1
|
You F, Wu Y, Guo Y, Zheng Y. Rheological aspects of xanthan gum: Governing factors and applications in water-based drilling fluids and enhanced oil recovery. Carbohydr Polym 2025; 359:123579. [PMID: 40306785 DOI: 10.1016/j.carbpol.2025.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
In the context of a low-carbon future, green, sustainable, and environmentally friendly oilfield development methods have become urgent priorities. The application of bio-based materials in water-based drilling fluids (WBDFs) and enhanced oil recovery (EOR) is emerging as a key strategy for driving sustainable development. Xanthan gum (XG), a natural polysaccharide, has gained significant attention due to its non-toxic, biodegradable, renewable, and environmentally friendly characteristics. Its shear-thinning rheological properties make it particularly suitable for oilfield development. This review summarizes the production, modification, and chemical structure of XG, focusing on key factors influencing the rheological behavior of its aqueous solutions, including shear rate, shear stress, concentration, pH, salinity, temperature, time, and polysaccharide interactions. Additionally, recent advances in XG's application in WBDFs and EOR are discussed. Although XG's viscosity stability and recovery under high-temperature and long-duration conditions present challenges, these issues have been largely addressed through increased salinity and chemical modifications. Finally, this review highlights key future research directions, such as exploring the structure-rheology relationship of XG, polysaccharide interactions, the rheological behavior and sustainability of XG derivatives, and its economic feasibility in oilfield development. These insights aim to improve XG's adaptability to harsh oilfield conditions and guide its use in similar environments.
Collapse
Affiliation(s)
- Fuchang You
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China.
| | - Yu Wu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China
| | - Yingying Guo
- Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yancheng Zheng
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China.
| |
Collapse
|
2
|
Dong H, Fa J, Yan M, Tan Y, Cheng W, Huang J, Ling Z. Development and analysis of chitin/cellulose reinforced galactomannan fluidic hydrogel for drug delivery application. J Colloid Interface Sci 2025; 686:701-710. [PMID: 39919515 DOI: 10.1016/j.jcis.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Rising demand for advanced materials in biomedical applications has made the development of effective hydrogels a critical focus, especially for drug delivery. Herein, a novel fluidic hydrogel with high drug-loading (>95 %) capacity was developed for controlled release of acetylsalicylic acid. Nature-derived galactomannan (GM) was served as the hydrogel matrix, and chitin nanocrystals (ChNC) and cellulose nanocrystals (CNC) were used to enhance structure and antimicrobial properties. Physical crosslinking of the components were tuned to optimize the porosity, flowability, and mechanical strength of the materials, as well as improving rheology and enabling rapid self-healing within 60 s. Co-culturing experiments demonstrate excellent biocompatibility of both ChNC@GM and CNC@GM hydrogels. Moreover, ChNC@GM shows superior 82 % antimicrobial activity, and the hydrogel exhibits pH-responsive drug release. Therefore, the proposed fluidic hydrogel may act as promising material for applications fields of wound healing, drug delivery, and biomedical engineering, etc.
Collapse
Affiliation(s)
- Hanqi Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Jingjing Fa
- Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxing Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Yang Tan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Wenbo Cheng
- Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianfeng Huang
- Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| |
Collapse
|
3
|
Cheng X, Hemmati S, Pirhayati M, Zangeneh MM, Veisi H. Decoration of copper nanoparticles (Cu 2O NPs) over chitosan-guar gum: Its application in the Sonogashira cross-coupling reactions and treatment of human lung adenocarcinoma. Int J Biol Macromol 2025; 305:141122. [PMID: 39965696 DOI: 10.1016/j.ijbiomac.2025.141122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
This study outlines the sustainable synthesis of hybrid biopolymer hydrogels supported with octahedral Cu2O nanoparticles (NPs), alongside their biological assessments and characterizations. A composite hydrogel made of chitosan and guar gum (CS-GG) was employed as a template for the environmentally friendly synthesis of nanoparticles. Leveraging their electron-rich functional groups, the biopolymers acted as stabilizing agents for the Cu2O NPs and as green reductants, facilitating the reduction of copper ions. The material's physicochemical properties were thoroughly examined using advanced techniques, such as X-ray diffraction (XRD), Field-Emission Scanning Electron Microscopes (FE-SEM), Eneregy Dispersive X-ray Electron Spectroscopy (EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) and ICP-OES. The resulting CS-GG/Cu2O NPs nanocomposite was investigated as a reusable heterogeneous nanocatalyst, demonstrating its efficiency in the phosphine-free, palladium-free, and ligand-free synthesis of various stilbene derivatives with high yields through the Sonogashira coupling reaction. The catalyst showed no significant reduction in activity after being reused seven times consecutively. The cytotoxic effects of the CS-GG/Cu2O NPs nanocomposite on NCI-H661 lung cancer cells and normal cells (HUVEC) were assessed over 48 h using MTT assay. The cancer cell's viability decreased after exposure to the CS-GG/Cu2O NPs, with an IC50 value of 82 μg/mL. The CS-GG/Cu2O NPs nanocomposite controls the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) system, which in turn impacts apoptosis and cell proliferation in NCI-H661 cells, according to a detailed examination of the mTOR pathway. The pathway could act a role in the cell cycle inhibition and apoptosis induced by the CS-GG/Cu2O NPs nanocomposite. The CS-GG/Cu2O NPs nanocomposite could be a useful natural anti-cancer agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiongtao Cheng
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Saba Hemmati
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Mozhgan Pirhayati
- Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, Iran.
| | - Mohamad Mehdi Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hojat Veisi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| |
Collapse
|
4
|
Scheibel JM, Siqueira NM, da Silva LS, Mace MAM, Soares RMD. Progress in galactomannan-based materials for biomedical application. Int J Biol Macromol 2025; 311:143614. [PMID: 40306510 DOI: 10.1016/j.ijbiomac.2025.143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/05/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Galactomannan-based biomaterials display a unique behavior in aqueous media due to their mechanical, rheological and solubility properties, which are increasingly attracting their applicability into the biomedical area. The physical-chemical features of galactomannans extracted from different botanical sources provide diverse applicability for the developed systems, which can deliver active substances and be applied in wound healing and bone replacement. Galactomannans have an essential biological role and can be easily chemically modified due to their reactive chemical structure. Besides, their biocompatibility and capacity to be applied in the form of film, hydrogel, micro, nanoparticles, and printed material, could revolutionize personalized medicine. Scientists are investigating ways to functionalize galactomannans with bioactive molecules to enhance their biological performance. This is the first review of galactomannans that combines their chemical modifications with biological activities, presenting various biomaterial possibilities with a focus on biomedical applications. The rising demand for renewable-source materials in the medical field underscores their importance, driving ongoing research to explore their full capabilities. As studies progress, the scope of clinical applications for galactomannan-based materials is expected to broaden. To maximize the bioactive potential of galactomannan-based materials, emphasis should be placed on clinical translation to facilitate its effective incorporation into biomedical applications.
Collapse
Affiliation(s)
- Joice M Scheibel
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil.
| | - Nataly M Siqueira
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Laiane S da Silva
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Manoela A M Mace
- Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil; Postgraduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Rosane M D Soares
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
5
|
Wang XL, Liu ZW, Jia HP, Wu MY, Li DM, Ye XG, Hu Y, Chen Y, Huang C. Production, structure, and performance of guar gum based bacterial cellulose generated from soy sauce residue hydrolysate by in-situ fermentation. Int J Biol Macromol 2025; 300:140108. [PMID: 39842594 DOI: 10.1016/j.ijbiomac.2025.140108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Guar gum based bacterial cellulose (GG-BC) was generated from the soy sauce residue hydrolysate by in-situ fermentation, and its structure and performance were learned systematically. The GG concentration of 0.2 % was most suitable for GG-BC production with the yield of 1.21 g/L. During the in-situ fermentation, GG was implanted into the nano network of BC and thus altered its microstructure and properties. According to the FT-IR and NMR results, GG-BC had similar functional group structure and cellulose structural framework to those of BC. The degree of polymerization (DP) of GG-BC was 526.32-832.16, which was higher than that (426.32) of BC. Also, the GG-BC with low GG addition (0.2 % and 0.4 %) had a higher crystallinity than BC. Moreover, the GG-BC had a better heat tolerance than BC based on its higher temperature reaching the maximum degradation rate. The GG-BC with suitable GG addition had better texture characteristics, UV barrier property, swelling rate, and antioxidant activity than those of BC, showing that the in-situ fermentation with GG addition could promote the performance of GG-BC. Overall, this study can provide an attractive technology for both solving the environmental issue brought by soy sauce residue and producing high value-added GG-BC with good performance efficiently.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Zhuo-Wei Liu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Huai-Peng Jia
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Meng-Yue Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Dong-Mei Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Xi-Guang Ye
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
6
|
Nagano T, Higashimura Y, Nakano M, Nishiuchi T, Lelo AP. High-viscosity dietary fibers modulate gut microbiota and liver metabolism to prevent obesity in high-fat diet-fed mice. Int J Biol Macromol 2025; 298:139962. [PMID: 39826739 DOI: 10.1016/j.ijbiomac.2025.139962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Obesity and metabolic disorders are rising global health concerns, emphasizing the need for effective dietary interventions. High-viscosity dietary fibers such as bacterial cellulose (BC) and guar gum (GG) have unique properties that may complement each other in modulating gut microbiota and metabolic health. This study investigates their effects in high-fat diet-fed mice. BC and GG increase Bacteroides, which degrade polysaccharides and produce short-chain fatty acids (SCFAs), supporting metabolic health. BC enhances bile acid excretion and enriches Faecalibaculum, Duncaniella, and Paramuribaculum, promoting gut barrier integrity and reducing inflammation, potentially improving bile acid turnover and lipid metabolism. GG more effectively increases butyrate production by enhancing butyrate-producing bacteria, such as Clostridium XIVa and Kineothrix, and promotes Bifidobacterium, strengthening anti-inflammatory effects and gut barrier function. Both fibers upregulate bile acid biosynthesis, but BC's non-fermentable nature leads to higher bile acid excretion, while GG's fermentation causes lower excretion and broader liver metabolic changes. Both fibers reduce body weight, fat accumulation, and cholesterol levels, highlighting their potential in managing obesity and metabolic disorders. The complementary effects of BC and GG underscore the importance of fiber diversity for targeted dietary strategies to improve metabolic health.
Collapse
Affiliation(s)
- Takao Nagano
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| | - Yasuki Higashimura
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Masataka Nakano
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Aaron Pambu Lelo
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
7
|
Chen Y, Qiu X, Feng L, Li D, Nie M, Zhang Z, Li J, Yu D, Shen Q. Effect of galactomannan addition on the rheological property, 3D printing performance and flavor characteristic of shepherd's purse gels. Int J Biol Macromol 2025; 308:142629. [PMID: 40158591 DOI: 10.1016/j.ijbiomac.2025.142629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Shepherd's purse is a herbaceous plant that has been widely used in China because it contains many kinds of nutrients. The application of shepherd's purse in 3D printing food can realize the personalized customization of a healthy diet. This study aims to evaluate the effects of galactomannan types, including locust bean gum (LBG), tara gum (TG), guar gum (GG), and fenugreek gum (FG), on the rheological properties, 3D printing performance and flavor characteristics of shepherd's purse gels. The results investigated that all shepherd's purse gels exhibited shear thinning and elastic characteristics. Increasing the galactomannan concentration could improve the viscosity, G', G", gel strength and water holding capacity (WHC) of the shepherd's purse gels, and reduce their fluidity and shear recovery property. Gel added with LBG had the lowest viscosity, WHC and worst printing formability. The addition of GG made the gel network structure denser and smoother. Gels added with GG, FG and TG at 6 % had high resolution and printing performance. When the gel was added with 6 % of GG, the printing accuracy and stability were 97.30 % and 94.87 %, respectively. The addtion of galactomannan had no impact on the taste characteristics of shepherd's purse gels, while the aroma response values of printed objects containing TG, GG and FG showed increasing trends with the concentration increased. Therefore, this research introduced a novel scheme for 3D printed vegetables.
Collapse
Affiliation(s)
- Yubin Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, Jiangsu, China; Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Xuliang Qiu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Lei Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China.
| | - Dajing Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Meimei Nie
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Zhongyuan Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, Jiangsu, China
| | - Dongxin Yu
- Shanghao Biotech Co., Ltd., 266700 Qingdao, Shandong, China
| | - Qi Shen
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Zhang S, Xue W, Liu W, Duan H, Cui X, Cao X, Cui Z. Synthesis, performance, and adsorption mechanism of an environmentally friendly dust suppressant derived from guar gum for effective soil dust control. Int J Biol Macromol 2025; 306:141497. [PMID: 40015408 DOI: 10.1016/j.ijbiomac.2025.141497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
In this study, a novel dust suppressant (CMGG-AM) was synthesized by grafting acrylamide (AM) onto carboxymethyl guar gum. The synthesis process was optimized to determine the ideal conditions for the grafting reaction, and the optimal reaction conditions of the CMGG-AM were 2 g of carboxymethyl guar gum, 0.06 g of N, N'-Methylenebisacrylamide, 6 g of AM, and 0.2 g of potassium persulfate at 60 °C. The dust suppressant was characterized using XRD, TG-DTG, and FTIR analyses. CMGG-AM exhibited significantly superior resistance to wind erosion and water retention compared to conventional treatments. Following treatment with CMGG-AM, the sample demonstrated a 90 % dust suppression rate at a wind speed of 15 m/s and a 15 % moisture content after evaporation at 40 °C for 10 h. Particle size analysis and SEM imaging revealed that CMGG-AM facilitated the aggregation of dust particles and formed a robust protective film on the dust surface. Additionally, adsorption experiments and molecular dynamics simulations were meticulously designed to investigate the binding of CMGG-AM to soil dust. Adsorption experiments elucidated a single-layer physical adsorption mechanism, predominantly governed by hydrogen bonding forces. Molecular dynamics simulations further illustrated the spontaneity of the adsorption and the characterization of hydrogen bonds as the main driving force. These findings not only validate the practical applicability of CMGG-AM as an eco-friendly dust suppressant but also pave the way for future advancements in the sustainable management of soil dust pollution.
Collapse
Affiliation(s)
- Shuhao Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Wenxiu Xue
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Wenhan Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Huitian Duan
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaowei Cui
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, PR China
| | - Xiufeng Cao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, PR China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
9
|
Luo Y, Pauer W, Luinstra GA. Nonlinear Viscoelasticity of and Structural Modulation in Guar Gum-Enhanced Triple-Network Hydrogels. Polymers (Basel) 2025; 17:597. [PMID: 40076090 PMCID: PMC11902840 DOI: 10.3390/polym17050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The effect of the presence of guar gum (0-0.75 wt%) in a thermo-responsive triple-network (TN) PVA/TA/PVA-MA-g-PNIPAAm hydrogel (PVA: polyvinyl alcohol; MA: methacrylate, PNIPAAm: poly-N-isopropyl acryl amide; TA: tannic acid) with respect to the structural, mechanical, and viscoelastic properties was mapped. A comprehensive analysis, using large-amplitude oscillatory shear (LAOS), SEM imaging, XRD, and mechanical analysis revealed that guar enhances hydrogel crystallinity (up to 30% at 0.75 wt%), which goes along with a strain hardening. The hydrogel achieved superior mechanical performance at a gum concentration of 0.5 wt% with a 40% increase in shear-thickening, an enhanced strain tolerance in nonlinear regimes, and a good mechanical robustness (maximum elongation to break of 500% and stress of 620 kPa). The hydrogel with 0.5 wt% guar exhibited also a good thermal response (equilibrium swelling ratio changed from 8.4 at 5 °C to 2.5 at 50 °C) and an excellent thermal cycling dimensional stability. Higher guar concentrations reduce structural resilience, leading to brittle hydrogels with lower extensibility and viscoelastic stability.
Collapse
Affiliation(s)
| | | | - Gerrit A. Luinstra
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, 20146 Hamburg, Germany; (Y.L.); (W.P.)
| |
Collapse
|
10
|
Bi J, Fu X, Jiang Y, Wang J, Li D, Xiao M, Mou H. Low molecular weight galactomannan alleviates diarrhea induced by senna leaf in mice via intestinal barrier improvement and gut microbiota modulation. Food Funct 2025; 16:1016-1031. [PMID: 39812735 DOI: 10.1039/d4fo04375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.
Collapse
Affiliation(s)
- Jiayuan Bi
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polyacrylamide of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China.
| | - Yun Jiang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| |
Collapse
|
11
|
Yan C, Zhao J, Jia Z, Lan H, Bao H, Shi Y. Experimental study on hydrophysical properties and slope planting of ecological composite material solidified loess. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123817. [PMID: 39765068 DOI: 10.1016/j.jenvman.2024.123817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/29/2025]
Abstract
The construction of engineering projects in the Chinese Loess Plateau has resulted in large areas of exposed slopes, increasing the risk of soil erosion. Restoring the slope ecosystem is an effective means to reduce soil erosion, prevent soil and water loss, and maintain slope stability. Ecological slope protection using bio-gum solidified fiber-reinforced loess (GFSL) has been proven to achieve good vegetation restoration effects, but there remains a problem of low vegetation coverage in the early stage of protection. Therefore, it was proposed to use bio-gum, artificial fiber, coco coir (CC), and wood wool (WW) to configure ecological composite material solidified loess (ECMSL). By conducting soil-water characteristic tests and outdoor slope planting model tests, the hydrophysical properties and vegetation restoration effects were studied. The results showed that compared with GFSL, ECMSL had a reduced percentage of large and medium pores and an increased percentage of small and micro pores, which demonstrated better hydrophysical properties and could provide more water for plant germination and growth. The hydrophysical properties of ECMSL increased with the increase of CC content and first increased and then decreased with the increase of WW content. When the content of CC and WW was 1.5% and 1.0% respectively, the properties of ECMSL were optimized. Compared with the GFSL protected slope, the short-term vegetation coverage rate of the slope protected by the optimal proportion of ECMSL was significantly improved, and the plant growth indices of the plants were also better. Overall, ECMSL can provide a better growing environment for plants, thus restoring the slope ecosystem faster and improving the effect of short-term plant slope protection. Furthermore, the field application of the ecological materials presented in this paper was effective, suggesting they can be promoted in engineering projects. The results of the study can provide an important reference for ecological protection projects and related research in loess areas.
Collapse
Affiliation(s)
- Changgen Yan
- School of Highway, Chang'an University, Xi'an, 710064, China; Xi'an Key Laboratory of Geotechnical Engineering for Green and Intelligent Transport, Xi'an, 710064, China.
| | - Jinhui Zhao
- School of Highway, Chang'an University, Xi'an, 710064, China; Xi'an Key Laboratory of Geotechnical Engineering for Green and Intelligent Transport, Xi'an, 710064, China.
| | - Zhuolong Jia
- School of Highway, Chang'an University, Xi'an, 710064, China; Xi'an Key Laboratory of Geotechnical Engineering for Green and Intelligent Transport, Xi'an, 710064, China.
| | - Hengxing Lan
- School of Geological Engineering and Geomatics, Chang'an University, Xi'an, 710054, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Han Bao
- School of Highway, Chang'an University, Xi'an, 710064, China; Xi'an Key Laboratory of Geotechnical Engineering for Green and Intelligent Transport, Xi'an, 710064, China.
| | - Yuling Shi
- School of Geological Engineering and Geomatics, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
12
|
Marković J, Salević-Jelić A, Milinčić D, Gašić U, Pavlović V, Rabrenović B, Pešić M, Lević S, Mihajlović D, Nedović V. Horseradish (Armoracia rusticana L.) leaf juice encapsulated within polysaccharides-blend-based carriers: Characterization and application as potential antioxidants in mayonnaise production. Food Chem 2025; 464:141777. [PMID: 39471560 DOI: 10.1016/j.foodchem.2024.141777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
This study aimed to encapsulate cold-pressed horseradish leaf juice within maltodextrin/alginate (MD/AL), maltodextrin/guar gum (MD/GG), and maltodextrin/gum Arabic (MD/GA) by spray-drying, to characterize the encapsulates, and to test their potential as mayonnaise oxidation-preventing ingredients. The encapsulates exhibited desirable physicochemical, morphological, structural, and thermal properties, highlighting MD/GA-containing encapsulates, especially regarding high encapsulation yield (78.50 %). Also, encapsulates contained a significant amount of phenolics, which were stable during freezer storage. The encapsulates successfully delayed the mayonnaise oxidation: 31.91-38.94 % more than the synthetic antioxidant ethylenediaminetetraacetic acid, especially highlighting MD/AL-containing encapsulates. Also, the encapsulates improved product quality with a higher pH and lower acidity after storage compared to the controls. Overall acceptability of encapsulates-containing mayonnaises and commercial mayonnaise did not differ significantly. This study contributes to sustainable development by providing new insights into the valorization of horseradish leaves, as a promising alternative to synthetic additives to prolong the oxidative stability and shelf-life of high-oil-containing foods.
Collapse
Affiliation(s)
- Jovana Marković
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Ana Salević-Jelić
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Danijel Milinčić
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Uroš Gašić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Plant Physiology, 11060 Belgrade, Serbia.
| | - Vladimir Pavlović
- University of Belgrade, Faculty of Agriculture, Department of Mathematics and Physics, 11080 Belgrade, Serbia.
| | - Biljana Rabrenović
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Mirjana Pešić
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Steva Lević
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Dragana Mihajlović
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| | - Viktor Nedović
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia.
| |
Collapse
|
13
|
Anjum S, Parks K, Clark K, Parker A, Heveran CM, Gerlach R. Strengthening biopolymer adhesives through ureolysis-induced calcium carbonate precipitation. Sci Rep 2025; 15:3453. [PMID: 39870653 PMCID: PMC11772823 DOI: 10.1038/s41598-024-84087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025] Open
Abstract
Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient. Existing mineral fillers can improve the strength of biopolymer adhesives but require the use of crosslinkers that lower process sustainability. This work introduces a novel approach to strengthen biopolymer adhesives through calcium carbonate biomineralization, which avoids the need for crosslinkers. Biomineral fillers produced by either microbially or enzymatically induced calcium carbonate precipitation (MICP and EICP, respectively) were precipitated within guar gum and soy protein biopolymers. Both, MICP and EICP, increased the strength of the biopolymer adhesives. The strength was further improved by optimizing the concentrations of bacteria, urease enzyme, and calcium. The highest strengths achieved were on par with current commercially available nonstructural adhesives. This study demonstrates the feasibility of using calcium carbonate biomineralization to improve the properties of biopolymer adhesives, which increases their potential viability as more sustainable adhesives.
Collapse
Affiliation(s)
- Sobia Anjum
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Kendall Parks
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Kaylin Clark
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
- Department of Mechanical Engineering, Montana State University, Bozeman, USA
| | - Albert Parker
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
- Department of Mathematical Sciences, Montana State University, Bozeman, USA
| | - Chelsea M Heveran
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
- Department of Mechanical Engineering, Montana State University, Bozeman, USA
| | - Robin Gerlach
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, USA.
- Thermal Biology Institute, Montana State University, Bozeman, USA.
| |
Collapse
|
14
|
Wu Y, You F, Hou S. Application of natural materials containing carbohydrate polymers in rheological modification and fluid loss control of water-based drilling fluids: A review. Carbohydr Polym 2025; 348:122928. [PMID: 39567146 DOI: 10.1016/j.carbpol.2024.122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024]
Abstract
As the concept of green and sustainable development gains widespread acceptance, the demand for non-toxic, biodegradable, renewable, and widely sourced natural materials (NMs) is increasing across various fields. In oil and gas well drilling operations, water-based drilling fluids (WBDFs) are at the forefront of eco-friendly practices. Their rheological modification and fluid loss control properties are two fundamental and crucial aspects ensuring safe drilling. This review explores the research progress in enhancing these key properties of WBDFs using NMs, primarily focusing on polysaccharide polymers. It analyzes the sources, effective components, and potential functions of these NMs, and introduces three clean production methods: mechanical processing, extraction, and fermentation. Furthermore, the review focuses on the contributions of NMs obtained through these methods to the rheological and fluid loss control properties of WBDFs, highlighting their advantages and disadvantages. Despite challenges such as raw material supply stability, material synergy, compatibility, process scalability, field application, resistance to complex geological conditions, and economic feasibility, NMs, due to their outstanding environmental benefits, remain strong candidates for sustainable drilling fluid additives. Future research should focus on optimizing the performance of these materials and addressing existing issues to promote green and sustainable development in the drilling industry.
Collapse
Affiliation(s)
- Yu Wu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China
| | - Fuchang You
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China; School of Petroleum Engineering, Yangtze University: National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Wuhan, Hubei 430100, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China.
| | - Shanshan Hou
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China
| |
Collapse
|
15
|
Patole V, Swami D, Ingavle G, Behere I, Ottoor D, Vyawahare N, Jha A, Deshkar S, Undale V, Sanap A, Kheur S, Kumar A. Gallic acid-guar gum and chitosan-based polyelectrolyte complex film exhibited enhanced wound healing in full-thickness excision wound model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-34. [PMID: 39760659 DOI: 10.1080/09205063.2024.2439668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate. NMR and FTIR confirmed GA integration, UV spectroscopy indicated changes in electronic transition, DSC analysis suggested a reduction in crystallinity, and XRD revealed structural modifications. SEM revealed a porous structure that reflected its polymerized nature. Due to inadequate mechanical strength and film-forming ability of the synthesized GA-GG conjugate, polyelectrolyte complexation method using chitosan was explored to form a polyelectrolyte complex (PEC) film. The film exhibited a high swelling rate, excellent antioxidant properties, and was both hemocompatible and exhibited improved antimicrobial properties. In vitro, in ovo, and in vivo characterizations were performed to compare the performance of these biocomposite films to those of their counterparts. It promoted angiogenesis in the chick yolk sac membrane and demonstrated good cytocompatibility in cell proliferation studies on the viability of the L929 mouse fibroblast cell line. In vivo wound healing efficacy of the PEC film in wound closure was 94.5% as compared to the untreated disease control group (p < 0.001). This work highlights the development of an innovative GA-GG conjugate/chitosan PEC-based film with significant potential for wound healing applications.
Collapse
Affiliation(s)
- Vinita Patole
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Dhaneshwari Swami
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Ganesh Ingavle
- Advanced Cell and Gene Therapy Manufacturing (GMP) Unit, NIHR Biomedical Research Centre Guy's and St Thomas' NHS Foundation Trust and King's College London, Clinical Research Facility, Guy's Hospital, London, UK
| | - Isha Behere
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Divya Ottoor
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Nikita Vyawahare
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Abhishek Jha
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Sanjeevani Deshkar
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vaishali Undale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Supriya Kheur
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Avinash Kumar
- Department of Medical Affairs, Curie Sciences, Samastipur, Bihar, India
| |
Collapse
|
16
|
Wang L, Liu X, Han S, Xu H, Liao W, Gu L. Cold atmospheric plasma-induced alterations in the multiscale structural and functional properties of guar gum. Int J Biol Macromol 2025; 286:138473. [PMID: 39645132 DOI: 10.1016/j.ijbiomac.2024.138473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The use of guar gum in the food industry faces challenges owing to its large molecular weight and high viscosity. Cold atmospheric plasma (CAP) is a novel technique that utilizes the reactive species produced by high voltage discharge to modify food ingredients. In this study, guar gum was treated with CAP at different powers and duration, and its rheological properties, molecular structure, thermal stability, emulsifying activity, and stability were evaluated. CAP reduced the molecular weight of guar gum and altered its M/G ratio, leading to a decrease in the apparent viscosity of guar gum and an enhancement in its thermal stability and emulsifying function for soy protein isolate emulsions. Molecular structure analysis revealed the CAP treatment did not destroy the basic structure of guar gum, but caused alterations in the linkages between its glycosidic bonds and/or carbohydrate units. Scanning electron microscopy showed guar gum changed from a dense surface structure to a porous and loose structure after CAP treatment. Therefore, CAP effectively modifies guar gum, enhancing its potential in food and other industries.
Collapse
Affiliation(s)
- Lin Wang
- College of Biotechnology and Food Science, Anyang Institute of Technology, Anyang 455000, China; School of Life Sciences, Henan University, Kaifeng 475004, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China.
| | - Xuexia Liu
- College of Biotechnology and Food Science, Anyang Institute of Technology, Anyang 455000, China
| | - Shuyun Han
- College of Biotechnology and Food Science, Anyang Institute of Technology, Anyang 455000, China
| | - Hangbo Xu
- State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Wenjie Liao
- College of Biotechnology and Food Science, Anyang Institute of Technology, Anyang 455000, China
| | - Lingbiao Gu
- College of Biotechnology and Food Science, Anyang Institute of Technology, Anyang 455000, China.
| |
Collapse
|
17
|
Marques MDA, Serrano BM, Paulo LADO, Ramos LCDS, Simiqueli AA, Rocha F, Minim VPR, Minim LA, Vidigal MCTR. Physical and oxidative stability of babassu (Orbignya phalerata mart) oil in water nanoemulsions: Effect of oil and guar gum concentrations. Food Res Int 2025; 199:115419. [PMID: 39658183 DOI: 10.1016/j.foodres.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Babassu oil (BO) was used in the production of oil in water (O/W) nanoemulsions in order to evaluate the potential application of an alternative source of vegetable oil in the composition of colloidal systems. The proportion of oil phase (10, 20 and 30 % w/w) and guar gum (GG) concentrations (0, 0.10, 0.15 and 0.20 % w/w) were evaluated for 30 days of storage at 5 °C. Physical (pH, viscosity, zeta potential, average diameter, microstructure, and creaming index) and the oxidative stability were measured to evaluate the feasibility of BO in the production of O/W nanoemulsions. The nanoemulsions presented a zeta potential higher than 19.17 mV in absolute value. All systems presented a polydispersity index (PDI) below 0.031 and unimodal size distributions, with the mean droplet diameter size below 246.17 nm. The addition of GG increased the viscosity of the emulsions and the average droplet diameter size. For all samples, creaming index did not vary significantly after 30 days of storage at 5 °C, contributing to the stability of the system. In general, the samples containing a higher oil concentration (30 %) were less stable in terms of oxidation, possibly due to the increased amount of oil. BO can be a promising alternative source of oil to produce nanoemulsions, as the emulsions containing up to 20 % w/w oil and 0.15 % w/w GG presented promising results regarding the physical and oxidative stability. Nanoemulsions with increased stability containing alternative sources of oil may be an interesting approach for cosmetic, pharmaceutical, and food industries.
Collapse
Affiliation(s)
| | - Beatris Mendes Serrano
- Food Technology Department, Federal University of Viçosa (UFV), 36570-900 Viçosa, Brazil
| | | | | | - Andréa Alves Simiqueli
- Department of Pharmacy, Federal University of Juiz de Fora, Governador Valadares Campus (UFJF-GV), 35032-620 Governador Valadares, MG, Brazil
| | - Felipe Rocha
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Argentina
| | | | - Luis Antonio Minim
- Food Technology Department, Federal University of Viçosa (UFV), 36570-900 Viçosa, Brazil
| | | |
Collapse
|
18
|
Yan HY, Zhang SB. Preparation and Characterization of Ultrasonically Modified Peanut Protein-Guar Gum Composite Emulsion Gels for 3D Printing. Gels 2024; 10:828. [PMID: 39727585 DOI: 10.3390/gels10120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
This study aimed to prepare ultrasonically modified peanut protein-guar gum composite emulsion gels for 3D printing. The composition of the composite emulsion gels was determined in single-factor and orthogonal experiments. The results revealed that the optimal composite emulsion gels consisted of 6% peanut protein, 50% oil and 0.2% guar gum. After crushing pretreatment for 45 s, the printing deviation of the composite emulsion gels was reduced to 8.58 ± 0.20%. Moreover, after ultrasonic treatment (200 W for 20 min) of peanut proteins, the obtained composite emulsion gels presented the highest yield stress, hardness and G' values, as well as a denser and more homogeneous microstructure. After protein ultrasonic modification (200 W or 600 W for 20 min), the printing accuracy and self-supporting properties of the composite emulsion gels for printing complex shapes significantly improved, which was attributed to their stronger textural and rheological properties; however, ultrasonically modified peanut protein-guar gum composite emulsion gels were not suitable for printing products with smooth surfaces.
Collapse
Affiliation(s)
- Hong-Yan Yan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shao-Bing Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
19
|
Guro P, Kuznetsova I, Sazanova A, Belimov A, Karlov D, Safronova V. Whole-genome sequence of Ensifer aridi strain RCAM05007 isolated from Cyamopsis tetragonoloba (L.) Taub. root nodule. Microbiol Resour Announc 2024; 13:e0101224. [PMID: 39576171 PMCID: PMC11636374 DOI: 10.1128/mra.01012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
We present the genome sequence of Ensifer aridi strain RCAM05007 obtained from long reads. The strain was isolated from the root nodule of Cyamopsis tetragonoloba (L.) Taub. plant inoculated with a soil sample from India. The assembly contains one chromosome and two megaplasmids totalling ~6.7 Mbp with 61.6% GC content.
Collapse
Affiliation(s)
- Polina Guro
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Irina Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Denis Karlov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| |
Collapse
|
20
|
Cai R, Jia L, Yang R, Tao H, Cui H, Lin L, Khojah E, Bushnaq T, Shi C. Fabrication of guar gum/chitosan edible films reinforced with orange essential oil nanoemulsion for cheese preservation. Int J Biol Macromol 2024; 285:138285. [PMID: 39631598 DOI: 10.1016/j.ijbiomac.2024.138285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Inner Mongolian cheese is easily spoiled during storage due to hydrolysis and microbial contamination. Herein, the guar gum (GG)/chitosan (CS) edible films reinforced with orange essential oil nanoemulsion (OEON) were fabricated for cheese preservation. Results showed 4 % OEON with the optimal droplet size (380 ± 44.07 nm) and uniform distribution exhibited commendable compatibility with the GG/CS edible films, leading to an improvement in the oxygen and water vapor barrier properties, concomitantly mitigating their hydrophilic nature, with decreasing moisture content (from 96.86 % to 34.69 %) and water solubility (from 72.27 % to 69.76 %), while an increasing water contact angle (from 59.9° to 113.8°). The addition of 4 % OEON into the GG/CS edible films yielded a slight decrease in the tensile strength, but the elongation at break significantly increased to 135.12 %, indicating the improvement of mechanical properties. Moreover, the GG/CS-OEON edible films demonstrated outstanding biodegradability, thermal stability, and antimicrobial properties. Particularly, GG/CS-OEON 3:1 edible films packaging could maintain the stability of the weight loss, pH, color, and textural changes, retard the bacterial growth and delay the lipid oxidation of the cheese samples, thereby ensuring the cheese quality and safety. Findings here demonstrated the promising potential application of GG/CS-OEON 3:1 edible films in Inner Mongolian cheese preservation.
Collapse
Affiliation(s)
- Rongrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Li Jia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Rui Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Taqwa Bushnaq
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China.
| |
Collapse
|
21
|
Lin Z, Lu Y, Wei X, Huang B, Xu C. Constructing guar hydroxypropyltrimonium chloride continuous segregated network structure for preparation of biobased conductive film. Int J Biol Macromol 2024; 283:137907. [PMID: 39571861 DOI: 10.1016/j.ijbiomac.2024.137907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Stretchable bioelectronics advancements have placed higher demands on conductive elastic film. However, the high conductivity of elastomers largely relies on the substantial content of costly conductive fillers while being environmentally unfriendly. Herein, in order to achieve a win-win situation for the economy and the environment, guar hydroxypropyltrimonium chloride (CGG) was introduced in epoxy natural rubber (ENR) to prepare biobased conductive film. During film-forming, CGG is selectively fixed around the latex particles, thereby forming a continuous segregated network. This structure can be transformed into nanofluidic channels upon hygroscopic, resulting in low volume resistance of 211 Ω·cm (≈280 times decrease). Simultaneously, the toughness of the film is increased to 10.8 MJ/m3 (≈20 times increase) due to the "reinforced concrete structure" effect of the network of CGG. Notably, the presence of segregated network also improved the response to strain (gauge factor of 19.1) and humidity (relative resistance change of 95.9 %). Therefore, the material can be used as wearable flexible sensors. This study not only reveals the formation process of segregated structures in detail but also has significantly advanced our comprehension of biosourced conductive film.
Collapse
Affiliation(s)
- Zihao Lin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Yongheng Lu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Xinyu Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Bai Huang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China.
| | - Chuanhui Xu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China.
| |
Collapse
|
22
|
Saya L, Samal RR, Kumar S, Verma M, Singh WR, Hooda S. Assessment of multifunctional activity of graphene oxide and guar gum-based nanomaterials against Aedes aegypti. CHEMOSPHERE 2024; 369:143906. [PMID: 39643016 DOI: 10.1016/j.chemosphere.2024.143906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Nanomaterials have been receiving much research attention in controlling insect pests and vectors. Properties, such as small surface-to-volume ratio, low dosages, durability, solubility, enhanced target activity, pore size and surface characteristics have enabled the design of precise and targeted insecticides through adsorption, encapsulation, and conjugation. The reported study aims to evaluate the efficacy of graphene oxide (GO) and guar gum (GG)-based nanomaterials against early fourth instar of Aedes aegypti, a mosquito responsible for transmitting diseases like dengue fever, Zika, and chikungunya, among many others. GO and a total of eight nanomaterials (SA-1 to SA-8) were formulated using GO, GG and their combinations with ferrous oxide and copper oxide. Each material was characterized using various biophysical techniques. The materials were evaluated for larvicidal potential by assessing their efficacy on the survival and morphology of Ae. aegypti, while the contact irritancy activity focused on determining their irritant properties upon direct exposure to the female adults. The larvicidal and irritant bioassays, conducted with these nanomaterials at different concentrations, demonstrated concentration-dependent mortality and significant behavioral responses. The exposures with nanomaterials also resulted in a deposition of black soot on the larval cuticle. The most effective nanomaterial was found as ferrous oxide nanomaterial which induced 100% larval mortality as well as significant contact irritancy. The results indicate the potential use of GO and GG-based nanomaterials against Ae. aegypti after concentration optimization.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India; Department of Chemistry, Manipur University, Canchipur, Imphal, 795003, Manipur, India; Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India.
| | - Roopa Rani Samal
- Department of Zoology, Dyal Singh College (University of Delhi), New Delhi, 110003, India; Insect Pest and Vector Laboratory, Department of Zoology, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Sarita Kumar
- Insect Pest and Vector Laboratory, Department of Zoology, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India.
| | - Manisha Verma
- Department of Physics, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 11 0 019, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal, 795003, Manipur, India.
| | - Sunita Hooda
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
23
|
Zhong G, Wang Z, Chen Q, He Z, Zeng M, Qin F, Chen J. Effects of Different Non-Ionic Polysaccharides on the Heat-Induced Gelling Properties of Curdlan. Polymers (Basel) 2024; 16:3345. [PMID: 39684091 DOI: 10.3390/polym16233345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Curdlan's application is constrained by high gelation concentration, poor water solubility, and incompatibility with other polysaccharides. To address these limitations, this study investigated the effects of different concentrations (0.05-0.3%) of non-ionic polysaccharides (pullulan (PL), locust bean gum (LBG), guar gum (GG), and konjac gum (KGM)) on the heat-induced gelling properties of curdlan. PL with no branch showed 0.3% enhanced gel hardness. LBG with a small amount of galactose residue and KGM with an acetyl group had similar effects on hardness, while GG with a large amount of galactose residue slightly weakened the mixed gel. The rheological results showed that PL had little effect on curdlan, and LBG and KGM had a positive effect on curdlan unfolding, but 0.3% GG was significantly antagonistic to curdlan. The above results implied that non-ionic polysaccharides without side chains interacted weakly with the curdlan and hardly changed the properties of curdlan. Curdlan unfolding and stable suspension were favored if the structure contained galactose or acetyl side chains that interacted with curdlan through hydrogen bonding. These results suggested an effective way to modify curdlan by strengthening the interaction of curdlan with others and weakening the hydrogen bonding of curdlan to broaden its application in food colloids.
Collapse
Affiliation(s)
- Guoyan Zhong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Shi C, Jia L, Tao H, Li C, Aziz T, Alhomrani M, Cui H, Lin L. Effects of guar gum/chitosan edible films functionalized with citronellal/HPβCD inclusion complex on Harbin red sausage preservation. Int J Biol Macromol 2024; 282:137312. [PMID: 39515733 DOI: 10.1016/j.ijbiomac.2024.137312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Harbin red sausage is a traditional local pork meat product in China, but it is susceptible to microbial contamination and lipid oxidation, leading to quality deterioration. Herein, guar gum (GG)/chitosan (CS) edible films functionalized with citronellal/hydroxypropyl-β-cyclodextrin inclusion complex (CIT/HPβCD-IC) were fabricated for Harbin red sausage preservation. Results demonstrated CIT/HPβCD-IC was successfully prepared and observed by SEM due to the bathochromic shift of maximum absorption peak of CIT, and the formation of new bonds was confirmed by FTIR analysis, suggesting the embedding of CIT into HPβCD cavity. The changes of functional groups stretching vibrations suggested successful loading of CIT/HPβCD-IC into the GG/CS edible films. Furthermore, the incorporation of CIT/HPβCD-IC enhanced the microstructural, mechanical and barrier properties, and improved the antibacterial activities, biodegradability and thermal stability of the GG/CS edible films. Particularly, the GG/CS edible films incorporated with 1 % CIT/HPβCD-IC (GG/CS-IC 1 %) enhanced the storage stability of Harbin red sausage at 4 °C by decreasing the weight loss rate, maintaining the pH, color, and textural stabilities, retarding the microbial growth and lipid oxidation of the sausage samples. Findings here suggested that GG/CS-IC 1 % edible films showed great potential as novel multi-functional edible packaging materials for Harbin red sausage preservation.
Collapse
Affiliation(s)
- Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Li Jia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China.
| |
Collapse
|
25
|
Khurizadeh S, Naderi R, Meftahizadeh H, Hazrati S, Nicola S. Foliar Application of Methyl Jasmonate and Chitosan Improve Growth, Yield, and Quality of Guar ( Cyamopsis tetragonoloba L.) Under Water-Deficit Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3099. [PMID: 39520016 PMCID: PMC11548143 DOI: 10.3390/plants13213099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Guar (Cyamopsis tetragonoloba L.), a summer legume, is becoming increasingly important as an industrial crop due to its high gum and viscosity content. This study investigated the effects of methyl jasmonate (MeJA), chitosan (CH), and their combination on the growth, yield, and quality of guar under irrigation regimes. A greenhouse experiment was conducted using a factorial design to evaluate the effect of foliar spraying with MeJA (5, 25, and 50 µM), CH (100, 150, and 200 mg/L), their combination (25 µM MeJA + 150 mg/L CH), and control on two commercial guar varieties (RGC-986 and BR-2017) under different irrigation regimes (100%, 70%, and 40% field capacity). The results showed that the exogenous application of MeJA and CH, individually and in combination, significantly enhanced various morphological traits and yield components in guar, including plant height, pod characteristics, seed yield, and root development. Additionally, the combination treatments improved seed quality parameters, such as gum percentage and viscosity content. Leaf analysis revealed increased levels of total phenolic content, total flavonoid, and anthocyanin contents. The BR-2017 variety showed superior performance in most morphological and qualitative traits, demonstrating greater resistance to irrigation regimes. It maintained yield and quality characteristics under water-deficit conditions, particularly when treated with 25 µM MeJA and 150 mg/L CH. The highest gum percentage (33.67%) and viscosity (4768.5 cP) were observed in the RGC-986 variety, along with enhanced levels of secondary metabolites. This study provides new insights into how MeJA, CH, and their combination can improve the yield and quality of guar under water deficit stress conditions. The results suggest that the use of these elicitors, especially in combination, represents an innovative strategy for improving guar production and quality, with potential variety-specific responses to water-deficit stress.
Collapse
Affiliation(s)
- Sara Khurizadeh
- Department of Plant Production and Genetics, Shiraz University, Shiraz 71964-84334, Iran;
| | - Ruhollah Naderi
- Department of Plant Production and Genetics, Shiraz University, Shiraz 71964-84334, Iran;
| | - Heidar Meftahizadeh
- Department of Horticultural Sciences, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan P.O. Box 184, Iran;
| | - Saeid Hazrati
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran
- Department of Agricultural, Forest, and Food Sciences—DISAFA, Horticultural Sciences—INHORTOSANITAS, Vegetable Crops and Medicinal and Aromatic Plants—VEGMAP, University of Torino, 10095 Grugliasco, Italy;
| | - Silvana Nicola
- Department of Agricultural, Forest, and Food Sciences—DISAFA, Horticultural Sciences—INHORTOSANITAS, Vegetable Crops and Medicinal and Aromatic Plants—VEGMAP, University of Torino, 10095 Grugliasco, Italy;
| |
Collapse
|
26
|
Yao Q, Pu L, Dong B, Zhu D, Wu W, Yang Q. Effects of ultrasonic degradation on physicochemical and antioxidant properties of Gleditsia sinensis seed polysaccharides. Carbohydr Res 2024; 545:109272. [PMID: 39293243 DOI: 10.1016/j.carres.2024.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In this study, two degraded polysaccharides from Gleditsia sinensis seed were obtained under ultrasonic power treatments of 300 and 450 W. The physicochemical properties, structural characteristics, and antioxidant activities of the degraded and undegraded polysaccharides were studied and compared. Ion exchange chromatography and methylation analysis showed that the polysaccharides had similar basic structural features and were composed of the same monosaccharide units before and after degradation, but the ultrasonic treatment increased the total monosaccharide content and changed the Mannose/Galactose value. Furthermore, with the increase in the ultrasonic power, the molecular weight and intrinsic viscosity of polysaccharides decreased, and the micromorphology became looser. The scavenging capacities for 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals and the reducing ability were significantly increased by the ultrasonic treatment. In conclusion, ultrasonic treatment may be an effective way to improve the antioxidant activities of polysaccharides from G. sinensis seed, and further studies on its antioxidant mechanism are still needed.
Collapse
Affiliation(s)
- Qiuping Yao
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China.
| | - Longlin Pu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Boyu Dong
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Dequan Zhu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Wenwen Wu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Qiong Yang
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| |
Collapse
|
27
|
Hu Y, Bian Q, Chen L, Wang X, Zhong J. Effect of glycation with three polysaccharides on the structural and emulsifying properties of ovalbumin. Food Chem X 2024; 23:101632. [PMID: 39100252 PMCID: PMC11295946 DOI: 10.1016/j.fochx.2024.101632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Herein, three types of ovalbumin (OA)-polysaccharide conjugates were prepared with three polysaccharides (XG: xanthan gum; GG: guar gum; KGM: konjac glucomannan) for the fish oil emulsion stabilization. The glycation did not change the spectra bands and secondary structure percentages of OA, whereas it decreased the molecular surface hydrophobicity of OA. The initial emulsion droplet sizes were dependent on the polysaccharide types, OA preparation concentrations, polysaccharide: OA mass ratios, and glycation pH. The emulsion stability was mainly dependent on the polysaccharide types, polysaccharide: OA mass ratios, and glycation pH. However, it was minorly dependent on the OA preparation concentrations. The emulsions stabilized by conjugates with high polysaccharide: OA mass ratios (e.g., ≥3:5 for OA-GG) or appropriate glycation pH (e.g., 5.0-6.1 for OA-XG) showed no obvious creaming during the room temperature storage. This work provided basic knowledge on the structural modification and functional application of a protein.
Collapse
Affiliation(s)
- Yaxue Hu
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiqi Bian
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lijia Chen
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China
| |
Collapse
|
28
|
Buwalda SJ. 'Click' hydrogels from renewable polysaccharide resources: Bioorthogonal chemistry for the preparation of alginate, cellulose and other plant-based networks with biomedical applications. Int J Biol Macromol 2024; 282:136695. [PMID: 39447791 DOI: 10.1016/j.ijbiomac.2024.136695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Click chemistry refers to a class of highly selective reactions that occur in one pot, are not disturbed by water or oxygen, proceed quickly to high yield and generate only inoffensive byproducts. Since its first definition by Barry Sharpless in 2001, click chemistry has increasingly been used for the preparation of hydrogels, which are water-swollen polymer networks with numerous biomedical applications. Polysaccharides, which can be obtained from renewable resources including plants, have drawn growing attention for use in hydrogels due to the recent focus on the development of a sustainable society and the reduction of the environmental impact of the chemical industry. Importantly, plant-based polysaccharides are often bioresorbable and exhibit excellent biocompatibility and biomimicry. This comprehensive review describes the synthesis, characterization and biomedical applications of hydrogels which combine the renewable and biocompatible aspects of polysaccharides with the chemically and biomedically favorable characteristics of click crosslinking. The manuscript focuses on click hydrogels prepared from alginate and cellulose, the most widely used polysaccharides for this type of hydrogel, but also click hydrogels based on other plant-derived polymers (e.g. pectin) are discussed. In addition, the challenges are described that should be overcome to facilitate translation from academia to the clinic.
Collapse
Affiliation(s)
- Sytze J Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
29
|
Mohamed Yunus R, Parisi D. Scaling Laws in Polysaccharide Rheology: Comparative Analysis of Water and Ionic Liquid Systems. Biomacromolecules 2024; 25:6883-6898. [PMID: 39283883 PMCID: PMC11480991 DOI: 10.1021/acs.biomac.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This study investigates the rheological behavior of two plant-based polysaccharides, with different degrees of hydrophilicity, agar (highly hydrophilic) and guar gum (hydrophilic), in water and 1-ethyl-3-methylimidazolium acetate (EMImAc). The rheological response of these polymers is highly dependent on the solvent's ability to disrupt intermolecular associations. In water, agar forms hydrogels, while guar gum behaves as a viscoelastic liquid with slow modes. The plateau modulus (GN0) scales with polymer concentration (c) as GN0 ∼ c3, consistent with other natural polymers. In EMImAc, both polysaccharides form viscoelastic liquids, exhibiting GN0 ∼ c2.3, as expected for semiflexible polymer solutions. However, the terminal relaxation time, τD, and the specific viscosity, ηsp, scale as τD ∼ c5.3 and ηsp ∼ c7.6, indicative of intermolecular chain-chain associations. Despite the solvent or polysaccharide, the fractional viscosity overshoot and the shear strain at the maximum stress show a terminal Weissenberg number dependence similar to other synthetic polymers.
Collapse
Affiliation(s)
- Roshan
Akdar Mohamed Yunus
- Department of Chemical Engineering,
Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Daniele Parisi
- Department of Chemical Engineering,
Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
30
|
Bashash M, Wang-Pruski G, He QS, Sun X. The emulsifying capacity and stability of potato proteins and peptides: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70007. [PMID: 39223759 DOI: 10.1111/1541-4337.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The potato has recently attracted more attention as a promising protein source. Potato proteins are commonly extracted from potato fruit juice, a byproduct of starch production. Potato proteins are characterized by superior techno-functional properties, such as water solubility, gel-forming, emulsifying, and foaming properties. However, commercially isolated potato proteins are often denatured, leading to a loss of these functionalities. Extensive research has explored the influence of different conditions and techniques on the emulsifying capacity and stability of potato proteins. However, there has been no comprehensive review of this topic yet. This paper aims to provide an in-depth overview of current research progress on the emulsifying capacity and stability of potato proteins and peptides, discussing research challenges and future perspectives. This paper discusses genetic diversity in potato proteins and various methods for extracting proteins from potatoes, including thermal and acid precipitation, salt precipitation, organic solvent precipitation, carboxymethyl cellulose complexation, chromatography, and membrane technology. It also covers enzymatic hydrolysis for producing potato-derived peptides and methods for identifying potato protein-derived emulsifying peptides. Furthermore, it reviews the influence of factors, such as physicochemical properties, environmental conditions, and food-processing techniques on the emulsifying capacity and stability of potato proteins and their derived peptides. Finally, it highlights chemical modifications, such as acylation, succinylation, phosphorylation, and glycation to enhance emulsifying capacity and stability. This review provides insight into future research directions for utilizing potato proteins as sustainable protein sources and high-value food emulsifiers, thereby contributing to adding value to the potato processing industry.
Collapse
Affiliation(s)
- Moein Bashash
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Xiaohong Sun
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
31
|
Aguilar-Vázquez R, Romero-Montero A, Del Prado-Audelo ML, Cariño-Calvo L, González-Del Carmen M, Vizcaíno-Dorado PA, Caballero-Florán IH, Peña-Corona SI, Chávez-Corona JI, Bernad-Bernad MJ, Magaña JJ, Cortés H, Leyva-Gómez G. Biopolymeric Insulin Membranes for Antimicrobial, Antioxidant, and Wound Healing Applications. Pharmaceutics 2024; 16:1012. [PMID: 39204356 PMCID: PMC11360745 DOI: 10.3390/pharmaceutics16081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Delayed wound healing increases the wound's vulnerability to possible infections, which may have lethal outcomes. The treatments available can be effective, but the urgency is not fully encompassed. The drug repositioning strategy proposes effective alternatives for enhancing medical therapies for chronic diseases. Likewise, applying wound dressings as biodegradable membranes is extremely attractive due to their ease of application, therapeutic effectiveness, and feasibility in industrial manufacturing. This article aims to demonstrate the pleiotropic effects during insulin repositioning in wound closure by employing a biopolymeric membrane-type formulation with insulin. We prepared biopolymeric membranes with sodium alginate cross-linked with calcium chloride, supported in a mixture of xanthan gum and guar gum, and plasticized with glycerol and sorbitol. Human insulin was combined with poloxamer 188 as a protein stabilizing agent. Our investigation encompassed physicochemical and mechanical characterization, antioxidant and biological activity through antibacterial tests, cell viability assessments, and scratch assays as an in vitro and in vivo wound model. We demonstrated that our biopolymeric insulin membranes exhibited adequate manipulation and suitable mechanical resistance, transparency, high swelling capability (1100%), and 30% antioxidant activity. Furthermore, they exhibited antibacterial activity (growth inhibition of S. aureus at 85% and P. aeruginosa at 75%, respectively), and insulin promoted wound closure in vitro with a 5.5-fold increase and 72% closure at 24 h. Also, insulin promoted in vivo wound closure with a 3.2-fold increase and 92% closure at 10 days compared with the groups without insulin, and this is the first report that demonstrates this therapeutic effect with two administrations of 0.7 IU. In conclusion, we developed a multifunctional insulin-loaded biopolymeric membrane in this study, with the main activity derived from insulin's role in wound closure and antioxidant activity, augmented by the antimicrobial effect attributed to the polymer poloxamer 188. The synergistic combination of excipients enhances its usefulness and highlights our innovation as a promising material in wound healing materials.
Collapse
Affiliation(s)
- Rocío Aguilar-Vázquez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - María L. Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | | | | | - Pablo Adrián Vizcaíno-Dorado
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Isaac Hiram Caballero-Florán
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | - Sheila Iraís Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Juan Isaac Chávez-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Jonathan J. Magaña
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 04510, Mexico
| |
Collapse
|
32
|
Zhong C, Chen R, He Y, Hou D, Chen F. Interactions between microbial communities and polymers in hydraulic fracturing water cycle: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174412. [PMID: 38977097 DOI: 10.1016/j.scitotenv.2024.174412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Hydraulic fracturing (HF) has substantially boosted global unconventional hydrocarbon production but has also introduced various environmental and operational challenges. Understanding the interactions between abundant and diverse microbial communities and chemicals, particularly polymers used for proppant delivery, thickening, and friction reduction, in HF water cycles is crucial for addressing these challenges. This review primarily examined the recent studies conducted in China, an emerging area for HF activities, and comparatively examined studies from other regions. In China, polyacrylamide (PAM) and its derivatives products became key components in hydraulic fracturing fluid (HFF) for unconventional hydrocarbon development. The microbial diversity of unconventional HF water cycles in China was higher compared to North America, with frequent detection of taxa such as Shewanella, Marinobacter, and Desulfobacter. While biodegradation, biocorrosion, and biofouling were common issues across regions, the mechanisms underlying these microbe-polymer interactions differed substantially. Notably, in HF sites in the Sichuan Basin, the use of biocides gradually decreased its efficiency to mitigate adverse microbial activities. High-throughput sequencing proved to be a robust tool that could identify key bioindicators and biodegradation pathways, and help select optimal polymers and biocides, leading to more efficient HFF systems. The primary aim of this study is to raise awareness about the interactions between microorganisms and polymers, providing fresh insights that can inform decisions related to enhanced chemical use and biological control measures at HF sites.
Collapse
Affiliation(s)
- Cheng Zhong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China
| | - Rong Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Fu Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| |
Collapse
|
33
|
Montazeri M, Norouzbeigi R. Investigation of synergistic effects incorporating esterified lignin and guar gum composite aerogel for sustained oil spill cleanup. Sci Rep 2024; 14:13892. [PMID: 38886286 PMCID: PMC11183076 DOI: 10.1038/s41598-024-64623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
The recently developed aerogel demonstrates a high capacity for pollutant absorption, making it an environmentally friendly option for oily water treatment. In an effort to reduce the adverse effects of the black liquor accumulation in the pulp industry, this study focused on utilizing the mentioned abundant bio-resource lignin, which can be applied to various high-value applications such as 3D porous materials for oil spill cleanup. Lignin, precipitated from the black liquor, was esterified using maleic anhydride as the esterifying reagent to enhance the hydrophobicity. Then, the composite aerogel fabricated from esterified lignin and guar gum (GG) was successfully prepared through the facile freeze-drying, using glutaraldehyde (GA) as the cross-linker. The resulting aerogel exhibited high porosity values exceeding 95%, low density (27.4 mg/cm3), and an impressive absorption capacity of 32.5 g/g for sunflower oil. These results demonstrate the potential of black liquor utilization as a bio-waste source of lignin and highlight the cost-effective guar gum-esterified lignin composite aerogel, which exhibits remarkable oil absorption capabilities and environmental sustainability promotion.
Collapse
Affiliation(s)
- Mahnaz Montazeri
- Nanomaterials and Surface Technology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, P. B. 16765-163, Tehran, Iran
| | - Reza Norouzbeigi
- Nanomaterials and Surface Technology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, P. B. 16765-163, Tehran, Iran.
| |
Collapse
|
34
|
Manna S, Karmakar S, Sen O, Sinha P, Jana S, Jana S. Recent updates on guar gum derivatives in colon specific drug delivery. Carbohydr Polym 2024; 334:122009. [PMID: 38553200 DOI: 10.1016/j.carbpol.2024.122009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Colon specific delivery of therapeutics have gained much attention of pharmaceutical researchers in the recent past. Colonic specific targeting of drugs is used not only for facilitating absorption of protein or peptide drugs, but also localization of therapeutic agents in colon to treat several colonic disorders. Among various biopolymers, guar gum (GG) exhibits pH dependent swelling, which allows colon specific release of drug. GG also shows microbial degradation in the colonic environment which makes it a suitable excipient for developing colon specific drug delivery systems. The uncontrolled swelling and hydration of GG can be controlled by structural modification or by grafting with another polymeric moiety. Several graft copolymerized guar gum derivatives are investigated for colon targeting of drugs. The efficacy of various guar gum derivatives are evaluated for colon specific delivery of drugs. The reviewed literature evidenced the potentiality of guar gum in localizing drugs in the colonic environment. This review focuses on the synthesis of several guar gum derivatives and their application in developing various colon specific drug delivery systems including matrix tablets, coated formulations, nano or microparticulate delivery systems and hydrogels.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Sandip Karmakar
- Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Durgapur, West Bengal 713212, India
| | - Olivia Sen
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sougata Jana
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata-700091, West Bengal, India.
| |
Collapse
|
35
|
Sang J, Zhao G, Koidis A, Wei X, Huang W, Guo Z, Wu S, Huang R, Lei H. Isolation, structural, biological activity and application of Gleditsia species seeds galactomannans. Carbohydr Polym 2024; 334:122019. [PMID: 38553218 DOI: 10.1016/j.carbpol.2024.122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Gleditsia fruits have been known as a valuable traditional Chinese herb for tens of centuries. Previous studies showed that the galactomannans are considered as one of the major bioactive components in Gleditsia fruits seeds (GSGs). Here, we systematically review the major studies of GSGs in recent years to promote their better understanding. The extraction methods of GSGs mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, acid extraction, and alkali extraction. The analysis revealed that GGSs exhibited in the form of semi-flexible coils, and its molecular weight ranged from 0.018 × 103 to 2.778 × 103 KDa. GSGs are composed of various monosaccharide constituents such as mannose, galactose, glucose, and arabinose. In terms of pharmacological effects, GSGs exhibit excellent activity in antioxidation, hypoglycemic, hypolipidemic, anti-inflammation. Moreover, GSGs have excellent bioavailability, biocompatibility, and biodegradability, which make them used in food additives, food packaging, pharmaceutical field, industry and agriculture. Of cause, the shortcomings of the current research and the potential development and future research are also highlighted. We believe our work provides comprehensive knowledge and underpinnings for further research and development of GSGs.
Collapse
Affiliation(s)
- Jiaqi Sang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Anastasios Koidis
- Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DJ, UK
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Zonglin Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
36
|
Xin D, Yin H, Ran G. Efficient production of High-Purity manno-oligosaccharides from guar gum by citric acid and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2024; 401:130719. [PMID: 38642662 DOI: 10.1016/j.biortech.2024.130719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Currently, the production of manno-oligosaccharides (MOS) from guar gum faces challenges of low oligosaccharide enzymatic hydrolysis yield and complicated steps in separation and purification. In this work, a potential strategy to address these issues was explored. By combining citric acid pretreatment (300 mM, 130 °C, 1 h) with β-mannanase hydrolysis, an impressive MOS yield of 61.8 % from guar gum (10 %, w/v) was achieved. The key success lay in the optimizing conditions that completely degraded other galactomannans into monosaccharides, which could be easily removable through Saccharomyces cerevisiae fermentation (without additional nutrients). Following ion exchange chromatography for desalination, and concluding with spray drying, 4.57 g of solid MOS with a purity of 90 % was obtained from 10 g of guar gum. This method offers a streamlined and effective pathway for obtaining high-yield and high-purity MOS from guar gum by combining citric acid pretreatment and enzymatic hydrolysis.
Collapse
Affiliation(s)
- Donglin Xin
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China
| | - Hong Yin
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China
| | - Ganqiao Ran
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China.
| |
Collapse
|
37
|
Sharkawy A, Rodrigues AE. Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydr Polym 2024; 332:121900. [PMID: 38431409 DOI: 10.1016/j.carbpol.2024.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Recently, there has been an increasing research interest in the development of Pickering emulsions stabilized with naturally derived biopolymeric particles. In this regard, plant gums, obtained as plant exudates or from plant seeds, are considered promising candidates for the development of non-toxic, biocompatible, biodegradable and eco-friendly Pickering stabilizers. The main objective of this review article is to provide a detailed overview and assess the latest advances in the formulation of Pickering emulsions stabilized with plant gum-based particles. The plant gum sources, types and properties are outlined. Besides, the current methodologies used in the production of plant gum particles formed solely of plant gums, or through interactions of plant gums with proteins or other polysaccharides are highlighted and discussed. Furthermore, the work compiles and assesses the innovative applications of plant gum-based Pickering emulsions in areas such as encapsulation and delivery of drugs and active agents, along with the utilization of these Pickering emulsions in the development of active packaging films, plant-based products and low-fat food formulations. The last part of the review presents potential future research trends that are expected to motivate and direct research to areas related to other novel food applications, as well as tissue engineering and environmental applications.
Collapse
Affiliation(s)
- Asma Sharkawy
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Alírio E Rodrigues
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
38
|
Chen M, Hu Z, Zheng H, Wang J, Xu X. Antimicrobial polysaccharide hydrogels embedded with methyl-β-cyclodextrin/thyme oil inclusion complexes for exceptional mechanical performance and chilled chicken breast preservation. Int J Biol Macromol 2024; 267:131586. [PMID: 38615861 DOI: 10.1016/j.ijbiomac.2024.131586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
While hydrogels have potential for food packaging, limited research on hydrogels with excellent mechanical performance and antibacterial activity for preserving chicken breasts. Herein, we created antibacterial hydrogels by embedding methyl-β-cyclodextrin/thyme oil inclusion complexes (MCD/TO-ICs) into a polyvinyl alcohol matrix containing dendrobium polysaccharides and guar gum in varying ratios using freeze-thaw cycling method. The resulting hydrogels exhibited a more compact structure than those without MCD/TO-ICs, enhancing thermal stability and increasing glass transition temperature due to additional intermolecular interactions between polymer chains that inhibited chain movement. XRD analysis showed no significant changes in crystalline phase, enabling formation of a 3D network through abundant hydrogen bonding. Moreover, the hydrogel demonstrated exceptional durability, with a toughness of 350 ± 25 kJ/m3 and adequate tearing resistance of 340 ± 30 J/m2, capable of lifting 3 kg weight, 1200 times greater than the hydrogel itself. Additionally, the hydrogels displayed excellent antimicrobial activity and antioxidant properties. Importantly, the hydrogels effectively maintained TVB-N levels and microbial counts within acceptable ranges, preserving sensory properties and extending the shelf life of chilled chicken breasts by four days. This study highlights the potential of MCD/TO-IC-incorporated polysaccharide hydrogels as safe and effective active packaging solutions for preserving chilled chicken in food industry.
Collapse
Affiliation(s)
- Mingshan Chen
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Zhiyu Hu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Haoyuan Zheng
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Jiesheng Wang
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Xiaowen Xu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China.
| |
Collapse
|
39
|
Majeed F, Razzaq A, Rehmat S, Azhar I, Mohyuddin A, Rizvi NB. Enhanced dye sequestration with natural polysaccharides-based hydrogels: A review. Carbohydr Polym 2024; 330:121820. [PMID: 38368085 DOI: 10.1016/j.carbpol.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Due to the expansion of industrial activities, the concentration of dyes in water has been increasing. The dire need to remove these pollutants from water has been heavily discussed. This study focuses on the reproducible and sustainable solution for wastewater treatment and dye annihilation challenges. Adsorption has been rated the most practical way of the several decolorization procedures due to its minimal initial investment, convenient utility, and high-performance caliber. Hydrogels, which are three-dimensional polymer networks, are notable because of their potential to regenerate, biodegrade, absorb bulky amounts of water, respond to stimuli, and have unique morphologies. Natural polysaccharide hydrogels are chosen over synthetic ones because they are robust, bioresorbable, non-toxic, and cheaply accessible. This study has covered six biopolymers, including chitosan, cellulose, pectin, sodium alginate, guar gum, and starch, consisting of their chemical architecture, origins, characteristics, and uses. The next part describes these polysaccharide-based hydrogels, including their manufacturing techniques, chemical alterations, and adsorption effectiveness. It is deeply evaluated how size and shape affect the adsorption rate, which has not been addressed in any prior research. To assist the readers in identifying areas for further research in this subject, limitations of these hydrogels and future views are provided in the conclusion.
Collapse
Affiliation(s)
- Fiza Majeed
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Ammarah Razzaq
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Shabnam Rehmat
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan; School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Irfan Azhar
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | | |
Collapse
|
40
|
Mandal S, Chi H, Moss RE, Dhital P, Babatunde EO, Gurav R, Hwang S. Seed gum-based polysaccharides hydrogels for sustainable agriculture: A review. Int J Biol Macromol 2024; 263:130339. [PMID: 38387640 DOI: 10.1016/j.ijbiomac.2024.130339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Globally, water scarcity in arid and semiarid regions has become one of the critical issues that hinder sustainable agriculture. Agriculture, being a major water consumer, presents several challenges that affect water availability. Hydrogels derived from polysaccharides seed gums are hydrophilic polymers capable of retaining substantial moisture in their three-dimensional network and releasing it back into the soil during drought conditions. Implementation of hydrogels in the agricultural sectors enhances soil health, plant growth, and crop yield. Furthermore, the soil permeability, density, structure, texture, and rate of evaporation and percolation of water are modified by hydrogel. In this review, hydrogels based on natural plant seed gum like guar, fenugreek, Tara and locust beans have been discussed in terms of their occurrence, properties, chemical structure, method of synthesis, and swelling behavior. The focus extends to recent applications of modified seed gum-based natural hydrogels in agriculture, serving as soil conditioners and facilitating nutrient delivery to growing plants. The swelling behavior and inherent structure of these hydrogels can help researchers unravel their maximum possibilities to promote sustainable agriculture and attenuate the obstacles propounded by our dynamic nature. The current review also examines market growth, prospects, and challenges of eco-friendly hydrogels in recent times.
Collapse
Affiliation(s)
- Sujata Mandal
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA.
| | - Hyemein Chi
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Rhiannon E Moss
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Prabin Dhital
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Eunice O Babatunde
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Ranjit Gurav
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sangchul Hwang
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
41
|
Amjed N, Zeshan M, Farooq A, Naz S. Applications of guar gum polysaccharide for pharmaceutical drug delivery: A review. Int J Biol Macromol 2024; 257:128390. [PMID: 38043657 DOI: 10.1016/j.ijbiomac.2023.128390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Bio-based materials are rapidly replacing synthetic materials owing to their significant biomedical applications, easy availability, nontoxicity, biodegradability and biocompatibility. Guar gum (GG) is a plant-derived biocompatible and biodegradable polymeric compound found abundantly in nature. It is a non-ionic, hydrophilic carbohydrate and is a cost-effective hydrocolloid polysaccharide considered as a wonderful representative of the new generation of plant gums. Various composites of guar gum with other polymers have been reported in last few decades and they are extensively used in different industries like food, textile, mining, petrochemical, paper and explosives etc. Easy availability, non-toxicity, eco-friendly and biodegradable nature of GG has made it ideal candidate for for drug delivery (DD) applications. GG based hydrogels, films, scaffolds and nanoparticles have been explored widely for their DD applications. These non-toxic DD carriers can be used for targeted drug delivery. This review article directs the current efforts and improvements on GG and GG-based materials to be used in DD.
Collapse
Affiliation(s)
- Nyla Amjed
- Department of Chemistry, The University of Lahore, Pakistan.
| | - Muhammad Zeshan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan.
| | - Ariba Farooq
- Department of Chemistry, The University of Lahore, Pakistan.
| | - Sadaf Naz
- Department of Chemistry, The University of Lahore, Pakistan.
| |
Collapse
|
42
|
Kamer DDA. Synergistic formulation approach for developing pea protein and guar gum enriched olive oil-in-water emulsion gels as solid fat substitutes: Formulation optimization, characterization, and molecular simulation. Int J Biol Macromol 2024; 257:128718. [PMID: 38101676 DOI: 10.1016/j.ijbiomac.2023.128718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
This study aimed to optimize the formulation of olive oil-in-water (O/W) emulsion gels by incorporating Pea Protein (PP) and Guar Gum (GG) as alternative options for solid fats. The optimum rheological (consistency index, apparent viscosity, recovery) and texture (firmness) properties of the emulsion gels were obtained using a mixture of 2 % PP, 1 % GG, 60 % Olive Oil (OO), and 37 % Water (W). The blend of PP2/GG1 showed the highest results for recovery and firmness, 111.27 % and 33.89 g, respectively. PP/GG blend emulsion gels exhibited higher absolute ζ-potential values, ranging between -72.3 and -77.4 mV. The polydispersity index (PDI) ranged from 0.185 to 0.535, with the most uniform distributions found in the PP/GG blend emulsion gels. Strong phase separation resistance indicated strong stability of PP-GG complex emulsion gels. Higher PP concentrations decreased emulsion oxidation. FTIR and XRD research showed that PP and GG interact strongly, indicating good compatibility. The free binding energy of the most stable configuration of the molecules was -6.8 kcal mol-1, indicating a high affinity. PP interacted with GG through 9 amino acid residues, with notable residues being Asp 224, Thr 235, Ala 332, Ile 334, and Arg 336, and their respective interaction distances ranged between 2.69 Å and 3.87 Å.
Collapse
|
43
|
Mirarab Razi S, Mohebbi M, Mirzababaee SM, Hesarinejad MA, Khalilian Movahed M. The effect of high hydrostatic pressure on the structure of whey proteins-guar gum mixture. Heliyon 2024; 10:e24140. [PMID: 38234892 PMCID: PMC10792572 DOI: 10.1016/j.heliyon.2024.e24140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
The effect of high hydrostatic pressure (HHP) on the structural properties of whey protein concentrate (WPC) and guar gum mixture has been investigated at pH 5. WPC (6 % w/v) and guar gum (0.25 % w/v) mixture was freeze dried after adjusting pH and treated at different pressure levels (0-600 MPa) for 0-30 min. The solubility of treated powders decreased significantly (p < 0.05) as treatment time and pressure levels increased. Thermal analysis showed an increase in denaturation temperature after HHP treatment at 600 MPa. A more crystalline structure was observed in samples treated with 600 MPa for 20 and 30 min. With increasing pressure and time, particle size of the samples increased and the highest particle size was belonged to sample treated at 600 MPa for 30 min (759.66 nm). SEM results exhibited that by applying the pressure, irregularity of shapes and particle size increased while the apparent cracks decreased. FTIR results indicated that HHP treatment changed shift in bond and peak intensity. As reported in the current study, the application of HHP treatment as a green physical technology on protein-polysaccharide mixture could be used to improve interaction of protein and polysaccharide.
Collapse
Affiliation(s)
- Saeed Mirarab Razi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran
| | - Seyyed Mahdi Mirzababaee
- Department of Food Industry Machineries, Research Institute of Food Science and Technology, Mashhad, Iran
| | | | - Mohammad Khalilian Movahed
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran
| |
Collapse
|
44
|
Jia X, Li R, Zhu S, Bao A, Liu X, Kong B, Hu J, Jin X, Kong W, Zhang J, Wang J. Enhanced dissolution of galactomannan and highly efficient selenium functionalization using ionic liquids with dual roles as solvents and catalysts. Carbohydr Polym 2024; 323:121421. [PMID: 37940254 DOI: 10.1016/j.carbpol.2023.121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Galactomannan stands as a promising heteropolysaccharide, yet its randomly distributed non-linear structures and high molecular mass remain a huge challenge in solubilization and wide range of chemical modifications. This work develops a task specific approach for efficient dissolve of galactomannan in ionic liquids (ILs) by destructing and reconstructing intermolecular/intramolecular hydrogen bonds of galactomannan. Combining density functional theory calculations and experimental results, a reasonable mechanism of polysaccharide dissolution is proposed that the hydrogen bond networks of polysaccharide are broken, thus the hydroxyl groups are fully exposed and activated to facilitate functionalization. In view of the enhanced solubilization, an excellent effect in selenylation of galactomannan is notably improved by employing ILs with dual roles as solvents and catalysts. Typically, the introduction of -SO3H in ILs (SFILs) effectively enhances the protonation ability of selenium donor and thus further improves the functionalization efficiency. Furthermore, a surprising finding is observed that selenium content and average molecular mass of functionalized polysaccharide can be manipulated by the anions-cations synergistic effect which is highly dependent on SFILs acidity strength. This work proposed an integrated and promising strategy for improving the solubilization and functionalization manipulating by ILs, showing a great referential value for the widespread application in polysaccharide-rich resources.
Collapse
Affiliation(s)
- Xiaoyan Jia
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Rumei Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Shuping Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Aijuan Bao
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoxiao Liu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Lanzhou Institute for Food and Drug Control, Lanzhou 730050, People's Republic of China
| | - Boyang Kong
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Jiahuan Hu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730030, People's Republic of China
| | - Weibao Kong
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Junlong Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
45
|
Wang W, Fan Z, Yan Q, Pan T, Luo J, Wei Y, Li B, Fang Z, Lu W. Gut microbiota determines the fate of dietary fiber-targeted interventions in host health. Gut Microbes 2024; 16:2416915. [PMID: 39418223 PMCID: PMC11487953 DOI: 10.1080/19490976.2024.2416915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Epidemiological investigation confirmed that the intake of dietary fiber (DF) is closely related to human health, and the most important factor affecting the physiological function of DF, besides its physicochemical properties, is the gut microbiota. This paper mainly summarizes the interaction between DF and gut microbiota, including the influence of DF on the colonization of gut microbiota based on its different physicochemical properties, and the physiological role of gut microbiota in destroying the complex molecular structure of DF by encoding carbohydrate-active enzymes, thus producing small molecular products that affect the metabolism of the host. Taking cardiovascular disease (Atherosclerosis and hypertension), liver disease, and immune diseases as examples, it is confirmed that some DF, such as fructo-oligosaccharide, galactooligosaccharide, xylo-oligosaccharide, and inulin, have prebiotic-like physiological effects. These effects are dependent on the metabolites produced by the gut microbiota. Therefore, this paper further explores how DF affects the gut microbiota's production of substances such as short-chain fatty acids, bile acids, and tryptophan metabolites, and provides a preliminary explanation of the mechanisms associated with their impact on host health. Finally, based on the structural properties of DF and the large heterogeneity in the composition of the population gut microbiota, it may be a future trend to utilize DF and the gut microbiota to correlate host health for precision nutrition by combining the information from population disease databases.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Zhexin Fan
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qingqing Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Tong Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yijiang Wei
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baokun Li
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhifeng Fang
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
46
|
Chopra L, Sharma A, Chohan JS, Upadhyay VV, Singh R, Sharma S, Dwivedi SP, Kumar A, Tag-Eldin EM. Synthesis and characterizations of super adsorbent hydrogel based on biopolymer, Guar Gum-grafted-Poly (hydroxyethyl methacrylate) (Gg-g-Poly (HEMA)) for the removal of Bismarck brown Y dye from aqueous solution. Int J Biol Macromol 2024; 256:128518. [PMID: 38042322 DOI: 10.1016/j.ijbiomac.2023.128518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Chemical modification of guar gum was done by graft copolymerization of monomer hydroxyethyl methacrylate (HEMA) using azobisisobutyronitrile (AIBN) as initiator. Optimal reaction parameters were settled by varying one reaction condition and keeping the other constant. The optimum reaction conditions worked out were solvent system: binary, [H2O] = 15.00 mL, [acetone] = 5.00 mL, [HEMA] = 82.217× 10-2 mol/L, [AIBN] = 3.333 × 10-2 mol/L, reaction time = 3 h, reaction temperature = 60 °C on to 1.00 g guar gum with Pg = 1694.6 and %GE = 68,704.152. Pure guar gum polymer and grafts were analyzed by several physicochemical investigation techniques like FTIR, SEM, XRD, EDX, and swelling studies. Percent swelling of the guar gum polymer and grafts was investigated at pH 2.2, 7.0, 7.4 and 9.4 concerning time. The finest yield of Ps was recorded at pH 9.4 with time 24 h for graft copolymer. Guar gum and grafted samples were explored for the sorption of toxic dye Bismarck brown Y from the aqueous solution with respect to variable contact time, pH, temperature and dye concentration so as to investigate the stimuli responsive sorption behaviour. Graft copolymers showed better results than guar gum with percent dye uptake (Du) of 97.588 % in 24 h contact time, 35 °C temperature, 9.4 pH at 150.00 ppm dye feed concentration as compared to Guar gum which only showed 85.260 % dye uptake at alike dye fed concentration. The kinetic behaviour of the polymeric samples was evaluated by applying many adsorption isotherms and kinetic models. The value of 1/n was between 0 → 1 showing that there was physisorption of the BB dye that took place on the surface of the polymers. Thermodynamics of BB Y adsorption onto hydrogels was investigated concerning the Van't Hoff equation. -∆G° values obtained from the curve proved the spontanity of the process. Within the context of adsorption efficiency, an investigation was conducted to examine the process of sorption of Bismarck brown Y dye from aqueous solutions. The graft copolymers demonstrated remarkable adsorption abilities, achieving a dye uptake (Du) of 97.588 % over a 24-h period at a temperature of 35 °C, pH level of 9.4, and a dye concentration of 150.00 ppm. The raised adsorption capacity was additionally corroborated by the application of several adsorption isotherms and kinetic models, which indicated that physisorption is the prevailing process/mechanism. Additionally, the thermodynamic research, utilising the Van't Hoff equation, validated the spontaneity of the adsorption phenomenon, as evidenced by the presence of a negative ∆G° values. The thermodynamic analysis revealed herein establishes a strong scientific foundation for the effectiveness of adsorbent composed of graft copolymers based on guar gum. The research conclude the efficiency of the guar gum based grafted copolymers for the water remediation as efficient adsorbents. The captured dye can be re-utilised and the hydrogels can be used for the same purpose in number of cycles.
Collapse
Affiliation(s)
- Lalita Chopra
- Department of Chemistry, University Institute of Sciences (UIS), Chandigarh University, Gharuan, Punjab 140413, India.
| | - Anika Sharma
- Department of Chemistry, University Institute of Sciences (UIS), Chandigarh University, Gharuan, Punjab 140413, India
| | - Jasgurpreet Singh Chohan
- Mechanical Engineering Department, University Center for Research & Development, Chandigarh University, Mohali 140413, India
| | - Viyat Varun Upadhyay
- Department of Mechanical Engineering, GLA University, Mathura, Uttar Pradesh, India.
| | - Rajesh Singh
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India; Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development, Chandigarh University, Mohali 140413, India; School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China; Department of Mechanical Engineering, Lebanese American University, Kraytem, 1102-2801 Beirut, Lebanon.
| | - Shashi Prakash Dwivedi
- Lloyd Institute of Engineering & Technology, Knowledge Park II, Greater Noida, Uttar Pradesh 201306, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002 Ekaterinburg, Russia.
| | | |
Collapse
|
47
|
Sun J, Guo J, Li Y, Guan F, Zhang Y, Li Z. Guar-based aerogels with oriented lamellar structure and lightweight properties for flame-retardant and thermal insulation. Int J Biol Macromol 2024; 256:128318. [PMID: 38000610 DOI: 10.1016/j.ijbiomac.2023.128318] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
In this study, a multi-functional guar gum aerogel with the oriented lamellar structure, which introduced sodium silicate (Na2O·nSiO2) and phytic acid (PA) as thermal insulation additives and flame-retardant agents, respectively, was fabricated via freeze drying. Our aerogel's chemical structure, morphology, and thermal and mechanical properties were analyzed. The oriented lamellar structure was attributed to the orientated growth of ice crystals, which was induced by the "silicate-guar, guar-phytate, and phytate-silicate" multiple hydrogen bonds formed between Na2O·nSiO2, PA, and guar gum. The density of the sample with 2 wt% PA could reach 0.0335 g·cm-3, and the porosity was 5 %, along with a specific pore volume of 0.8144 cm3·g-1. The mechanical properties and thermal insulation performed significant differences in the radial and axial direction of the oriented lamella (nearly 100 % resilience while 50 % deformation quantity and 0.0235 W/(m*K) of thermal conductivity in the radial direction, up to 0.079 MPa of compressive strength in the axial direction). The presence of PA attached a good flame-retardant ability to our aerogel (The Limiting Oxygen Index (LOI) was 30.77 %). This work provides a novel and promising method for developing anisotropic aerogel with excellent potential in building energy efficiency and flame-retardant.
Collapse
Affiliation(s)
- Jianbin Sun
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Yi Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yihang Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
48
|
Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306152. [PMID: 37985923 PMCID: PMC10767459 DOI: 10.1002/advs.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Deregulated inflammations induced by various factors are one of the most common diseases in people's daily life, while severe inflammation can even lead to death. Thus, the efficient treatment of inflammation has always been the hot topic in the research of medicine. In the past decades, as a potential biomaterial, stimuli-responsive hydrogels have been a focus of attention for the inflammation treatment due to their excellent biocompatibility and design flexibility. Recently, thanks to the rapid development of nanotechnology and material science, more and more efforts have been made to develop safer, more personal and more effective hydrogels for the therapy of some frequent but tough inflammations such as sepsis, rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Herein, from recent studies and articles, the conventional and emerging hydrogels in the delivery of anti-inflammatory drugs and the therapy for various inflammations are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Haoyu Yu
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Yuxin Liu
- Department of Biomolecular SystemsMax‐Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Luoyuan Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| |
Collapse
|
49
|
Hossain KR, Akter S, Nanjeba M, Mahmud MA. Properties and Performance of Biopolymers in Textile Applications. BIOPOLYMERS IN THE TEXTILE INDUSTRY 2024:41-86. [DOI: 10.1007/978-981-97-0684-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|