1
|
Liu Y, Li Z, Lee SC, Chen S, Li F. Akkermansia muciniphila: promises and pitfallsfor next-generation beneficial microorganisms. Arch Microbiol 2025; 207:76. [PMID: 40032707 DOI: 10.1007/s00203-025-04263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
Akkermansia muciniphila, a microorganism ubiquitously colonizing the mucosal layer of the human gut, has garnered significant scientific interest as a promising candidate for probiotic therapeutics. Its persistent identification in both laboratory and living organism studies underscores its potential physiological benefits, positioning it as a bacterium of paramount importance in promoting host health. This review examines the diversity and abundance of gut microbiota members, emphasizing the identification of microbial species engaged in cross-feeding networks with A. muciniphila. Insightful exploration into the mechanisms of cross-feeding, including mucin-derived nutrient exchange and metabolite production, unveils the intricate dynamics shaping microbial community stability. Such interactions contribute not only to the availability of essential nutrients within the gut environment but also to the production of metabolites influencing microbial community dynamics and host health. In conclusion, the cumulative evidence from in vitro and in vivo perspectives substantiates the notion that A. muciniphila holds tremendous promise as a next-generation probiotic. By leveraging its unique physiological benefits, particularly in mucosal health and metabolic regulation, A. muciniphila stands poised to revolutionize the landscape of probiotic interventions for enhanced host well-being.
Collapse
Affiliation(s)
- Yantong Liu
- Department of Computer and Information Engineering, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Zonglun Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Sze Ching Lee
- Department of Neurology & Neurosurgery, Mayo clinic, Rochester, MN, 55902, USA
| | - Shurui Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Feifei Li
- Department of Biochemistry and molecular biology, Mayo clinic, 200 First St. SW, Rochester, MN, 55902, USA.
| |
Collapse
|
2
|
Hong J, Kim HS, Adams S, Scaria J, Patterson R, Woyengo TA. Growth performance and gut health of nursery pigs fed diet containing sodium butyrate or enzymatically hydrolyzed yeast product. Animal 2025; 19:101448. [PMID: 39978008 DOI: 10.1016/j.animal.2025.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Weaned pigs are highly susceptible to gut infections, underscoring the need to develop feeding strategies to manage gut health. A study was conducted to determine the effects of lipid-coated sodium butyrate (NaB) and enzymatically hydrolyzed yeast cell wall product (EYP) on growth performance and indicators of intestinal structure and function in nursery pigs. A total of 96 weaned pigs (initial BW = 6.60 ± 0.88 kg) housed in 24 pens (four pigs/pen) were fed three diets in a randomized complete block design. The diets were corn-soybean meal-based without (CON) or with 0.05% NaB or 0.1% EYP. Growth performance and fecal score were determined by the feeding phase. During days 10-13, one pig from each pen was euthanized for measuring organ weights, blood immune response, histology and permeability of small intestine, electrophysiological parameters of jejunum mounted in Ussing chambers, and gut microbiome. Dietary NaB, but not EYP, increased (P < 0.05) overall gain-to-feed ratio by 16%. In comparison to CON, dietary EYP increased (P < 0.05) the cecum weight by 36%, and dietary NaB or EYP tended to increase (P < 0.10) the villous height to crypt depth ratio in duodenum by 12%. Dietary NaB or EYP had no influence on the serum concentrations of immunoglobulins A, G, M, and tumor-necrosis factor-α. Dietary NaB decreased (P < 0.05) the jejunal flux of fluorescein isothiocyanate-dextran flux by 32%, whereas dietary EYP tended to reduce (P = 0.10) it by 21% compared to CON. Also, dietary Nab and EYP decreased (P < 0.05) jejunal short circuit current by 52 and 50%, respectively, compared to CON. Dietary EYP increased (P < 0.05) the relative abundance of Sporobacter and Desulfovibrio genera in the cecum. Dietary EYP increased (P < 0.05) the relative abundance of Verrucomicrobia phylum and Odoribacter, Enterococcus, and YRC22 genera in feces. In conclusion, dietary NaB improved feed efficiency and reduced jejunal permeability to fluorescein isothiocyanate-dextran 4 kDa, implying that it improved intestinal integrity in nursery pigs. Thus, NaB product fed in the current study can be included in diets for weaned pigs to improve their performance through improved gut integrity. Dietary EYP increased cecum weight, implying that dietary EYP improved cecal fermentation capacity. It also modified cecal and fecal microbial composition. Thus, the EYP product fed in the current study can be added in diets for weaned pigs to improve the fermentation of feed in the hindgut.
Collapse
Affiliation(s)
- J Hong
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - H S Kim
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - S Adams
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - J Scaria
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - R Patterson
- CBS Bio Platforms Inc., Calgary, AB T2C 0J7, Canada
| | - T A Woyengo
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
3
|
Wang BN, Zhang XZ, Wu JY, Zhang ZY, Cong PK, Zheng WW, Long SR, Liu RD, Cui J, Wang ZQ. Vaccination of mice with Trichinella spiralis C-type lectin elicited the protective immunity and enhanced gut epithelial barrier function. PLoS Negl Trop Dis 2025; 19:e0012825. [PMID: 39841790 PMCID: PMC11761079 DOI: 10.1371/journal.pntd.0012825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/24/2025] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model. METHODOLOGY/PRINCIPAL FINDING The ELISA results showed that subcutaneous vaccination of mice with rTsCTL elicited a systemic humoral response (high levels of serum IgG, IgG1/IgG2a and IgA) and significant gut mucosal sIgA responses. The levels of Th1/Th2 cytokines (IFN-γ/IL-4) secreted from spleen, mesenteric lymph nodes and Peyer's patches were distinctly increased at 6 weeks following vaccination (P < 0.05). At one week after challenge, the numbers of goblet cells and expression level of Muc2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1β) in gut tissues of vaccinated mice were obviously decreased, while expression of anti-inflammatory cytokines (IL-4 and IL-10) was evidently increased, compared to the infected PBS group. It is interesting that expression levels of gut epithelial tight junctions (TJs; occludin, claudin-1 and E-cad) were prominently elevated and intestinal permeability was interestingly declined in vaccinated mice. The rTsCTL-vaccinated mice exhibited a 51.69 and 48.19% reduction of intestinal adult and muscle larva burdens, respectively. The female fecundity in rTsCTL vaccinated mice was reduced by 40.51%. These findings indicated that rTsCTL vaccination impeded larval invasion and improved gut epithelial integrity and barrier function, reduced worm burdens, and relieved gut and muscle inflammation. CONCLUSIONS Vaccination of mice with rTsCTL elicited an obvious protective immunity against larval challenge, impeded larval invasion of gut mucosa, enhanced gut epithelial integrity and barrier function, reduced worm burdens; it also alleviated gut and muscle inflammation. TsCTL might be a novel candidate target molecule for anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Bo Ning Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Zhuo Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin Yi Wu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhao Yu Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei Kun Cong
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Wen Zheng
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shao Rong Long
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Mao H, Liu Y, Lv Q, Li C, Yang Y, Wu F, Xu N, Jin X. The effect of β-Glucan induced intestinal trained immunity against Trichinella spiralis infection. Vet Parasitol 2025; 333:110238. [PMID: 38944590 DOI: 10.1016/j.vetpar.2024.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
Parasitic helminth Trichinella spiralis (Ts) induce mixed Th1/Th2 response with predominant type 2 immune responses, with protective immunity mediated by interleukin (IL)-4, IL-5, and IL-13. β-Glucan (BG) has been shown to have the ability to induce trained immunity, confers non-specific protection from secondary infections. However, whether BG-induced trained immunity played a role in protective type 2 immunity against Ts infection is unclear. In this study, BG was administered five days before Ts infection to induce trained immunity. Our findings demonstrate that BG pretreatment effectively reduced the number of T. spiralis adults and muscle larvae, whereas inhibition of trained immunity abolished the effect of BG. Additionally, we observed a significant increase in goblet cells and mucus production as evidenced by Alcian blue periodic acid-Schiff staining. Furthermore, quantitative real-time PCR analysis revealed a significant upregulation of IL-4, IL-5, and IL-13 expression in response to BG. Conversely, the inhibitor of trained immunity reversed these effects, suggesting that BG-induced trained immunity confers strong protection against Ts infection. In conclusion, these findings suggest that BG-induced trained immunity may play a role in protection against infections caused by other helminths.
Collapse
Affiliation(s)
- Hanhai Mao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yi Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qingbo Lv
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chengyao Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yaming Yang
- Department of Helminth, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Fangwei Wu
- Department of Helminth, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Ning Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Zhao Y, Yang H, Wu P, Yang S, Xue W, Xu B, Zhang S, Tang B, Xu D. Akkermansia muciniphila: A promising probiotic against inflammation and metabolic disorders. Virulence 2024; 15:2375555. [PMID: 39192579 PMCID: PMC11364076 DOI: 10.1080/21505594.2024.2375555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic disease is a worldwide epidemic that has become a public health problem. Gut microbiota is considered to be one of the important factors that maintain human health by regulating host metabolism. As an abundant bacterium in the host gut, A. muciniphila regulates metabolic and immune functions, and protects gut health. Multiple studies have indicated that alterations in the abundance of A. muciniphila are associated with various diseases, including intestinal inflammatory diseases, obesity, type 2 diabetes mellitus, and even parasitic diseases. Beneficial effects were observed not only in live A. muciniphila, but also in pasteurized A. muciniphila, A. muciniphila-derived extracellular vesicles, outer membrane, and secreted proteins. Although numerous studies have only proven the simple correlation between multiple diseases and A. muciniphila, an increasing number of studies in animal models and preclinical models have demonstrated that the beneficial impacts shifted from correlations to in-depth mechanisms. In this review, we provide a comprehensive view of the beneficial effects of A. muciniphila on different diseases and summarize the potential mechanisms of action of A. muciniphila in the treatment of diseases. We provide a comprehensive understanding of A. muciniphila for improving host health and discuss the perspectives of A. muciniphila in the future studies.
Collapse
Affiliation(s)
- Yanqing Zhao
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huijun Yang
- The First School of Clinical Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Wu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkun Xue
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Biao Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sirui Zhang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bin Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
6
|
Toussaint Nguélé A, Mozzicafreddo M, Carrara C, Piersanti A, Salum SS, Ali SM, Miceli C. Interplay Between Helminth Infections, Malnutrition, and Gut Microbiota in Children and Mothers from Pemba, Tanzania: Potential of Microbiota-Directed Interventions. Nutrients 2024; 16:4023. [PMID: 39683417 DOI: 10.3390/nu16234023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Despite efforts within the framework of the Sustainable Development Goal to end malnutrition by 2030, malnutrition and soil-transmitted helminth infections persist in sub-Saharan Africa. A significant barrier to success is the inadequate understanding of effective intervention methods. Most research on the gut microbiota's role in health has been conducted in developed countries, leaving a critical gap in knowledge regarding low-income populations. This study addresses this gap by expanding research on the gut microbiota of underprivileged populations to help tackle these public health challenges. METHODS We employed 16S rDNA sequencing to assess the bacterial gut microbiota composition of 60 children (mean age: 26.63 ± 6.36 months) and their 58 mothers (mean age: 30.03 ± 6.31 years) in Pemba, with a focus on helminth infection and nutritional status. RESULTS Our differential abundance analysis identified bacterial taxa that were significantly negatively associated with both helminth infections and malnutrition, highlighting the potential for microbiota-directed interventions to address these health issues simultaneously. Notably, we identified Akkermansia, Blautia, Dorea, and Odoribacter as promising probiotic candidates for such interventions. In stunted children, positive co-occurrences were observed between Lactobacillus, Prevotella, and Bacteroides, while Escherichia/Shigella displayed negative co-abundance relationships with short-chain fatty acid (SCFA) producers in the gut microbiota. These findings suggest that administering Lactobacillus and SCFA-producing probiotics to children may foster the growth of beneficial bacteria like Prevotella and Bacteroides while reducing the relative abundance of Escherichia/Shigella, potentially enhancing overall health. CONCLUSIONS This study underscores the importance of microbiota-directed interventions in children and women of reproductive age as promising strategies, alongside established approaches, for combating helminth infections and malnutrition in vulnerable populations.
Collapse
Affiliation(s)
- Aristide Toussaint Nguélé
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Institut Supérieur des Sciences de la Santé, Université Adventiste Cosendai, Nanga Eboko 04, Cameroon
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Chiara Carrara
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Angela Piersanti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Salum Seif Salum
- School of Health and Medical Sciences, State University of Zanzibar, Zanzibar City 146, Tanzania
| | - Said M Ali
- Public Health Laboratory Ivo de Carneri, Chake Chake 122, Tanzania
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
7
|
Liyanagama I, Oh S, Choi JH, Yi MH, Kim M, Yun S, Kang D, Kim SL, Ojeda Ayala MG, Odua F, Yong TS, Kim JY. Metabarcoding study of potential pathogens and zoonotic risks associated with dog feces in Seoul, South Korea. PLoS Negl Trop Dis 2024; 18:e0012441. [PMID: 39196875 PMCID: PMC11355564 DOI: 10.1371/journal.pntd.0012441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/08/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND A significant portion of South Korea's population, approximately a quarter, owns pets, with dogs being the most popular choice among them. However, studies analyzing the fecal organism communities of dogs in South Korea are lacking, and limited efforts have been exerted to identify pathogens with potential zoonotic implications. Therefore, this study aimed to investigate potential pathogens using metabarcoding analysis and evaluate the risk of zoonotic diseases in dog feces in Seoul, South Korea. METHODOLOGY Fecal samples were collected from both pet and stray dogs in the Mapo district of Seoul. Next-generation sequencing (NGS) was utilized, employing 16S rRNA amplicon sequencing to identify prokaryotic pathogens, and 18S rRNA amplicon sequencing for eukaryotic pathogens. The data obtained from the QIIME2 pipeline were subjected to various statistical analyses to identify different putative pathogens and their compositions. PRINCIPAL FINDINGS Significant variations in microbiota composition were found between stray and pet dogs, and putative prokaryotic and eukaryotic pathogens were identified. The most prevalent putative bacterial pathogens were Fusobacterium, Helicobacter, and Campylobacter. The most prevalent putative eukaryotic pathogens were Giardia, Pentatrichomonas, and Cystoisospora. Interestingly, Campylobacter, Giardia, and Pentatrichomonas were found to be significantly more prevalent in stray dogs than in pet dogs. The variation in the prevalence of potential pathogens in dog feces could be attributed to environmental factors, including dietary variances and interactions with wildlife, particularly in stray dogs. These factors likely contributed to the observed differences in pathogen occurrence between stray and pet dogs. CONCLUSIONS/SIGNIFICANCE This study offers valuable insights into the zoonotic risks associated with dog populations residing in diverse environments. By identifying and characterizing putative pathogens in dog feces, this research provides essential information on the impact of habitat on dog-associated pathogens, highlighting the importance of public health planning and zoonotic risk management.
Collapse
Affiliation(s)
- Isuru Liyanagama
- Department of Global Health and Disease Control, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
- Department of Animal Production and Health, Kandy, Sri Lanka
| | - Singeun Oh
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Tropical Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, South Korea
| | - Jun Ho Choi
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myung-hee Yi
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myungjun Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sohyeon Yun
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongjun Kang
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Lim Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Maria Gloria Ojeda Ayala
- Department of Global Health and Disease Control, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Fred Odua
- Department of Global Health and Disease Control, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
- Production Department, Nakasongola, Uganda
| | - Tai-Soon Yong
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Tropical Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, South Korea
| |
Collapse
|
8
|
Grondin JA, Jamal A, Mowna S, Seto T, Khan WI. Interaction between Intestinal Parasites and the Gut Microbiota: Implications for the Intestinal Immune Response and Host Defence. Pathogens 2024; 13:608. [PMID: 39204209 PMCID: PMC11356857 DOI: 10.3390/pathogens13080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal parasites, including helminths and protozoa, account for a significant portion of the global health burden. The gastrointestinal (GI) tract not only serves as the stage for these parasitic infections but also as the residence for millions of microbes. As the intricacies of the GI microbial milieu continue to unfold, it is becoming increasingly apparent that the interactions between host, parasite, and resident microbes help dictate parasite survival and, ultimately, disease outcomes. Across both clinical and experimental models, intestinal parasites have been shown to impact microbial composition and diversity. Reciprocally, microbes can directly influence parasitic survival, colonization and expulsion. The gut microbiota can also indirectly impact parasites through the influence and manipulation of the host. Studying this host-parasite-microbiota axis may help bring about novel therapeutic strategies for intestinal parasitic infection as well as conditions such as inflammatory bowel disease (IBD). In this review, we explore the relationship between intestinal parasites, with a particular focus on common protozoa and helminths, and the gut microbiota, and how these interactions can influence the host defence and intestinal immune response. We will also explore the impact of this tripartite relationship in a clinical setting and its broader implications for human health.
Collapse
Affiliation(s)
- Jensine A. Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Asif Jamal
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sadrina Mowna
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
9
|
Cao Z, Wang J, Liu X, Liu Y, Li F, Liu M, Chiu S, Jin X. Helminth alleviates COVID-19-related cytokine storm in an IL-9-dependent way. mBio 2024; 15:e0090524. [PMID: 38727220 PMCID: PMC11237724 DOI: 10.1128/mbio.00905-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
Hyperactivation of pro-inflammatory type 1 cytokines (e.g., tumor necrosis factor alpha [TNF-α] and interferon gamma [IFN-γ]) mirrors the inflammation of coronavirus disease 2019. Helminths could alleviate excessive immune responses. Here, helminth Trichinella spiralis (Ts) infection was shown to protect against TNF-α- and IFN-γ-induced shock. Mechanistically, Ts-induced protection was interleukin-9 (IL-9) dependent but not IL-4Rα. Recombinant IL-9 treatment not only improved the survival of wild-type mice with TNF-α- and IFN-γ-induced shock but also that of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected K18-human angiotensin-converting enzyme 2 (hACE2) mice, emphasizing the significance of IL-9 in alleviating cytokine storm syndromes during SARS-CoV-2 infection. Interestingly, Ts excretory/secretory (TsES)-induced protection was also observed in SARS-CoV-2 infection, indicating that identifying anti-inflammatory molecules from TsES could be a novel way to mitigate adverse pathological inflammation during pathogen infection.IMPORTANCESevere coronavirus disease 2019 (COVID-19) is linked to cytokine storm triggered by type 1 pro-inflammatory immune responses. TNF-α and IFN-γ shock mirrors cytokine storm syndromes, including COVID-19. Helminths (e.g., Trichinella spiralis, Ts) can potently activate anti-inflammatory type 2 immune response. Here, we found that helminth Ts-induced protection against TNF-α and IFN-γ shock was IL-9 dependent. Treatment with recombinant IL-9 could protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in K18-hACE2 mice. Helminth Ts excretory/secretory (TsES) products also ameliorated SARS-CoV-2 infection-related cytokine storm. In conclusion, our study emphasizes the significance of IL-9 in protecting from cytokine storm syndromes associated with SARS-CoV-2 infection. Anti-inflammatory molecules from TsES could be a new source to mitigate adverse pathological inflammation associated with infections, including COVID-19.
Collapse
Affiliation(s)
- Zengguo Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiaqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Liu
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fangxu Li
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuemin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
10
|
Wang J, Zhao X, Li X, Jin X. Akkermansia muciniphila: a deworming partner independent of type 2 immunity. Gut Microbes 2024; 16:2338947. [PMID: 38717824 PMCID: PMC11086001 DOI: 10.1080/19490976.2024.2338947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
The gut microbiota has coevolved with the host for hundreds of millions of years, playing a beneficial role in host health. Human parasitic helminths are widespread and pose a pervasive global public health issue. Although Type 2 immunity provides partial resistance to helminth infections, the composition of the gut microbiota can change correspondingly. Therefore, it raises the question of what role the gut microbiota plays during helminth infection. Akkermansia muciniphila has emerged as a notable representative of beneficial microorganisms in the gut microbiota. Recent studies indicate that A. muciniphila is not merely associated with helminth infection but is also causally linked to infection. Here, we provide an overview of the crosstalk between A. muciniphila and enteric helminth infection. Our goal is to enhance our understanding of the interplay among A. muciniphila, helminths, and their hosts while also exploring the potential underlying mechanisms.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Animal Sciences, Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiufeng Zhao
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Xianhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, USA
| | - Xuemin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
11
|
Panzetta ME, Valdivia RH. Akkermansia in the gastrointestinal tract as a modifier of human health. Gut Microbes 2024; 16:2406379. [PMID: 39305271 PMCID: PMC11418289 DOI: 10.1080/19490976.2024.2406379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Akkermansia sp are common members of the human gut microbiota. Multiple reports have emerged linking the abundance of A. muciniphila to health benefits and disease risk in humans and animals. This review highlights findings linking Akkermansia species in the gastrointestinal (GI) tract to health outcomes across a spectrum of disorders, encompassing those that affect the digestive, respiratory, urinary, and central nervous systems. The mechanism through which Akkermansia exerts a beneficial versus a detrimental effect on health is likely dependent on the genetic makeup of the host metabolic capacity and immunomodulatory properties of the strain, the competition or cooperation with other members of the host microbiota, as well as synergy with co-administered therapies.
Collapse
Affiliation(s)
- Maria E. Panzetta
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | | |
Collapse
|
12
|
Elgendy DI, Othman AA, Eid MM, El-Kowrany SI, Sallam FA, Mohamed DA, Zineldeen DH. The impact of β-glucan on the therapeutic outcome of experimental Trichinella spiralis infection. Parasitol Res 2023; 122:2807-2818. [PMID: 37737322 PMCID: PMC10667415 DOI: 10.1007/s00436-023-07964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023]
Abstract
Trichinellosis is a cosmopolitan zoonosis that is caused mainly by Trichinella spiralis infection. The human disease ranges from mild to severe and fatality may occur. The treatment of trichinellosis still presents a challenge for physicians. Anti-inflammatory drugs are usually added to antiparasitic agents to alleviate untoward immuno-inflammatory responses and possible tissue damage but they are not without adverse effects. Thus, there is a need for the discovery of safe and effective compounds with anti-inflammatory properties. This study aimed to evaluate the activity of β-glucan during enteral and muscular phases of experimental T. spiralis infection as well as its therapeutic potential as an adjuvant to albendazole in treating trichinellosis. For this aim, mice were infected with T. spiralis and divided into the following groups: early and late β-glucan treatment, albendazole treatment, and combined treatment groups. Infected mice were subjected to assessment of parasite burden, immunological markers, and histopathological changes in the small intestines and muscles. Immunohistochemical evaluation of NF-κB expression in small intestinal and muscle tissues was carried out in order to investigate the mechanism of action of β-glucan. Interestingly, β-glucan potentiated the efficacy of albendazole as noted by the significant reduction of counts of muscle larvae. The inflammatory responses in the small intestine and skeletal muscles were mitigated with some characteristic qualitative changes. β-glucan also increased the expression of NF-κB in tissues which may account for some of its effects. In conclusion, β-glucan showed a multifaceted beneficial impact on the therapeutic outcome of Trichinella infection and can be regarded as a promising adjuvant in the treatment of trichinellosis.
Collapse
Affiliation(s)
- Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Mohamed M Eid
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Samy I El-Kowrany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fersan A Sallam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dareen A Mohamed
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa H Zineldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- College of Medicine, Sulaiman AlRajhi University, 51942, Albukairiyah, Saudi Arabia
| |
Collapse
|
13
|
Zhang R, Zhang XZ, Guo X, Han LL, Wang BN, Zhang X, Liu RD, Cui J, Wang ZQ. The protective immunity induced by Trichinella spiralis galectin against larval challenge and the potential of galactomannan as a novel adjuvant. Res Vet Sci 2023; 165:105075. [PMID: 37931574 DOI: 10.1016/j.rvsc.2023.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1β) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
14
|
Martinez TM, Wachsmuth HR, Meyer RK, Weninger SN, Lane AI, Kangath A, Schiro G, Laubitz D, Stern JH, Duca FA. Differential effects of plant-based flours on metabolic homeostasis and the gut microbiota in high-fat fed rats. Nutr Metab (Lond) 2023; 20:44. [PMID: 37858106 PMCID: PMC10585811 DOI: 10.1186/s12986-023-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The gut microbiome is a salient contributor to the development of obesity, and diet is the greatest modifier of the gut microbiome, which highlights the need to better understand how specific diets alter the gut microbiota to impact metabolic disease. Increased dietary fiber intake shifts the gut microbiome and improves energy and glucose homeostasis. Dietary fibers are found in various plant-based flours which vary in fiber composition. However, the comparative efficacy of specific plant-based flours to improve energy homeostasis and the mechanism by which this occurs is not well characterized. METHODS In experiment 1, obese rats were fed a high fat diet (HFD) supplemented with four different plant-based flours for 12 weeks. Barley flour (BF), oat bran (OB), wheat bran (WB), and Hi-maize amylose (HMA) were incorporated into the HFD at 5% or 10% total fiber content and were compared to a HFD control. For experiment 2, lean, chow-fed rats were switched to HFD supplemented with 10% WB or BF to determine the preventative efficacy of flour supplementation. RESULTS In experiment 1, 10% BF and 10% WB reduced body weight and adiposity gain and increased cecal butyrate. Gut microbiota analysis of WB and BF treated rats revealed increases in relative abundance of SCFA-producing bacteria. 10% WB and BF were also efficacious in preventing HFD-induced obesity; 10% WB and BF decreased body weight and adiposity, improved glucose tolerance, and reduced inflammatory markers and lipogenic enzyme expression in liver and adipose tissue. These effects were accompanied by alterations in the gut microbiota including increased relative abundance of Lactobacillus and LachnospiraceaeUCG001, along with increased portal taurodeoxycholic acid (TDCA) in 10% WB and BF rats compared to HFD rats. CONCLUSIONS Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed to be due to increased concentrations of intestinal butyrate and circulating TDCA.
Collapse
Affiliation(s)
- Taylor M Martinez
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Hallie R Wachsmuth
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Rachel K Meyer
- School of Nutritional Science and Wellness, University of Arizona, Tucson, AZ, USA
| | - Savanna N Weninger
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Adelina I Lane
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Archana Kangath
- School of Animal and Comparative Biomedical Sciences, University of Arizona, ACBS Building, 1117 E Lowell St., Tucson, AZ, 85711, USA
| | - Gabriele Schiro
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Daniel Laubitz
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Jennifer H Stern
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, ACBS Building, 1117 E Lowell St., Tucson, AZ, 85711, USA.
- BIO 5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
15
|
Xie Y, Xu D, Yan S, Hu X, Chen S, Guo K, Wang J, Chen Q, Guan W. The impact of MIF deficiency on alterations of fecal microbiota in C57BL/6 mice induced by Trichinella spiralis infection. FASEB J 2023; 37:e23202. [PMID: 37732633 DOI: 10.1096/fj.202300179rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Trichinellosis caused by Trichinella spiralis (T. spiralis) is a major food-borne parasitic zoonosis worldwide. Prevention of trichinellosis is an effective strategy to improve patient quality of life. Macrophage migration inhibitory factor (MIF) is closely related to the occurrence and development of several parasitic diseases. Studying the impact of MIF deficiency (Mif-/- ) on the alterations in host fecal microbiota due to T. spiralis infection may contribute to proposing a novel dual therapeutic approach for trichinellosis. To reveal the diversity and differences in fecal microbial composition, feces were collected from T. spiralis-uninfected and T. spiralis-infected wild-type (WT) and MIF knockout (KO) C57BL/6 mice at 0, 7, 14, and 35 days post-infection (dpi), and the samples were sent for 16S rRNA amplicon sequencing on the Illumina NovaSeq platform. Flow cytometry was used to determine the expression levels of IFN-γ and IL-4 in the CD4+ /CD8+ T-cell sets of mouse spleens. The results showed that operational taxonomic unit (OTU) clustering, relative abundance of microbial composition, alpha diversity, and beta diversity exhibited significant changes among the eight groups. The LEfSe analysis selected several potential biomarkers at the genus or species level, including Akkermansia muciniphila, Lactobacillus murinus, Coprococcus catus, Firmicutes bacterium M10_2, Parabacteroides sp. CT06, and Bacteroides between the KTs and WTs groups. The predicted bacterial functions of the fecal microbiota were mainly involved in metabolism, such as the metabolism of carbohydrates, amino acids, energy, cofactors, vitamins, nucleotides, glycans, and lipids. Flow cytometry revealed an increased CD3+ CD8- /CD3+ CD8+ T-cell ratio and increased IFN-γ and IL-4 levels in CD3+ CD8- T-cell sets from WT and MIF KO mice at 7 dpi. The results indicated that both MIF KO and infection time have a significant influence on the CD3+ CD8- IFN-γ+ and CD3+ CD8- IL-4+ response in mice after T. spiralis. In conclusion, this research showed alterations of the fecal microbiota and immune response in both WT and MIF KO mice before and after T. spiralis infection. These results revealed a potential role of MIF in regulating the pathogenesis of trichinellosis related to the intestinal microbiota. Importantly, the selected potential biomarkers combined with MIF will also offer a novel therapeutic approach to treat trichinellosis in the future.
Collapse
Affiliation(s)
- Yiting Xie
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Siyi Yan
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Xinyi Hu
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Sirui Chen
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Kun Guo
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Jue Wang
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Qinghai Chen
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wei Guan
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
16
|
Wang J, Liu X, Sun R, Mao H, Liu M, Jin X. Akkermansia muciniphila participates in the host protection against helminth-induced cardiac fibrosis via TLR2. PLoS Pathog 2023; 19:e1011683. [PMID: 37788279 PMCID: PMC10547169 DOI: 10.1371/journal.ppat.1011683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Helminth Trichinella spiralis (Ts) is one of the major pathogens of human infective myocarditis that can lead to cardiac fibrosis (CF). The gut microbiota involved in this pathology are of interest. Here, we use mice infected with Ts as a model to examine the interactions between gut microbes and host protection to CF. Infected mice show enhanced CF severity. We find that antibiotics treatment to deplete the microbiota aggravates the disease phenotype. Attempts to restore microbiota using fecal microbiota transplantation ameliorates helminth-induced CF. 16S rRNA gene sequencing and metagenomics sequencing reveal a higher abundance of Akkermansia muciniphila in gut microbiomes of Ts-infected mice. Oral supplementation with alive or pasteurized A. muciniphila improves CF via TLR2. This work represents a substantial advance toward our understanding of causative rather than correlative relationships between the gut microbiota and CF.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Animal Sciences, Jilin University, Changchun, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ruohang Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hanhai Mao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
17
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
18
|
Ye C, Zhang L, Tang L, Duan Y, Liu J, Zhou H. Host genetic backgrounds: the key to determining parasite-host adaptation. Front Cell Infect Microbiol 2023; 13:1228206. [PMID: 37637465 PMCID: PMC10449477 DOI: 10.3389/fcimb.2023.1228206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Parasitic diseases pose a significant threat to global public health, particularly in developing countries. Host genetic factors play a crucial role in determining susceptibility and resistance to infection. Recent advances in molecular and biological technologies have enabled significant breakthroughs in understanding the impact of host genes on parasite adaptation. In this comprehensive review, we analyze the host genetic factors that influence parasite adaptation, including hormones, nitric oxide, immune cells, cytokine gene polymorphisms, parasite-specific receptors, and metabolites. We also establish an interactive network to better illustrate the complex relationship between host genetic factors and parasite-host adaptation. Additionally, we discuss future directions and collaborative research priorities in the parasite-host adaptation field, including investigating the impact of host genes on the microbiome, developing more sophisticated models, identifying and characterizing parasite-specific receptors, utilizing patient-derived sera as diagnostic and therapeutic tools, and developing novel treatments and management strategies targeting specific host genetic factors. This review highlights the need for a comprehensive and systematic approach to investigating the underlying mechanisms of parasite-host adaptation, which requires interdisciplinary collaborations among biologists, geneticists, immunologists, and clinicians. By deepening our understanding of the complex interactions between host genetics and parasite adaptation, we can develop more effective and targeted interventions to prevent and treat parasitic diseases. Overall, this review provides a valuable resource for researchers and clinicians working in the parasitology field and offers insights into the future directions of this critical research area.
Collapse
Affiliation(s)
- Caixia Ye
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Pediatrics, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Lianhua Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Surgery, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Lili Tang
- The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Tumor Hospital), Urumqi, China
| | - Yongjun Duan
- Department of Pediatrics, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongli Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
19
|
Myhill LJ, Williams AR. Diet-microbiota crosstalk and immunity to helminth infection. Parasite Immunol 2023; 45:e12965. [PMID: 36571323 DOI: 10.1111/pim.12965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/27/2022]
Abstract
Helminths are large multicellular parasites responsible for widespread chronic disease in humans and animals. Intestinal helminths live in close proximity with the host gut microbiota and mucosal immune network, resulting in reciprocal interactions that closely influence the course of infections. Diet composition may strongly regulate gut microbiota composition and intestinal immune function and therefore may play a key role in modulating anti-helminth immune responses. Characterizing the multitude of interactions that exist between different dietary components (e.g., dietary fibres), immune cells, and the microbiota, may shed new light on regulation of helminth-specific immunity. This review focuses on the current knowledge of how metabolism of dietary components shapes immune response during helminth infection, and how this information may be potentially harnessed to design new therapeutics to manage parasitic infections and associated diseases.
Collapse
Affiliation(s)
- Laura J Myhill
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
20
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Hao HN, Lu QQ, Wang Z, Li YL, Long SR, Dan Liu R, Cui J, Wang ZQ. Mannose facilitates Trichinella spiralis expulsion from the gut and alleviates inflammation of intestines and muscles in mice. Acta Trop 2023; 241:106897. [PMID: 36931335 DOI: 10.1016/j.actatropica.2023.106897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/25/2022] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Trichinellosis is a major zoonotic parasitosis which is a vital risk to meat food safety. It is requisite to exploit new strategy to interdict food animal Trichinella infection and to obliterate Trichinella from food animals to ensure meat safety. Mannose is an oligosaccharide that specifically binds to the carbohydrate-recognition domain of C-type lectin; it has many physiological functions including reliving inflammation and regulating immune reaction. The purpose of this study was to investigate the suppressive role of mannose on T. spiralis larval invasion and infection, its effect on intestinal and muscle inflammation, and immune responses after challenge. The results showed that compared to the saline-treated infected mice, the mannose-treated infected mice had less intestinal adult and muscle worm burdens, mild inflammation of intestine and muscle of infected mice. The levels of specific anti-Trichinella IgG (IgG1/IgG2a), IgA and sIgA in mannose-treated infected mice were obviously inferior to saline-treated infected mice (P < 0.01). Furthermore, the levels of two cytokines (IFN-γ and IL-4) in mannose-treated infected mice were also significantly lower than the saline-treated infected mice (P < 0.01). The protective effect of the mannose against Trichinella infection might be not related to specific antibody and cellular immune responses. The above results demonstrated that mannose could be considered as a novel adjuvant therapeutic agent for anti-Trichinella drugs to block larval invasion at early stage of Trichinella infection.
Collapse
Affiliation(s)
- Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Zhen Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Li Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
22
|
Kim SL, Choi JH, Yi MH, Lee S, Kim M, Oh S, Lee IY, Jeon BY, Yong TS, Kim JY. Metabarcoding of bacteria and parasites in the gut of Apodemus agrarius. Parasit Vectors 2022; 15:486. [PMID: 36564849 PMCID: PMC9789561 DOI: 10.1186/s13071-022-05608-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The striped field mouse Apodemus agrarius is a wild rodent commonly found in fields in Korea. It is a known carrier of various pathogens. Amplicon-based next-generation sequencing (NGS) targeting the 16S ribosomal RNA (rRNA) gene is the most common technique used to analyze the bacterial microbiome. Although many bacterial microbiome analyses have been attempted using feces of wild animals, only a few studies have used NGS to screen for parasites. This study aimed to rapidly detect bacterial, fungal and parasitic pathogens in the guts of A. agrarius using NGS-based metabarcoding analysis. METHODS We conducted 18S/16S rDNA-targeted high-throughput sequencing on cecal samples collected from A. agrarius (n = 48) trapped in May and October 2017. Taxa of protozoa, fungi, helminths and bacteria in the cecal content were then identified. RESULTS Among the protozoa identified, the most prevalent was Tritrichomonas sp., found in all of the cecal samples, followed by Monocercomonas sp. (95.8% prevalence; in 46/48 samples) and Giardia sp. (75% prevalence; in 36/48 samples). For helminths, Heligmosomoides sp. was the most common, found in 85.4% (41/48) of samples, followed by Hymenolepis sp. (10.4%; 5/48) and Syphacia sp. (25%; 12/48). The 16S rRNA gene analysis showed that the microbial composition of the cecal samples changed by season (P = 0.005), with the linear discriminant analysis effect size showing that in the spring Escherichia coli and Lactobacillus murinus were more abundant and Helicobacter rodentium was less abundant. Helicobacter japonicus was more abundant and Prevotella_uc was less abundant in males. The microbial composition changed based on the Heligmosomoides sp. infection status (P = 0.019); specifically, Lactobacillus gasseri and Lactobacillus intestinalis were more abundant in the Heligmosomoides sp.-positive group than in the Heligmosomoides sp.-negative group. CONCLUSIONS This study demonstrated that bacterial abundance changed based on the season and specific parasitic infection status of the trapped mice. These results highlight the advantages of NGS technology in monitoring zoonotic disease reservoirs.
Collapse
Affiliation(s)
- Soo Lim Kim
- grid.15444.300000 0004 0470 5454Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Jun Ho Choi
- grid.15444.300000 0004 0470 5454Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Myung-hee Yi
- grid.15444.300000 0004 0470 5454Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Seogwon Lee
- grid.15444.300000 0004 0470 5454Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Myungjun Kim
- grid.15444.300000 0004 0470 5454Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Singeun Oh
- grid.15444.300000 0004 0470 5454Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - In-Yong Lee
- grid.15444.300000 0004 0470 5454Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Bo-Young Jeon
- grid.15444.300000 0004 0470 5454Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju, 26493 Republic of Korea
| | - Tai-Soon Yong
- grid.15444.300000 0004 0470 5454Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Ju Yeong Kim
- grid.15444.300000 0004 0470 5454Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| |
Collapse
|
23
|
Wang J, Chen J, Li L, Zhang H, Pang D, Ouyang H, Jin X, Tang X. Clostridium butyricum and Bifidobacterium pseudolongum Attenuate the Development of Cardiac Fibrosis in Mice. Microbiol Spectr 2022; 10:e0252422. [PMID: 36318049 PMCID: PMC9769846 DOI: 10.1128/spectrum.02524-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Cardiac fibrosis is an integral aspect of every form of cardiovascular diseases, which is one of the leading causes of death worldwide. It is urgent to explore new effective drugs and treatments. In this paper, transverse aortic constriction (TAC)-induced cardiac fibrosis was significantly alleviated by a cocktail of antibiotics to clear the intestinal flora, indicating that the gut microbiota was associated with the disease process of cardiac fibrosis. We transplanted feces from sham-operated and TAC-treated mice to mice treated with a cocktail of antibiotics. We found that TAC-treated gut microbiota dysbiosis cannot cause cardiac fibrosis on its own. Interestingly, healthy fecal microbiota transplantation could alleviate cardiac fibrosis, indicating that targeted probiotics and related metabolite intervention may restore a normal microenvironment for the treatment or prevention of cardiac fibrosis. We used 16S rRNA sequencing of fecal samples and discovered that butyric acid-producing bacteria and Bifidobacterium pseudolongum were the dominant bacteria in the group with the lowest degree of cardiac fibrosis. Moreover, we demonstrated that sodium butyrate prevented the development of cardiac fibrosis. The effect of Clostridium butyricum (butyric acid-producing bacteria) was better than that of B. pseudolongum on cardiac fibrosis. Surprisingly, the cocktail of two probiotics had a stronger ability than a single probiotic. In conclusion, therapies targeting the gut microbiota and metabolites such as probiotics present new strategies for treating cardiovascular disease. IMPORTANCE Cardiac fibrosis is a basic process in cardiac remodeling. It is related to almost all types of cardiovascular diseases (CVD) and has become an important global health problem. Basic research and a number of clinical studies have shown that myocardial fibrosis can be prevented and reversed to a certain extent. It is urgent to explore new effective drugs and treatments. We indicated a causal relationship between cardiac fibrosis and gut microbiota. Gut microbiota dysbiosis cannot cause cardiac fibrosis on its own. Interestingly, healthy fecal microbiota transplantation could alleviate cardiac fibrosis. According to our findings, the combined use of butyric acid-producing bacteria and B. pseudolongum can help prevent cardiac fibrosis. Therapies targeting the gut microbiota and metabolites, such as probiotics, represent new strategies for treating cardiovascular disease.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun China
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
- Chongqing Research Institute of Jilin University, Chongqing, People’s Republic of China
| |
Collapse
|
24
|
Xu YXY, Zhang XZ, Weng MM, Cheng YK, Liu RD, Long SR, Wang ZQ, Cui J. Oral immunization of mice with recombinant Lactobacillus plantarum expressing a Trichinella spiralis galectin induces an immune protection against larval challenge. Parasit Vectors 2022; 15:475. [PMID: 36539832 PMCID: PMC9764493 DOI: 10.1186/s13071-022-05597-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Trichinella spiralis is an important foodborne parasite that presents a severe threat to food safety. The development of an anti-Trichinella vaccine is an important step towards controlling Trichinella infection in food animals and thus ensure meat safety. Trichinella spiralis galectin (Tsgal) is a novel protein that has been identified on the surface of this nematode. Recombinant Tsgal (rTsgal) was found to participate in larval invasion of intestinal epithelium cells (IECs), whereas anti-rTsgal antibodies impeded the invasion. METHODS The rTsgal/pSIP409- pgsA' plasmid was constructed and transferred into Lactobacillus plantarum strain NC8, following which the in vitro biological properties of rTsgal/NC8 were determined. Five groups of mice were orally immunized three times, with a 2-week interval between immunizations, with recombinant NC8-Tsgal, recombinant NC8-Tsgal + α-lactose, empty NC8, α-lactose only or phosphate-buffered saline (PBS), respectively. The vaccinated mice were infected orally with T. spiralis larvae 2 weeks following the last vaccination. Systemic and intestinal local mucosal immune responses and protection were also assessed, as were pathological changes in murine intestine and skeletal muscle. RESULTS rTsgal was expressed on the surface of NC8-Tsgal. Oral immunization of mice with rTsgal vaccine induced specific forms of serum immunoglobulin G (IgG), namely IgG1/IgG2a, as well as IgA and gut mucosal secretion IgA (sIgA). The levels of interferon gamma and interleukin-4 secreted by cells of the spleen, mesenteric lymph nodes, Peyer's patches and intestinal lamina propria were significantly elevated at 2-6 weeks after immunization, and continued to rise following challenge. Immunization of mice with the oral rTsgal vaccine produced a significant immune protection against T. spiralis challenge, as demonstrated by a 57.28% reduction in the intestinal adult worm burden and a 53.30% reduction in muscle larval burden, compared to the PBS control group. Immunization with oral rTsgal vaccine also ameliorated intestinal inflammation, as demonstrated by a distinct reduction in the number of gut epithelial goblet cells and mucin 2 expression level in T. spiralis-infected mice. Oral administration of lactose alone also reduced adult worm and larval burdens and relieved partially inflammation of intestine and muscles. CONCLUSIONS Immunization with oral rTsgal vaccine triggered an obvious gut local mucosal sIgA response and specific systemic Th1/Th2 immune response, as well as an evident protective immunity against T. spiralis challenge. Oral rTsgal vaccine provided a prospective approach for control of T. spiralis infection.
Collapse
Affiliation(s)
- Yang Xiu Yue Xu
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Zhuo Zhang
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Min Min Weng
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yong Kang Cheng
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Shao Rong Long
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
25
|
Bai SJ, Han LL, Liu RD, Long SR, Zhang X, Cui J, Wang ZQ. Oral vaccination of mice with attenuated Salmonella encoding Trichinella spiralis calreticulin and serine protease 1.1 confers protective immunity in BALB/c mice. PLoS Negl Trop Dis 2022; 16:e0010929. [PMID: 36445875 PMCID: PMC9707759 DOI: 10.1371/journal.pntd.0010929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Trichinella spiralis is a foodborne parasitic nematode which is a serious risk to meat safety. Development of anti-Trichinella vaccine is needed to control Trichinella infection in food animals. In this study, two novel T. spiralis genes (calreticulin and serine protease 1.1) in combination were used to construct oral DNA vaccines, and their induced protective immunity was evaluated in a murine model. METHODOLOGY/PRINCIPAL FINDINGS TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA were transformed into attenuated Salmonella typhimurium ΔcyaSL1344. Oral vaccination of mice with TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA vaccines elicited a gut local mucosal sIgA response and systemic Th1/Th2 mixed response. Oral vaccination with TsCRT+TsSP1.1 induced obviously higher level of serum specific antibodies, mucosal sIgA and cellular immune response than either of single TsCRT or TsSP1.1 DNA vaccination. Oral vaccination of mice with TsCRT+TsSP1.1 exhibited a 53.4% reduction of enteral adult worms and a 46.05% reduction of muscle larvae, conferred a higher immune protection than either of individual TsCRT (44.28 and 42.46%) or TsSP1.1 DNA vaccine (35.43 and 29.29%) alone. Oral vaccination with TsCRT+TsSP1.1, TsCRT and TsSP1.1 also obviously ameliorated inflammation of intestinal mucosa and skeletal muscles of vaccinated mice after challenge. CONCLUSIONS TsCRT and TsSP1.1 might be regarded the novel potential targets for anti-Trichinella vaccines. Attenuated Salmonella-delivered DNA vaccine provided a prospective approach to control T. spiralis infection in food animals.
Collapse
Affiliation(s)
- Sheng Jie Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| |
Collapse
|
26
|
Lv QB, Ma H, Wei J, Qin YF, Qiu HY, Ni HB, Yang LH, Cao H. Changes of gut microbiota structure in rats infected with Toxoplasma gondii. Front Cell Infect Microbiol 2022; 12:969832. [PMID: 35967867 PMCID: PMC9366923 DOI: 10.3389/fcimb.2022.969832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 12/28/2022] Open
Abstract
Toxoplasma gondii (T. gondii) infection can cause intestinal inflammation in rodents and significantly alters the structure of gut microbiota. However, the effects of different T. gondii genotypes on the gut microbiota of rats remain unclear. In this study, acute and chronic T. gondii infection in Fischer 344 rats was induced artificially by intraperitoneal injection of tachyzoites PYS (Chinese 1 ToxoDB#9) and PRU (Type II). Fecal 16S rRNA gene amplicon sequencing was employed to analyze the gut microbiota structure at different stages of infection, and to compare the effects of infection by two T. gondii genotypes. Our results suggested that the infection led to structural changes of gut microbiota in rats. At the acute infection stage, the microbiota diversity increased, while both diversity and abundance of beneficial bacteria decreased at the chronic infection stage. The differences of microbiota structure were caused by strains of different genotypes. However, the diversity changes were consistent. This study demonstrates that the gut microbiota plays an important role in T. gondii infection in rats. The data will improve our understanding of the association between T. gondii infection and gut microbiota in rodents.
Collapse
Affiliation(s)
- Qing-Bo Lv
- College of Life Science, Changchun Sci-Tech University, Shuangyang, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiaqi Wei
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Yi-Feng Qin
- College of Life Science, Changchun Sci-Tech University, Shuangyang, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hong-Yu Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Li-Hua Yang
- College of Life Science, Changchun Sci-Tech University, Shuangyang, China
- *Correspondence: Li-Hua Yang, ; Hongwei Cao,
| | - Hongwei Cao
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
- *Correspondence: Li-Hua Yang, ; Hongwei Cao,
| |
Collapse
|
27
|
Jin X, Liu Y, Vallee I, Karadjian G, Liu M, Liu X. Lentinan -triggered butyrate-producing bacteria drive the expulsion of the intestinal helminth Trichinella spiralis in mice. Front Immunol 2022; 13:926765. [PMID: 35967395 PMCID: PMC9371446 DOI: 10.3389/fimmu.2022.926765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Trichinellosis caused by Trichinella spiralis is a serious zoonosis with a worldwide distribution. Lentinan (LNT) is known to modulate the intestinal environment with noted health benefits, yet the effect of LNT against intestinal helminth is unknown. In our study, we first observed that LNT could trigger worm expulsion by promoting mucus layer functions through alteration of gut microbiota. LNT restored the abundance of Bacteroidetes and Proteobacteria altered by T. spiralis infection to the control group level. Interestingly, LNT triggered the production of butyrate. Then, we determined the deworming capacity of probiotics (butyrate-producing bacteria) in mice. Collectively, these findings indicated that LNT could modulate intestinal dysbiosis by T. spiralis, drive the expulsion of intestinal helminth and provided an easily implementable strategy to improve the host defence against T. spiralis infection.
Collapse
Affiliation(s)
- Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yi Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Isabelle Vallee
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d’Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Gregory Karadjian
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d’Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaolei Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Xiaolei Liu,
| |
Collapse
|
28
|
Yan X, Han W, Jin X, Sun Y, Gao J, Yu X, Guo J. Study on the effect of koumiss on the intestinal microbiota of mice infected with Toxoplasma gondii. Sci Rep 2022; 12:1271. [PMID: 35075239 PMCID: PMC8786867 DOI: 10.1038/s41598-022-05454-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii is a worldwide food-borne parasite that can infect almost all warm-blooded animals, including humans. To date, there are no effective drugs to prevent or eradicate T. gondii infection. Recent studies have shown that probiotics could influence the relationship between the microbiota and parasites in the host. Koumiss has been used to treat many diseases based on its probiotic diversity. Therefore, we explored the effect of koumiss on T. gondii infection via its effect on the host intestinal microbiota. BALB/c mice were infected with T. gondii and treated with PBS, koumiss and mares' milk. Brain cysts were counted, and long-term changes in the microbiota and the effect of koumiss on gut microbiota were investigated with high-throughput sequencing technology. The results suggested that koumiss treatment significantly decreased the cyst counts in the brain (P < 0.05). Moreover, T. gondii infection changed the microbiota composition, and koumiss treatment increased the relative abundance of Lachnospiraceae and Akkermansia muciniphila, which were associated with preventing T. gondii infection. Moreover, koumiss could inhibit or ameliorate T. gondii infection by increasing the abundance of certain bacteria that control unique metabolic pathways. The study not only established a close interaction among the host, intracellular pathogens and intestinal microbiota but also provided a novel focus for drug development to prevent and eradicate T. gondii infection.
Collapse
Affiliation(s)
- Xinlei Yan
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Wenying Han
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xindong Jin
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yufei Sun
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jialu Gao
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiuli Yu
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jun Guo
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|