP-1-1 has good antioxidant and hypoglycemic activity, suggesting that BRP-1-1 could be developed as a functional medicine.
Collapse
Affiliation(s)
- Wenyang Cao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
| | - Chenxi Wang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
| | - Xiayidan Mayhesumu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
| | - Yan Dang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
| | - Abulimiti Yili
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Aytursun Abuduwaili
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
- Correspondence: (A.A.); (S.M.); Tel.: +86-152-7667-9155 (A.A.); +86-139-9921-2592 (S.M.)
| | - Sanawar Mansur
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (W.C.); (C.W.); (X.M.); (L.P.); (Y.D.)
- Correspondence: (A.A.); (S.M.); Tel.: +86-152-7667-9155 (A.A.); +86-139-9921-2592 (S.M.)
| |
Collapse
|
14
|
Li Q, Zhu L, Qi X, Zhou T, Li Y, Cai M, Yan Y, Qian JY, Peng D. Immunostimulatory and antioxidant activities of the selenized polysaccharide from edible Grifola frondosa. Food Sci Nutr 2022; 10:1289-1298. [PMID: 35432982 PMCID: PMC9007304 DOI: 10.1002/fsn3.2764] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/06/2023] Open
Abstract
Grifola frondosa polysaccharide (GFP2) was extracted and purified by anion‐exchange chromatography. A selenized G. frondosa polysaccharide, SeGFP2, was modified in selenylation by nitric acid–sodium selenite (HNO3‐Na2SeO3) method. Structural features were investigated, and the lymphocyte proliferation and antioxidant activities were compared taking GFP2 as control. SeGFP2 with a molecular weight of 2.12 × 104 Da was composed of mannose, glucose, and galactose with a ratio of 3.5:11.8:1.0. A typical absorption of selenium ester was observed in SeGFP2 molecule. SeGFP2 was proposed as a branched polysaccharide, which consisted of 1,3‐D‐Glcp, 1,6‐D‐Glcp, 1,4,6‐D‐Galp, and 1,3,6‐D‐Manp. SeGFP2 showed a linear filamentous structure with some branches. SeGFP2 could significantly promote T‐ or B‐lymphocyte proliferation and the enhancement was higher than GFP2. The in vitro antioxidant activities of SeGFP2 were more potent than GFP2. These present data suggested that selenylation could significantly improve the lymphocyte proliferation and in vitro antioxidant activities of GFP2.
Collapse
Affiliation(s)
- Qian Li
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Linfei Zhu
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Xingpu Qi
- School of Food Science and Engineering Yangzhou University Yangzhou China
| | - Ting Zhou
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Yonglian Li
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Mingjie Cai
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Yuting Yan
- College of Food Science and Technology Jiangsu Agri-animal Husbandry Vocational College Taizhou China
| | - Jian-Ya Qian
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Daxin Peng
- School of Agricultural Equipment Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
15
|
Zhang Y, Zhang Z, Liu H, Wang D, Wang J, Liu M, Yang Y, Zhong S. A natural selenium polysaccharide from Pleurotus ostreatus: Structural elucidation, anti-gastric cancer and anti-colon cancer activity in vitro. Int J Biol Macromol 2022; 201:630-640. [PMID: 35066027 DOI: 10.1016/j.ijbiomac.2022.01.101] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/15/2021] [Accepted: 01/15/2022] [Indexed: 11/05/2022]
Abstract
The development and application of new natural selenium polysaccharides with relatively clear structure and excellent activity have become hot and difficult issues. This study used GC-MS and 2D NMR to characterize the detailed chain structure information of selenium polysaccharide (Se-POP-3) from Selenium-enriched Pleurotus ostreatus, and then explored its anti-gastric cancer and anti-colon cancer effects in vitro. Results showed that the main chain of Se-POP-3 was →[3)-β-D-Glcp-(1]2 → 6)-β-D-Glcp-(1 → 3,6)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1→, and the branch was α-D-Glcp-(1 → [4)-α-D-Glcp-(1]4→, which was connected to the main chain through the O-3 bond of →3,6)-β-D-Glcp-(1 → glycosidic bond. In addition, Se-POP-3 could reduce viability, induce apoptosis, inhibit migration and invasion, destroy the Bax/Bcl-2 ratio, and inhibit the epithelial-to-mesenchymal transition of MGC-803 and HCT-116 cells in vitro. Moreover, this study also showed that within the concentration range set in this study, Se-POP-3 had no significant effect on the growth of normal cells (NCM460 cells). This study can provide a theoretical basis for the potential application of Se-POP-3 as an anti-gastrointestinal cancer drug or functional food.
Collapse
Affiliation(s)
- Yunshan Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhuomin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiahui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Meng Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
16
|
Guo Q, Liang S, Ge C, Xiao Z. Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2039182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
17
|
Cao X, Zhang Q, Zhu Y, Li S, Cai Y, Li P, Liu D, Leng Y, Ye S, Xu Z, Li H, Shen B, Liao Q, Liu L, Xie Z. Structural Characterization and Immunoenhancing Effects of a Polysaccharide from the Soft Coral Lobophytum sarcophytoides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:203-215. [PMID: 35175461 DOI: 10.1007/s10126-022-10099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Previous studies on the soft coral Lobophytum sarcophytoides (Lobophytum sp.) are mainly about small molecules, and there has been no systematic research on polysaccharides. In the study, a novel polysaccharide (LCPs-1-A) with immunoenhancing functions was successfully extracted and purified from the soft coral Lobophytum sp. After preliminary analysis, our data indicated that LCPs-1-A was composed of glucose and had a molecular weight of 4.90 × 106 Da. Moreover, our findings showed that LCPs-1-A could promote the proliferation and phagocytosis of RAW264.7 cells, stimulate the production of NO and ROS, and increase the mRNA expression of IL-1β, IL-6, and TNF-α, which indicated that LCPs-1-A had a good immunoenhancing activity. Through further studies, we found that LCPs-1-A might play an immunoenhancing role through the TLR4/NF-κB signaling pathway. Therefore, our results demonstrated that LCPs-1-A might be a natural immunostimulant for use in medical and food industries.
Collapse
Affiliation(s)
- Xueqin Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Yanglu Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Siju Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Ying Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Deliang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Yun Leng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Simin Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Baochun Shen
- School of Pharmacy, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
18
|
Zhao S, Rong C, Gao Y, Wu L, Luo X, Song S, Liu Y, Wong JH, Wang H, Yi L, Ng T. Antidepressant-like effect of Ganoderma lucidum spore polysaccharide-peptide mediated by upregulation of prefrontal cortex brain-derived neurotrophic factor. Appl Microbiol Biotechnol 2021; 105:8675-8688. [PMID: 34716786 DOI: 10.1007/s00253-021-11634-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
A 28-kDa polysaccharide-peptide (PGL) with antidepressant-like activities was isolated from spores of the mushroom Ganoderma lucidum. It was unadsorbed on DEAE-cellulose. Its internal amino acid sequences manifested pronounced similarity with proteins from the mushrooms Lentinula edodes and Agaricus bisporus. The monosaccharides present in 28-kDa PGL comprised predominantly of glucose (over 90%) and much fewer galactose, mannose residues, and other residues. PGL manifested antidepressant-like activities as follows. It enhanced viability and DNA content in corticosterone-injured PC12 cells(a cell line derived from a pheochromocytoma of the rat adrenal medulla with an embryonic origin from the neural crest containing a mixture of neuroblastic cells and eosinophilic cells) and reduced LDH release. A single acute PGL treatment shortened the duration of immobility of mice in both tail suspension and forced swimming tests. PGL treatment enhanced sucrose preference and shortened the duration of immobility in mice exposed to chronic unpredictable mild stress (CUMS). Chronic PGL treatment reversed the decline in mouse brain serotonin and norepinephrine levels but did not affect dopamine levels. PGL decreased serum corticosterone levels and increased BDNF mRNA and protein levels and increased synapsin I and PSD95 levels in the prefrontal cortex. This effect was completely blocked by pretreatment with the BDNF antagonist K252a, indicating that PGL increased synaptic proteins in a BDNF-dependent manner.Key points• An antidepressive polysaccharide-peptide PGL was isolated from G. lucidum spores.• PGL protected PC12 nerve cells from the toxicity of corticosterone.• PGL upregulated BDNF expression and influenced key factors in the prefrontal cortex.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yi Gao
- Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, 100053, China
| | - Linfeng Wu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoheng Luo
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Song
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China.
| | - Litao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian Province, 361021, Xiamen, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China.
| |
Collapse
|
19
|
Guo Y, Chen X, Gong P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int J Biol Macromol 2021; 183:1753-1773. [PMID: 34048833 PMCID: PMC8144117 DOI: 10.1016/j.ijbiomac.2021.05.139] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
The deficiency of chemical-synthesized antiviral drugs when applied in clinical therapy, such as drug resistance, and the lack of effective antiviral drugs to treat some newly emerging virus infections, such as COVID-19, promote the demand of novelty and safety anti-virus drug candidate from natural functional ingredient. Numerous studies have shown that some polysaccharides sourcing from edible and medicinal fungus (EMFs) exert direct or indirect anti-viral capacities. However, the internal connection of fungus type, polysaccharides structural characteristics, action mechanism was still unclear. Herein, our review focus on the two aspects, on the one hand, we discussed the type of anti-viral EMFs and the structural characteristics of polysaccharides to clarify the structure-activity relationship, on the other hand, the directly or indirectly antiviral mechanism of EMFs polysaccharides, including virus function suppression, immune-modulatory activity, anti-inflammatory activity, regulation of population balance of gut microbiota have been concluded to provide a comprehensive theory basis for better clinical utilization of EMFs polysaccharides as anti-viral agents.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Product Processing Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
20
|
Arab K, Ghanbarzadeh B, Ayaseh A, Jahanbin K. Extraction, purification, physicochemical properties and antioxidant activity of a new polysaccharide from Ocimum album L. seed. Int J Biol Macromol 2021; 180:643-653. [PMID: 33744248 DOI: 10.1016/j.ijbiomac.2021.03.088] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
In this study, a novel polysaccharide fraction from Ocimum album seed was extracted and then purified by Cellulose DEAE-52 and Sephadex G-200 anion exchange chromatography. The structural, physicochemical and antioxidant properties of the main polysaccharide fraction (OAP-1A) were evaluated. The purified polysaccharide contained 94.3% carbohydrate, 3.56% moisture and 2.14% ash and result of gel permeation chromatography (GPC) showed average molecular weight of 593 kDa. The results of high-performance liquid chromatography (HPLC) showed that OAP-1A was a neutral hetero-polysaccharide composed of mannose (35.7%), glucose (33.32%), galactose (19.6%) and rhamnose (11.38%). In addition, GC-MS data, nuclear magnetic resonance (NMR) spectrum and Fourier transform infrared (FT-IR) analysis revealed that the backbone of OAP-1A consists of →3)-β-D-Manp-(1→, →3,4)-β-D-Manp-(1→, →3,6)-β-D-Manp-(1→, →3)-α-D-Glcp-(1→, →6)-β-D-Galp-(1→, →4)-α-L-Rhap-(1→ and α-D-Glcp-(1→. X-ray diffraction (XRD) analysis showed semi-crystalline structure in OAP-1A. Differential scanning colorimeter (DSC) and thermo-gravimetry analysis (TGA) indicated that OAP-1A had relatively high thermal stability. Moreover, OAP-1A showed strong scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals.
Collapse
Affiliation(s)
- Khaled Arab
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, P. O. Box 99138, Nicosia, Cyprus, Mersin 10, Turkey.
| | - Ali Ayaseh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Kambiz Jahanbin
- Department of Food Science and Technology, Faculty of Agriculture Engineering, Shahrood University of Technology, P.O. Box 361999-5161, Shahrood, Iran
| |
Collapse
|
21
|
Liu X, Ren Z, Yu R, Chen S, Zhang J, Xu Y, Meng Z, Luo Y, Zhang W, Huang Y, Qin T. Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity. Int J Biol Macromol 2020; 166:1396-1408. [PMID: 33166554 DOI: 10.1016/j.ijbiomac.2020.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
In this study, the enzyme degradation of Hericium erinaceus polysaccharide (HEP) was successfully modified with endo-rhamnosidase to obtain the enzymatic hydrolysis of Hericium erinaceus polysaccharide product (EHEP). The gas chromatography-mass spectrometry (GC-MS), high performance gel permeation chromatography (HPGPC), Fourier transformed infrared spectrometry (FT-IR), scanning electron microscopy (SEM), atomic particle microscopy (AFM), nuclear magnetic resonance (NMR) and particle size distribution were used to characterize polysaccharides. In vitro, EHEP significantly enhanced the phagocytosis, NO, CD40 and CD86 by macrophage than HEP. In vivo, female Balb/c mice were injected respectively with EHEP and HEP after administrated with cyclophosphamide, once a day for 7 days. On days 11, the morphology and structure of jejunal sections, immunofluorescence of spleen and peritoneal macrophages were determined. These results indicated that the enzymatic hydrolysis product could enhance the activation of peritoneal macrophages, and enhance the immunomodulation function of HEP. This study demonstrated that enzymatic modification was an effective method to improve the activities of HEP, and could be developed as a potential technology for use in pharmaceutical and cosmeceutical industry.
Collapse
Affiliation(s)
- Xiaopan Liu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ruihong Yu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shixiong Chen
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Junwen Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongde Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhen Meng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yang Luo
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Weini Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yifan Huang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
22
|
Structural characterization of a novel polysaccharide from Panax notoginseng residue and its immunomodulatory activity on bone marrow dendritic cells. Int J Biol Macromol 2020; 161:797-809. [DOI: 10.1016/j.ijbiomac.2020.06.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
|
23
|
Hu Z, Zhou H, Zhao J, Sun J, Li M, Sun X. Microwave-assisted extraction, characterization and immunomodulatory activity on RAW264.7 cells of polysaccharides from Trichosanthes kirilowii Maxim seeds. Int J Biol Macromol 2020; 164:2861-2872. [PMID: 32810537 PMCID: PMC7428752 DOI: 10.1016/j.ijbiomac.2020.08.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/15/2023]
Abstract
Microwave-assisted extraction of polysaccharides from Trichosanthes kirilowii Maxim seeds (TKMSP) was optimized using Response surface methodology (RSM) base on Central composite design (CCD). The optimum extraction conditions are detailed as follows: liquid-solid ratio 42 mL/g, extraction temperature 80 °C, microwave power 570 W, extraction time 26 min. Under this conditions, the mean value of TKMSP yield 2.43 ± 0.45% (n = 3), which was consistent closely with the predicted value (2.44%). The five polysaccharides (TKMSP-1, TKMSP-2, TKMSP-3, TKMSP-4 and TKMSP-5) were isolated from TKMSP by DEAE-52. TKMSP-1, TKMSP-2 and TKMSP-4 were common in containing Man, Rib, Rha, GluA, GalA, Glu, Gal, Xyl, Arab and Fuc. However, there was no Fuc in TKMSP-3, while TKMSP-5 lacked GluA, GalA and Fuc. UV–vis and FT-IR analysis combined with molecular weight determination further indicated that the five fractions were polydisperse polysaccharides. A significant difference was achieved in the structural characterization of these five fractions. TKMSP exhibited immunosuppressive activity on RAW264.7 cells. It can be applied as a potential immunosuppressant agent in medicine. Microwave-assisted extraction of TKMSP optimized by RSM base on CCD. The five polydisperse polysaccharides were isolated from TKMSP. The structure characterizations of the five polysaccharides were analyzed. TKMSP-3 exhibited significant inhibition of RAW264.7 proliferation.
Collapse
Affiliation(s)
- Zhengyu Hu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hongli Zhou
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - JingLi Zhao
- Institution of Pharmaceutical and Environmental Technology, Jilin Vocational College of Industry and Technology, Jilin 132013, China
| | - JiaQi Sun
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Mei Li
- Jilin Cancer Hospital, Huguang Road 1018, Chaoyang District, Changchun 130012, China.
| | - Xinshun Sun
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
24
|
Gong P, Wang S, Liu M, Chen F, Yang W, Chang X, Liu N, Zhao Y, Wang J, Chen X. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydr Res 2020; 494:108037. [DOI: 10.1016/j.carres.2020.108037] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023]
|
25
|
Gu J, Zhang H, Yao H, Zhou J, Duan Y, Ma H. Comparison of characterization, antioxidant and immunological activities of three polysaccharides from Sagittaria sagittifolia L. Carbohydr Polym 2020; 235:115939. [PMID: 32122481 DOI: 10.1016/j.carbpol.2020.115939] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/21/2019] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
To investigate and compare the preliminary structural characteristics and biological activity in vitro of polysaccharides from Sagittaria sagittifolia L. (SSs) by different extration methods, three polysaccharides (SSW, SSU, and SSP) were obtained with hot water, ultrasound-assisted, and subcritical water extraction. Their structural features were elucidated using High Performance Liquid Chromatography (HPLC), Gas Chromatography (GC), Scanning Electron Microscopy (SEM), Infrared Spectroscopy (IR), Atomic Force Microscopy (AFM), Zeta Potential and Congo red methods. Furthermore, the antioxidant activity and immunostimulatory effects were investigated in vitro. Molecular weight and monosaccharide composition analysis exhibited that SSW (2275.0 kDa), SSU (148.7 kDa), and SSP (1984.0 kDa) were heteropolysaccharide with dramatically different monosaccharide species and mole ratios. In addition, SSP exhibited stronger antioxidant activity in vitro and more potent immunomodulatory activity than SSW and SSU. SSP has greater potential to be explored as biologicalagents for use in complementary medicine or functional foods.
Collapse
Affiliation(s)
- Jinyan Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China.
| | - Hui Yao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
26
|
Gao P, Bian J, Xu S, Liu C, Sun Y, Zhang G, Li D, Liu X. Structural features, selenization modification, antioxidant and anti-tumor effects of polysaccharides from alfalfa roots. Int J Biol Macromol 2020; 149:207-214. [PMID: 31987938 DOI: 10.1016/j.ijbiomac.2020.01.239] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 01/15/2023]
Abstract
Hot water extraction and chromatographic purification methods were used to extract and purify two polysaccharides (RAPS-1 and RAPS-2) from the roots of alfalfa. Subsequently, RAPS-2 was modified using the HNO3/Na2SeO3 method to obtain Se-RAPS-2. The structural features, antioxidant and in vitro anti-tumor activities of the three polysaccharides were evaluated. The structural analysis revealed that RAPS-1 (Mw = 10.0 kDa) was composed of rhamnose, xylose, arabinose, galacturonic acid, mannose and glucose, whereas RAPS-2 (Mw = 15.8 kDa) consisted of rhamnose, xylose, galacturonic acid, mannose, glucose and galactose. RAPS-1 contained 1 → 2, 1 → 4, 1 → 3, and 1 → 6 or 1 → glycosidic bonds; however, while RAPS-2 lacked 1 → 4 glycosidic linkages. The molecular weight of Se-RAPS-2 was 11.0 kDa less than that of RAPS-2. The results of activities demonstrated that Se-RAPS-2 displayed superior antioxidant activity and inhibitory effect in HepG2 cells than RAPS-1 and RAPS-2.
Collapse
Affiliation(s)
- Pinyi Gao
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, PR China; Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Jun Bian
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Shuangshuang Xu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Changfeng Liu
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Yuqiu Sun
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Gongling Zhang
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Danqi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, PR China; Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| | - Xuegui Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, PR China; National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| |
Collapse
|
27
|
Aipire A, Yuan P, Aimaier A, Cai S, Mahabati M, Lu J, Ying T, Zhang B, Li J. Preparation, Characterization, and Immuno-Enhancing Activity of Polysaccharides from Glycyrrhiza uralensis. Biomolecules 2020; 10:biom10010159. [PMID: 31963790 PMCID: PMC7022281 DOI: 10.3390/biom10010159] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/04/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Glycyrrhiza uralensis is a Chinese herbal medicine with various bioactivities. Three fractions (GUPS-I, GUPS-II and GUPS-III) of G. uralensis polysaccharides (GUPS) were obtained with molecular weights of 1.06, 29.1, and 14.9 kDa, respectively. The monosaccharide compositions of GUPS-II and GUPS-III were similar, while that of GUPS-I was distinctively different. The results of scanning electron microscopy, FT-IR, and NMR suggested that GUPS-II and GUPS-III were flaky with a smooth surface and contained α- and β-glycosidic linkages, while GUPS-I was granulated and contained only α-glycosidic linkages. Moreover, GUPS-II and GUPS-III exhibited better bioactivities on the maturation and cytokine production of dendritic cells (DCs) in vitro than that of GUPS-I. An in vivo experiment showed that only GUPS-II significantly enhanced the maturation of DCs. These results indicate that GUPS-II has the potential to be used in combination with cancer immunotherapy to enhance the therapeutic effect.
Collapse
Affiliation(s)
- Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Alimu Aimaier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Shanshan Cai
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Mahepali Mahabati
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Jun Lu
- School of Science, and School of Interprofessional Health Studies, Faculty of Health & Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand;
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
- Correspondence: ; Tel.: +86-991-858-3259; Fax: +86-991-858-3517
| |
Collapse
|
28
|
Zhao X, Yang R, Bi Y, Bilal M, Kuang Z, Iqbal HMN, Luo Q. Effects of Dietary Supplementation with Mulberry ( Morus alba L.) Leaf Polysaccharides on Immune Parameters of Weanling Pigs. Animals (Basel) 2019; 10:35. [PMID: 31878017 PMCID: PMC7022547 DOI: 10.3390/ani10010035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
In this study, the effect of dietary supplementation of mulberry leaf polysaccharides (MLPs) on the immune parameters-i.e., the immune organ weight, serum immunoglobulins, cytokines, nitric oxide (NO) production, and insulin-Like growth factor-1 (IGF1) mRNA expression-of weanling pigs as a model animal was investigated. A total of 120 healthy weanling pigs (aged 28 ± 2 d) with the same body weights were randomly divided into four groups: (1) Control treatment (CT), basal diet (BD), (2) MLP low-dose treatment (MLT), 0.6 g/kg MLP + BD, (3) MLP high-dose treatment (MHT), 1.2 g/kg MLP + BD, and (4) antibiotic treatment (AT), 0.15 g/kg chlortetracycline + BD. The results revealed that the thymus and spleen indices were significantly increased (P < 0.05) in both MLT and MHT groups in comparison with the CT group, while the serum levels of immunoglobulin G (IgG), interleukin (IL)-1β, IL-2, IL-8, and interferon (IFN-γ) in the MLT group and IL-2, IL-6, and IFN-γ in the MHT group were also considerably greater (P < 0.05) than the corresponding levels in the CT group. The serum contents of IgG, IL-1β, IL-2, and IL-8 in the MLT group and IL-2 and IL-6 in the MHT group were significantly increased in comparison with the corresponding contents in the AT group (P < 0.05). The transformation rate of lymphocytes in the MLT and MHT groups was higher compared to the CT and AT groups. However, a notable difference was found between the MLT group and the two control groups. The peripheral lymphocyte NO production in the MLT, MHT, and AT groups was significant relative to the CT group. The expression levels of IGF1 mRNA in the liver and muscle longissimus tissues of both the MLT and MHT groups showed significant improvement (P < 0.05) over those in the CT group. Moreover, the IGF1 mRNA expression in the muscle longissimus from the MLT group was significantly higher than in the AT group. In conclusion, the results suggest that incorporating MLPs into the diets of weanling pigs improves the animals' metabolisms and immune functions, and the effects of the MLT group were superior to those of both the MHT and AT groups.
Collapse
Affiliation(s)
- Xiangjie Zhao
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (X.Z.); (Y.B.); (M.B.)
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China; (Z.K.); (Q.L.)
| | - Rongling Yang
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (X.Z.); (Y.B.); (M.B.)
| | - Yanhong Bi
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (X.Z.); (Y.B.); (M.B.)
| | - Muhammad Bilal
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (X.Z.); (Y.B.); (M.B.)
| | - Zheshi Kuang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China; (Z.K.); (Q.L.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico;
| | - Qiulan Luo
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China; (Z.K.); (Q.L.)
| |
Collapse
|
29
|
Yuan L, Zhong ZC, Liu Y. Structural characterisation and immunomodulatory activity of a neutral polysaccharide from Sambucus adnata Wall. Int J Biol Macromol 2019; 154:1400-1407. [PMID: 31756460 DOI: 10.1016/j.ijbiomac.2019.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
A neutral polysaccharide, SPW-2, was purified from the leaves of Sambucus adnata Wall. using water extraction and alcohol precipitation, Sevage deproteination, ion exchange chromatography and gel filtration chromatography. This molecule had an average molecular weight of 7040 Da and was composed of arabinose, xylose, mannose, glucose and galactose at a molar ratio of 1.5:0.5:1.2:5.0:1.8. The repetitive structural units of SPW-2 were deduced using methylation analysis and nuclear magnetic resonance (one- and two-dimensional) spectroscopy. In vitro immunological activity test showed that SPW-2 could induce the secretion of nitric oxide, interleukin-1β (IL-1β), IL-6 and tumour necrosis factor-alpha (TNF-α), and increase the mRNA expression level of inducible nitric oxide synthase (iNOS), IL-1β, IL-6 and TNF-α in macrophages. The data supported the notion that SPW-2 exerts an immunomodulatory effect by activating macrophages and enhancing the host immune system function, which enabled it to be used as a novel immunomodulator for application in the treatment of immunological diseases.
Collapse
Affiliation(s)
- Lei Yuan
- Centre of Physical & Chemic Analyses and Bio-tech, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, Tibet, China; Key Laboratory of Wildlife Resources Evaluation and Utilization in Tibet, Linzhi 860000, Tibet, China.
| | - Zheng-Chang Zhong
- Key Laboratory of Wildlife Resources Evaluation and Utilization in Tibet, Linzhi 860000, Tibet, China; Food Science College, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, Tibet China
| | - Yu Liu
- Food Science College, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, Tibet China
| |
Collapse
|
30
|
Cai L, Chen B, Yi F, Zou S. Optimization of extraction of polysaccharide from dandelion root by response surface methodology: Structural characterization and antioxidant activity. Int J Biol Macromol 2019; 140:907-919. [DOI: 10.1016/j.ijbiomac.2019.08.161] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022]
|
31
|
Liu C, Choi MW, Xue X, Cheung PCK. Immunomodulatory Effect of Structurally Characterized Mushroom Sclerotial Polysaccharides Isolated from Polyporus rhinocerus on Bone Marrow Dendritic Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12137-12143. [PMID: 31566976 DOI: 10.1021/acs.jafc.9b03294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study evaluated the immunomodulatory effects of two high-molecular-weight and structurally different mushroom polysaccharides, an alkali-soluble polysaccharide (mPRSon) and a water-soluble polysaccharide-protein complex (PRW), isolated previously from the sclerotia of Pleurotus rhinocerus, on the maturation of murine bone-marrow-derived dendritic cells (BMDCs). The effects of mPRSon and PRW on the expression of morphological change, surface molecules, phagocytic activity, and cytokine release in BMDCs were determined by flow cytometry and a mouse cytokine array. The results showed that both mPRSon and PRW could induce phenotypic and functional maturation of BMDCs. At the same time, mPRSon upregulated the expression of membrane phenotypic marker CD86 and PRW markedly upregulated CD40, CD80, and CD86. In addition, mPRSon could bind to the dectin-1 receptor and stimulate the release of MIP-1α, MIP-2, and IL-2, while PRW could bind to complement receptor 3 and toll-like receptor 2 with an upregulation of the expression of IL-2, IL-6, MIP-1α, MIP-2, RANTES, IL-12p40p70, IL-12p70, TIMP-1, IFN-γ, KC, MCP-1, and GCSF. The study provides additional information on how structural differences in sclerotial polysaccharides influence their immunomodulatory activities on BMDCs involving different PAMP receptors. It is anticipated that more understanding of the interactions between the sclerotial polysaccharides and their receptors in immune cells can facilitate their future application for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoran Liu
- Medical Research Center , The People's Hospital of Longhua , Shenzhen , 518109 , People's Republic of China
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| | - Man Wing Choi
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| | - Xingkui Xue
- Medical Research Center , The People's Hospital of Longhua , Shenzhen , 518109 , People's Republic of China
| | - Peter C K Cheung
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
32
|
Zhang S, Zhang Q, An L, Zhang J, Li Z, Zhang J, Li Y, Tuerhong M, Ohizumi Y, Jin J, Xu J, Guo Y. A fructan from Anemarrhena asphodeloides Bunge showing neuroprotective and immunoregulatory effects. Carbohydr Polym 2019; 229:115477. [PMID: 31826524 DOI: 10.1016/j.carbpol.2019.115477] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022]
Abstract
A novel polysaccharide, AAP70-1, was isolated from Anemarrhena asphodeloides for the first time. The primary structural analysis revealed that AAP70-1 was composed of glucose and fructose, had an absolute molecular weight of 2720 Da, and contained a (2→6)-linked β-D-fructofuranose (Fruf) backbone and a (2→1,6)-linked β-D-Fruf side chain with an internal α-D-glucopyranose (Glcp) in the form of a neokestose. To explore the potential factors responsible for the medicinally relevant bioactivities of A. asphodeloides, a biological assay was performed. Using flow cytometry analysis, AAP70-1 was experimentally shown to have neuroprotective effects, and it can prevent and ameliorate neurological damage via reducing apoptosis. The immunomodulation assay further revealed that AAP70-1 can significantly improve immune function by promoting phagocytic capacity and the secretion of cytokines (IL-6, IL-1β and TNF-α) in RAW264.7 cells. These results suggest that AAP70-1 has potential as a therapeutic agent for central nervous system diseases or as an immunomodulatory agent.
Collapse
Affiliation(s)
- Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Qi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhengguo Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai 989-3201, Japan
| | - Jin Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
33
|
Zhao S, Zhang S, Zhang W, Gao Y, Rong C, Wang H, Liu Y, Wong JH, Ng T. First demonstration of protective effects of purified mushroom polysaccharide-peptides against fatty liver injury and the mechanisms involved. Sci Rep 2019; 9:13725. [PMID: 31548551 PMCID: PMC6757109 DOI: 10.1038/s41598-019-49925-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Fatty liver (FLD) disease is a consequence of metabolic syndrome, which is a health problem worldwide with a phenomenal rise in prevalence. In this study, two hepatoprotective polysaccharide-peptides were extracted from the mushroom Auricularia polytricha followed by chromatographic fractionation of the extract on the ion exchanger DEAE-cellulose and gel filtration on Sephadex-200 to yield two purified fractions: APPI and APPII. The monosaccharide compositions, FT-IR, N-terminal sequences, internal peptide sequences and molecular weights of the two fractions were determined. Furthermore, their hepatoprotective effect on human hepatoma HepG2 cells in vitro and in an animal model of fatty liver disease was evidenced by the findings that APPI and APPII diminished lipid deposit in cells, blood and the liver, increased cellular antioxidant activity and viability, and protected the liver against injury. The mechanistic study revealed that APPI and APPII activated the adiponectin pathway, up-regulated expression of genes controlling free fatty acid (FFA) oxidation, such as AMPK, CPTl, ACOX1 and PPARα genes, enhanced lipid metabolism, preserved hepatic function, promoted the antioxidant defense system and reduced lipid peroxidation. Hence the bioactive compounds of A. polytricha could serve as therapeutic agents in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing, 100097, China
| | - Shuman Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Weiwei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yi Gao
- Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, 100053, China
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China.
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
34
|
|
35
|
Yi Y, Huang XY, Zhong ZT, Huang F, Li SY, Wang LM, Min T, Wang HX. Structural and biological properties of polysaccharides from lotus root. Int J Biol Macromol 2019; 130:454-461. [DOI: 10.1016/j.ijbiomac.2019.02.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
|
36
|
Liu X, Hou R, Yan J, Xu K, Wu X, Lin W, Zheng M, Fu J. Purification and characterization of Inonotus hispidus exopolysaccharide and its protective effect on acute alcoholic liver injury in mice. Int J Biol Macromol 2019; 129:41-49. [PMID: 30731164 DOI: 10.1016/j.ijbiomac.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 02/08/2023]
|
37
|
Yi Y, Han MM, Huang F, Wang LM, Min T, Wang HX. Effects of a Lysine-Involved Maillard Reaction on the Structure and In Vitro Activities of Polysaccharides from Longan Pulp. Molecules 2019; 24:E972. [PMID: 30857341 PMCID: PMC6429078 DOI: 10.3390/molecules24050972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022] Open
Abstract
The effects of amino acid-involved Maillard reactions (MRs) on the structure and activities of longan pulp polysaccharides (LPs), which were heteropolysaccharides mainly composed of glucose, galactose, mannose, rhamnose, glucuronic acid, ribose, and galacturonic acid, were investigated. The changes of browning degree and molecular weight (Mw) distribution in the MR systems containing LPs and amino acids (lysine, proline, or glycine) indicated that lysine was more active in conjugating with LPs. The MR-modified LPs (MLPs) obtained via a 4 h MR between LPs and lysine showed obvious structural differences from LPs. Specifically, particle-like LPs contained 94% fractions with a Mw less than 7.07 kDa, by contrast, network-like MLPs contained 45% fractions with a Mw larger than 264.1 kDa. Moreover, MLPs showed stronger radical scavenging abilities and macrophage immunostimulating effects, but weaker cancer cell growth-inhibitory abilities. The results indicate that the amino acid-involved MR is a promising method to modify native polysaccharides for better biological properties.
Collapse
Affiliation(s)
- Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Miao-Miao Han
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Fei Huang
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Li-Mei Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Hong-Xun Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
38
|
Structural characterization and immunological activity of polysaccharides from the tuber of Bletilla striata. Int J Biol Macromol 2019; 122:628-635. [DOI: 10.1016/j.ijbiomac.2018.10.201] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/20/2018] [Accepted: 10/28/2018] [Indexed: 11/18/2022]
|
39
|
Li B, Zhang N, Feng Q, Li H, Wang D, Ma L, Liu S, Chen C, Wu W, Jiao L. The core structure characterization and of ginseng neutral polysaccharide with the immune-enhancing activity. Int J Biol Macromol 2019; 123:713-722. [DOI: 10.1016/j.ijbiomac.2018.11.140] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/16/2023]
|
40
|
Structural characteristics and anticancer/antioxidant activities of a novel polysaccharide from Trichoderma kanganensis. Carbohydr Polym 2019; 205:63-71. [DOI: 10.1016/j.carbpol.2018.09.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/20/2022]
|
41
|
Nee TW, Ring LC, Arumugam V, Yee JLC, Hin LW, Yusof FAM, Noor MAM, Yenn TW. Sustained Release Geraniol Nanoparticles Inhibit Human Axillary Odor-Causing Bacteria. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3668-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Wang Z, Xue R, Cui J, Wang J, Fan W, Zhang H, Zhan X. Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882. Int J Biol Macromol 2018; 125:376-382. [PMID: 30500504 DOI: 10.1016/j.ijbiomac.2018.11.248] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
In present work, a polysaccharide (GCP) was produced by Chaetomium globosum CGMCC 6882 and characterized. GCP was composed of arabinose, galactose, glucose, xylose, mannose and glucuronic acid in a molar ratio of 0.64: 2.58: 23.53: 0.90: 2.47: 0.27 with molecular weight of 8.093 × 104 Da and polydispersity (Mw/Mn) of 1.014. Antibacterial characteristics and mechanism of GCP against Escherichia coli and Staphlococcus aureus were investigated by analysis of inhibition zones, minimum inhibitory concentration (MIC), alkaline phosphatase and β-galactosidase activities, electrical conductivity and bacterial morphology. Results showed that the MIC of GCP against E. coli and S. aureus were 1.75 mg/mL and 0.67 mg/mL, respectively. Moreover, GCP exerted antibacterial activities by disrupting the inner membrane and increasing the cell permeability, but had no influences on cell wall. This work indicated that GCP could be explored as a promising antibacterial agent in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ronghui Xue
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jingwen Cui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinpeng Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenhui Fan
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiaobei Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
43
|
Xu Z, Yan X, Song Z, Li W, Zhao W, Ma H, Du J, Li S, Zhang D. Two heteropolysaccharides from Isaria cicadae Miquel differ in composition and potentially immunomodulatory activity. Int J Biol Macromol 2018; 117:610-616. [DOI: 10.1016/j.ijbiomac.2018.05.164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/04/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
|
44
|
Hu Z, Wang P, Zhou H, Li Y. Extraction, characterization and in vitro antioxidant activity of polysaccharides from Carex meyeriana Kunth using different methods. Int J Biol Macromol 2018; 120:2155-2164. [PMID: 30248430 DOI: 10.1016/j.ijbiomac.2018.09.125] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/17/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Response surface methodology (RSM) combined with a Box-Behnken design (BBD) was used to optimize the hot-water extraction (HWE) conditions which were determined to be: liquid-solid ratio 29.25:1 mL/g, extraction time 1.66 h, extraction temperature 95 °C, the optimized yield of polysaccharides 0.47 ± 0.01% (n = 3). Hot-water extraction polysaccharides (HWEP) and Microwave-assisted extraction polysaccharides (MAEP) both consist of Rha:Xyl:Ara:Fru:Glu with the molar ratio of 1.05:1.21:3.86:1:3.61:4.5 and 1:1.95:1.72:1.78:4.36:6.18, respectively. Ultrasound-assisted extraction polysaccharides (UAEP) consists of Rha:Xyl:Ara:Fru:Man:Glu with the molar ratio of 1:2.31:5.23:1.05:3.17:4.17:7.89. The molecular weight distribution of HWEP, MAEP and UAEP ranged from 16 kDa to 1698 kDa, 15 kDa to 913 kDa, and 17 kDa to 1118 kDa, respectively. The absorption peaks in FT-IR confirmed the skeletal modes of the pyranose ring in polysaccharides. The second derivative of FT-IR proved difference of polysaccharides obtained from different extraction methods. The antioxidant activity investigations shown all three polysaccharides extracts possess high scavenging activity of DPPH radicals, hydroxyl radical and ABTS+ radical. Polysaccharides from Carex meyeriana Kunth (CMKP) might be potentially used for various practical applications such as medical and food industries, and this paper provides a theoretical basis and reference for further study of CMK.
Collapse
Affiliation(s)
- Zhengyu Hu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Penghui Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Hongli Zhou
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Yaping Li
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
45
|
Wang D, Li H, Li B, Ma R, Zhang N, Zhang X, Jiao L, Wu W. Systematic fractionation and immunoenhancement of water-soluble polysaccharides isolated from fruit of Morus alba L. Int J Biol Macromol 2018; 116:1056-1063. [DOI: 10.1016/j.ijbiomac.2018.05.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022]
|
46
|
Physicochemical, molecular, emulsifying and rheological characterizations of sage (Salvia splendens) seed gum. Int J Biol Macromol 2018; 115:1174-1182. [DOI: 10.1016/j.ijbiomac.2018.04.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/27/2018] [Accepted: 04/30/2018] [Indexed: 11/18/2022]
|
47
|
Ganesan AR, Shanmugam M, Palaniappan S, Rajauria G. Development of edible film from Acanthophora spicifera : Structural, rheological and functional properties. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Li Q, Zhang F, Chen G, Chen Y, Zhang W, Mao G, Zhao T, Zhang M, Yang L, Wu X. Purification, characterization and immunomodulatory activity of a novel polysaccharide from Grifola frondosa. Int J Biol Macromol 2018; 111:1293-1303. [DOI: 10.1016/j.ijbiomac.2018.01.090] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/27/2017] [Accepted: 01/13/2018] [Indexed: 12/17/2022]
|
49
|
Ji X, Liu F, Peng Q, Wang M. Purification, structural characterization, and hypolipidemic effects of a neutral polysaccharide from Ziziphus Jujuba cv. Muzao. Food Chem 2018; 245:1124-1130. [DOI: 10.1016/j.foodchem.2017.11.058] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
|
50
|
Chen S, Su T, Wang Z. Structural characterization, antioxidant activity, and immunological activity in vitro of polysaccharides from fruiting bodies of Suillus granulatus. J Food Biochem 2018. [DOI: 10.1111/jfbc.12515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuang Chen
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun China
| | - Tingting Su
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun China
| | - Zhanyong Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun China
| |
Collapse
|