1
|
Okselni T, Septama AW, Juliadmi D, Dewi RT, Angelina M, Yuliani T, Saragih GS, Saputri A. Quercetin as a therapeutic agent for skin problems: a systematic review and meta-analysis on antioxidant effects, oxidative stress, inflammation, wound healing, hyperpigmentation, aging, and skin cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5011-5055. [PMID: 39738831 DOI: 10.1007/s00210-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Quercetin is abundant in plants and has notable pharmacological properties for skin health. This review aims to comprehensively evaluate the effects of quercetin on skin-related issues, adhering to the PRISMA guidelines and analyzing studies from ScienceDirect, Web of Science, Scopus, and PubMed. Of the 1,398 studies identified, 65 studies met the criteria for meta-analysis. The meta-analysis indicated that quercetin had powerful antioxidant properties, protecting against oxidative stress by significantly lowering levels of MDA (Z-score, 2.51), ROS (Z-score, 3.81), and LPO (Z-score, 4.46), and enhancing enzymes of GSH (Z-score, 5.46), CAT (Z-score, 5.20), and SOD (Z-score, 4.37). Quercetin acted as an anti-inflammatory by significantly suppressing protein regulators such as NF-κβ, AP-1, and MAPKs (ERK and JNK), cytokines of TNFα, IL-6, IL-1β, IL-8, and MCP-1, and enzymes of COX-2, iNOS, and MPO, while upregulating the cytokine IL-10. Additionally, quercetin significantly suppressed IL-4 (Z-score, 3.16) and IFNγ (Z-score, 3.76) cytokines involved in chronic inflammation of atopic dermatitis. Quercetin also supported wound healing by significantly decreasing inflammatory cells (Z-score, 5.60) and enhancing fibroblast distribution (Z-score, 5.98), epithelialization (Z-score, 8.57), collagen production (Z-score, 4.20), and angiogenesis factors of MVD (Z-score, 5.66) and VEGF (Z-score, 3.86). Furthermore, quercetin significantly inhibited tyrosinase activity (Z-score, 1.95), resulting in a significantly reduced melanin content (Z-score, 2.56). A significant reduction in DNA damage (Z-score, 3.27), melanoma cell viability (Z-score, 2.97), and tumor formation was also observed to ensure the promising activity of quercetin for skin issues. This review highlights quercetin's potential as a multifaceted agent in skin care and treatment.
Collapse
Affiliation(s)
- Tia Okselni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia.
- BRIN-Kawasan BJ Habibie, Serpong, Banten, Indonesia.
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Dian Juliadmi
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong, 16911, Indonesia
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Tri Yuliani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Grace Serepina Saragih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Ariyanti Saputri
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| |
Collapse
|
2
|
Babu S, Velmani NS, Manoharan S, Perumal E. Esculin, a Coumarin Glucoside Prevents Fluoride-Induced Oxidative Stress and Cardiotoxicity in Zebrafish Larvae. ENVIRONMENTAL TOXICOLOGY 2025; 40:636-649. [PMID: 39606932 DOI: 10.1002/tox.24445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Fluoride (F-) is a major groundwater contaminant spread across the world. In excess concentrations, F- can be detrimental to living beings. F- exposure is linked to cellular redox dyshomeostasis, leading to oxidative stress-mediated pathologies including heart dysfunction. Due to its potent antioxidant properties, various phytochemicals are found to alleviate the symptoms of F- toxicity. Hence, we explore the protective effect of esculin (Esc), a coumarin glucoside on F--induced oxidative stress and cardiotoxicity in zebrafish larvae. The experimental groups consisted of NaF (50 ppm) and Esc (100 μM) groups treated alone and in combination with a control group for 6 h. The groups were maintained till 78 hpf after which the level of oxidants (ROS, LPO, and PCC) and antioxidants (GST, GSH, GPx, SOD, and CAT) were assessed. The results revealed that Esc pretreatment restored the depleted antioxidant markers and reduced the levels of oxidant in the Esc+NaF group, exhibiting its antioxidant potential. In addition, analyses of the heartbeat rate and hemoglobin integrity using o-Dianisidine staining were conducted in the control and experimental groups. Esc treatment prevents F- induced cardiac changes including tachycardia and altered blood flow. Further, the mRNA expression level of antioxidant genes (nrf2, gstp1, hmox1a, prdx1, and nqo1) and cardiac developmental genes (bmp2b, nkx2.5, myh6, and myl7) confirmed that Esc acts as a potent free radical scavenger and antioxidant defense enhancer, protecting zebrafish larvae from NaF-induced oxidative stress and heart dysfunction.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Naveen Surya Velmani
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
3
|
Carrillo-Garmendia A, Vaca-Martinez AL, Carmona-Moreno BL, González-Hernández JC, Granados-Arvizu JA, Arvizu-Medrano SM, Gracida J, Pérez-Serrano RM, Nava GM, Regalado-Gonzalez C, Madrigal-Perez LA. Pro-Oxidant Influence of Quercetin Supplementation in Saccharomyces cerevisiae. Yeast 2025; 42:59-69. [PMID: 39988849 DOI: 10.1002/yea.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/06/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
How could quercetin exert a pro-survival phenotype (antioxidant) and simultaneously be toxic for eukaryotic cells? The redox capacity of quercetin may explain its antioxidant and toxic effects, based on the idea that quercetin impairs the electron transport chain, affecting ATP production and forming quercetin-derived free radicals. Herein, we provide evidence that quercetin supplementation: (1) depolarizes the mitochondrial membrane and augments the ADP/ATP ratio; (2) increases superoxide anion cellular levels; (3) changes the cellular response to H2O2 challenge associated with the antioxidant cellular response; and (4) sensitizes the cellular response to lipoperoxidation challenge. These events suggest that the quercetin pro-oxidant effect is related to mitochondrial respiration dysfunction and could induce cellular antioxidant response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jorge Gracida
- Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | | | - Gerardo M Nava
- Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | | | | |
Collapse
|
4
|
Alharbi HOA, Alshebremi M, Babiker AY, Rahmani AH. The Role of Quercetin, a Flavonoid in the Management of Pathogenesis Through Regulation of Oxidative Stress, Inflammation, and Biological Activities. Biomolecules 2025; 15:151. [PMID: 39858545 PMCID: PMC11763763 DOI: 10.3390/biom15010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Quercetin, a flavonoid found in vegetables and fruits, has been extensively studied for its health benefits and disease management. Its role in the prevention of various pathogenesis has been well-documented, primarily through its ability to inhibit oxidative stress, inflammation, and enhance the endogenous antioxidant defense mechanisms. Electronic databases such as Google Scholar, Scopus, PubMed, Medline, and Web of Science were searched for information regarding quercetin and its role in various pathogeneses. The included literature comprised experimental studies, randomized controlled trials, and epidemiological studies related to quercetin, while editorials, case analyses, theses, and letters were excluded. It has been reported to have a wide range of health benefits including hepatoprotective, antidiabetic, anti-obesity, neuroprotective, cardioprotective, wound healing, antimicrobial, and immunomodulatory effects, achieved through the modulation of various biological activities. Additionally, numerous in vitro and in vivo studies have shown that quercetin's efficacies in cancer management involve inhibiting cell signaling pathways, such as inflammation, cell cycle, and angiogenesis, activating cell signaling pathways including tumor suppressor genes, and inducing apoptosis. This review aims to provide a comprehensive understanding of the health benefits of quercetin in various pathogeneses. Additionally, this review outlines the sources of quercetin, nanoformulations, and its applications in health management, along with key findings from important clinical trial studies. Limited clinical data regarding quercetin's safety and mechanism of action are available. It is important to conduct more clinical trials to gain a deeper understanding of the disease-preventive potential, mechanisms of action, safety, and optimal therapeutic dosages. Furthermore, more research based on nanoformulations should be performed to minimize/overcome the hindrance associated with bioavailability, rapid degradation, and toxicity.
Collapse
Affiliation(s)
| | | | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Kurtz JA, Feresin RG, Grazer J, Otis J, Wilson KE, Doyle JA, Zwetsloot KA. Effects of Quercetin and Citrulline on Nitric Oxide Metabolites and Antioxidant Biomarkers in Trained Cyclists. Nutrients 2025; 17:224. [PMID: 39861353 PMCID: PMC11767657 DOI: 10.3390/nu17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Quercetin (QCT) and citrulline (CIT) have been independently associated with improved antioxidant capacity and nitric oxide (NO) production, potentially enhancing cardiovascular function and exercise performance. This study aimed to evaluate the combined and independent effects of QCT and CIT supplementation on NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km cycling time trial (TT). METHODS In a randomized, double-blind, placebo-controlled design, forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or placebo (PL) groups. Supplements were consumed twice daily for 28 days. Biochemical assessments included NO metabolites (nitrate/nitrite), ferric reducing antioxidant power (FRAP), superoxide dismutase (SOD) activity, and antioxidant capacity, measured pre- and post-TT. RESULTS NO metabolites were significantly elevated post-supplementation (p = 0.03); however, no significant interaction effects were observed for NO metabolites, FRAP, SOD, or antioxidant capacity across the groups (p > 0.05). Post-hoc analyses revealed that QCT significantly reduced FRAP concentrations compared to PL (p = 0.01), while no significant changes in SOD or antioxidant capacity were found across any groups. CONCLUSIONS These findings suggest that combined and independent QCT and CIT supplementation did not significantly improve these biomarkers, suggesting that baseline training adaptations, supplementation timing, and individual variability may influence the efficacy of these compounds in enhancing exercise performance and oxidative stress markers. The ergogenic efficacy of QCT + CIT on antioxidant-related markers remains inconclusive.
Collapse
Affiliation(s)
- Jennifer A. Kurtz
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA;
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30203, USA;
| | - Jacob Grazer
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jeff Otis
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - Kathryn E. Wilson
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - J. Andrew Doyle
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - Kevin A. Zwetsloot
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA;
- Department of Biology, Appalachian State University, Boone, NC 28607, USA
| |
Collapse
|
6
|
Warner EF, Guneri D, O'Connell MA, MacDonald CJ, Waller ZAE. Modulation of Nrf2 expression by targeting i-motif DNA. Commun Chem 2025; 8:5. [PMID: 39762580 PMCID: PMC11704350 DOI: 10.1038/s42004-024-01387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key regulator of cell detoxification, which maintains homoeostasis in healthy cells and promotes chemoresistance in cancer cells. Controlling the expression of this transcription factor is therefore of great interest. There are many compounds that have been shown to induce Nrf2 expression, but ligands that can inhibit Nrf2 are scant. Herein we characterise an i-motif-forming sequence downstream of the Nrf2 promoter, which we hypothesised may regulate the expression of the gene. The Nrf2 i-motif was found to be stable at near-physiological conditions. We identified small molecule ligands that interact with this i-motif structure and one significantly upregulated Nrf2 mRNA expression, and one ligand reduced Nrf2 mRNA expression in human cancer cells. This is the first example of controlling the promoter of Nrf2 by targeting DNA structures and offers an alternative mode of action for the development of compounds to improve the chemotherapeutic responsiveness of existing treatments for cancer.
Collapse
Affiliation(s)
- E F Warner
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, UK
| | - D Guneri
- UCL School of Pharmacy, London, UK
| | - M A O'Connell
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, UK
| | - C J MacDonald
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, UK
| | | |
Collapse
|
7
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
8
|
Zhang J, Liu X, Sun Y, Ge Z, Shen J, Yuan J. Quercetin@β-Cyclodextrin Conjugated Keratin/Polyurethane Biocomposite Mats for Infected Diabetic Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23673-23682. [PMID: 39480120 DOI: 10.1021/acs.langmuir.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Chronic diabetic wounds suffer from severe complications caused by long-term high levels of oxidative stress and bacterial infection. Quercetin (Que) has excellent anti-inflammatory, antioxidant, and antibacterial activity, making it a promising drug to address the above issues. To exploit the benefits of Que in a more effective and sustained way to treat diabetic wounds, carboxymethyl β-cyclodextrin (CMCD) was synthesized and conjugated to keratin, then complexed with Que to form Que@Ker-CMCD inclusion, followed by electrospinning with polyurethane (PU) to afford Que@Ker-CMCD/PU mats. The approach significantly enhanced water solubility, bioavailability, and sustained release of Que. Crucially, these mats exhibited robust antioxidant and antibacterial activities. Moreover, the mats fostered an environment conducive to cell proliferation, migration, angiogenesis, and re-epithelialization, pivotal processes in wound healing and remodeling. Consequently, a marked acceleration in remodeling chronic diabetic wounds was observed. In conclusion, this study introduces a novel therapeutic strategy that not only harnesses the multifaceted benefits of Que but also enhances its delivery and performance, offering a promising avenue for the effective treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yu Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhaoyan Ge
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
9
|
Jin Y, Tan M, Yin Y, Lin C, Zhao Y, Zhang J, Jiang T, Li H, He M. Oroxylin A alleviates myocardial ischemia-reperfusion injury by quelling ferroptosis via activating the DUSP10/MAPK-Nrf2 pathway. Phytother Res 2024; 38:5290-5308. [PMID: 39225191 DOI: 10.1002/ptr.8315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Reperfusion therapy is the primary treatment strategy for acute myocardial infarction (AMI). Paradoxically, it can lead to myocardial damage, namely myocardial ischemia/reperfusion injury (MIRI). This study explored whether oroxylin A (OA) protects the myocardium after MIRI by inhibiting ferroptosis and the underlying mechanism. In vivo, we established an MIRI model to investigate the protective effect of OA. In vitro, H9C2 cells were used to explore the regulation of ferroptosis by OA through immunofluorescence staining, western blotting, assay kits, etc. Additionally, RNA sequencing analysis (RNA-seq) and network pharmacology analyses were conducted to elucidate the molecular mechanisms. Our results showed that MIRI caused cardiac structural and functional damage in rats. MIRI promoted ferroptosis, which was consistently observed in vitro. However, pretreatment with OA reversed these effects. The mitogen-activated protein kinases (MAPK) signaling pathway participated in the MIRI process, with dual-specificity phosphatase 10 (DUSP10) found to regulate it. Further confirmation was provided by knocking down DUSP10 using small interfering RNA (siRNA), demonstrating the activation of the DUSP10/MAPK-Nrf2 pathway by OA to protect H9C2 cells from ferroptosis. Our research has demonstrated the mitigating effect of OA on MIRI and the improvement of myocardial function for the first time. The inhibition of ferroptosis has been identified as one of the mechanisms through which OA exerts its myocardial protective effects. Moreover, we have first unveiled that DUSP10 serves as an upstream target involved in mediating ferroptosis, and the regulation of the DUSP10/MAPK-Nrf2 pathway by OA is crucial in inhibiting ferroptosis to protect the myocardium.
Collapse
Affiliation(s)
- Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
- Department of General Practice, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
- Department of Geriatrics, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Chen Lin
- Jinjihu Business District Squadron, Suzhou Industrial Park Food and Drug Safety Inspection Team, Suzhou, Jiangsu, P. R. China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Mingqing He
- Department of Gerontology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
10
|
Meng X, Ge L, Zhang J, Xue J, Gonzalez-Gil G, Vrouwenvelder JS, Guo S, Li Z. Nanoplastics induced health risk: Insights into intestinal barrier homeostasis and potential remediation strategy by dietary intervention. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134509. [PMID: 38704907 DOI: 10.1016/j.jhazmat.2024.134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Aged nanoplastics (aged-NPs) have unique characteristics endowed by environmental actions, such as rough surface, high oxygen content. Although studies have highlighted the potential hazards of aged-NPs, limited research has provided strategies for aged-NPs pollution remediation. The dietary intervention of quercetin is a novel insight to address the health risks of aged-NPs. This study explored the impact of aged-NPs on intestinal barrier homeostasis at the environmentally relevant dose and investigated the alleviating effects of quercetin on aged-NPs toxicity through transcriptomics and molecular biology analysis. It indicated that aged-NPs induced intestinal barrier dysfunction, which was characterized by higher permeability, increased inflammation, and loss of epithelial integrity, while quercetin restored it. Aged-NPs disrupted redox homeostasis, upregulated inflammatory genes controlled by AP-1, and led to Bax-dependent mitochondrial apoptosis. Quercetin intervention effectively mitigated inflammation and apoptosis by activating the Nrf2. Thus, quercetin decreased intestinal free radical levels, inhibiting the phosphorylation of p38 and JNK. This study unveiled the harmful effects of aged-NPs on intestinal homeostasis and the practicability of dietary intervention against aged-NPs toxicity. These findings broaden the understanding of the NPs toxicity and provide an effective dietary strategy to relieve the health risks of NPs. ENVIRONMENTAL IMPLICATIONS: Growing levels of NPs pollution have represented severe health hazards to the population. This study focuses on the toxic mechanism of aged-NPs on the intestinal barrier and the alleviating effect of quercetin dietary intervention, which considers the environmental action and relevant dose. It revealed the harmful effects of aged-NPs on intestinal inflammation with the key point of free radical generation. Furthermore, a quercetin-rich diet holds significant promise for addressing and reversing intestinal damage caused by aged-NPs by maintaining intracellular redox homeostasis. These findings provide an effective dietary strategy to remediate human health risks caused by NPs.
Collapse
Affiliation(s)
- Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China; School of Food Science and Engineering, Ningxia University, Ningxia, Yinchuan 750021, PR China
| | - Lei Ge
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China
| | - Jiawei Zhang
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China
| | - Jinkai Xue
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Graciela Gonzalez-Gil
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shaomin Guo
- Northwest A&F University Hospital, Northwest A&F University Shaanxi, Yangling 712100, PR China.
| | - Zhenyu Li
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China; Water Technologies Innovation Institute & Research advancement (WTIIRA), Saline Water Conversion Corporation (SWCC), P.O. Box 8328, Al-Jubail 31951, Saudi Arabia.
| |
Collapse
|
11
|
Zhang L, Xu LY, Tang F, Liu D, Zhao XL, Zhang JN, Xia J, Wu JJ, Yang Y, Peng C, Ao H. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation. J Pharm Anal 2024; 14:100930. [PMID: 39005843 PMCID: PMC11245930 DOI: 10.1016/j.jpha.2023.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 07/16/2024] Open
Abstract
Non-communicable diseases (NCDs), including cardiovascular diseases, cancer, metabolic diseases, and skeletal diseases, pose significant challenges to public health worldwide. The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical transcription factor, plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury. Therefore, Nrf2-targeting therapies hold promise for preventing and treating NCDs. Quercetin (Que) is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties. It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation. Que modulates mitochondrial function, apoptosis, autophagy, and cell damage biomarkers to regulate oxidative stress and inflammation, highlighting its efficacy as a therapeutic agent against NCDs. Here, we discussed, for the first time, the close association between NCD pathogenesis and the Nrf2 signaling pathway, involved in neurodegenerative diseases (NDDs), cardiovascular disease, cancers, organ damage, and bone damage. Furthermore, we reviewed the availability, pharmacokinetics, pharmaceutics, and therapeutic applications of Que in treating NCDs. In addition, we focused on the challenges and prospects for its clinical use. Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
12
|
Calabrese EJ, Hayes AW, Pressman P, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Quercetin induces its chemoprotective effects via hormesis. Food Chem Toxicol 2024; 184:114419. [PMID: 38142767 DOI: 10.1016/j.fct.2023.114419] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Quercetin is a polyphenol present in numerous fruits and vegetables and therefore widely consumed by humans with average daily dietary intakes of 10-20 mg/day. It is also a popular dietary supplement of 250-1000 mg/day. However, despite the widespread consumer interest in quercetin, due to its possible chemopreventive properties, the extensively studied quercetin presents a highly diverse and complex array of biological effects. Consequently, the present paper provides the first assessment of quercetin-induced hormetic concentration/dose responses, their quantitative features and mechanistic foundations, and their biological, biomedical, clinical, and public health implications. The findings indicate that quercetin-induced hormetic dose responses are widespread, being independent of biological model, cell type, and endpoint. These findings have the potential to enlighten future experimental studies with quercetin especially with respect to study design parameters and may also affect the appraisal of possible public health benefits and risks associated with highly diverse consumer consumption practices.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
13
|
Chang CH, Han DE, Ji YY, Wang MY, Li DH, Xu ZL, Li JH, Huang SN, Zhu XL, Jia YY. Folate-chitosan Coated Quercetin Liposomes for Targeted Cancer Therapy. Curr Pharm Biotechnol 2024; 25:924-935. [PMID: 37861012 DOI: 10.2174/0113892010264479231006045014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Although quercetin exhibits promising anti-tumor properties, its clinical application is limited due to inherent defects and a lack of tumor targeting. OBJECTIVES This study aimed to prepare and characterize active targeting folate-chitosan modified quercetin liposomes (FA-CS-QUE-Lip), and its antitumor activity in vitro and in vivo was also studied. MATERIALS AND METHODS Box-Behnken Design (BBD) response surface method was used to select the optimal formulation of quercetin liposomes (QUE-LP). On this basis, FA-CS-QUE-LP was obtained by connecting folic acid chitosan complex (FA-CS) and QUE-LP. The release characteristics in vitro of QUE-LP and FA-CS-QUE-LP were studied. Its inhibitory effects on HepG2 cells were studied by the MTT method. The pharmacokinetics and pharmacodynamics in vivo were studied in healthy Wistar mice and S180 tumor-bearing mice, respectively. RESULTS The average particle size, zeta potential and encapsulation efficiency of FA-CS-QUELP were 261.6 ± 8.5 nm, 22.3 ± 1.7 mV, and 98.63 ± 1.28 %, respectively. FA-CS-QUE-LP had a sustained release effect and conformed to the Maloid-Banakar release model (R2=0.9967). The results showed that FA-CS-QUE-LP had higher inhibition rates on HepG2 cells than QUE-Sol (P < 0.01). There was a significant difference in AUC, t1/2, CL and other pharmacokinetic parameters among QUE-LP, FA-CS-QUE-LP, and QUE-Sol (P < 0.05). In in vivo antitumor activity study, the weight inhibition rate and volume inhibition rate of FA-CS-QUE-LP were 30.26% and 37.35%, respectively. CONCLUSION FA-CS-QUE-LP exhibited a significant inhibitory effect on HepG2 cells, influenced the pharmacokinetics of quercetin in mice, and demonstrated a certain inhibitory effect on S180 tumor-bearing mice, thus offering novel avenues for cancer treatment.
Collapse
Affiliation(s)
- Chun-Hui Chang
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - De-En Han
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Yu-Ying Ji
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Meng-Yan Wang
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Dong-Hong Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Zhi-Ling Xu
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Jia-Hao Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Sheng-Nan Huang
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Xia-Li Zhu
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Yong-Yan Jia
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou, 450046, P.R. China
| |
Collapse
|
14
|
Ziaei S, Alimohammadi‐Kamalabadi M, Hasani M, Malekahmadi M, Persad E, Heshmati J. The effect of quercetin supplementation on clinical outcomes in COVID-19 patients: A systematic review and meta-analysis. Food Sci Nutr 2023; 11:7504-7514. [PMID: 38107099 PMCID: PMC10724618 DOI: 10.1002/fsn3.3715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023] Open
Abstract
Coronavirus disease (COVID-19) affects both the respiratory system and the body as a whole. Natural molecules, such as flavonoid quercetin, as potential treatment methods to help patients combat COVID-19. The aim of this systematic review and meta-analysis is to give a comprehensive overview of the impact of quercetin supplementation on inflammatory factors, hospital admission, and mortality of patients with COVID-19. The search has been conducted on PubMed, Scopus, Web of Science, EMBASE, and the Cochrane Library using relevant keywords until August 25, 2023. We included randomized controlled trials (RCTs) comparing COVID-19 patients who received quercetin supplementation versus controls. We included five studies summarizing the evidence in 544 patients. Meta-analysis showed that quercetin administration significantly reduced LDH activity (standard mean difference (SMD): -0.42, 95% CI: -0.82, -0.02, I 2 = 48.86%), decreased the risk of hospital admission by 70% (RR: 0.30, 95% CI: 0.14, 0.62, I 2 = 00.00%), ICU admission by 73% (RR: 0.27, 95% CI: 0.09, 0.78, I 2 = 20.66%), and mortality by 82% (RR: 0.18, 95% CI: 0.03, 0.98, I 2 = 00.00%). No significant changes in CRP, D-dimmer, and ferritin were found between groups. Quercetin was found to significantly reduce LDH levels and decrease the risk of hospital and ICU admission and mortality in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Somayeh Ziaei
- ICU Department, Emam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Malek Alimohammadi‐Kamalabadi
- Department of Cellular‐Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
| | - Motahareh Hasani
- Department of Nutritional Sciences, School of HealthGolestan University of Medical SciencesGorganIran
| | - Mahsa Malekahmadi
- Department of Cellular‐Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
- Imam Khomeini Hospital Complex, Tehran University of Medicinal Sciences Tehran IranTehran University of Medical SciencesTehranIran
| | - Emma Persad
- Department for Evidence‐based Medicine and EvaluationDanube University KremsKremsAustria
| | - Javad Heshmati
- Songhor Healthcare CenterKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
15
|
Zamanian MY, Soltani A, Khodarahmi Z, Alameri AA, Alwan AMR, Ramírez-Coronel AA, Obaid RF, Abosaooda M, Heidari M, Golmohammadi M, Anoush M. Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developments. Fundam Clin Pharmacol 2023; 37:1050-1064. [PMID: 37259891 DOI: 10.1111/fcp.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khodarahmi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Athemar M R Alwan
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Munther Abosaooda
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Anoush
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
16
|
Gerdemann A, Broenhorst M, Behrens M, Humpf HU, Esselen M. Polyphenols Cause Structure Dependent Effects on the Metabolic Profile of Human Hepatocarcinogenic Cells. Mol Nutr Food Res 2023; 67:e2300052. [PMID: 37672806 DOI: 10.1002/mnfr.202300052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Indexed: 09/08/2023]
Abstract
SCOPE Although many beneficial health effects are attributed to polyphenols their influence on the human metabolome has not been elucidated yet. The ubiquitous occurrence of polyphenols in the human diet demands comprehensive knowledge about physiological and toxicological effects of these compounds on human cells. METHODS AND RESULTS The human hepatocarcinogenic cell line HepG2 is used to elucidate the effects of 13 polyphenols and three respective phenolic degradation products on the human metabolome using HPLC-MS/MS. To investigate structure-activity-relationships, structurally related examples of polyphenols from different compound classes are selected. The analysis of catechins points toward a relation between the degree of hydroxylation and the extent of metabolic effects particularly on the urea cycle and the pentose phosphate pathway (PPP). A correlation between the modulation of the PPP and the stability of the compounds is demonstrated, which may be caused by reactive oxygen species (ROS). The incubation of flavones and alkenylbenzenes demonstrates reduced activity of methoxylated compounds and no impact of the B-ring position. CONCLUSION In general, polyphenols induce a multitude of metabolic effects, for example, on energy metabolism, PPP, and urea cycle. These metabolic alterations may be related to the widely reported bioactivity of these compounds such as the anticarcinogenic effects.
Collapse
Affiliation(s)
- Andrea Gerdemann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Melissa Broenhorst
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| |
Collapse
|
17
|
Kaggwa B, Anywar G, Munanura EI, Wangalwa R, Kyeyune H, Okella H, Kamba FP, Engeu OP. Application of the herbal chemical marker ranking system (Herb MaRS) to the standardization of herbal raw materials: a case study. BMC Complement Med Ther 2023; 23:348. [PMID: 37777721 PMCID: PMC10542261 DOI: 10.1186/s12906-023-04178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION Phytochemical standardization of herbal materials involves establishing consistent levels of one or more active ingredients or markers. It ensures the authenticity and quality of herbal materials, extracts, and their products. This research aimed to apply the herbal chemical marker ranking system (Herb MaRS) originally proposed for quality assurance of complex herbal products to establish markers for controlling the quality of herbal raw materials. METHODS The assessment of compounds for suitability as markers was based on the Herb MaRS, with minor modifications as follows: for more objective scoring, evidence of biological activity of the potential marker compound(s) was determined at three levels based on the number of symptoms of the disease condition a compound can treat or alleviate: (i) one symptom (1 point), two symptoms (2 points), and 3 or more symptoms (3 points). The reported concentrations of the compounds were also scored as follows: concentration not determined (0 points), concentration ≥ 5 ppm (1 point), concentration ≥ 50 ppm (2 points) and availability of analytical standards (1 point). Finally, the compounds were scored for the availability of an analytical method (1 point). The compounds were scored from 0 to 8, where 8 indicated the most suitable chemical marker. RESULTS The selected markers were as follows: aromadendrine, α-terpineol, globulol, and 1,8-cineol (in Eucalyptus globulus Labill. ); aloin, aloe emodin, acemannan (in Aloe barbadensis (L.) Burm.f. ), lupeol, lupenone, betulinic acid, betulin, and catechin (in Albizia coriaria Oliv.); mangiferin, catechin, quercetin, and gallic acid (in Mangifera indica L.); polygodial (in Warburgia ugandensis Sprague); azadirachtin, nimbin, nimbidin (in Azadirachta indica A. Juss. ); and 6,8,10-gingerols, and 6-shogaol (in Zingiber officinalis Roscoe). CONCLUSIONS Herb MaRS can be efficiently applied to select marker compounds for quality control of herbal materials. However, for herbs whose phytochemicals have not been sufficiently researched, it is difficult to establish evidence of activity, and there are no analytical standards and/or methods; this is the case for plants exclusively used in Africa. The markers identified should be incorporated into chromatographic fingerprints, their quantitative methods developed, and evaluated for applicability at the various stages of the production chain of herbal medicines; then, they can be included in future local plant monographs. There is also a need to build local capacity to isolate marker compounds, particularly those that are not sold by current vendors.
Collapse
Affiliation(s)
- Bruhan Kaggwa
- Mbarara University of Science and Technology, Pharm-Bio Technology and Traditional Medicine Center (PHARMBIOTRAC), PO Box 1410, Mbarara, Uganda.
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda.
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Edson Ireeta Munanura
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| | - Raphael Wangalwa
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, P. O BOX 1410, Mbarara, Uganda
| | - Henry Kyeyune
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| | - Hedmon Okella
- Mbarara University of Science and Technology, Pharm-Bio Technology and Traditional Medicine Center (PHARMBIOTRAC), PO Box 1410, Mbarara, Uganda
| | - Fadhiru Pakoyo Kamba
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| | - Ogwang Patrick Engeu
- Mbarara University of Science and Technology, Pharm-Bio Technology and Traditional Medicine Center (PHARMBIOTRAC), PO Box 1410, Mbarara, Uganda
| |
Collapse
|
18
|
Gavia-García G, Hernández-Álvarez D, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM, Rosado-Pérez J. The Supplementation of Sechium edule var. nigrum spinosum (Chayote) Promotes Nrf2-Mediated Antioxidant Protection in Older Adults with Metabolic Syndrome. Nutrients 2023; 15:4106. [PMID: 37836390 PMCID: PMC10574595 DOI: 10.3390/nu15194106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The aim was to determine the effect of Sechium edule var. nigrum spinosum (chayote) on gene expression related to antioxidant protection mechanisms and the inflammatory process in older adults with metabolic syndrome (MetS). A quasi-experimental study was carried out in a convenience sample of 46 older adults diagnosed with MetS: (i) placebo group (PG; n = 20); (ii) experimental group (EG; n = 26). The clinical, biochemical, anthropometric parameters and SOD, GPx, and CAT enzyme activity, alongside total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), cytokines (IL-6, IL-8 and TNF-α), and mRNA expression of SOD, GPx, CAT, IL-6, IL-8, TNF-α, Nrf2, NFkB p50, and NFkB p65, were measured at baseline and 6 months post-intervention. A statistically significant decrease was observed in TOS (baseline, 28.9 ± 3.6 vs. post, 23.7 ± 3.4, p < 0.01) and OSI (baseline, 24.1 ± 3.8 vs. post, 17.7 ± 4), as well as an increase in IL-6 (baseline, 10.7 ± 1.1 vs. post, 12.3 ± 2, p = 0.03), SOD activity (baseline, 167.1 ± 11.9 vs. post, 180.6 ± 7.6, p < 0.05), CAT activity (baseline, 1.0 ± 0.2 vs. post, 1.3 ± 0.2, p < 0.01), and TAS (baseline, 1.1 ± 0.1 vs. post, 1.4 ± 0.1, p < 0.01) in the EG compared to the PG. Regarding the expression of Nrf2, SOD, and IL-6, the EG showed a significant increase vs. basal levels (47%, 44%, and 43%, respectively). Our findings suggest that Sechium edule supplementation promotes the antioxidant response and decreases oxidative stress via Nrf2.
Collapse
Affiliation(s)
- Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (D.H.-Á.); (T.L.A.-U.)
| | - David Hernández-Álvarez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (D.H.-Á.); (T.L.A.-U.)
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (D.H.-Á.); (T.L.A.-U.)
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (I.A.-S.); (E.S.-O.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (I.A.-S.); (E.S.-O.)
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (D.H.-Á.); (T.L.A.-U.)
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (D.H.-Á.); (T.L.A.-U.)
| |
Collapse
|
19
|
Sierżant K, Piksa E, Konkol D, Lewandowska K, Asghar MU. Performance and antioxidant traits of broiler chickens fed with diets containing rapeseed or flaxseed oil and optimized quercetin. Sci Rep 2023; 13:14011. [PMID: 37640806 PMCID: PMC10462632 DOI: 10.1038/s41598-023-41282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
This study evaluated the effect of quercetin (Q) added to feed mixtures, at concentrations directly optimized for the peroxidability of dietary rapeseed (RO) and flaxseed oil (FLO), on performance and selected biomarkers of oxidative stress of broiler chickens. Ninety-six one-day-old Ross 308 broiler chicken males were randomly assigned to four groups (six replicates per treatment, four birds per cage, n = 24 per group): Group RO received diets containing rapeseed oil (RO) and group FLO received diets containing flaxseed oil (FLO); Group RO_Q and group FLO_Q received these same diets containing RO or FLO oils, supplemented with optimized quercetin (Q). Blood, pectoral muscles, and liver samples of chickens were collected after 35 days to determine: (1) the global indicators of antioxidant capacity: ferric reducing antioxidant power (FRAP), antiradical activity (DPPH·/ABTS·+), total antioxidant status (TAS), and glutathione peroxidase (GSH-Px); (2) the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD); and (3) the concentration of malondialdehyde (MDA). Data showed that the FLO diet did not affect the final performance parameters in relation to RO, but the optimized Q tended to improve the total body weight gain and the final body weight of broiler chickens (P = 0.10). The antioxidant traces analyzed in the blood (GSH-Px), plasma (FRAP, ABTS·+, DPPH·, TAS), serum (DPPH·), and pectoral muscles (SOD, CAT) of chickens were not altered by either Oil or Q factor. FLO supplementation increased MDA content in the liver of chickens (P < 0.05) and increased liver CAT activity, which was not improved by optimized Q. Meanwhile, the Oil × Q interaction suggests that optimized Q could reduce the liver burden and negative effects of oxidized lipid by-products associated with FLO diets. Our results indicate that optimizing the addition of natural polyphenols to feed may be a valuable alternative to the application of polyphenolic antioxidants in animal nutrition, allowing for an economical use of the antioxidant additives when customized to the peroxidability of fat sources, which is line to the conception of sustainable development covering 'The European Green Deal' and 'Farm to Fork Strategy'.
Collapse
Affiliation(s)
- Kamil Sierżant
- Department of Animal Nutrition and Feed Science, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland.
| | - Eliza Piksa
- Department of Animal Nutrition and Feed Science, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| | - Damian Konkol
- Department of Animal Nutrition and Feed Science, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| | - Kamila Lewandowska
- Department of Environmental Hygiene and Animal Welfare, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| | - Muhammad Umair Asghar
- Department of Animal Nutrition and Feed Science, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| |
Collapse
|
20
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
21
|
Balta C, Herman H, Ciceu A, Mladin B, Rosu M, Sasu A, Peteu VE, Voicu SN, Balas M, Gherghiceanu M, Dinischiotu A, Olah NK, Hermenean A. Phytochemical Profiling and Anti-Fibrotic Activities of the Gemmotherapy Bud Extract of Corylus avellana in a Model of Liver Fibrosis on Diabetic Mice. Biomedicines 2023; 11:1771. [PMID: 37371866 DOI: 10.3390/biomedicines11061771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, we aimed to explore the hepatoprotective effects of the gemmotherapy bud extract of Corylus avellana in a model of liver fibrosis on diabetic mice. An evaluation of total flavonoids and polyphenols contents and LC/MS analyses were performed. Experimental fibrosis was induced with CCl4 (2 mL/kg by i.p. injections twice a week for 7 weeks) in streptozotocin-induced diabetic mice. Our results showed a content of 6-7% flavonoids, while hyperoside and chlorogenic acids were highlighted in the bud extract. Toxic administration of CCl4 increased oxidative stress, mRNA expression of the transforming growth factor-β1 (TGF-β1) and Smad 2/3, and reduced Smad 7 expression. Furthermore, up-regulation of α-smooth muscle actin (α-SMA) revealed an activation of hepatic stellate cells (HSCs), while collagen I (Col I) up-regulation and matrix metalloproteinases (MMPs) unbalance led to an altered extracellular matrix enriched in collagen, confirmed as well by a trichrome stain and electron microscopy analysis. Treatment with gemmotherapy extract significantly restored the liver architecture and the antioxidant balance, and significantly decreased collagen deposits in the liver and improved the liver function. Our results suggest that Corylus avellana gemmotherapy extract may have anti-fibrotic effects and could be useful in the prevention and treatment of liver fibrosis. The hepatoprotective mechanism is based on HSC inhibition, a reduction in oxidative stress and liver damage, a downregulation of the TGF-β1/Smad signaling pathway and a MMPs/TIMP rebalance.
Collapse
Affiliation(s)
- Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University, 86 Rebreanu, 310414 Arad, Romania
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University, 86 Rebreanu, 310414 Arad, Romania
| | - Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University, 86 Rebreanu, 310414 Arad, Romania
| | - Bianca Mladin
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University, 86 Rebreanu, 310414 Arad, Romania
| | - Marcel Rosu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University, 86 Rebreanu, 310414 Arad, Romania
| | - Alciona Sasu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University, 86 Rebreanu, 310414 Arad, Romania
| | | | - Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Neli Kinga Olah
- Faculty of Pharmacy, Vasile Goldis Western University, 86 Rebreanu, 310414 Arad, Romania
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University, 86 Rebreanu, 310414 Arad, Romania
- Faculty of Medicine, Vasile Goldis Western University, 86 Rebreanu, 310414 Arad, Romania
| |
Collapse
|
22
|
Jia W, Wang X. Zanthoxylum bungeanum as a natural pickling spice alleviates health risks in animal-derived foods via up-regulating glutathione S-transferase, down-regulating cytochrome P450 1A. Food Chem 2023; 411:135535. [PMID: 36701916 DOI: 10.1016/j.foodchem.2023.135535] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endogenous aflatoxin B1 (AFB1) was quantified in five hundred and forty Hengshan goat meat samples (0.00 ± 23.09 μg kg-1). Zanthoxylum bungeanum (Z. bungeanum), as a natural pickling spice, can ameliorate the flavor of animal-derived food (goat meat). Yet, considering the direct administration of Z. bungeanum in AFB1-contaminated goat meat, the degradation mechanisms of AFB1 remain elusive. Here, UHPLC-Q-Orbitrap HRMS-based integrative metabolomics (LOQ: 1.74-59.54 μg kg-1) and proteomics analyses were executed to determine the effects of Z. bungeanum in the biotransformation of AFB1. Z. bungeanum (1.50 %, w/w) application mediated the metabolism of xenobiotics by cytochrome P450, significantly down-regulated cytochrome P450 1A and stimulated the up-regulation of glutathione S-transferase levels in AFB1-contaminated goat meat, leading to degradation of AFB1 (20.00-3.39 μg kg-1). Metabolomics assays indicated that Z. bungeanum up-regulated l-histidine (1.43-2.21 mg kg-1) and l-arginine, manifesting potential applications for the contribution of Z. bungeanum to the nutritional value of goat meat.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
23
|
Oswal M, Varghese R, Zagade T, Dhatrak C, Sharma R, Kumar D. Dietary supplements and medicinal plants in urolithiasis: diet, prevention, and cure. J Pharm Pharmacol 2023:7148056. [PMID: 37130140 DOI: 10.1093/jpp/rgac092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/16/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Urolithiasis has been a major health concern for centuries, primarily owing to the limited treatment options in the physician's armamentarium. However, various studies have underscored a lesser incidence of urolithiasis in cohorts predominantly consuming fruits and vegetables. This article aims to review various dietary plants, medicinal herbs and phytochemicals in the prevention and management of urolithiasis. METHODS To provide context and evidence, relevant publications were identified on Google Scholar, PubMed and Science-Direct using keywords such as urolithiasis, nephrolithiasis, urolithiasis, renal stones, phytochemicals and dietary plants. RESULTS Growing bodies of evidence suggest the incorporation of plant-based foods, medicinal and herbal supplements, and crude drugs containing phytochemicals into the staple diet of people. The anti-urolithiatic activity of these plant bioactives can be attributed to their antioxidant, antispasmodic, diuretic, and inhibitory effect on the crystallization, nucleation and crystal aggregation effects. These mechanisms would help alleviate the events and symptoms that aid in the development and progression of renal calculi. In addition, it will also avoid the exacerbation of secondary disorders like inflammation and injury, which can initiate a vicious circle in turn worsening the disease progression. CONCLUSION In conclusion, the results presented in the review demonstrate the promising role of various dietary plants, medicinal and herbal supplements, and phytochemicals in preventing and managing the precipitation of uroliths. However, more conclusive and cogent evidence from preclinical and clinical studies is required to substantiate their safety, efficacy and toxicity profiles in humans.
Collapse
Affiliation(s)
- Mitul Oswal
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Tanmay Zagade
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Chetan Dhatrak
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, 411038, India
| |
Collapse
|
24
|
Hendawy OM, Al-Sanea MM, Elbargisy RM, Rahman HU, Gomaa HAM, Mohamed AAB, Ibrahim MF, Kassem AM, Elmowafy M. Development of Olive Oil Containing Phytosomal Nanocomplex for Improving Skin Delivery of Quercetin: Formulation Design Optimization, In Vitro and Ex Vivo Appraisals. Pharmaceutics 2023; 15:1124. [PMID: 37111610 PMCID: PMC10145320 DOI: 10.3390/pharmaceutics15041124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
The objective of the current work was to fabricate, optimize and assess olive oil/phytosomal nanocarriers to improve quercetin skin delivery. Olive oil/phytosomal nanocarriers, prepared by a solvent evaporation/anti-solvent precipitation technique, were optimized using a Box-Behnken design, and the optimized formulation was appraised for in vitro physicochemical characteristics and stability. The optimized formulation was assessed for skin permeation and histological alterations. The optimized formulation (with an olive oil/PC ratio of 0.166, a QC/PC ratio of 1.95 and a surfactant concentration of 1.6%), and with a particle diameter of 206.7 nm, a zeta potential of -26.3 and an encapsulation efficiency of 85.3%, was selected using a Box-Behnken design. The optimized formulation showed better stability at ambient temperature when compared to refrigerating temperature (4 °C). The optimized formulation showed significantly higher skin permeation of quercetin when compared to an olive-oil/surfactant-free formulation and the control (~1.3-fold and 1.9-fold, respectively). It also showed alteration to skin barriers without remarkable toxicity aspects. Conclusively, this study demonstrated the use of olive oil/phytosomal nanocarriers as potential carriers for quercetin-a natural bioactive agent-to improve its skin delivery.
Collapse
Affiliation(s)
- Omnia M. Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ahmed A. B. Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed F. Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt
| | - Abdulsalam M. Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| |
Collapse
|
25
|
Rathi V, Tiwari I, Kulshreshtha R, S. K. Sagi S. Hypobaric hypoxia induced renal injury in rats: Prophylactic amelioration by quercetin supplementation. PLoS One 2023; 18:e0279304. [PMID: 36827356 PMCID: PMC9955615 DOI: 10.1371/journal.pone.0279304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/05/2022] [Indexed: 02/26/2023] Open
Abstract
The present study aims at assessing the effect of hypobaric hypoxia induced renal damage and associated renal functions in male SD rats. Further, this study was extended to explore the protective efficacy of quercetin in ameliorating the functional impairment in kidneys of rats under hypobaric hypoxia. Rats were exposed to 7620m (25000 ft.) at 25°C ±2 in a simulated hypobaric hypoxia chamber for different time durations (0h,1h, 3h, 6h, 12h, 24h and 48h) in order to optimize the time at which maximum renal damage would occur. The rats were exposed to hypoxia for 12h duration was considered as the optimum time, due to significant increase in oxidative stress (ROS, MDA) and renal metabolites (creatinine, BUN and uric acid) with remarkable reduction (p<0.001) in antioxidants (GSH) in plasma, as compared to other tested durations. Moreover, these findings were in support with the histopathology analysis of renal tissues. For optimum quercetin dose selection, the rats were administered with different doses of quercetin (25mg, 50mg, 100mg and 200mg/Kg BW) for 12h at 7620 m, 25°C ±2, 1h prior to hypoxia exposure. Quercetin 50mg/kg BW was considered as the optimum dose at which significant (p<0.001) reduction in oxidative stress levels followed by reduction in creatinine and BUN levels were obtained in plasma of the rats compared to hypoxia control rats. Quercetin prophylaxis (50mg/kg BW) stabilized the HIF-1α protein expression followed by reduced VEGF protein expression along with reduced levels of LDH (p<0.001) in the kidneys of rats compared to hypoxia control. Histopathological observations further substantiated these findings in reducing the renal tissue injury. The study findings revealed that, quercetin prophylaxis abrogates the possibility of hypobaric hypoxia induced renal injury by reducing the oxidative stress in rats.
Collapse
Affiliation(s)
- Vaishnavi Rathi
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Isha Tiwari
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Ritu Kulshreshtha
- Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Sarada S. K. Sagi
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
- * E-mail:
| |
Collapse
|
26
|
Improvement of Therapeutic Value of Quercetin with Chitosan Nanoparticle Delivery Systems and Potential Applications. Int J Mol Sci 2023; 24:ijms24043293. [PMID: 36834702 PMCID: PMC9959398 DOI: 10.3390/ijms24043293] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
This paper reviews recent studies investigating chitosan nanoparticles as drug delivery systems for quercetin. The therapeutic properties of quercetin include antioxidant, antibacterial and anti-cancer potential, but its therapeutic value is limited by its hydrophobic nature, low bioavailability and fast metabolism. Quercetin may also act synergistically with other stronger drugs for specific disease states. The encapsulation of quercetin in nanoparticles may increase its therapeutic value. Chitosan nanoparticles are a popular candidate in preliminary research, but the complex nature of chitosan makes standardisation difficult. Recent studies have used in-vitro, and in-vivo experiments to study the delivery of quercetin alone or in combination with another active pharmaceutical ingredient encapsulated in chitosan nanoparticles. These studies were compared with the administration of non-encapsulated quercetin formulation. Results suggest that encapsulated nanoparticle formulations are better. In-vivo or animal models simulated the type of disease required to be treated. The types of diseases were breast, lung, liver and colon cancers, mechanical and UVB-induced skin damage, cataracts and general oxidative stress. The reviewed studies included various routes of administration: oral, intravenous and transdermal routes. Although toxicity tests were often included, it is believed that the toxicity of loaded nanoparticles needs to be further researched, especially when not orally administered.
Collapse
|
27
|
Specian AFL, Tuttis K, Serpeloni JM, Ribeiro DL, Nunes HL, Tangerina M, Sannomiya M, Varanda EA, Vilegas W, Cólus CM. Chemical characterization of Brazilian savannah Byrsonima species (muricis) and their impact on genomic instability and chemopreventive effects. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 887:503586. [PMID: 37003647 DOI: 10.1016/j.mrgentox.2023.503586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
The identification of new drugs with few or no adverse effects is of great interest worldwide. In cancer therapy, natural products have been used as chemopreventive and chemotherapeutic agents. Plants from the Brazilian savannah belonging to the Byrsonima genus are popularly known as muricis and have attracted much attention due to their various pharmacological activities. However, there are currently no data on these plants concerning their use as chemopreventive or chemotherapeutic agents in human cell lines. The present study assessed the potential of B. correifolia, B. verbascifolia, B. crassifolia, and B. intermedia extracts as natural alternatives in the prevention and/or treatment of cancer. The chemical constituents present in each extract were analyzed by electrospray ionization-mass spectrometry (ESI-MSN). The mutagenic/antimutagenic (micronucleus assay), genotoxic/antigenotoxic (comet assay), apoptotic/necrotic (acridine orange/ethidium bromide uptake), and oxidative/antioxidative (CM-H2DCFDA) effects of the extracts and their influence on gene expression (RTqPCR) were investigated in nonmetabolizing gastric (MNP01) and metabolizing hepatocarcinoma (HepG2) epithelial cells to evaluate the effects of metabolism on the biological activities of the extracts. The genotoxicity, mutagenicity, and apoptotic effects observed in HepG2 cells with B. correifolia and B. verbascifolia extracts are probably associated with the presence of proanthocyanidins and amentoflavone. In MNP01 cells, none of the four extracts showed mutagenic effects. B. crassifolia and B. intermedia extracts exhibited strong antimutagenicity and enhanced detoxification in HepG2 cells and antioxidant capacities in both types of cells, possibly due to the presence of gallic and quinic acids, which possess chemopreventive properties. This study identifies for the first time B. correifolia and B. verbascifolia extracts as potential agents against hepatocarcinoma and B. crassifolia and B. intermedia extracts as putative chemopreventive agents.
Collapse
|
28
|
Ying L, Yan L, Huimin Z, Min L, Xiaojuan Z, Zhanjian W, Yaru Z. Tea polyphenols improve glucose metabolism in ceruloplasmin knockout mice via decreasing hepatic iron deposition. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lei Ying
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Liu Yan
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhou Huimin
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Li Min
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhang Xiaojuan
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Wang Zhanjian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhou Yaru
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
29
|
Bukke VN, Moola A, Serviddio G, Vendemiale G, Bellanti F. Nuclear factor erythroid 2-related factor 2-mediated signaling and metabolic associated fatty liver disease. World J Gastroenterol 2022; 28:6909-6921. [PMID: 36632321 PMCID: PMC9827579 DOI: 10.3748/wjg.v28.i48.6909] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/05/2022] [Accepted: 11/22/2022] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is a key driver in the development and progression of several diseases, including metabolic associated fatty liver disease (MAFLD). This condition includes a wide spectrum of pathological injuries, extending from simple steatosis to inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Excessive buildup of lipids in the liver is strictly related to oxidative stress in MAFLD, progressing to liver fibrosis and cirrhosis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of redox homeostasis. NRF2 plays an important role for cellular protection by inducing the expression of genes related to antioxidant, anti-inflammatory, and cytoprotective response. Consistent evidence demonstrates that NRF2 is involved in every step of MAFLD deve-lopment, from simple steatosis to inflammation, advanced fibrosis, and ini-tiation/progression of hepatocellular carcinoma. NRF2 activators regulate lipid metabolism and oxidative stress alleviating the fatty liver disease by inducing the expression of cytoprotective genes. Thus, modulating NRF2 activation is crucial not only in understanding specific mechanisms underlying MAFLD progression but also to characterize effective therapeutic strategies. This review outlined the current knowledge on the effects of NRF2 pathway, modulators, and mechanisms involved in the therapeutic implications of liver steatosis, inflammation, and fibrosis in MAFLD.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Archana Moola
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| |
Collapse
|
30
|
Mechanism of Action of a Chinese Herbal Compound Containing Quercetin, Luteolin, and Kaempferol in the Treatment of Vitiligo Based on Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7197533. [PMID: 36569347 PMCID: PMC9788887 DOI: 10.1155/2022/7197533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Objective This study aimed to explore the mechanisms of Baishi tablets (BSTs) in the treatment of vitiligo through network pharmacology-based identification and experimental validation. Methods In brief, the compounds and related targets of BST were extracted from the TCMSP database, and disease information was obtained from the OMIM, GeneCards, PharmGkb, TTD, and DrugBank databases. A Venn diagram was generated to visualize the common targets of BST and vitiligo. GO and KEGG analyses were performed to explore the potential biological processes and signaling pathways. The PPI network and core gene subnetwork were constructed using STRING and Cytoscape software. In addition, the measurement of apoptosis in PIG1 cells and intracellular reactive oxygen species were measured using quercetin (QU), luteolin (LU), and kaempferol (KA) to protect melanocytes from oxidative stress. Results A total of 55 compounds with 236 targets and 1205 vitiligo-related genes were obtained from the TCMSP database. GO and KEGG analyses were performed to explore the potential biological processes and signaling pathways, revealing that BST may cure vitiligo by influencing the biological processes of cellular oxidative stress and related signaling pathways. A critical subnetwork was obtained with 13 core genes by analyzing the PPI network, which includes HMOX1, CXCL8, CCL2, IL6, MAPK8, CASP3, PTGS2, AKT1, IL1B, MYC, TP53, IFNG, and IL2. Furthermore, a molecular docking analysis was conducted to simulate the combination of compounds and gene proteins, reflecting that QU, LU, and KA can strongly bind the core genes. Through a series of experimental validations, we found that QU, LU, and KA could attenuate H2O2-induced apoptosis in melanocytes. Further evidence revealed that QU, LU, and KA could enhance the scavenging of intracellular reactive oxygen species (ROS). Conclusion Based on the results of network pharmacology analysis and experimental verification, QA, LU, and KA can be utilized to protect PIG1 cells by inhibiting oxidative stress and reducing the intracellular level of ROS. This may explain the underlying mechanism of BST therapy and provide a novel strategy for the treatment of vitiligo.
Collapse
|
31
|
Calderaro A, Patanè GT, Tellone E, Barreca D, Ficarra S, Misiti F, Laganà G. The Neuroprotective Potentiality of Flavonoids on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232314835. [PMID: 36499159 PMCID: PMC9736131 DOI: 10.3390/ijms232314835] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD), due to its spread, has become a global health priority, and is characterized by senile dementia and progressive disability. The main cause of AD and other neurodegenerations (Huntington, Parkinson, Amyotrophic Lateral Sclerosis) are aggregated protein accumulation and oxidative damage. Recent research on secondary metabolites of plants such as polyphenols demonstrated that they may slow the progression of AD. The flavonoids' mechanism of action in AD involved the inhibition of acetylcholinesterase, butyrylcholinesterase, Tau protein aggregation, β-secretase, oxidative stress, inflammation, and apoptosis through modulation of signaling pathways which are implicated in cognitive and neuroprotective functions, such as ERK, PI3-kinase/Akt, NFKB, MAPKs, and endogenous antioxidant enzymatic systems. This review focuses on flavonoids and their role in AD, in terms of therapeutic potentiality for human health, antioxidant potential, and specific AD molecular targets.
Collapse
Affiliation(s)
- Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 3043 Cassino, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
32
|
Jiao Y, Williams A, Wei N. Quercetin ameliorated insulin resistance via regulating METTL3-mediated N6-methyladenosine modification of PRKD2 mRNA in skeletal muscle and C2C12 myocyte cell line. Nutr Metab Cardiovasc Dis 2022; 32:2655-2668. [PMID: 36058761 DOI: 10.1016/j.numecd.2022.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS N6-Methyladenosine (m6A) modification is involved in many pathological processes, including insulin resistance (IR). Quercetin (Que), a bioactive compound with strong antioxidant activity, has potential therapeutic effects on IR-related metabolic diseases. The aim of this study is to investigate the roles of m6A and Que in hyperinsulinemia. METHODS AND RESULTS Male C57Bl/6 mice received a high-fat diet (HFD) for 8 weeks to establish an IR model. Que treatment reduced the body weight, blood glucose, plasma triglycerides (TG) and serum insulin, ameliorated IR, and decreased oxidative stress in HFD-fed mice. Cellular IR model was established in C2C12 cells by palmitic acid (PA) stimulation, and a noncytotoxic dose of Que was found to promote glucose uptake and inhibit oxidative stress. Moreover, methyltransferase-like 3 (METTL3) and serine-threonine kinase protein kinase D2 (PRKD2) was downregulated in skeletal muscle of HFD-fed mouse and in PA-induced C2C12 cells. The online bioinformatic tool SRAMP revealed that there were multiple m6A modification sites in the PRKD2 mRNA sequence. Downregulation of METTL3 enhanced PRKD2 expression by reducing m6A level and promoting mRNA stability in PRKD2 mRNA transcript. Que decreased m6A, METTL3, and phosphorylated insulin receptor substrate 1 (p-IRS1) levels, increased the protein expression of PRKD2, glucose transporter type 4 (GLUT4) and p-AKT, promoted glucose uptake, and reduced oxidative stress in PA-induced C2C12 cells. Moreover, METTL3 overexpression or PRKD2 silence reversed the inhibitory effects of Que on the levels of MDA and p-IRS1 and the promotive effects on glucose uptake, superoxide dismutase (SOD), GSH and GLUT4 and p-AKT levels. CONCLUSION Que promoted glucose uptake, repressed oxidative stress and improved IR through METTL3-mediated m6A of PRKD2 mRNA.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi Province, China
| | - Albert Williams
- LKS Faculty of Medicine, The University of Hongkong, Hongkong 999077, China
| | - Ning Wei
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
33
|
Ősz BE, Jîtcă G, Ștefănescu RE, Pușcaș A, Tero-Vescan A, Vari CE. Caffeine and Its Antioxidant Properties-It Is All about Dose and Source. Int J Mol Sci 2022; 23:13074. [PMID: 36361861 PMCID: PMC9654796 DOI: 10.3390/ijms232113074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/16/2023] Open
Abstract
Caffeine is the most frequently used substance with a central nervous system stimulant effect, but its consumption is most often due to the intake of foods and drinks that contain it (coffee, tea, chocolate, food supplements with plant extracts of Guarana, Mate herba, Cola nuts). Due to its innocuity, caffeine is a safe xanthine alkaloid for human consumption in a wide range of doses, being used for its central nervous stimulating effect, lipolytic and diuresis-enhancing properties, but also as a permitted ergogenic compound in athletes. In addition to the mechanisms that explain the effects of caffeine on the targeted organ, there are many proposed mechanisms by which this substance would have antioxidant effects. As such, its consumption prevents the occurrence/progression of certain neurodegenerative diseases as well as other medical conditions associated with increased levels of reactive oxygen or nitrogen species. However, most studies that have assessed the beneficial effects of caffeine have used pure caffeine. The question, therefore, arises whether the daily intake of caffeine from food or drink has similar benefits, considering that in foods or drinks with a high caffeine content, there are other substances that could interfere with this action, either by potentiating or decreasing its antioxidant capacity. Natural sources of caffeine often combine plant polyphenols (phenol-carboxylic acids, catechins) with known antioxidant effects; however, stimulant drinks and dietary supplements often contain sugars or artificial sweeteners that can significantly reduce the effects of caffeine on oxidative stress. The objective of this review is to clarify the effects of caffeine in modulating oxidative stress and assess these benefits, considering the source and the dose administered.
Collapse
Affiliation(s)
- Bianca-Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ruxandra-Emilia Ștefănescu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amalia Pușcaș
- Department of Biochemistry and Chemistry of Environmental Factors, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Camil-Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
34
|
Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. Molecules 2022; 27:molecules27196545. [PMID: 36235082 PMCID: PMC9571766 DOI: 10.3390/molecules27196545] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Quercetin, as a flavonol compound found in plants, has a variety of biological activities. It is widely present in nature and the human diet, with powerful oxidative properties and biological activities. In this review, the antioxidant mechanism and broad-spectrum antibacterial properties of quercetin are revealed; the intervention effects of quercetin on pesticide poisoning and the pathway of action are investigated; the toxic effects of main mycotoxins on the collection and the detoxification process of quercetin are summarized; whether it is able to reduce the toxicity of mycotoxins is proved; and the harmful effects of heavy metal poisoning on the collection, the prevention, and control of quercetin are evaluated. This review is expected to enrich the understanding of the properties of quercetin and promote its better application in clinical practice.
Collapse
|
35
|
Rathod S, Arya S, Kanike S, Shah SA, Bahadur P, Tiwari S. Advances on nanoformulation approaches for delivering plant-derived antioxidants: A case of quercetin. Int J Pharm 2022; 625:122093. [PMID: 35952801 DOI: 10.1016/j.ijpharm.2022.122093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Oxidative stress has been implicated in tumorigenic, cardiovascular, neuro-, and age-related degenerative changes. Antioxidants minimize the oxidative damage through neutralization of reactive oxygen species (ROS) and other causative agents. Ever since the emergence of COVID-19, plant-derived antioxidants have received enormous attention, particularly in the Indian subcontinent. Quercetin (QCT), a bio-flavonoid, exists in the glycosylated form in fruits, berries and vegetables. The antioxidant potential of QCT analogs relates to the number of free hydroxyl groups in their structure. Despite presence of these groups, QCT exhibits substantial hydrophobicity. Formulation scientists have tested nanotechnology-based approaches for its improved solubilization and delivery to the intended site of action. By the virtue of its hydrophobicity, QCT gets encapsulated in nanocarriers carrying hydrophobic domains. Apart from passive accumulation, active uptake of such formulations into the target cells can be facilitated through well-studied functionalization strategies. In this review, we have discussed the approaches of improving solubilization and bioavailability of QCT with the use of nanoformulations.
Collapse
Affiliation(s)
- Sachin Rathod
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Shirisha Kanike
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Shailesh A Shah
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
36
|
Quercetin Attenuates Quinocetone-Induced Cell Apoptosis In Vitro by Activating the P38/Nrf2/HO-1 Pathway and Inhibiting the ROS/Mitochondrial Apoptotic Pathway. Antioxidants (Basel) 2022; 11:antiox11081498. [PMID: 36009217 PMCID: PMC9405464 DOI: 10.3390/antiox11081498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Quinocetone (QCT), a member of the quinoxaline 1,4-di-N-oxides (QdNOs) family, can cause genotoxicity and hepatotoxicity, however, the precise molecular mechanisms of QCT are unclear. This present study investigated the protective effect of quercetin on QCT-induced cytotoxicity and the underlying molecular mechanisms in human L02 and HepG2 cells. The results showed that quercetin treatment (at 7.5–30 μM) significantly improved QCT-induced cytotoxicity and oxidative damage in human L02 and HepG2 cells. Meanwhile, quercetin treatment at 30 μM significantly inhibited QCT-induced loss of mitochondrial membrane potential, an increase in the expression of the CytC protein and the Bax/Bcl-2 ratio, and an increase in caspases-9 and -3 activity, and finally improved cell apoptosis. Quercetin pretreatment promoted the expression of the phosphorylation of p38, Nrf2, and HO-1 proteins. Pharmacological inhibition of p38 significantly inhibited quercetin-mediated activation of the Nrf2/HO-1 pathway. Consistently, pharmacological inhibitions of the Nrf2 or p38 pathways both promoted QCT-induced cytotoxicity and partly abolished the protective effects of quercetin. In conclusion, for the first time, our results reveal that quercetin could improve QCT-induced cytotoxicity and apoptosis by activating the p38/Nrf2/HO-1 pathway and inhibiting the ROS/mitochondrial apoptotic pathway. Our study highlights that quercetin may be a promising candidate for preventing QdNOs-induced cytotoxicity in humans or animals.
Collapse
|
37
|
Xiong W, Li Y, Yao Y, Xu Q, Wang L. Antioxidant mechanism of a newly found phenolic compound from adlay (NDPS) in HepG2 cells via Nrf2 signalling. Food Chem 2022; 378:132034. [PMID: 35026486 DOI: 10.1016/j.foodchem.2021.132034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 12/31/2021] [Indexed: 11/27/2022]
Abstract
An in-depth understanding of the bioactive mechanism of phytochemicals has a good guiding value for the design of related functional foods. Herein, the effect of N1, N5- di-[(E)-p-coumaroyl]-spermidine (NDPS) originated from adlay on protecting HepG2 cells from oxidative stress was evaluated by MTT assay, western blot and qRT-PCR. After pre-treatment of NDPS, the activities of antioxidant enzymes (including superoxide dismutase, glutathione peroxidase, γ-glutamyl cysteine synthetase and heme oxygenase-1) were increased, as well as the level of proteins and gene expressions were elevated. Moreover, the γ-GCS, HO-1, SOD and GPx protein level were enhanced for the cells with NDPS treatment compared to both positive control and negative control groups. These findings suggested that NDPS could protect HepG2 cells from oxidative stress by increasing the antioxidant enzymes regulated by Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Wenfei Xiong
- College of Food Science and Engineering/ Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ya Li
- College of Food Science and Engineering/ Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yijun Yao
- College of Food Science and Engineering/ Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qian Xu
- College of Food Science and Engineering/ Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Lifeng Wang
- College of Food Science and Engineering/ Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
38
|
Bakrim WB, Nurcahyanti ADR, Dmirieh M, Mahdi I, Elgamal AM, El Raey MA, Wink M, Sobeh M. Phytochemical Profiling of the Leaf Extract of Ximenia americana var. caffra and Its Antioxidant, Antibacterial, and Antiaging Activities In Vitro and in Caenorhabditis elegans: A Cosmeceutical and Dermatological Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3486257. [PMID: 35387261 PMCID: PMC8979739 DOI: 10.1155/2022/3486257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
We previously annotated the phytochemical constituents of a root extract from Ximenia americana var. caffra and highlighted its hepatoprotective and hypoglycemic properties. We here extended our study on the leaf extract and identified its phytoconstituents using HPLC-PDA-ESI-MS/MS. In addition, we explored its antioxidant, antibacterial, and antiaging activities in vitro and in an animal model, Caenorhabditis elegans. Results from HPLC-PDA-ESI-MS/MS confirmed that the leaves contain 23 secondary metabolites consisting of condensed tannins, flavonol glycosides, flavone glycosides, and flavonol diglycosides. The leaf extract demonstrated significant antioxidant activity in vitro with IC50 value of 5 μg/mL in the DPPH assay and 18.32 μg/mL in the FRAP assay. It also inhibited four enzymes (collagenase, elastase, hyaluronidase, and tyrosinase) crucially involved in skin remodeling and aging processes with comparable activities to reference drugs along with four pure secondary metabolites identified from the extract. In accordance with the in vitro result, in vivo tests using two transgenic strains of C. elegans demonstrated its ability to reverse oxidative stress. Evidence included an increased survival rate in nematodes treated with the prooxidant juglone to 68.9% compared to the 24.8% in untreated worms and a reduced accumulation of intracellular reactive oxygen species (ROS) in a dose-dependent manner to 77.8%. The leaf extract also reduced levels of the expression of HSP 16.2 in a dose-dependent manner to 86.4%. Nuclear localization of the transcription factor DAF-16 was up to 10 times higher in worms treated with the leaf extract than in the untreated worms. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa (a pathogen in skin infections) and reduced the swimming and swarming mobilities in a dose-dependent fashion. In conclusion, leaves of X. americana are a promising candidate for preventing oxidative stress-induced conditions, including skin aging.
Collapse
Affiliation(s)
- Widad Ben Bakrim
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Malak Dmirieh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Ismail Mahdi
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdelbaset M. Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
39
|
A Comprehensive View on the Quercetin Impact on Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061873. [PMID: 35335239 PMCID: PMC8953922 DOI: 10.3390/molecules27061873] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) represents the third type of cancer in incidence and second in mortality worldwide, with the newly diagnosed case number on the rise. Among the diagnosed patients, approximately 70% have no hereditary germ-line mutations or family history of pathology, thus being termed sporadic CRC. Diet and environmental factors are to date considered solely responsible for the development of sporadic CRC; therefore; attention should be directed towards the discovery of preventative actions to combat the CRC initiation, promotion, and progression. Quercetin is a polyphenolic flavonoid plant secondary metabolite with a well-characterized antioxidant activity. It has been extensively reported as an anti-carcinogenic agent in the scientific literature, and the modulated targets of quercetin have been also characterized in the context of CRC, mainly in original research publications. In this fairly comprehensive review, we summarize the molecular targets of quercetin reported to date in in vivo and in vitro CRC models, while also giving background information about the signal transduction pathways that it up- and downregulates. Among the most relevant modulated pathways, the Wnt/β-catenin, PI3K/AKT, MAPK/Erk, JNK, or p38, p53, and NF-κB have been described. With this work, we hope to encourage further quests in the elucidation of quercetin anti-carcinogenic activity as single agent, as dietary component, or as pharmaconutrient delivered in the form of plant extracts.
Collapse
|
40
|
Wu H, Liu HN, Liu CQ, Zhou JZ, Liu XL, Zhang HZ. Hulless Black Barley as a Carrier of Probiotics and a Supplement Rich in Phenolics Targeting Against H 2O 2-Induced Oxidative Injuries in Human Hepatocarcinoma Cells. Front Nutr 2022; 8:790765. [PMID: 35155516 PMCID: PMC8833231 DOI: 10.3389/fnut.2021.790765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Lactic acid bacteria can provide benefits to human beings and transform phenolic substances to improve their potential functionality. It was of interest to develop black barley as a carrier of probiotics and nutraceutical supplement rich in more antioxidants. Due to fermentation, bacterial counting and free phenolic content in black barley increased to 9.54 ± 0.22 log cfu/mL and 5.61 ± 0.02 mg GAE/mL, respectively. Eleven phenolic compounds, including nine isoflavones and two nitrogenous compounds were characterized using UPLC-QTOF-MS, among which epicatechin, hordatine, and pelargonidin aglycone were largely enriched. Moreover, free phenolic extracts from fermented barley (F-BPE) played a greater role in scavenging DPPH radicals, reducing Fe3+ to Fe2+, and increasing oxygen radical absorbance capacity, compared phenolic extracts from unfermented barley [UF-BPE (1.94-, 1.71-, and 1.35-fold at maximum for F-BPE vs. UF-BPE, respectively)]. In hepatocarcinoma cells, F-BPE also better inhibited ROS production and improved cell viability, cell membrane integrity, SOD activity, and non-enzymatic antioxidant GSH redox status (2.85-, 3.28-, 2.05-, 6.42-, and 3.99-fold at maximum for F-BPE vs. UF-BPE, respectively).
Collapse
Affiliation(s)
- Han Wu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao-Nan Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chun-Quan Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian-Zhong Zhou
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hong-Zhi Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
41
|
Nrf2/ARE axis signalling in hepatocyte cellular death. Mol Biol Rep 2022; 49:4039-4053. [PMID: 35020121 DOI: 10.1007/s11033-022-07125-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
The Nrf2-ARE transcriptional pathway plays an important role amongst cellular defence systems regulating and ensuring adequacy of redox responses and oxidant signalling factors. Hepatocyte cellular death and injury is a prominent feature underlying liver pathologies. Diverse endogenous molecules and targets contribute to the outcome of cell survival and the consequent mode of cell death. Several research efforts focused on the confirmation of Nrf2 presence in cell death and its vital necessity against cell compromise, however, little they comprehend of such participation. Hepatocyte cell death modes discussed in this review including autophagy, apoptosis, necrosis, ferroptosis, pyroptosis, fibrosis and others, vary in response of the stimuli burdened. The current review presents a handful of highlights and crosstalk involved in the communication of Nrf2 signalling network with the "up to date" reported hepatocyte cell death modes and their underling mechanisms, and addressing key cellular networks of hepatocyte fate, through a perspective of Nrf2 as a critical transcriptional factor. Collectively, labelling the cross-transduction of Nrf2-ARE axis with key cell execution pathways could provide insights to therapeutic interventions and better research outcomes.
Collapse
|
42
|
Speisky H, Shahidi F, Costa de Camargo A, Fuentes J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants (Basel) 2022; 11:antiox11010133. [PMID: 35052636 PMCID: PMC8772813 DOI: 10.3390/antiox11010133] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids display a broad range of health-promoting bioactivities. Among these, their capacity to act as antioxidants has remained most prominent. The canonical reactive oxygen species (ROS)-scavenging mode of the antioxidant action of flavonoids relies on the high susceptibility of their phenolic moieties to undergo oxidation. As a consequence, upon reaction with ROS, the antioxidant capacity of flavonoids is severely compromised. Other phenol-compromising reactions, such as those involved in the biotransformation of flavonoids, can also markedly affect their antioxidant properties. In recent years, however, increasing evidence has indicated that, at least for some flavonoids, the oxidation of such residues can in fact markedly enhance their original antioxidant properties. In such apparent paradoxical cases, the antioxidant activity arises from the pro-oxidant and/or electrophilic character of some of their oxidation-derived metabolites and is exerted by activating the Nrf2–Keap1 pathway, which upregulates the cell’s endogenous antioxidant capacity, and/or, by preventing the activation of the pro-oxidant and pro-inflammatory NF-κB pathway. This review focuses on the effects that the oxidative and/or non-oxidative modification of the phenolic groups of flavonoids may have on the ability of the resulting metabolites to promote direct and/or indirect antioxidant actions. Considering the case of a metabolite resulting from the oxidation of quercetin, we offer a comprehensive description of the evidence that increasingly supports the concept that, in the case of certain flavonoids, the oxidation of phenolics emerges as a mechanism that markedly amplifies their original antioxidant properties. An overlooked topic of great phytomedicine potential is thus unraveled.
Collapse
Affiliation(s)
- Hernan Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
- Correspondence: (H.S.); (J.F.); Tel.: +56-(2)-2978-1519 (H.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
| | - Jocelyn Fuentes
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
- Faculty of Medicine, School of Kinesiology, Universidad Finis Terrae, Santiago 7501015, Chile
- Correspondence: (H.S.); (J.F.); Tel.: +56-(2)-2978-1519 (H.S.)
| |
Collapse
|
43
|
|
44
|
Jeevanandam J, Paramasivam E, Palanisamy A, Ragavendran S, Thangavel SN. Molecular Insights on Bioactive Compounds against Covid-19: A Network Pharmacological and Computational Study. Curr Comput Aided Drug Des 2022; 18:425-439. [PMID: 36111763 DOI: 10.2174/1573409918666220914092145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Network pharmacology based identification of phytochemicals in the form of cocktails against off-targets can play a significant role in the inhibition of SARS_CoV2 viral entry and its propagation. This study includes network pharmacology, virtual screening, docking and molecular dynamics to investigate the distinct antiviral mechanisms of effective phytochemicals against SARS_CoV2. METHODS SARS_CoV2 human-protein interaction network was explored from the BioGRID database and analysed using Cytoscape. Further analysis was performed to explore biological function, proteinphytochemical/ drugs network and up-down regulation of pathological host target proteins. This led to understand the antiviral mechanism of phytochemicals against SARS_CoV2. The network was explored through g: Profiler, EnrichR, CTD, SwissTarget, STITCH, DrugBank, BindingDB, STRING and SuperPred. Virtual screening of phytochemicals against potential antiviral targets such as M-Pro, NSP1, Receptor binding domain, RNA binding domain, and ACE2 discloses the effective interaction between them. Further, the binding energy calculations through simulation of the docked complex explain the efficiency and stability of the interactions. RESULTS The network analysis identified quercetin, genistein, luteolin, eugenol, berberine, isorhamnetin and cinnamaldehyde to be interacting with host proteins ACE2, DPP4, COMT, TUBGCP3, CENPF, BRD2 and HMOX1 which are involved in antiviral mechanisms such as viral entry, viral replication, host immune response, and antioxidant activity, thus indicating that herbal cocktails can effectively tackle the viral hijacking of the crucial biological functions of a human host. Further exploration through virtual screening, docking and molecular dynamics recognizes the effective interaction of phytochemicals such as punicalagin, scutellarin, and solamargine with their respective potential targets. CONCLUSION This work illustrates a probable strategy for the identification of phytochemical-based cocktails and off-targets which are effective against SARS_CoV 2.
Collapse
Affiliation(s)
- Jayanth Jeevanandam
- Molecular Biophysics lab, School of Chemical and Biotechnology, SASTRA Deemed to- be University, Thanjavur-613401, Tamilnadu, India
| | - Esackimuthu Paramasivam
- Molecular Biophysics lab, School of Chemical and Biotechnology, SASTRA Deemed to- be University, Thanjavur-613401, Tamilnadu, India
| | | | - Srikanth Ragavendran
- TATA-Realty Data science lab, School of Humanity and Science, SASTRA Deemed to-be University, Thanjavur-613401, Tamilnadu, India
| | | |
Collapse
|
45
|
Zargar S, Wani TA. Protective Role of Quercetin in Carbon Tetrachloride Induced Toxicity in Rat Brain: Biochemical, Spectrophotometric Assays and Computational Approach. Molecules 2021; 26:molecules26247526. [PMID: 34946608 PMCID: PMC8709345 DOI: 10.3390/molecules26247526] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Carbon tetrachloride (CCL4) induces oxidative stress by free radical toxicities, inflammation, and neurotoxicity. Quercetin (Q), on the other hand, has a role as anti-inflammatory, antioxidant, antibacterial, and free radical-scavenging. This study explored protection given by quercetin against CCL4 induced neurotoxicity in rats at given concentrations. Male Wistar rats were divided into four groups Group C: control group; Group CCL4: given a single oral dose of 1 mL/kg bw CCL4; Group Q: given a single i.p injection of 100 mg/kg bw quercetin; and Group Q + CCL4: given a single i.p injection of 100 mg/kg bw quercetin before two hours of a single oral dose of 1 mL/kg bw CCL4. The results from brain-to-body weight ratio, morphology, lipid peroxidation, brain urea, ascorbic acid, reduced glutathione, sodium, and enzyme alterations (aspartate aminotransferase (AST), alanine aminotransferase (ALT), catalase, and superoxide dismutase) suggested alterations by CCL4 and a significant reversal of these parameters by quercetin. In silico analysis of quercetin with various proteins was conducted to understand the molecular mechanism of its protection. The results identified by BzScore4 D showed moderate binding between quercetin and the following receptors: glucocorticoids, estrogen beta, and androgens and weak binding between quercetin and the following proteins: estrogen alpha, Peroxisome proliferator-activated receptors (PPARγ), Herg k+ channel, Liver x, mineralocorticoid, progesterone, Thyroid α, and Thyroid β. Three-dimensional/four-dimensional visualization of binding modes of quercetin with glucocorticoids, estrogen beta, and androgen receptors was performed. Based on the results, a possible mechanism is hypothesized for quercetin protection against CCL4 toxicity in the rat brain.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence:
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
46
|
Wei X, Yang D, Xing Z, Zhao C, Wang L, Fan Y, Nie H, Liu H. Quercetin loaded liposomes modified with galactosylated chitosan prevent LPS/D-GalN induced acute liver injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112527. [PMID: 34857306 DOI: 10.1016/j.msec.2021.112527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/02/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Quercetin (Que) has been proved to have various biological activities, including anti-oxidation, anti-inflammation and anti-virus, showing great potential in liver protection. However, its water insolubility leads to low bioavailability. Therefore, the development of a suitable drug delivery fashion is imminent. In recent years, liposomes have been widely used in the fields of drug delivery and gene transfer thanks to the cell membrane like structure, easy surface-modification and high encapsulation efficiency. Herein, we fabricated Que loaded anionic liposomes. Galactosylated chitosan (GC) was simply attached to the surfaces of liposomes through electrostatic adsorption to achieve targeted delivery by binding to asialoglycoprotein receptor (ASGPR). The results showed that Que loaded liposomes modified with GC (GC-Que-Lipo) could enrich the liver in mice through tail vein injection. Liposomes could achieve sustained drug release and GC-Que-Lipo promoted M2 polarization of macrophages. More importantly, it could maintain low content of AST, ALT, ALP and high level of GSH while reducing lipid oxidation, thereby protecting the liver from damage in acute liver injury model. In general, we expect to be able to acquire targeted and efficient delivery of quercetin through a facile approach, thus fulfill the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Depeng Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Huan Nie
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China.
| |
Collapse
|
47
|
Asgharian P, Tazehkand AP, Soofiyani SR, Hosseini K, Martorell M, Tarhriz V, Ahangari H, Cruz-Martins N, Sharifi-Rad J, Almarhoon ZM, Ydyrys A, Nurzhanyat A, Yessenbekova A, Cho WC. Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4393266. [PMID: 34777687 PMCID: PMC8580629 DOI: 10.1155/2021/4393266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is a lethal malignancy cancer, and its mortality rates have been increasing worldwide. Diagnosis of this cancer is complicated, as it does not often present symptoms, and most patients present an irremediable tumor having a 5-year survival rate after diagnosis. Regarding treatment, many concerns have also been raised, as most tumors are found at advanced stages. At present, anticancer compounds-rich foods have been utilized to control PC. Among such bioactive molecules, flavonoid compounds have shown excellent anticancer abilities, such as quercetin, which has been used as an adjunctive or alternative drug to PC treatment by inhibitory or stimulatory biological mechanisms including autophagy, apoptosis, cell growth reduction or inhibition, EMT, oxidative stress, and enhancing sensitivity to chemotherapy agents. The recognition that this natural product has beneficial effects on cancer treatment has boosted the researchers' interest towards more extensive studies to use herbal medicine for anticancer purposes. In addition, due to the expensive cost and high rate of side effects of anticancer drugs, attempts have been made to use quercetin but also other flavonoids for preventing and treating PC. Based on related studies, it has been found that the quercetin compound has significant effect on cancerous cell lines as well as animal models. Therefore, it can be used as a supplementary drug to treat a variety of cancers, particularly pancreatic cancer. This review is aimed at discussing the therapeutic effects of quercetin by targeting the molecular signaling pathway and identifying antigrowth, cell proliferation, antioxidative stress, EMT, induction of apoptotic, and autophagic features.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | | | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - Ablaikhanova Nurzhanyat
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
48
|
Azarova IE, Klyosova EY, Polonikov AV. [Polymorphic variants of glutathione reductase - new genetic markers of predisposition to type 2 diabetes mellitus]. TERAPEVT ARKH 2021; 93:1164-1170. [PMID: 36286817 DOI: 10.26442/00403660.2021.10.201101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
AIM To study the associations of three common single nucleotide variants of the gene encoding antioxidant system enzyme, glutathione reductase GSR with a predisposition to type 2 diabetes (T2D). MATERIALS AND METHODS The observational mono-center transverse controlled study involved 1032 type 2 diabetics (640 women, 392 men; mean age 61.14.8 years) and 1056 healthy volunteers (676 women, 380 men; mean age 60.96.2 years). Eating habits were evaluated retrospectively according to questionnaire data. A 10 ml blood sample was drawn from all participants in the study for genetic and biochemical tests. Genotyping was done with the use of the iPLEX technology on MassArray System. RESULTS We first identified the relationship of the polymorphisms rs2551715, rs2911678, rs3757918 of the GSR gene with a reduced risk of developing T2D in the Russian population. At the same time, the protective effects of the variants of the glutathione reductase gene manifested only in individuals with normal body weight provided they consumed fresh vegetables and fruits, whereas in those with insufficient consumption of plant foods, as well as in all overweight and obese patients, the protective effect of GSR was not observed. In patients with T2D, the plasma levels of hydrogen peroxide and the glutathione dimer were sharply increased compared with the controls. We also found that the rs2551715 polymorphism was associated with a lower concentration of hydrogen peroxide in the blood plasma of patients with T2D, while SNP rs2911678 was associated with a decrease in the concentration of the oxidized form of glutathione. Bioinformatical analysis confirmed the positive effect of alternative alleles on GSR expression and revealed the closest protein partners of the enzyme and their joint participation in the metabolism of acetyl-CoA, the catabolism of hydrogen peroxide and the control of cellular redox homeostasis. CONCLUSION Polymorphic variants of the GSR gene rs2551715, rs2911678, rs3757918 are associated with a predisposition to T2D, but their relationship with the disease is modulated by the consumption of fresh vegetables and fruits and depends on body mass index.
Collapse
|
49
|
George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants (Basel) 2021; 10:antiox10091455. [PMID: 34573087 PMCID: PMC8466984 DOI: 10.3390/antiox10091455] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition where the body cells multiply in an uncontrollable manner. Chemoprevention of cancer is a broad term that describes the involvement of external agents to slow down or suppress cancer growth. Synthetic and natural compounds are found useful in cancer chemoprevention. The occurrence of global cancer type varies, depending on many factors such as environmental, lifestyle, genetic etc. Cancer is often preventable in developed countries with advanced treatment modalities, whereas it is a painful death sentence in developing and low-income countries due to the lack of modern therapies and awareness. One best practice to identify cancer control measures is to study the origin and risk factors associated with common types. Based on these factors and the health status of patients, stage, and severity of cancer, type of treatment is decided. Even though there are well-established therapies, cancer still stands as one of the major causes of death and a public health burden globally. Research shows that most cancers can be prevented, treated, or the incidence can be delayed. Phytochemicals from various medicinal plants were reported to reduce various risk factors associated with different types of cancer through their chemopreventive role. This review highlights the role of bioactive compounds or natural products from plants in the chemoprevention of cancer. There are many plant based dietary factors involved in the chemoprevention process. The review discusses the process of carcinogenesis and chemoprevention using plants and phytocompounds, with special reference to five major chemopreventive phytocompounds. The article also summarizes the important chemopreventive mechanisms and signaling molecules involved in the process. Since the role of antioxidants in chemoprevention is inevitable, an insight into plant-based antioxidant compounds that fight against this dreadful disease at various stages of carcinogenesis and disease progression is discussed. This will fill the research gap in search of chemopreventive natural compounds and encourage scientists in clinical trials of anticancer agents from plants.
Collapse
|
50
|
Morris G, Gamage E, Travica N, Berk M, Jacka FN, O'Neil A, Puri BK, Carvalho AF, Bortolasci CC, Walder K, Marx W. Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response. Free Radic Biol Med 2021; 172:101-122. [PMID: 34062263 DOI: 10.1016/j.freeradbiomed.2021.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of psychiatric and neurodegenerative disorders is complex and multifactorial. Polyphenols possess a range of potentially beneficial mechanisms of action that relate to the implicated pathways in psychiatric and neurodegenerative disorders. The aim of this review is to highlight the emerging clinical trial and preclinical efficacy data regarding the role of polyphenols in mental and brain health, elucidate novel mechanisms of action including the gut microbiome and gene expression, and discuss the factors that may be responsible for the mixed clinical results; namely, the role of interindividual differences in treatment response and the potentially pro-oxidant effects of some polyphenols. Further clarification as part of larger, well conducted randomized controlled trials that incorporate precision medicine methods are required to inform clinical efficacy and optimal dosing regimens.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|