1
|
Mishra SR, Modak A, Awasthi M, Sobha A, Sreekumar E. Ponatinib and other clinically approved inhibitors of Src and Rho-A kinases abrogate dengue virus serotype 2- induced endothelial permeability. Virulence 2025; 16:2489751. [PMID: 40189910 PMCID: PMC11980456 DOI: 10.1080/21505594.2025.2489751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/04/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Severe dengue often presents as shock syndrome with enhanced vascular permeability and plasma leakage into tissue spaces. In vitro studies have documented the role of Src family kinases (SFKs) and RhoA-kinases (ROCK) in dengue virus serotype 2 (DENV2)-induced endothelial permeability. Here, we show that the FDA-approved SFK inhibitors Bosutinib, Vandetanib and Ponatinib, as well as the ROCK inhibitors, Netarsudil and Ripasudil significantly inhibit DENV2-induced endothelial permeability. In cultured telomerase immortalized human microvascular endothelial cells (HMEC-1), treatment with these inhibitors reduced the phosphorylation of VE-Cadherin, Src and myosin light chain 2 (MLC2) proteins that were upregulated during DENV2 infection. It also prevented the loss of VE-Cadherin from the inter-endothelial cell junctions induced by viral infection. In in-vivo studies using DENV2-infected AG129 IFN receptor-α/β/γ deficient mice, ponatinib, when administered 24 h post-infection onwards, demonstrated significant benefits in improving body weight, clinical outcomes, and survival rates. While all virus-infected, untreated mice died by day-10 post-infection, 80% of the ponatinib-treated mice survived, and approximately 60% were still alive at the end of the 15-day observation period. The treatment also significantly reduced disease severity factors such as vascular leakage, thrombocytopenia; mRNA transcript levels of proinflammatory cytokines such as IL-1β and TNF-α; and restored liver function. Comparable effects were observed even when ponatinib treatment was initiated after symptom onset. The results highlight ponatinib as an effective therapeutic option in severe dengue; and also a similar potential for other FDA- approved SFK and ROCK inhibitors.
Collapse
Affiliation(s)
- Srishti Rajkumar Mishra
- Molecular Virology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Ayan Modak
- Molecular Virology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, India
| | - Mansi Awasthi
- Molecular Virology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Archana Sobha
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Thonnakkal, Thiruvananthapuram, India
| |
Collapse
|
2
|
Hergueta-Redondo M, Sánchez-Redondo S, Hurtado B, Santos V, Pérez-Martínez M, Ximénez-Embún P, McDowell SAC, Mazariegos MS, Mata G, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Graña-Castro O, Megias D, Quail D, Quintela-Fandino M, Peinado H. The impact of a high fat diet and platelet activation on pre-metastatic niche formation. Nat Commun 2025; 16:2897. [PMID: 40175356 PMCID: PMC11965330 DOI: 10.1038/s41467-025-57938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/07/2025] [Indexed: 04/04/2025] Open
Abstract
There is active crosstalk between tumor cells and the tumor microenvironment during metastatic progression, a process that is significantly affected by obesity, particularly in breast cancer. Here we analyze the impact of a high fat diet (HFD) on metastasis, focusing on the role of platelets in the formation of premetastatic niches (PMNs). We find that a HFD provokes pre-activation of platelets and endothelial cells, promoting the formation of PMNs in the lung. These niches are characterized by increased vascular leakiness, platelet activation and overexpression of fibronectin in both platelets and endothelial cells. A HFD promotes interactions between platelets, tumor cells and endothelial cells within PMNs, enhancing tumor cell homing and metastasis. Importantly, therapeutic interventions like anti-platelet antibody administration or a dietary switch reduce metastatic cell homing and outgrowth. Moreover, blocking fibronectin reduces the interaction of tumor cells with endothelial cells. Importantly, when coagulation parameters prior to neoadjuvant treatment are considered, triple negative breast cancer (TNBC) female patients with reduced Partial Thromboplastin time (aPTT) had a significantly shorter time to relapse. These findings highlight how diet and platelet activation in pre-metastatic niches affect tumor cell homing and metastasis, suggesting potential therapeutic interventions and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Begoña Hurtado
- Cancer Cell Cycle Group, Preclinical & Translational Research Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
| | - Gadea Mata
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA-Nemesio Díez), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28925, Alcorcón, Spain
| | - Diego Megias
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Advanced Optical Microscopy - ISCIII Madrid, Madrid, Spain
| | - Daniela Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Medical Oncology, Hospital de Fuenlabrada, Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
3
|
Hansen LMB, Dam VS, Guldbrandsen HØ, Staehr C, Pedersen TM, Kalucka JM, Beck HC, Postnov DD, Lin L, Matchkov VV. Spatial Transcriptomics and Proteomics Profiling After Ischemic Stroke Reperfusion: Insights Into Vascular Alterations. Stroke 2025; 56:1036-1047. [PMID: 40052263 DOI: 10.1161/strokeaha.124.048085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/16/2024] [Accepted: 01/30/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND More than half of patients with ischemic stroke experience futile reperfusion, increasing the risk of death and disabilities despite a successful recanalization. The reason behind this is debated, and we aim to investigate cerebrovascular changes toward a broader understanding of these conditions. We hypothesize that ischemic stroke reperfusion modifies the expression profile in the microvasculature in a spatial manner toward peri-infarct brain edema and circulatory failure. METHODS We investigated the early (24-hour) changes in spatial gene expression in the brain parenchymal endothelial cells and mural cells following ischemia stroke reperfusion in 13- to 14-week-old C57BL/6JRj male mice (n=5). Ischemia was induced by occlusion of the middle cerebral artery for 60 minutes, and Nissl staining was used to validate infarct size. Spatial transcriptomics complemented by bulk proteomics was conducted in the peri-infarct cortex region and validated with immunohistochemical semiquantification of proteins of interest. To avoid individual biological variations, changes in the peri-infarct cortex region were expressed relatively to the matching contralateral hemisphere region. RESULTS Ischemic stroke reperfusion impaired the blood-brain barrier integrity through junctional Cldn5 (claudin-5) downregulation, changes of the actin cytoskeleton adhesion, and high expression of the proinflammatory Il-6 (interleukin-6). Molecules important for extracellular Ca2+ influx and intracellular Ca2+ release, Cacna1e (R-type Ca2+ channels), Orai2, Ryr3, Itpr1, and Itpka (inositol-trisphosphate 3-kinase A), were markedly reduced. Furthermore, reduced Grm5 (glutamate receptor 5) associated with upregulated Nfatc3 and Stat3 implicates suppression of the contractile phenotype, suggesting reduced poststroke vascular resistance due to loss of mural cell tone. The complete spatial transcriptomics map over the ipsilateral and contralateral hemispheres is available online as a Web tool. CONCLUSIONS Emphasizing the spatial molecular pattern behind blood-brain barrier disruption and loss of the vascular tone in the acute phase following ischemic stroke reperfusion suggests the gene expression contribution for a therapeutic target in ischemia-reperfusion abnormalities.
Collapse
Affiliation(s)
- Line Mathilde Brostrup Hansen
- Department of Biomedicine (L.M.B.H., V.S.D., H.Ø.G., C.S., T.M.P., J.M.K., L.L., V.V.M.), Aarhus University, Denmark
| | - Vibeke Secher Dam
- Department of Biomedicine (L.M.B.H., V.S.D., H.Ø.G., C.S., T.M.P., J.M.K., L.L., V.V.M.), Aarhus University, Denmark
| | - Halvor Østerby Guldbrandsen
- Department of Biomedicine (L.M.B.H., V.S.D., H.Ø.G., C.S., T.M.P., J.M.K., L.L., V.V.M.), Aarhus University, Denmark
| | - Christian Staehr
- Department of Biomedicine (L.M.B.H., V.S.D., H.Ø.G., C.S., T.M.P., J.M.K., L.L., V.V.M.), Aarhus University, Denmark
| | - Tina Myhre Pedersen
- Department of Biomedicine (L.M.B.H., V.S.D., H.Ø.G., C.S., T.M.P., J.M.K., L.L., V.V.M.), Aarhus University, Denmark
| | - Joanna Maria Kalucka
- Department of Biomedicine (L.M.B.H., V.S.D., H.Ø.G., C.S., T.M.P., J.M.K., L.L., V.V.M.), Aarhus University, Denmark
| | - Hans Christian Beck
- Institute of Clinical Research, University of Southern Denmark, Odense (H.C.B.)
- Department of Clinical Biochemistry, Centre for Clinical Proteomics, Odense University Hospital, Denmark (H.C.B.)
| | - Dmitry D Postnov
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (D.D.P.), Aarhus University, Denmark
| | - Lin Lin
- Department of Biomedicine (L.M.B.H., V.S.D., H.Ø.G., C.S., T.M.P., J.M.K., L.L., V.V.M.), Aarhus University, Denmark
| | - Vladimir V Matchkov
- Department of Biomedicine (L.M.B.H., V.S.D., H.Ø.G., C.S., T.M.P., J.M.K., L.L., V.V.M.), Aarhus University, Denmark
| |
Collapse
|
4
|
Salian VS, Tang X, Thompson KJ, Curan GL, Lowe VJ, Li L, Kalari KR, Kandimalla KK. Molecular Mechanisms Underlying Amyloid Beta Peptide Mediated Upregulation of Vascular Cell Adhesion Molecule-1 in Alzheimer Disease. J Pharmacol Exp Ther 2024; 391:430-440. [PMID: 39455283 PMCID: PMC11585316 DOI: 10.1124/jpet.124.002280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Amyloid β(Aβ) deposition and neurofibrillary tangles are widely considered the primary pathological hallmarks of familial and sporadic forms of Alzheimer disease (AD). However, cerebrovascular inflammation, which is prevalent in 70% of AD patients, is emerging as another core feature of AD pathology. In our current work, we investigated the hypothesis that Aβ42 exposure drives an increase in vascular cell adhesion molecule-1 (VCAM-1) expression, a cerebrovascular inflammatory marker expressed on the blood-brain barrier (BBB) endothelium in humans and murine models. We have demonstrated that the inflammation signaling pathway is upregulated in AD patient brains, and VCAM-1 expression is increased in AD patients compared with healthy controls. Furthermore, dynamic SPEC/CT imaging in APP,PS1 transgenic mice (a mouse model that overexpresses Aβ42) demonstrated VCAM-1 upregulation at the BBB. Although there is a strong association between Aβ42 exposure and an increase in VCAM-1 expression, the underlying mechanisms remain partially understood. Molecular mechanisms driving VCAM-1 expression at the BBB were investigated in polarized human cerebral microvascular endothelial cell monolayers. Moreover, by employing reverse-phase protein array assays and immunocytochemistry we demonstrated that Aβ42 increases VCAM-1 expression via the Src/p38/MEK signaling pathway. Therefore, targeting the Src/p38/MEK pathway may help modulate VCAM-1 expression at the BBB and help mitigate cerebrovascular inflammation in Alzheimer disease. SIGNIFICANCE STATEMENT: Although considered a core pathological feature of Alzheimer disease, molecular pathways leading to cerebrovascular inflammation remain only partially understood. Moreover, clinical diagnostic methods for detecting cerebrovascular inflammation are underdeveloped. This study demonstrated the detection of VCAM-1 using radio-iodinated VCAM-1 antibody and single-photon emission computed tomography/computed tomography imaging. Additionally, exposure to Aβ42 increases VCAM-1 expression on the blood-brain barrier endothelium via the Src/p38/MEK pathway. These findings are expected to aid in the development of diagnostic and therapeutic approaches for addressing cerebrovascular inflammation in AD.
Collapse
Affiliation(s)
- Vrishali S Salian
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Xiaojia Tang
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Kevin J Thompson
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Geoffry L Curan
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Val J Lowe
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Ling Li
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Krishna R Kalari
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (V.S.S., K.K.K.); Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., V.J.L.); Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota (X.T., K.J.T., K.R.K.); and Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (L.L.)
| |
Collapse
|
5
|
Gover-Proaktor A, Leshem-Lev D, Winograd-Katz S, Partouche S, Samara A, Shapira S, Nardi-Agmon I, Harari E, Younis A, Najjar A, Kornowski R, Geiger B, Raanani P, Leader A, Granot G. Dasatinib induces endothelial dysfunction leading to impaired recovery from ischaemia. Br J Haematol 2024; 205:1011-1016. [PMID: 38877865 DOI: 10.1111/bjh.19595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 10/25/2024]
Abstract
Chronic myeloid leukaemia (CML) management is complicated by treatment-emergent vascular adverse events seen with tyrosine kinase inhibitors (TKIs) such as nilotinib, dasatinib and ponatinib. Pleural effusion and pulmonary arterial hypertension (PAH) have been associated with dasatinib treatment. Endothelial dysfunction and impaired angiogenesis are hallmarks of PAH. In this study, we explored, at cellular and whole animal levels, the connection between dasatinib exposure and disruption of endothelial barrier integrity and function, leading to impaired angiogenesis. Understanding the mechanisms whereby dasatinib initiates PAH will provide opportunities for intervention and prevention of such adverse effects, and for future development of safer TKIs, thereby improving CML management.
Collapse
Affiliation(s)
| | - Dorit Leshem-Lev
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Sabina Winograd-Katz
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Shirly Partouche
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Aladin Samara
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Saar Shapira
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | | | - Emanuel Harari
- Cardiology Division, Assuta Ashdod University Hospital, Ben-Gurion University of the Negev, Ashdod, Israel
| | - Aseel Younis
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | | | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel
- The Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Pia Raanani
- The Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Avi Leader
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Galit Granot
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
- The Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Chen Q, Xu N, Zhao C, He Y, Kam SHT, Wu X, Huang P, Yang M, Wong CTT, Radis-Baptista G, Tang B, Fan G, Gong G, Lee SMY. A new invertebrate NPY-like polypeptide, ZoaNPY, from the Zoanthus sociatus, as a novel ligand of human NPY Y2 receptor rescues vascular insufficiency via PLC/PKC and Src- FAK-dependent signaling pathways. Pharmacol Res 2024; 203:107173. [PMID: 38580186 DOI: 10.1016/j.phrs.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.
Collapse
Affiliation(s)
- Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Yulin He
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China
| | - Sandy Hio Tong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Xue Wu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Pan Huang
- Kunming Institute of Zoology, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Min Yang
- Kunming Institute of Zoology, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Clarence Tsun Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Hong Kong, SAR China
| | | | - Benqin Tang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China.
| |
Collapse
|
7
|
Teli G, Pal R, Maji L, Purawarga Matada GS, Sengupta S. Explanatory review on pyrimidine/fused pyrimidine derivatives as anticancer agents targeting Src kinase. J Biomol Struct Dyn 2024; 42:1582-1614. [PMID: 37144746 DOI: 10.1080/07391102.2023.2205943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The pyrimidine and fused pyrimidine ring systems play vital roles to inhibit the c-Src kinase. The Src kinase is made of different domains but the kinase domain is responsible for inhibition of Src kinase. In which the kinase domain is the main domain that is made of several amino acids. The Src kinase is inhibited by its inhibitors when it is activated by phosphorylation. Although dysregulation of Src kinase caused cancer in the late nineteenth century, medicinal chemists have not explored it extensively; therefore it is still regarded as a cult pathway. There are numerous FDA-approved drugs on the market, yet novel anticancer drugs are still in demand. Existing medications have adverse effects and drug resistance owing to rapid protein mutation. In this review, we discussed the activation process of Src kinase, chemistry of pyrimidine ring and its different synthetic routes, as well as the recent development in c-Src kinase inhibitors containing pyrimidine and their biological activity, SAR, and selectivity. The c-Src binding pocket has been predicted in detail to discover the vital amino acids which will interact with inhibitors. The potent derivatives were docked to discover the binding pattern. The derivative 2 established three hydrogen bonds with the amino acid residues Thr341 and Gln278 and had the greatest binding energy of -13.0 kcal/mol. The top docked molecules were further studied for ADMET studies. The derivative 1, 2, and 43 did not show any violation of Lipinski's rule. All derivatives used for the prediction of toxicity showed toxicity.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Karki P, Li Y, Zhang CO, Ke Y, Promnares K, Birukova AA, Eggerman TL, Bocharov AV, Birukov KG. Amphipathic Helical Peptide L37pA Protects against Lung Vascular Endothelial Dysfunction Caused by Truncated Oxidized Phospholipids via Antagonism with CD36 Receptor. Am J Respir Cell Mol Biol 2024; 70:11-25. [PMID: 37725486 PMCID: PMC10768836 DOI: 10.1165/rcmb.2023-0127oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
The generation of bioactive truncated oxidized phospholipids (Tr-OxPLs) from oxidation of cell-membrane or circulating lipoproteins is a common feature of various pathological states. Scavenger receptor CD36 is involved in lipid transport and acts as a receptor for Tr-OxPLs. Interestingly, Tr-OxPLs and CD36 are involved in endothelial dysfunction-derived acute lung injury, but the precise mechanistic connections remain unexplored. In the present study, we investigated the role of CD36 in mediating pulmonary endothelial cell (EC) dysfunction caused by Tr-OxPLs. Our results demonstrated that the Tr-OxPLs KOdia-PC, Paz-PC, PGPC, PON-PC, POV-PC, and lysophosphocholine caused an acute EC barrier disruption as revealed by measurements of transendothelial electrical resistance and VE-cadherin immunostaining. More importantly, a synthetic amphipathic helical peptide, L37pA, targeting human CD36 strongly attenuated Tr-OxPL-induced EC permeability. L37pA also suppressed Tr-OxPL-induced endothelial inflammatory activation monitored by mRNA expression of inflammatory cytokines/chemokines and adhesion molecules. In addition, L37pA blocked Tr-OxPL-induced NF-κB activation and tyrosine phosphorylation of Src kinase and VE-cadherin. The Src inhibitor SU6656 attenuated KOdia-PC-induced EC permeability and inflammation, but inhibition of the Toll-like receptors (TLRs) TLR1, TLR2, TLR4, and TLR6 had no such protective effects. CD36-knockout mice were more resistant to Tr-OxPL-induced lung injury. Treatment with L37pA was equally effective in ameliorating Tr-OxPL-induced vascular leak and lung inflammation as determined by an Evans blue extravasation assay and total cell and protein content in BAL fluid. Altogether, these results demonstrate an essential role of CD36 in mediating Tr-OxPL-induced EC dysfunction and suggest a strong therapeutic potential of CD36 inhibitory peptides in mitigating lung injury and inflammation.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Yue Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, and
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Mauro AK, Clemente L, Khurshid N, Shah DM, Zheng J, Boeldt DS. Src kinase partially mediates cytokine-induced endothelial dysfunction. Pregnancy Hypertens 2023; 34:83-89. [PMID: 37864990 PMCID: PMC10873000 DOI: 10.1016/j.preghy.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES Endothelial dysfunction is known to be a key characteristic of preeclampsia (PE) and can contribute to progression of symptoms and injury to multiple organ systems. Delivery is the only treatment for progression of PE, but development of an endothelial-based therapy for PE presents a promising strategy. Growth factors and cytokines are dysregulated in PE and can impact endothelial function, manifesting changes in Ca2+ signaling and interruptions in monolayer barrier function that contribute to symptoms of hypertension, proteinuria, and edema. In this study, we highlight Src kinase as a partial mediator of growth factor and cytokine mediated endothelial dysfunction. STUDY DESIGN Fura-2 Ca2+ imaging and Electrical Cell Impedance Sensing (ECIS) assays are performed on growth factor or cytokine exposed human umbilical vein endothelial cells (HUVECs). Inhibitors to MEK/ERK (U0126) or Src (PP2) are used to determine the contribution of kinase signaling pathways. MAIN OUTCOME MEASURES Decreases in HUVEC Ca2+ signaling or monolayer resistance measure endothelial dysfunction. Reversal of endothelial dysfunction by kinase inhibitors reveals the respective contibutions of MEK/ERK and Src kinase. RESULTS We show that Src inhibition protects Ca2+ signaling responses against insults induced by VEGF165, bFGF, PlGF, TNFα, and IL-1β. Additionally, we show that Src inhibition protects the endothelial monolayer from the full impact of TNFα insult. Further, we find that MEK/ERK inhibition does not offer protection from growth factor-mediated endothelial dysfunction. CONCLUSIONS The results of this study suggest cytokine and growth factor-stimulated Src kinase plays a partial role on promoting endothelial dysfunction in HUVECs.
Collapse
Affiliation(s)
- Amanda K Mauro
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA
| | - Luca Clemente
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA
| | - Nauman Khurshid
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA; Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA
| | - Dinesh M Shah
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA; Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA
| | - Jing Zheng
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI 53715, USA.
| |
Collapse
|
10
|
Tang J, Kang Y, Zhou Y, Shang N, Li X, Wang H, Lan J, Wang S, Wu L, Peng Y. TIMP2 ameliorates blood-brain barrier disruption in traumatic brain injury by inhibiting Src-dependent VE-cadherin internalization. J Clin Invest 2023; 134:e164199. [PMID: 38015626 PMCID: PMC10849766 DOI: 10.1172/jci164199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Blood-brain barrier (BBB) disruption is a serious pathological consequence of traumatic brain injury (TBI), for which there are limited therapeutic strategies. Tissue inhibitor of metalloproteinase-2 (TIMP2), a molecule with dual functions of inhibiting MMP activity and displaying cytokine-like activity through receptor binding, has been reported to inhibit VEGF-induced vascular hyperpermeability. Here, we investigate the ability of TIMP2 to ameliorate BBB disruption in TBI and the underlying molecular mechanisms. Both TIMP2 and AlaTIMP2, a TIMP2 mutant without MMP-inhibiting activity, attenuated neurological deficits and BBB leakage in TBI mice; they also inhibited junctional protein degradation and translocation to reduce paracellular permeability in human brain microvascular endothelial cells (ECs) exposed to hypoxic plus inflammatory insult. Mechanistic studies revealed that TIMP2 interacted with α3β1 integrin on ECs, inhibiting Src activation-dependent VE-cadherin phosphorylation, VE-cadherin/catenin complex destabilization, and subsequent VE-cadherin internalization. Notably, localization of VE-cadherin on the membrane was critical for TIMP2-mediated EC barrier integrity. Furthermore, TIMP2-mediated increased membrane localization of VE-cadherin enhanced the level of active Rac1, thereby inhibiting stress fiber formation. All together, our studies have identified an MMP-independent mechanism by which TIMP2 regulates EC barrier integrity after TBI. TIMP2 may be a therapeutic agent for TBI and other neurological disorders involving BBB breakdown.
Collapse
|
11
|
Duerig I, Pylaeva E, Ozel I, Wainwright S, Thiel I, Bordbari S, Domnich M, Siakaeva E, Lakomek A, Toppe F, Schleupner C, Geisthoff U, Lang S, Droege F, Jablonska J. Nonfunctional TGF-β/ALK1/ENG signaling pathway supports neutrophil proangiogenic activity in hereditary hemorrhagic telangiectasia. J Leukoc Biol 2023; 114:639-650. [PMID: 37555392 DOI: 10.1093/jleuko/qiad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
The transforming growth factor β (TGF-β)/ALK1/ENG signaling pathway maintains quiescent state of endothelial cells, but at the same time, it regulates neutrophil functions. Importantly, mutations of this pathway lead to a rare autosomal disorder called hereditary hemorrhagic telangiectasia (HHT), characterized with abnormal blood vessel formation (angiogenesis). As neutrophils are potent regulators of angiogenesis, we investigated how disturbed TGF-β/ALK1/ENG signaling influences angiogenic properties of these cells in HHT. We could show for the first time that not only endothelial cells, but also neutrophils isolated from such patients are ENG/ALK1 deficient. This deficiency obviously stimulates proangiogenic switch of such neutrophils. Elevated proangiogenic activity of HHT neutrophils is mediated by the increased spontaneous degranulation of gelatinase granules, resulting in high release of matrix-degrading matrix metalloproteinase 9 (MMP9). In agreement, therapeutic disturbance of this process using Src tyrosine kinase inhibitors impaired proangiogenic capacity of such neutrophils. Similarly, inhibition of MMP9 activity resulted in significant impairment of neutrophil-mediated angiogenesis. All in all, deficiency in TGF-β/ALK1/ENG signaling in HHT neutrophils results in their proangiogenic activation and disease progression. Therapeutic strategies targeting neutrophil degranulation and MMP9 release and activity may serve as a potential therapeutic option for HHT.
Collapse
Affiliation(s)
- Inga Duerig
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ekaterina Pylaeva
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Irem Ozel
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sami Wainwright
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ilona Thiel
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sharareh Bordbari
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Maksim Domnich
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Elena Siakaeva
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Antonia Lakomek
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Felicia Toppe
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Carolin Schleupner
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Urban Geisthoff
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Marburg, University of Gießen and Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Stephan Lang
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
- German Cancer Consortium, Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Freya Droege
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Jadwiga Jablonska
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
- German Cancer Consortium, Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| |
Collapse
|
12
|
Gomes AM, da Silva DF, Bezerra FJ, Zambuzzi WF. Nanohydroxyapatite-Coated Titanium Surface Increases Vascular Endothelial Cells Distinct Signaling Responding to High Glucose Concentration. J Funct Biomater 2023; 14:jfb14040188. [PMID: 37103278 PMCID: PMC10142760 DOI: 10.3390/jfb14040188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Aim: The success of dental implants depends on osseointegration can be compromised by well-known related adverse biological processes, such as infection and diabetes. Previously, nanohydroxyapatite-coated titanium surfaces (nHA_DAE) have been shown to contain properties that promote osteogenesis by enhancing osteoblast differentiation. In addition, it was hypothesized to drive angiogenesis in high-glucose microenvironments, mimicking diabetes mellitus (DM). On the other hand, the null hypothesis would be confirmed if no effect was observed in endothelial cells (ECs). Materials and methods: Titanium discs presenting the differential surfaces were previously incubated in an FBS-free cell culture medium for up to 24 h, which was, thereafter, supplemented with 30.5 mM of glucose to expose human umbilical vein endothelial cells (HUVECs, ECs) for 72 h. They were then harvested, and the sample was processed to provide molecular activity of specific genes related to EC survival and activity by using qPCR, and the conditioned medium by ECs was used to evaluate the activity of matrix metalloproteinases (MMPs). Results: Our data guaranteed better performance of this nanotechnology-involved titanium surface to this end once the adhesion and survival characteristics were ameliorated by promoting a higher involvement of β1-Integrin (~1.5-fold changes), Focal Adhesion Kinases (FAK; ~1.5-fold changes) and SRC (~2-fold changes) genes. This signaling pathway culminated with the cofilin involvement (~1.5-fold changes), which guaranteed cytoskeleton rearrangement. Furthermore, nHA_DAE triggered signaling that was able to drive the proliferation of endothelial cells once the cyclin-dependent kinase gene was higher in response to it, while the P15 gene was significantly down-regulated with an impact on the statement of angiogenesis. Conclusions: Altogether, our data show that a nanohydroxyapatite-coated titanium surface ameliorates the EC performance in a high-glucose model in vitro, suggesting its potential application in DM patients.
Collapse
|
13
|
Role of c-Src and reactive oxygen species in cardiovascular diseases. Mol Genet Genomics 2023; 298:315-328. [PMID: 36700976 DOI: 10.1007/s00438-023-01992-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Oxidative stress, caused by the over production of oxidants or inactivity of antioxidants, can modulate the redox state of several target proteins such as tyrosine kinases, mitogen-activated protein kinases and tyrosine phosphatases. c-Src is one such non-receptor tyrosine kinase which activates NADPH oxidases (Noxs) in response to various growth factors and shear stress. Interaction between c-Src and Noxs is influenced by cell type and primary messengers such as angiotensin II, which binds to G-protein coupled receptor and activates the intracellular signaling cascade. c-Src stimulated activation of Noxs results in elevated release of intracellular and extracellular reactive oxygen species (ROS). These ROS species disturb vascular homeostasis and cause cardiac hypertrophy, coronary artery disease, atherosclerosis and hypertension. Interaction between c-Src and ROS in the pathobiology of cardiac fibrosis is hypothesized to be influenced by cell type and stimuli. c-Src and ROS have a bidirectional relationship, thus increased ROS levels due to c-Src mediated activation of Noxs can further activate c-Src by promoting the oxidation and sulfenylation of critical cysteine residues. This review highlights the role of c-Src and ROS in mediating downstream signaling pathways underlying cardiovascular diseases. Furthermore, due to the central role of c-Src in activation of various signaling proteins involved in differentiation, migration, proliferation, and cytoskeletal reorganization of vascular cells, it is presented as therapeutic target for treating cardiovascular diseases except cardiac fibrosis.
Collapse
|
14
|
Kolarzyk AM, Wong G, Lee E. Lymphatic Tissue and Organ Engineering for In Vitro Modeling and In Vivo Regeneration. Cold Spring Harb Perspect Med 2022; 12:a041169. [PMID: 35288402 PMCID: PMC9435571 DOI: 10.1101/cshperspect.a041169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The lymphatic system has an important role in maintaining fluid homeostasis and transporting immune cells and biomolecules, such as dietary fat, metabolic products, and antigens in different organs and tissues. Therefore, impaired lymphatic vessel function and/or lymphatic vessel deficiency can lead to numerous human diseases. The discovery of lymphatic endothelial markers and prolymphangiogenic growth factors, along with a growing number of in vitro and in vivo models and technologies has expedited research in lymphatic tissue and organ engineering, advancing therapeutic strategies. In this article, we describe lymphatic tissue and organ engineering in two- and three-dimensional culture systems and recently developed microfluidics and organ-on-a-chip systems in vitro. Next, we discuss advances in lymphatic tissue and organ engineering in vivo, focusing on biomaterial and scaffold engineering and their applications for lymphatic vessels and lymphoid organ regeneration. Last, we provide expert perspective and prospects in the field of lymphatic tissue engineering.
Collapse
Affiliation(s)
- Anna M Kolarzyk
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, New York 14853, USA
- Biomedical and Biological Sciences PhD Program, Ithaca, New York 14853, USA
| | - Gigi Wong
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, New York 14853, USA
- Biological Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, New York 14853, USA
- Biomedical and Biological Sciences PhD Program, Ithaca, New York 14853, USA
| |
Collapse
|
15
|
Weng J, Chen Z, Li J, He Q, Chen D, Yang L, Su H, Huang J, Yu S, Huang Q, Xu Q, Guo X. Advanced glycation end products induce endothelial hyperpermeability via β-catenin phosphorylation and subsequent up-regulation of ADAM10. J Cell Mol Med 2021; 25:7746-7759. [PMID: 34227224 PMCID: PMC8358892 DOI: 10.1111/jcmm.16659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial hyperpermeability is the initial event in the development of diabetic microvascular complications, and advanced glycation end products (AGEs) are suggested to cause much of the endothelial hyperpermeability associated with diabetes mellitus, but the molecular mechanism remains to be characterized. β-catenin reportedly plays dual functions in maintaining normal endothelial permeability by serving both as an adhesive component and a signal transduction component. Here, we found that AGEs induced the phosphorylation of β-catenin at residues Y654 and Y142 and the endothelial hyperpermeability was reversed when the two residues were blocked. In mechanism, phosphorylation of Y654 was blocked by Src inactivation, whereas phosphorylation of Y142 was reduced by a focal adhesion kinase inhibitor. β-catenin Y654 phosphorylation induced by AGEs facilitated the dissociation of vascular endothelial (VE)-cadherin/β-catenin and the impairment of adherens junctions (AJs), whereas β-catenin Y142 phosphorylation favoured the dissociation of β-catenin and α-catenin. Further investigation revealed that β-catenin Y142 phosphorylation was required for AGEs-mediated β-catenin nuclear translocation, and this nuclear-located β-catenin subsequently activated the TCF/LEF pathway. This pathway promotes the transcription of the Wnt target, ADAM10 (a disintegrin and metalloprotease 10), which mediates VE-cadherin shedding and leads to further impairment of AJs. In summary, our study showed the role of β-catenin Y654 and Y142 phosphorylation in AGEs-mediated endothelial hyperpermeability through VE-cadherin/β-catenin/α-catenin dissociation and up-regulation of ADAM10, thereby advancing our understanding of the underlying mechanisms of AGEs-induced microvascular hyperpermeability.
Collapse
Affiliation(s)
- Jie Weng
- Department of Pulmonary and Critical Care MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhenfeng Chen
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jieyu Li
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qi He
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Deshu Chen
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Lin Yang
- Guangzhou Special Service Sanatorium Center of the Rocket ForceGuangzhouChina
| | - Haiying Su
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Junlin Huang
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shengxiang Yu
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qiaobing Huang
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qiulin Xu
- Department of Emergency and Critical MedicineGuangdong Provincial People’s HospitalGuangdong Academy of Medical ScienceGuangzhouChina
| | - Xiaohua Guo
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
16
|
Rahmanian M, Seyfoori A, Ghasemi M, Shamsi M, Kolahchi AR, Modarres HP, Sanati-Nezhad A, Majidzadeh-A K. In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. J Control Release 2021; 334:164-177. [PMID: 33895200 DOI: 10.1016/j.jconrel.2021.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
The complexity and heterogeneity of the three-dimensional (3D) tumor microenvironment have brought challenges to tumor studies and cancer treatment. The complex functions and interactions of cells involved in tumor microenvironment have led to various multidrug resistance (MDR) and raised challenges for cancer treatment. Traditional tumor models are limited in their ability to simulate the resistance mechanisms and not conducive to the discovery of multidrug resistance and delivery processes. New technologies for making 3D tissue models have shown the potential to simulate the 3D tumor microenvironment and identify mechanisms underlying the MDR. This review overviews the main barriers against multidrug delivery in the tumor microenvironment and highlights the advances in microfluidic-based tumor models with the success in simulating several drug delivery barriers. It also presents the progress in modeling various genetic and epigenetic factors involved in regulating the tumor microenvironment as a noticeable insight in 3D microfluidic tumor models for recognizing multidrug resistance and delivery mechanisms. Further correlation between the results obtained from microfluidic drug resistance tumor models and the clinical MDR data would open up avenues to gain insight into the performance of different multidrug delivery treatment strategies.
Collapse
Affiliation(s)
- Mehdi Rahmanian
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Amir Seyfoori
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mohsen Ghasemi
- Genetics Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Milad Shamsi
- Center for BioEngineering Research and Education (CBRE), University of Calgary, Calgary, Alberta T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- Center for BioEngineering Research and Education (CBRE), University of Calgary, Calgary, Alberta T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Keivan Majidzadeh-A
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran; Genetics Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran.
| |
Collapse
|
17
|
Engin AB. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:165-193. [PMID: 33539016 DOI: 10.1007/978-3-030-49844-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Toxicity of metal nanoparticles (NPs) are closely associated with increasing intracellular reactive oxygen species (ROS) and the levels of pro-inflammatory mediators. However, NP interactions and surface complexation reactions alter the original toxicity of individual NPs. To date, toxicity studies on NPs have mostly been focused on individual NPs instead of the combination of several species. It is expected that the amount of industrial and highway-acquired NPs released into the environment will further increase in the near future. This raises the possibility that various types of NPs could be found in the same medium, thereby, the adverse effects of each NP either could be potentiated, inhibited or remain unaffected by the presence of the other NPs. After uptake of NPs into the human body from various routes, protein kinases pathways mediate their toxicities. In this context, family of mitogen-activated protein kinases (MAPKs) is mostly efficient. Despite each NP activates almost the same metabolic pathways, the toxicity induced by a single type of NP is different than the case of co-exposure to the combined NPs. The scantiness of toxicological data on NPs combinations displays difficulties to determine, if there is any risk associated with exposure to combined nanomaterials. Currently, in addition to mathematical analysis (Response surface methodology; RSM), the quantitative-structure-activity relationship (QSAR) is used to estimate the toxicity of various metal oxide NPs based on their physicochemical properties and levels applied. In this chapter, it is discussed whether the coexistence of multiple metal NPs alter the original toxicity of individual NP. Additionally, in the part of "Toxicity of diesel emission/exhaust particles (DEP)", the known individual toxicity of metal NPs within the DEP is compared with the data regarding toxicity of total DEP mixture.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
18
|
Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, Lam MK, Ho YC, Lim JW, Chin Wei L. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered 2020; 11:328-355. [PMID: 32138595 PMCID: PMC7161543 DOI: 10.1080/21655979.2020.1736240] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
With the unique properties such as high surface area to volume ratio, stability, inertness, ease of functionalization, as well as novel optical, electrical, and magnetic behaviors, nanomaterials have a wide range of applications in various fields with the common types including nanotubes, dendrimers, quantum dots, and fullerenes. With the aim of providing useful insights to help future development of efficient and commercially viable technology for large-scale production, this review focused on the science and applications of inorganic and organic nanomaterials, emphasizing on their synthesis, processing, characterization, and applications on different fields. The applications of nanomaterials on imaging, cell and gene delivery, biosensor, cancer treatment, therapy, and others were discussed in depth. Last but not least, the future prospects and challenges in nanoscience and nanotechnology were also explored.
Collapse
Affiliation(s)
- Khalisanni Khalid
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
- Dalian SEM Bio-Engineering Technology Co., Ltd, Dalian, PR China
| | - Hayyiratul Fatimah Mohd Zaid
- Fundamental and Applied Sciences Department, Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chien Lye Chew
- Sime Darby Plantation Research (Formerly Known as Sime Darby Research), R&D Centre – Carey Island, Pulau Carey, Malaysia
| | - Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway
| | - Man Kee Lam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Univesiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Center for Urban Resource Sustainably, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia Lim
| | - Lai Chin Wei
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Xiao Z, Liu W, Mu YP, Zhang H, Wang XN, Zhao CQ, Chen JM, Liu P. Pharmacological Effects of Salvianolic Acid B Against Oxidative Damage. Front Pharmacol 2020; 11:572373. [PMID: 33343348 PMCID: PMC7741185 DOI: 10.3389/fphar.2020.572373] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Salvianolic acid B (Sal B) is one of the main active ingredients of Salvia miltiorrhiza, with strong antioxidant effects. Recent findings have shown that Sal B has anti-inflammatory, anti-apoptotic, anti-fibrotic effects and can promote stem cell proliferation and differentiation, and has a beneficial effect on cardiovascular and cerebrovascular diseases, aging, and liver fibrosis. Reactive oxygen species (ROS) include oxygen free radicals and oxygen-containing non-free radicals. ROS can regulate cell proliferation, survival, death and differentiation to regulate inflammation, and immunity, while Sal B can scavenge oxygen free radicals by providing hydrogen atoms and reduce the production of oxygen free radicals and oxygen-containing non-radicals by regulating the expression of antioxidant enzymes. The many pharmacological effects of Sal B may be closely related to its elimination and inhibition of ROS generation, and Nuclear factor E2-related factor 2/Kelch-like ECH-related protein 1 may be the core link in its regulation of the expression of antioxidant enzyme to exert its antioxidant effect. What is confusing and interesting is that Sal B exhibits the opposite mechanisms in tumors. To clarify the specific target of Sal B and the correlation between its regulation of oxidative stress and energy metabolism homeostasis will help to further understand its role in different pathological conditions, and provide a scientific basis for its further clinical application and new drug development. Although Sal B has broad prospects in clinical application due to its extensive pharmacological effects, the low bioavailability is a serious obstacle to further improving its efficacy in vivo and promoting clinical application. Therefore, how to improve the availability of Sal B in vivo requires the joint efforts of many interdisciplinary subjects.
Collapse
Affiliation(s)
- Zhun Xiao
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China
| | - Yong-ping Mu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ning Wang
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China
| | - Chang-qing Zhao
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China
| | - Jia-mei Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
21
|
Simó-Servat O, Hernández C, Simó R. The ERM Complex: A New Player Involved in Diabetes-induced Vascular Leakage. Curr Med Chem 2020; 27:3012-3022. [PMID: 30332939 DOI: 10.2174/0929867325666181016162327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microvascular complications remain an important cause of morbidity in diabetic patients, and they are associated with a significant economic burden for healthcare systems. Vascular leakage is one of the earlier hallmarks in diabetic microvascular complications. Ezrin, Radixin and Moesin (ERM) proteins have recently been involved in vascular dysfunction under the effect of molecular mediators of diabetes complications. In this review, we will present the available evidence regarding the role of these proteins in vascular leakage and their putative implication in diabetic microvascular complications. METHODS AND RESULTS A comprehensive literature search of the electronic MEDLINE database was performed between November 2017 and January 2018. As a result, 36 articles have been reviewed and discussed. DISCUSSION ERM proteins are cytoskeleton-membrane linkers, and when activated in endothelial cells are able to induce cytoskeleton reorganization in stress fibers leading to the disassembly of focal adhesions and the formation of paracellular gaps which result in an increase of vascular permeability. The activation of these proteins is induced by mediators involved in diabetic complications such as PKC activation, TNF-α, AGEs and oxidative stress. In conclusion, ERMs play an essential role in endothelium homeostasis and can be envisaged as a new therapeutic molecular target for preventing or arresting diabetes-induced vascular leakage.
Collapse
Affiliation(s)
- Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| |
Collapse
|
22
|
Guo X, Eitnier RA, Beard RS, Meegan JE, Yang X, Aponte AM, Wang F, Nelson PR, Wu MH. Focal adhesion kinase and Src mediate microvascular hyperpermeability caused by fibrinogen- γC- terminal fragments. PLoS One 2020; 15:e0231739. [PMID: 32352989 PMCID: PMC7192500 DOI: 10.1371/journal.pone.0231739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives We previously reported microvascular leakage resulting from fibrinogen-γ chain C-terminal products (γC) occurred via a RhoA-dependent mechanism. The objective of this study was to further elucidate the signaling mechanism by which γC induces endothelial hyperpermeability. Since it is known that γC binds and activates endothelial αvβ3, a transmembrane integrin receptor involved in intracellular signaling mediated by the tyrosine kinases FAK and Src, we hypothesized that γC alters endothelial barrier function by activating the FAK-Src pathway leading to junction dissociation and RhoA driven cytoskeletal stress-fiber formation. Methods and results Using intravital microscopy of rat mesenteric microvessels, we show increased extravasation of plasma protein (albumin) resulting from γC administration. In addition, capillary fluid filtration coefficient (Kfc) indicated γC-induced elevated lung vascular permeability. Furthermore, γC decreased transendothelial barrier resistance in a time-dependent and dose-related fashion in cultured rat lung microvascular endothelial cells (RLMVECs), accompanied by increased FAK/Src phosphorylation detection by western blot. Experiments with pharmacological inhibition or gene silencing of FAK showed significantly reduced γC-induced albumin and fluid leakage across microvessels, stress-fiber formation, VE-cadherin tyrosine phosphorylation, and improved γC-induced endothelial barrier dysfunction, indicating the involvement of FAK in γC mediated hyperpermeability. Comparable results were found when Src was targeted in a similar manner, however inhibition of FAK prevented Src activation, suggesting that FAK is upstream of Src in γC-mediated hyperpermeability. In addition, γC-induced cytoskeletal stress-fiber formation was attenuated during inhibition or silencing of these tyrosine kinases, concomitantly with RhoA inhibition. Conclusion The FAK-Src pathway contributes to γC-induced microvascular barrier dysfunction, junction protein phosphorylation and disorganization in a manner that involves RhoA and stress-fiber formation.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Rebecca A. Eitnier
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Richard S. Beard
- Department of Biomolecular Research, Boise State University, Boise, ID, United States of America
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Alexandra M. Aponte
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Fang Wang
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Peter R. Nelson
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Mack H. Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
23
|
Fu P, Ramchandran R, Shaaya M, Huang L, Ebenezer DL, Jiang Y, Komarova Y, Vogel SM, Malik AB, Minshall RD, Du G, Tonks NK, Natarajan V. Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. J Biol Chem 2020; 295:7669-7685. [PMID: 32327488 DOI: 10.1074/jbc.ra119.011801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Indexed: 11/06/2022] Open
Abstract
Increased permeability of vascular lung tissues is a hallmark of acute lung injury and is often caused by edemagenic insults resulting in inflammation. Vascular endothelial (VE)-cadherin undergoes internalization in response to inflammatory stimuli and is recycled at cell adhesion junctions during endothelial barrier re-establishment. Here, we hypothesized that phospholipase D (PLD)-generated phosphatidic acid (PA) signaling regulates VE-cadherin recycling and promotes endothelial barrier recovery by dephosphorylating VE-cadherin. Genetic deletion of PLD2 impaired recovery from protease-activated receptor-1-activating peptide (PAR-1-AP)-induced lung vascular permeability and potentiated inflammation in vivo In human lung microvascular endothelial cells (HLMVECs), inhibition or deletion of PLD2, but not of PLD1, delayed endothelial barrier recovery after thrombin stimulation. Thrombin stimulation of HLMVECs increased co-localization of PLD2-generated PA and VE-cadherin at cell-cell adhesion junctions. Inhibition of PLD2 activity resulted in prolonged phosphorylation of Tyr-658 in VE-cadherin during the recovery phase 3 h post-thrombin challenge. Immunoprecipitation experiments revealed that after HLMVECs are thrombin stimulated, PLD2, VE-cadherin, and protein-tyrosine phosphatase nonreceptor type 14 (PTPN14), a PLD2-dependent protein-tyrosine phosphatase, strongly associate with each other. PTPN14 depletion delayed VE-cadherin dephosphorylation, reannealing of adherens junctions, and barrier function recovery. PLD2 inhibition attenuated PTPN14 activity and reversed PTPN14-dependent VE-cadherin dephosphorylation after thrombin stimulation. Our findings indicate that PLD2 promotes PTPN14-mediated dephosphorylation of VE-cadherin and that redistribution of VE-cadherin at adherens junctions is essential for recovery of endothelial barrier function after an edemagenic insult.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | | | - Mark Shaaya
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Longshuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Ying Jiang
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Yulia Komarova
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois .,Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
24
|
Fc-saxatilin inhibits VEGF-induced permeability by regulating claudin-5 expression in human brain microvascular endothelial cells. Microvasc Res 2020; 128:103953. [DOI: 10.1016/j.mvr.2019.103953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022]
|
25
|
Taniguchi Y, Oyama N, Fumoto S, Kinoshita H, Yamashita F, Shimizu K, Hashida M, Kawakami S. Tissue suction-mediated gene transfer to the beating heart in mice. PLoS One 2020; 15:e0228203. [PMID: 32027678 PMCID: PMC7004367 DOI: 10.1371/journal.pone.0228203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/09/2020] [Indexed: 11/28/2022] Open
Abstract
We previously developed an in vivo site-specific transfection method using a suction device in mice; namely, a tissue suction-mediated transfection method (tissue suction method). The aim of this study was to apply the tissue suction method for cardiac gene transfer. Naked plasmid DNA (pDNA) was intravenously injected in mice, followed by direct suction on the beating heart by using a suction device made of polydimethylsiloxane. We first examined the effects of suction conditions on transgene expression and toxicity. Subsequently, we analyzed transgene-expressing cells and the transfected region of the heart. We found that heart suction induced transgene expression, and that −75 kPa and −90 kPa of suction achieved high transgene expression. In addition, the inner diameter of the suction device was correlated with transgene expression, but the pressure hold time did not change transgene expression. Although the tissue suction method at −75 kPa induced a transient increase in the serum cardiac toxicity markers at 6 h after transfection, these markers returned to normal at 24 h. The cardiac damage was also analyzed through the measurement of hypertrophic gene expression, but no significant differences were found. In addition, the cardiac function monitored by echocardiography remained normal at 11 days after transfection. Immunohistochemical analysis revealed that CD31-positive endothelial cells co-expressed the ZsGreen1-N1 reporter gene. In conclusion, the tissue suction method can achieve an efficient and safe gene transfer to the beating heart in mice.
Collapse
Affiliation(s)
- Yota Taniguchi
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamotomachi, Nagasaki, Japan
| | - Natsuko Oyama
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamotomachi, Nagasaki, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamotomachi, Nagasaki, Japan
| | - Hideyuki Kinoshita
- Department of Community Medicine Supporting System, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-shimoadachi cho, Sakyo-ku, Kyoto, Japan
| | - Kazunori Shimizu
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-shimoadachi cho, Sakyo-ku, Kyoto, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamotomachi, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
26
|
Zhang Y, Zhao Y, Wu Y, Qi J, Li F, Kou J, Yu B. Ophiopogon Saponin C1 Inhibits Lung Tumors by Stabilizing Endothelium Permeability via Inhibition of PKCδ. Int J Biol Sci 2020; 16:396-407. [PMID: 32015677 PMCID: PMC6990896 DOI: 10.7150/ijbs.34978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
As the most frequent cause of cancer-related death worldwide, lung cancer is closely related to inflammation. The interaction between tumor cells and inflammatory cells promotes tumor development and metastasis. During tumor development, vascular endothelial cells form the most important barrier to prevent tumor cell migration to the blood and tissue. Increased vascular permeability provides favorable conditions for the migration of tumor cells, and endothelial tight junctions are an important component of the vascular barrier. Protein kinase C δ is involved in the occurrence of non-small cell lung cancer and regulates vascular permeability and tight junction protein expression. Src kinase was reported to play an important role in TNF-α-induced endothelial inflammation. Ophiopogon Saponin C1 is a new chemical compound isolated from Liriope muscari, but its pharmacological activities have not been fully elucidated. Therefore, we tested the protective effects of C1 on endothelial permeability in a model of TNF-α-induced endothelial inflammation by transendothelial electrical resistance and sodium fluorescein assays and verified these results in a nude mouse model of experimental pulmonary adenocarcinoma metastasis. We further elucidated the mechanism of C1, which was based on the PKCδ and Src proteins, by Western blotting. C1 can inhibit lung cancer in vivo, regulate the level of plasma inflammation in tumor-bearing mice, and protect the pulmonary vascular barrier against injury induced by cancer. It was investigated the expression and distribution of the TJ index protein ZO-1 in mouse vascular endothelium and HUVECs and found that C1 could inhibit the degradation and breakage of the ZO-1 protein. Related signaling experiments confirmed that C1 can inhibit TNF-α and activation of PKCδ and Src kinase. This study laid the foundation for further analysis of new drugs with clear mechanisms and independent intellectual property rights of traditional Chinese medicines.
Collapse
Affiliation(s)
| | | | | | | | | | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| |
Collapse
|
27
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
28
|
Mundi S, Massaro M, Scoditti E, Carluccio MA, van Hinsbergh VWM, Iruela-Arispe ML, De Caterina R. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res 2019; 114:35-52. [PMID: 29228169 DOI: 10.1093/cvr/cvx226] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Early atherosclerosis features functional and structural changes in the endothelial barrier function that affect the traffic of molecules and solutes between the vessel lumen and the vascular wall. Such changes are mechanistically related to the development of atherosclerosis. Proatherogenic stimuli and cardiovascular risk factors, such as dyslipidaemias, diabetes, obesity, and smoking, all increase endothelial permeability sharing a common signalling denominator: an imbalance in the production/disposal of reactive oxygen species (ROS), broadly termed oxidative stress. Mostly as a consequence of the activation of enzymatic systems leading to ROS overproduction, proatherogenic factors lead to a pro-inflammatory status that translates in changes in gene expression and functional rearrangements, including changes in the transendothelial transport of molecules, leading to the deposition of low-density lipoproteins (LDL) and the subsequent infiltration of circulating leucocytes in the intima. In this review, we focus on such early changes in atherogenesis and on the concept that proatherogenic stimuli and risk factors for cardiovascular disease, by altering the endothelial barrier properties, co-ordinately trigger the accumulation of LDL in the intima and ultimately plaque formation.
Collapse
Affiliation(s)
- Santa Mundi
- Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Marika Massaro
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, 73100, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, 73100, Lecce, Italy
| | - Maria Annunziata Carluccio
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, 73100, Lecce, Italy
| | - Victor W M van Hinsbergh
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat, NL-1081 BT, Amsterdam, The Netherlands
| | - Marial Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, 610 Charles E Young Dr S, 90095, Los Angeles, USA; and
| | - Raffaele De Caterina
- Department of Neuroscience, Imaging and Clinical Science and Institute of Advanced Biomedical Technologies, University G. D'Annunzio, via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
29
|
Horger M, Fallier-Becker P, Thaiss WM, Sauter A, Bösmüller H, Martella M, Preibsch H, Fritz J, Nikolaou K, Kloth C. Is There a Direct Correlation Between Microvascular Wall Structure and k-Trans Values Obtained From Perfusion CT Measurements in Lymphomas? Acad Radiol 2019; 26:247-256. [PMID: 29731419 DOI: 10.1016/j.acra.2018.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 11/27/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to test the hypothesis that ultrastructural wall abnormalities of lymphoma vessels correlate with perfusion computed tomography (PCT) kinetics. MATERIALS AND METHODS Our local institutional review board approved this prospective study. Between February 2013 and June 2016, we included 23 consecutive subjects with newly diagnosed lymphoma, who were referred for computed tomography-guided biopsy (6 women, 17 men; mean age, 60.61 ± 12.43 years; range, 28-74 years) and additionally agreed to undergo PCT of the target lymphoma tissues. PCT was obtained for 40 seconds using 80 kV, 120 mAs, 64 × 0.6-mm collimation, 6.9-cm z-axis coverage, and 26 volume measurements. Mean and maximum k-trans (mL/100 mL/min), blood flow (BF; mL/100 mL/min) and blood volume (BV) were quantified using the deconvolution and the maximum slope + Patlak calculation models. Immunohistochemical staining was performed for microvessel density quantification (vessels/m2), and electron microscopy was used to determine the presence or absence of tight junctions, endothelial fenestration, basement membrane, and pericytes, and to measure extracellular matrix thickness. RESULTS Extracellular matrix thickness as well as the presence or absence of tight junctions, basal lamina, and pericytes did not correlate with computed tomography perfusion parameters. Endothelial fenestrations correlated significantly with mean BFdeconvolution (P = .047, r = 0.418) and additionally was significantly associated with higher mean BVdeconvolution (P < .005). Mean k-transPatlak correlated strongly with mean k-transdeconvolution (r = 0.939, P = .001), and both correlated with mean BFdeconvolution (P = .001, r = 0.748), max BFdeconvolution (P = .028, r = 0.564), mean BVdeconvolution (P = .001, r = 0.752), and max BVdeconvolution (P = .001, r = 0.771). Microvessel density correlated with max k-transdeconvolution (r = 0.564, P = .023). Vascular endothelial growth factor receptor-3 expression (receptor specific for lymphatics) correlated significantly with max k-transPatlak (P = .041, r = 0.686) and mean BFdeconvolution (P = .038, r = 0.695). CONCLUSION k-Trans values of PCT do not correlate with ultrastructural microvessel features, whereas endothelial fenestrations correlate with increased intra-tumoral BVs.
Collapse
Affiliation(s)
- Marius Horger
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | | | - Wolfgang M Thaiss
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | - Alexander Sauter
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Hans Bösmüller
- Institute of Pathology, University Hospital Tuebingen, Tübingen, Germany
| | - Manuela Martella
- Institute of Pathology, University Hospital Tuebingen, Tübingen, Germany
| | - Heike Preibsch
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | - Jan Fritz
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
30
|
Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection. Viruses 2018; 10:v10020069. [PMID: 29419739 PMCID: PMC5850376 DOI: 10.3390/v10020069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.
Collapse
|
31
|
Xu L, Wang W, Meng T, Ma LP, Tong LJ, Shen JK, Wang YQ, Miao ZH. New microtubulin inhibitor MT189 suppresses angiogenesis via the JNK-VEGF/VEGFR2 signaling axis. Cancer Lett 2017; 416:57-65. [PMID: 29248713 DOI: 10.1016/j.canlet.2017.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
The microtubulin inhibitor MT189 possesses anticancer activity and has been shown to overcome multidrug resistance. Here, we report that MT189 also inhibits angiogenesis. MT189 inhibited the proliferation, migration and differentiation of endothelial cells, with or without VEGF stimulation, and suppressed microvessel formation ex vivo and in vivo. MT189 reduced VEGF expression and secretion in both tumor and endothelial cells, under either hypoxic or normoxic conditions. The activation of VEGFR2 and downstream Src was thus abrogated in the MT189-treated endothelial cells. MT189 subsequently stabilized endothelial cell-cell junctions consist of VE-cadherin, β-catenin, vinculin, and actin. MT189 also disrupted endothelial cell-matrix junctions by inhibiting the turnover of focal adhesions containing FAK, paxillin, vinculin, and actin. Inhibition of JNK reversed MT189-mediated inhibition of endothelial migration and differentiation, JNK activation, the reduction of VEGF expression and secretion, and the decrease of Src and FAK phosphorylation. These results indicate that MT189 suppresses angiogenesis by reducing endothelial proliferation, migration, and differentiation via the JNK-VEGF/VEGFR2 signaling axis. Together with our previous report showing that MT189 exhibited anticancer activity via the JNK-MCL-1 pathway, these new findings further support MT189-based drug development for cancer therapy.
Collapse
Affiliation(s)
- Lin Xu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Wei Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Meng
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan-Ping Ma
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin-Jiang Tong
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-Kang Shen
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying-Qing Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
32
|
Oyama N, Fuchigami Y, Fumoto S, Sato M, Hagimori M, Shimizu K, Kawakami S. Characterization of transgene expression and pDNA distribution of the suctioned kidney in mice. Drug Deliv 2017; 24:906-917. [PMID: 28585867 PMCID: PMC8241128 DOI: 10.1080/10717544.2017.1333171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/04/2022] Open
Abstract
We have previously developed an efficient and safe transfection method for the kidney in mice: renal suction-mediated transfection. In this study, we verified the detailed characteristics of transgene expression and plasmid DNA (pDNA) in mice to develop therapeutic strategies and application to gene function analysis in the kidney. After naked pDNA was administered intravenously, the right kidney was immediately suctioned by a tissue suction device. We examined the spatial distribution of transgene expression and pDNA in the suctioned kidney using tissue clearing by CUBIC, ClearT2, and Scale SQ reagents. Spatial distribution analysis showed that pDNA was transfected into extravascular cells and sufficiently delivered to the deep renal cortex. In addition, we revealed that transgene expression occurred mainly in peritubular fibroblasts of the suctioned kidney by tissue clearing and immunohistochemistry. Next, we confirmed the periods of pDNA uptake and activation of transcription factors nuclear factor-κB and activator protein 1 by luciferase assays. Moreover, the use of a pCpG-free plasmid enabled sustained transgene expression in the suctioned kidney. In conclusion, analyses of the spatial distribution and immunostaining of the section suggest that pDNA and transgene expression occurs mainly in peritubular fibroblasts of the suctioned kidney. In addition, we clarified some factors for efficient and/or sustained transgene expression in the suctioned kidney.
Collapse
Affiliation(s)
- Natsuko Oyama
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuki Fuchigami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Megumu Sato
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masayori Hagimori
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazunori Shimizu
- Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
33
|
Wang H, Zheng R, Chen Q, Shao J, Yu J, Hu S. Mesenchymal stem cells microvesicles stabilize endothelial barrier function partly mediated by hepatocyte growth factor (HGF). Stem Cell Res Ther 2017; 8:211. [PMID: 28969681 PMCID: PMC5623961 DOI: 10.1186/s13287-017-0662-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background Mesenchymal stem cells microvesicles (MSC-MVs) stabilize endothelial barrier function in acute lung injury (ALI); however, the detailed mechanism remains to be further defined. Hepatocyte growth factor (HGF), which is derived from MSC-MVs, might have a key role in the restoration of endothelial barrier function by MSC-MVs. Methods MSCs with lentiviral vector-mediated HGF gene knockdown (siHGF-MSC) were generated. A co-culture model of pulmonary microvascular endothelial cells and MSC-MVs collected from MSCs or siHGF-MSCs after 24 h of hypoxic culture was utilized. Then, endothelial paracellular and transcellular permeabilities were detected. VE-cadherin, and occludin protein expression in the endothelial cells was measured using Western blot. Endothelial cell proliferation was analysed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. Endothelial cell apoptosis was analysed using TUNEL assay. Finally, IL-6 and IL-10 production was determined via an enzyme-linked immunosorbent assay (ELISA). Results Treatment with MSC-MVs significantly decreased LPS-induced endothelial paracellular and transcellular permeabilities, and the effect was significantly inhibited after HGF gene knockdown in MSC-MVs. Furthermore, treatment with MSC-MVs increased the expression of the endothelial intercellular junction proteins VE-cadherin and occludin. Treatment with MSC-MVs also decreased endothelial apoptosis and induced endothelial cell proliferation. Finally, the treatment reduced IL-6 production and increased IL-10 production in the conditioned media of endothelial cells. However, the effects of the treatment with MSC-MVs were inhibited after HGF gene knockdown. Conclusions MSC-MVs protect the barrier functions of pulmonary microvascular endothelial cells, which can be partly attributed to the presence of HGF in the MSC-MVs.
Collapse
Affiliation(s)
- Hualing Wang
- Department of Cardiology, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Ruiqiang Zheng
- Department of Cardiology, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Qihong Chen
- Department of Critical Care Medicine, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China.
| | - Jun Shao
- Department of Critical Care Medicine, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Shuling Hu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
34
|
Triacca V, Güç E, Kilarski WW, Pisano M, Swartz MA. Transcellular Pathways in Lymphatic Endothelial Cells Regulate Changes in Solute Transport by Fluid Stress. Circ Res 2017; 120:1440-1452. [DOI: 10.1161/circresaha.116.309828] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/12/2023]
Abstract
Rationale:
The transport of interstitial fluid and solutes into lymphatic vessels is important for maintaining interstitial homeostasis and delivering antigens and soluble factors to the lymph node for immune surveillance. Transendothelial transport across lymphatic endothelial cells (LECs) is commonly considered to occur paracellularly, or between cell–cell junctions, and driven by local pressure and concentration gradients. However, emerging evidence suggests that LECs also play active roles in regulating interstitial solute balance and can scavenge and store antigens, raising the possibility that vesicular or transcellular pathways may be important in lymphatic solute transport.
Objective:
The aim of this study was to determine the relative importance of transcellular (vesicular) versus paracellular transport pathways by LECs and how mechanical stress (ie, fluid flow conditioning) alters either pathway.
Methods and Results:
We demonstrate that transcellular transport mechanisms substantially contribute to lymphatic solute transport and that solute uptake occurs in both caveolae- and clathrin-coated vesicles. In vivo, intracelluar uptake of fluorescently labeled albumin after intradermal injection by LECs was similar to that of dermal dendritic cells. In vitro, we developed a method to differentially quantify intracellular solute uptake versus transendothelial transport by LECs. LECs preconditioned to 1 µm/s transmural flow demonstrated increased uptake and basal-to-apical solute transport, which could be substantially reversed by blocking dynamin-dependent vesicle formation.
Conclusions:
These findings reveal the importance of intracellular transport in steady-state lymph formation and suggest that LECs use transcellular mechanisms in parallel to the well-described paracellular route to modulate solute transport from the interstitium according to biomechanical cues.
Collapse
Affiliation(s)
- Valentina Triacca
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Esra Güç
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Witold W. Kilarski
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Marco Pisano
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Melody A. Swartz
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| |
Collapse
|
35
|
Maubert ME, Wigdahl B, Nonnemacher MR. Opinion: Inhibition of Blood-Brain Barrier Repair as a Mechanism in HIV-1 Disease. Front Neurosci 2017; 11:228. [PMID: 28491017 PMCID: PMC5405129 DOI: 10.3389/fnins.2017.00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Monique E Maubert
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| |
Collapse
|
36
|
Carneiro PJ, Clevelario AL, Padilha GA, Silva JD, Kitoko JZ, Olsen PC, Capelozzi VL, Rocco PRM, Cruz FF. Bosutinib Therapy Ameliorates Lung Inflammation and Fibrosis in Experimental Silicosis. Front Physiol 2017; 8:159. [PMID: 28360865 PMCID: PMC5350127 DOI: 10.3389/fphys.2017.00159] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
Silicosis is an occupational lung disease for which no effective therapy exists. We hypothesized that bosutinib, a tyrosine kinase inhibitor, might ameliorate inflammatory responses, attenuate pulmonary fibrosis, and thus improve lung function in experimental silicosis. For this purpose, we investigated the potential efficacy of bosutinib in the treatment of experimental silicosis induced in C57BL/6 mice by intratracheal administration of silica particles. After 15 days, once disease was established, animals were randomly assigned to receive DMSO or bosutinib (1 mg/kg/dose in 0.1 mL 1% DMSO) by oral gavage, twice daily for 14 days. On day 30, lung mechanics and morphometry, total and differential cell count in alveolar septa and granuloma, levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, transforming growth factor (TGF)-β, and vascular endothelial growth factor in lung homogenate, M1 and M2 macrophages, total leukocytes, and T cells in BALF, lymph nodes, and thymus, and collagen fiber content in alveolar septa and granuloma were analyzed. In a separate in vitro experiment, RAW264.7 macrophages were exposed to silica particles in the presence or absence of bosutinib. After 24 h, gene expressions of arginase-1, IL-10, IL-12, inducible nitric oxide synthase (iNOS), metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1, and caspase-3 were evaluated. In vivo, in silicotic animals, bosutinib, compared to DMSO, decreased: (1) fraction area of collapsed alveoli, (2) size and number of granulomas, and mononuclear cell granuloma infiltration; (3) IL-1β, TNF-α, IFN-γ, and TGF-β levels in lung homogenates, (4) collagen fiber content in lung parenchyma, and (5) viscoelastic pressure and static lung elastance. Bosutinib also reduced M1 cell counts while increasing M2 macrophage population in both lung parenchyma and granulomas. Total leukocyte, regulatory T, CD4+, and CD8+ cell counts in the lung-draining lymph nodes also decreased with bosutinib therapy without affecting thymus cellularity. In vitro, bosutinib led to a decrease in IL-12 and iNOS and increase in IL-10, arginase-1, MMP-9, and TIMP-1. In conclusion, in the current model of silicosis, bosutinib therapy yielded beneficial effects on lung inflammation and remodeling, therefore resulting in lung mechanics improvement. Bosutinib may hold promise for silicosis; however, further studies are required.
Collapse
Affiliation(s)
- Priscila J Carneiro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Amanda L Clevelario
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Gisele A Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Jamil Z Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Laboratory of Clinical Bacteriology and Immunology, Department of Toxicological and Clinical Analysis, School of Pharmacy, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratory of Clinical Bacteriology and Immunology, Department of Toxicological and Clinical Analysis, School of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Vera L Capelozzi
- Laboratory of Pulmonary Genomics, Department of Pathology, School of Medicine, University of São Paulo São Paulo, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Huang Y, He Q. Inhibition of c-Src protects paraquat induced microvascular endothelial injury by modulating caveolin-1 phosphorylation and caveolae mediated transcellular permeability. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:62-68. [PMID: 28376378 DOI: 10.1016/j.etap.2017.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/05/2023]
Abstract
The mechanisms underlying paraquat induced acute lung injury (ALI) is still not clear. C-Src plays an important role in the regulation of microvascular endothelial barrier function and the pathogenesis of ALI. In the present study, we found that paraquat induced cell toxicity and an increase of reactive oxygen species (ROS) in endothelium. Paraquat exposure also induced significant increase of caveolin-1 phosphorylation, caveolae trafficking and albumin permeability in endothelial monolayers. C-Src depletion by siRNA significantly attenuate paraquat induced cell toxicity, caveolin-1 phosphorylation, caveolae formation and endothelial hyperpermeability. N-acetylcysteine (NAC) failed to protect endothelial monolayers against paraquat induced toxicity. Thus, our findings suggest that paraquat exposure increases paracellular endothelial permeability by increasing caveolin-1 phosphorylation in a c-Src dependant manner. The depletion of c-Src might protect microvascular endothelial function by regulating caveolin-1 phosphorylation and caveolae trafficking during paraquat exposure, and might have potential therapeutic effects on paraquat induced ALI.
Collapse
Affiliation(s)
- Yu Huang
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Qing He
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China; Department of Respiratory Disease, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Kumar S, Sun X, Noonepalle SK, Lu Q, Zemskov E, Wang T, Aggarwal S, Gross C, Sharma S, Desai AA, Hou Y, Dasarathy S, Qu N, Reddy V, Lee SG, Cherian-Shaw M, Yuan JXJ, Catravas JD, Rafikov R, Garcia JGN, Black SM. Hyper-activation of pp60 Src limits nitric oxide signaling by increasing asymmetric dimethylarginine levels during acute lung injury. Free Radic Biol Med 2017; 102:217-228. [PMID: 27838434 PMCID: PMC5449193 DOI: 10.1016/j.freeradbiomed.2016.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/17/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
The molecular mechanisms by which the endothelial barrier becomes compromised during lipopolysaccharide (LPS) mediated acute lung injury (ALI) are still unresolved. We have previously reported that the disruption of the endothelial barrier is due, at least in part, to the uncoupling of endothelial nitric oxide synthase (eNOS) and increased peroxynitrite-mediated nitration of RhoA. The purpose of this study was to elucidate the molecular mechanisms by which LPS induces eNOS uncoupling during ALI. Exposure of pulmonary endothelial cells (PAEC) to LPS increased pp60Src activity and this correlated with an increase in nitric oxide (NO) production, but also an increase in NOS derived superoxide, peroxynitrite formation and 3-nitrotyrosine (3-NT) levels. These effects could be simulated by the over-expression of a constitutively active pp60Src (Y527FSrc) mutant and attenuated by over-expression of dominant negative pp60Src mutant or reducing pp60Src expression. LPS induces both RhoA nitration and endothelial barrier disruption and these events were attenuated when pp60Src expression was reduced. Endothelial NOS uncoupling correlated with an increase in the levels of asymmetric dimethylarginine (ADMA) in both LPS exposed and Y527FSrc over-expressing PAEC. The effects in PAEC were also recapitulated when we transiently over-expressed Y527FSrc in the mouse lung. Finally, we found that the pp60-Src-mediated decrease in DDAH activity was mediated by the phosphorylation of DDAH II at Y207 and that a Y207F mutant DDAH II was resistant to pp60Src-mediated inhibition. We conclude that pp60Src can directly inhibit DDAH II and this is involved in the increased ADMA levels that enhance eNOS uncoupling during the development of ALI.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Xutong Sun
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | | | - Qing Lu
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Evgeny Zemskov
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Ting Wang
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Saurabh Aggarwal
- Department of Anesthesiology, The University of Alabama, Birmingham, AL, United States
| | - Christine Gross
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Shruti Sharma
- Center for Biotechnology & Genomic Medicine, Old Dominion University, Norfolk, VA, United States
| | - Ankit A Desai
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Yali Hou
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Sridevi Dasarathy
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Ning Qu
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Vijay Reddy
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Sung Gon Lee
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - John D Catravas
- Center for Biotechnology & Genomic Medicine, Old Dominion University, Norfolk, VA, United States
| | - Ruslan Rafikov
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Stephen M Black
- Department of Medicine, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
39
|
Beneficial effects of the Src inhibitor, dasatinib, on breakdown of the blood-retinal barrier. Arch Pharm Res 2016; 40:197-203. [DOI: 10.1007/s12272-016-0872-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
|
40
|
Coelho-Santos V, Socodato R, Portugal C, Leitão RA, Rito M, Barbosa M, Couraud PO, Romero IA, Weksler B, Minshall RD, Fontes-Ribeiro C, Summavielle T, Relvas JB, Silva AP. Methylphenidate-triggered ROS generation promotes caveolae-mediated transcytosis via Rac1 signaling and c-Src-dependent caveolin-1 phosphorylation in human brain endothelial cells. Cell Mol Life Sci 2016; 73:4701-4716. [PMID: 27376435 PMCID: PMC11108272 DOI: 10.1007/s00018-016-2301-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Methylphenidate (MPH) is an amphetamine-like stimulant commonly prescribed for attention deficit hyperactivity disorder. Despite its widespread use, the cellular/molecular effects of MPH remain elusive. Here, we report a novel direct role of MPH on the regulation of macromolecular flux through human brain endothelial cells (ECs). MPH significantly increased caveolae-mediated transcytosis of horseradish peroxidase through ECs without affecting paracellular permeability. Using FRET-based live cell imaging, together with pharmacological inhibitors and lentiviral-mediated shRNA knockdown, we demonstrate that MPH promoted ROS generation via activation of Rac1-dependent NADPH oxidase (NOX) and c-Src activation at the plasma membrane. c-Src in turn was shown to mediate the phosphorylation of caveolin-1 (Cav1) on Tyr14 leading to enhanced caveolae formation and transendothelial transport. Accordingly, the inhibition of Cav1 phosphorylation by overexpression of a phosphodefective Cav1Y14F mutant or knocking down Cav1 expression abrogated MPH-induced transcytosis. In addition, both vitamin C and inhibition of NOX blocked MPH-triggered vesicular transport. This study, therefore, identifies Rac1/NOX/c-Src-dependent signaling in MPH-induced increase in transendothelial permeability of brain endothelial cell monolayers via caveolae-mediated transcytosis.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Camila Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ricardo A Leitão
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Manuel Rito
- Neurosurgery Service, Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal
| | - Marcos Barbosa
- Neurosurgery Service, Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Ignacio A Romero
- Department of Life Sciences, Faculty of Science, The Open University, Milton Keynes, UK
| | - Babette Weksler
- Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Carlos Fontes-Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Teresa Summavielle
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana P Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
41
|
Im JE, Song SH, Suh W. Src tyrosine kinase regulates the stem cell factor-induced breakdown of the blood-retinal barrier. Mol Vis 2016; 22:1213-1220. [PMID: 27746675 PMCID: PMC5063088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/11/2016] [Indexed: 10/31/2022] Open
Abstract
PURPOSE Stem cell factor (SCF) has been recently acknowledged as a novel endothelial permeability factor. However, the mechanisms by which SCF-induced activation of the SCF cognate receptor, cKit, enhances endothelial permeability have not been fully elucidated. This study aimed to investigate the role of Src in SCF-induced breakdown of the blood-retinal barrier (BRB). METHODS In vitro endothelial permeability and in vivo retinal vascular permeability assays were performed to investigate the role of Src in SCF-induced breakdown of the BRB. Immunofluorescence staining experiments were performed to analyze the cellular distribution of phosphorylated Src and vascular endothelial (VE)-cadherin. RESULTS SCF markedly reduced electric resistance across the human retinal vascular endothelial monolayer in vitro and enhanced extravasation of dyes in murine retinal vasculature in vivo. Inhibition of cKit activation using cKit mutant mice and chemical inhibitor substantially diminished the ability of SCF to increase endothelial permeability and retinal vascular leakage. In human retinal vascular endothelial cells, SCF induced strong phosphorylation of Src and distinct localization of phosphorylated Src in the plasma membrane. Inhibition of Src activation using chemical inhibitors abolished the SCF-induced hyperpermeability of human retinal vascular endothelial cells and retinal vascular leakage in mice. In addition, treatment with Src inhibitors restored junctional expression of VE-cadherin that disappeared in SCF-treated retinal endothelial cells and retinal vasculature. CONCLUSIONS These results showed the important role of Src in mediating SCF-induced breakdown of the BRB and retinal vascular leakage. Given that increased retinal vascular permeability is a common manifestation of various ocular diseases, the SCF/cKit/Src signaling pathway may be involved in the development of the hyperpermeable retinal vasculature in many ocular disorders.
Collapse
|
42
|
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L832-L845. [PMID: 27663990 DOI: 10.1152/ajplung.00233.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
The pulmonary endothelium is the target of continuous physiological and pathological stimuli that affect its crucial barrier function. The regulation, defense, and repair of endothelial barrier function require complex biochemical processes. This review examines the role of endothelial phosphorylating enzymes, kinases, a class with profound, interdigitating influences on endothelial permeability and lung function.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, .,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
43
|
Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: A model of vascular leakage in dengue hemorrhagic fever. Sci Rep 2016; 6:31855. [PMID: 27546060 PMCID: PMC4992822 DOI: 10.1038/srep31855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/28/2016] [Indexed: 01/04/2023] Open
Abstract
Vascular leakage is a life-threatening complication of dengue virus (DENV) infection. Previously, association between “paracellular” endothelial hyperpermeability and plasma leakage had been extensively investigated. However, whether “transcellular” endothelial leakage is involved in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) remained unknown. We thus investigated effects of DENV (serotype 2) infection on transcellular transport of albumin, the main oncotic plasma protein, through human endothelial cell monolayer by Western blotting, immunofluorescence staining, fluorescence imaging, and fluorometry. The data showed that Alexa488-conjugated bovine serum albumin (Alexa488-BSA) was detectable inside DENV2-infected cells and its level was progressively increased during 48-h post-infection. While paracellular transport could be excluded using FITC-conjugated dextran, Alexa488-BSA was progressively increased and decreased in lower and upper chambers of Transwell, respectively. Pretreatment with nystatin, an inhibitor of caveolae-dependent endocytic pathway, significantly decreased albumin internalization into the DENV2-infected cells, whereas inhibitors of other endocytic pathways showed no significant effects. Co-localization of the internalized Alexa488-BSA and caveolin-1 was also observed. Our findings indicate that DENV infection enhances caveolae-mediated albumin transcytosis through human endothelial cells that may ultimately induce plasma leakage from intravascular compartment. Further elucidation of this model in vivo may lead to effective prevention and better therapeutic outcome of DHF/DSS.
Collapse
|
44
|
Tanaka S, Chen-Yoshikawa TF, Miyamoto E, Takahashi M, Ohata K, Kondo T, Hijiya K, Motoyama H, Aoyama A, Date H. Vascular Endothelial-Cadherin Expression After Reperfusion Correlates With Lung Injury in Rat Lung Transplantation. Ann Thorac Surg 2016; 101:2161-7. [DOI: 10.1016/j.athoracsur.2016.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/04/2015] [Accepted: 01/11/2016] [Indexed: 10/21/2022]
|
45
|
Patel A, Sabbineni H, Clarke A, Somanath PR. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci 2016; 157:52-61. [PMID: 27245276 DOI: 10.1016/j.lfs.2016.05.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022]
Abstract
The Src-family kinases (SFKs), an intracellularly located group of non-receptor tyrosine kinases are involved in oncogenesis. The importance of SFKs has been implicated in the promotion of tumor cell motility, proliferation, inhibition of apoptosis, invasion and metastasis. Recent evidences indicate that specific effects of SFKs on epithelial-to-mesenchymal transition (EMT) as well as on endothelial and stromal cells in the tumor microenvironment can have profound effects on tumor microinvasion and metastasis. Although, having been studied extensively, these novel features of SFKs may contribute to greater understanding of benefits from Src inhibition in various types of cancers. Here we review the novel role of SFKs, particularly c-Src in mediating EMT, modulation of tumor endothelial-barrier, transendothelial migration (microinvasion) and metastasis of cancer cells, and discuss the utility of Src inhibitors in vascular normalization and cancer therapy.
Collapse
Affiliation(s)
- Ami Patel
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Andrea Clarke
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States; Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA, United States.
| |
Collapse
|
46
|
Zimnicka AM, Husain YS, Shajahan AN, Sverdlov M, Chaga O, Chen Z, Toth PT, Klomp J, Karginov AV, Tiruppathi C, Malik AB, Minshall RD. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Mol Biol Cell 2016; 27:2090-106. [PMID: 27170175 PMCID: PMC4927282 DOI: 10.1091/mbc.e15-11-0756] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 11/18/2022] Open
Abstract
Src-induced phosphorylation of Cav-1 is analyzed using live TIRF and FRET microscopy, as well as by biochemical analysis. Cav1 phosphorylation destabilizes plasma membrane–associated Cav-1 oligomers and thereby is crucial for regulating the fission of caveolae from the plasma membrane in vascular endothelial cells. Caveolin 1 (Cav1) is a required structural component of caveolae, and its phosphorylation by Src is associated with an increase in caveolae-mediated endocytosis. Here we demonstrate, using quantitative live-cell 4D, TIRF, and FRET imaging, that endocytosis and trafficking of caveolae are associated with a Cav1 Tyr-14 phosphorylation-dependent conformational change, which spatially separates, or loosens, Cav1 molecules within the oligomeric caveolar coat. When tracked by TIRF and spinning-disk microscopy, cells expressing phosphomimicking Cav1 (Y14D) mutant formed vesicles that were greater in number and volume than with Y14F-Cav1-GFP. Furthermore, we observed in HEK cells cotransfected with wild-type, Y14D, or Y14F Cav1-CFP and -YFP constructs that FRET efficiency was greater with Y14F pairs than with Y14D, indicating that pY14-Cav1 regulates the spatial organization of Cav1 molecules within the oligomer. In addition, albumin-induced Src activation or direct activation of Src using a rapamycin-inducible Src construct (RapR-Src) led to an increase in monomeric Cav1 in Western blots, as well as a simultaneous increase in vesicle number and decrease in FRET intensity, indicative of a Src-mediated conformational change in CFP/YFP-tagged WT-Cav1 pairs. We conclude that phosphorylation of Cav1 leads to separation or “spreading” of neighboring negatively charged N-terminal phosphotyrosine residues, promoting swelling of caveolae, followed by their release from the plasma membrane.
Collapse
Affiliation(s)
- Adriana M Zimnicka
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Yawer S Husain
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Ayesha N Shajahan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Maria Sverdlov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Oleg Chaga
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Zhenlong Chen
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612
| | - Peter T Toth
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Jennifer Klomp
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Andrei V Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Asrar B Malik
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612 Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
47
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Kang Q, Chen Y, Zhang X, Yu G, Wan X, Wang J, Bo L, Zhu K. Heat shock protein A12B protects against sepsis-induced impairment in vascular endothelial permeability. J Surg Res 2015; 202:87-94. [PMID: 27083952 DOI: 10.1016/j.jss.2015.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND As a common and life-threatening infectious syndrome, sepsis contributes significantly to morbidity and mortality in clinical settings. Vascular endothelial injury and hyperpermeability play an important role in the development of sepsis-induced organ dysfunction. Heat shock protein A12B (HSPA12B) is one of the HSP70 superfamily members and is mainly expressed in vascular endothelial cells. The present study was performed to investigate the role of HSPA12B in endothelial barrier dysfunction during sepsis. METHODS Human umbilical vein endothelial cells (HUVECs) were stimulated with 1 μg/mL of lipopolysaccharide (LPS) and harvested at 0, 3, 6, 9, 12, and 24 h. The messenger RNA and protein levels of HSPA12B were detected by Real Time-polymerase chain reaction and Western blot. Upregulation of HSPA12B was induced by transfection of pIRES2-EGFP plasmid carrying the HSPA12B complementary DNA. The in vitro effect of HSPA12B overexpression on endothelial permeability was manifested by the transendothelial electrical resistance value, expression of the adhesion molecules VE-cadherin, and the level of permeability-related kinase myosin light chain, SRC, and CDC42. Mice received cecal ligation and puncture surgery followed by nasal inhalation of nano-polymer-mediated siRNA. Lung endothelial permeability was assessed via intrajugular vein injection of Evans Blue 30 h after cecal ligation and puncture. RESULTS After LPS induction, the messenger RNA and protein level of HSPA12B in HUVECs increased and peaked at 12 h, whereas they returned to the baseline level at 24 h. Overexpression of HSPA12B can reduce the permeability of HUVEC stimulated by LPS in vitro, while increasing the expression of VE-Cadherin, myosin light chain, and CDC42. On the other hand, downregulating the expression of HSPA12B can significantly increase lung permeability in mice with sepsis-induced vascular injury. CONCLUSIONS HSPA12B plays a protective role in vascular endothelial barrier dysfunction by preserving the endothelial permeability during sepsis.
Collapse
Affiliation(s)
- Qiuxiang Kang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yi Chen
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xu Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Guifang Yu
- Department of Anesthesiology, The Third People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojian Wan
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jiafeng Wang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Lulong Bo
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Keming Zhu
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
49
|
Synergism of MSC-secreted HGF and VEGF in stabilising endothelial barrier function upon lipopolysaccharide stimulation via the Rac1 pathway. Stem Cell Res Ther 2015; 6:250. [PMID: 26674641 PMCID: PMC4682264 DOI: 10.1186/s13287-015-0257-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/09/2015] [Accepted: 12/03/2015] [Indexed: 11/24/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) stabilise endothelial barrier function in acute lung injury via paracrine hepatocyte growth factor (HGF). Vascular endothelial growth factor (VEGF), which is secreted by MSCs, is another key regulator of endothelial permeability; however, its role in adjusting permeability remains controversial. In addition, whether an interaction occurs between HGF and VEGF, which are secreted by MSCs, is not completely understood. Methods We introduced a co-cultured model of human pulmonary microvascular endothelial cells (HPMECs) and MSC conditioned medium (CM) collected from MSCs after 24 h of hypoxic culture. The presence of VEGF and HGF in the MSC-CM was neutralised by anti-VEGF and anti-HGF antibodies, respectively. To determine the roles and mechanisms of MSC-secreted HGF and VEGF, we employed recombinant humanised HGF and recombinant humanised VEGF to co-culture with HPMECs. Additionally, we employed the RhoA inhibitor C3 transferase and the Rac1 inhibitor NSC23766 to inhibit the activities of RhoA and Rac1 in HPMECs treated with MSC-CM or VEGF/HGF with the same dosage as in the MSC-CM. Then, endothelial paracellular and transcellular permeability was detected. VE-cadherin, occludin and caveolin-1 protein expression in HPMECs was measured by western blot. Adherens junction proteins, including F-actin and VE-cadherin, were detected by immunofluorescence. Results MSC-CM treatment significantly decreased lipopolysaccharide-induced endothelial paracellular and transcellular permeability, which was significantly inhibited by pretreatment with HGF antibody or with both VEGF and HGF antibodies. Furthermore, MSC-CM treatment increased the expression of the endothelial intercellular adherence junction proteins VE-cadherin and occludin and decreased the expression of caveolin-1 protein. MSC-CM treatment also decreased endothelial apoptosis and induced endothelial cell proliferation; however, the effects of MSC-CM treatment were inhibited by pretreatment with HGF antibody or with both HGF and VEGF antibodies. Additionally, the effects of MSC-CM and VEGF/HGF on reducing endothelial paracellular and transcellular permeability were weakened when HPMECs were pretreated with the Rac1 inhibitor NSC23766. Conclusion HGF secreted by MSCs protects the endothelial barrier function; however, VEGF secreted by MSCs may synergize with HGF to stabilise endothelial cell barrier function. Rac1 is the pathway by which MSC-secreted VEGF and HGF regulate endothelial permeability.
Collapse
|
50
|
Gao R, Ma Z, Ma M, Yu J, Chen J, Li Z, Shetty S, Fu J. Deletion of Src family kinase Lyn aggravates endotoxin-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1376-81. [DOI: 10.1152/ajplung.00219.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
Abstract
Overwhelming acute inflammation often leads to tissue damage during endotoxemia. In the present study, we investigated the role of Lyn, a member of the Src family tyrosine kinases, in modulating inflammatory responses in a murine model of endotoxemia. We examined lung inflammatory signaling in Lyn knockout (Lyn−/−) mice and wild-type littermates (Lyn+/+) during endotoxemia. Our data indicate that Lyn deletion aggravates endotoxin-induced pulmonary inflammation and proinflammatory signaling. We found increased activation of proinflammatory transcription factor NF-κB in the lung tissues of Lyn−/− mice after endotoxin challenge. Furthermore, during endotoxemia, the lung tissues of Lyn−/− mice showed increased inflammasome activation indicated by augmented caspase-1 and IL-1β cleavage and activation. The aggravated lung inflammatory signaling in Lyn−/− mice was associated with increased production of proinflammatory mediators and elevated matrix metallopeptidase 9 and reduced VE-cadherin levels. Our results suggest that Lyn kinase modulates inhibitory signaling to suppress endotoxin-induced lung inflammation.
Collapse
Affiliation(s)
- Rong Gao
- The Second Hospital of Jilin University, Changchun, China
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky
| | - Zhongsen Ma
- The Second Hospital of Jilin University, Changchun, China
| | - Mengshi Ma
- The Second Hospital of Jilin University, Changchun, China
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky
| | - Jinyan Yu
- The Second Hospital of Jilin University, Changchun, China
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky
| | - Jiao Chen
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky
| | - Zhenyu Li
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky; and
| | - Sreerama Shetty
- Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Jian Fu
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|