1
|
Faqir Y, Li Z, Gul T, Zahoor, Jiang Z, Yu L, Tan C, Chen X, Ma J, Feng J. Uranium's hazardous effects on humans and recent developments in treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118043. [PMID: 40080936 DOI: 10.1016/j.ecoenv.2025.118043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/15/2025]
Abstract
Uranium, a naturally occurring element, is predominantly recognized for its role as fuel in both civilian and military energy sectors. Concerns have been raised regarding the adverse environmental impacts and health risks associated with uranium mining due to the exposure it causes. Such exposure leads to systemic toxicity, affecting pulmonary, hepatic, renal, reproductive, neurological, and bone health. This review identifies significant research gaps regarding detoxification methods for uranium contamination and recommends further advancements, including genetic modification and exploration of plant compounds. A comprehensive review of published research materials from diverse sources of uranium, including various treatments and hazardous impacts on the human body, was conducted. Additionally, a PRISMA analysis was performed in this study. This review emphasizes the importance of collaboration and the formulation of research-informed regulations to effectively safeguard vulnerable communities from the consequences of contamination. Public discourse often emphasizes the significance of radiotoxicity; however, the non-radioactive chemotoxicity of uranium has been identified as a significant risk factor for environmental exposures, contingent upon species, enrichment, and exposure route. Given these serious health consequences, several methods are being investigated to ameliorate uranium toxicity. In response to these concerns, several techniques, such as phytomedicinal treatments, biochemical approaches, and chelation therapy, have been investigated to minimize the adverse effects of uranium exposure in the human body.
Collapse
Affiliation(s)
- Yahya Faqir
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ziang Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Talaal Gul
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zahoor
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ziwei Jiang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Chengjia Tan
- School of Life Science and Technology, Mianyang Teachers' College, Mianyang 621000, China
| | - Xi Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang 621000, China
| | - Jiahua Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jiafu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang 621000, China.
| |
Collapse
|
2
|
Chen X, Dai CM, Zhang B, Zhang WX, Huang ZH, Jiang JY, Hu SQ, Ma JH, Feng JF. RGD hydrogel-loaded ADSC extracellular vesicles mitigate uranium-induced renal injury via TLR4/NF-κB pathway inhibition. J Nanobiotechnology 2025; 23:114. [PMID: 39962465 PMCID: PMC11834392 DOI: 10.1186/s12951-025-03176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Uranium-induced kidney damage represents a major health concern due to its toxic effects, including mitochondrial dysfunction and inflammation. Mitochondrial DNA (mtDNA)-mediated pyroptosis is a critical pathway in the pathogenesis of renal injury. The toll-like receptor 4 / nuclear factor-kappa B (TLR4/NF-κB) signaling pathway plays a pivotal role in this process. Recent studies have shown that extracellular vesicles derived from adipose-derived stem cells (ADSCs-EVs) possess therapeutic potential due to their anti-inflammatory and regenerative properties. Incorporating ADSCs-EVs into arginine-glycine-aspartate (RGD), hydrogels may enhance their stability and therapeutic efficacy in vivo. This study aims explore the molecular mechanism by which RGD hydrogel-loaded ADSCs-EVs modulate mtDNA-mediated pyroptosis by suppressing the TLR4/NF-κB signaling pathway to alleviate uranium-induced kidney injury. RESULTS Repairing mitochondrial dysfunction was found to mitigate mtDNA leakage, thereby inhibiting renal pyroptosis. ADSCs-EVs alleviated uranium-induced renal cell damage by suppressing the TLR4/NF-κB signaling pathway. In vivo animal experiments confirmed that RGD hydrogel-loaded ADSCs-EVs enhanced their stability in the body and improved their therapeutic efficacy against kidney injury. CONCLUSION Our findings reveal that RGD hydrogel-loaded ADSCs-EVs effectively inhibit the TLR4/NF-κB signaling pathway, preventing mtDNA-mediated pyroptosis and alleviating uranium-induced kidney damage. This elucidation provides a novel strategy for utilizing RGD hydrogel-loaded ADSCs-EVs in treating kidney injury.
Collapse
Affiliation(s)
- Xi Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Affiliated School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan, 621000, China
| | - Chun-Mei Dai
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Affiliated School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan, 621000, China
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Bin Zhang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Affiliated School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan, 621000, China
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Wan-Xin Zhang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Affiliated School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan, 621000, China
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zheng-Hong Huang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Affiliated School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan, 621000, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiu-Yi Jiang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Affiliated School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan, 621000, China
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shi-Qi Hu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Jia-Hua Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| | - Jia-Fu Feng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Affiliated School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan, 621000, China.
| |
Collapse
|
3
|
Xie X, Fu G, Liu Y, Fan C, Tan S, Huang H, Yan J, Jin L. Hedgehog pathway negatively regulated depleted uranium-induced nephrotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:3833-3845. [PMID: 38546377 DOI: 10.1002/tox.24242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 06/12/2024]
Abstract
Depleted uranium (DU) retains the radiological toxicities, which accumulates preferentially in the kidneys. Hedgehog (Hh) pathway plays a critical role in tissue injury. However, the role of Hh in DU-induced nephrotoxicity was still unclear. This study was carried out to investigate the effect of Gli2, which was an important transcription effector of Hh signaling, on DU induced nephrotoxicity. To clarify it, CK19 positive tubular epithelial cells specific Gli2 conditional knockout (KO) mice model was exposed to DU, and then histopathological damage and Hh signaling pathway activation was analyzed. Moreover, HEK-293 T cells were exposed to DU with Gant61 or Gli2 overexpression, and cytotoxicity of DU as analyzed. Results showed that DU caused nephrotoxicity accompanied by activation of Hh signaling pathway. Meanwhile, genetic KO of Gli2 reduced DU-induced nephrotoxicity by normalizing biochemical indicators and reducing Hh pathway activation. Pharmacologic inhibition of Gli1/2 by Gant61 reduced DU induced cytotoxicity by inhibiting apoptosis, ROS formation and Hh pathway activation. However, overexpression of Gli2 aggravated DU-induced cytotoxicity by increasing the levels of apoptosis and ROS formation. Taken together, these results revealed that Hh signaling negatively regulated DU-inducted nephrotoxicity, and that inhibition of Gli2 might serve as a promising nephroprotective target for DU-induced kidney injury.
Collapse
Affiliation(s)
- Xueying Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Guoquan Fu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yuxin Liu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Caixia Fan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shanshan Tan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Huarong Huang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Junyan Yan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Lifang Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
4
|
Zhang Y, Zhao H, Fu X, Wang K, Yang J, Zhang X, Wang H. The role of hydrogen sulfide regulation of pyroptosis in different pathological processes. Eur J Med Chem 2024; 268:116254. [PMID: 38377826 DOI: 10.1016/j.ejmech.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Pyroptosis is one kind of programmed cell death in which the cell membrane ruptures and subsequently releases cell contents and pro-inflammatory cytokines including IL-1β and IL-18. Pyroptosis is caused by many types of pathological stimuli, such as hyperglycemia (HG), oxidative stress, and inflammation, and is mediated by gasdermin (GSDM) protein family. Increasing evidence indicates that pyroptosis plays an important role in multiple diseases, such as cancer, kidney diseases, inflammatory diseases, and cardiovascular diseases. Therefore, the regulation of pyroptosis is crucial for the occurrence, development, and treatment of many diseases. Hydrogen sulfide (H2S) is a biologically active gasotransmitter following carbon monoxide (CO) and nitrogen oxide (NO) in mammalian tissues. So far, three enzymes, including 3-mercaptopyruvate sulphurtransferase (3-MST), cystathionine γ- Lyase (CSE), and Cystine β-synthesis enzyme (CBS), have been found to catalyze the production of endogenous H2S in mammals. H2S has been reported to have multiple biological functions including anti-inflammation, anti-oxidative stress, anti-apoptosis and so on. Hence, H2S is involved in various physiological and pathological processes. In recent years, many studies have demonstrated that H2S plays a critical role by regulating pyroptosis in various pathological processes, such as ischemia-reperfusion injury, alcoholic liver disease, and diabetes cardiomyopathy. However, the relevant mechanism has not been completely understood. Therefore, elucidating the mechanism by which H2S regulates pyroptosis in diseases will help understand the pathogenesis of multiple diseases and provide important new avenues for the treatment of many diseases. Here, we reviewed the progress of H2S regulation of pyroptosis in different pathological processes, and analyzed the molecular mechanism in detail to provide a theoretical reference for future related research.
Collapse
Affiliation(s)
- Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Kexiao Wang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Jiahao Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | | | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
5
|
Ragab SMM, Almohaimeed HM, Alghriany AAI, Khalil NSA, Abd-Allah EA. Protective effect of Moringa oleifera leaf ethanolic extract against uranyl acetate-induced testicular dysfunction in rats. Sci Rep 2024; 14:932. [PMID: 38195615 PMCID: PMC10776666 DOI: 10.1038/s41598-023-50854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Uranyl acetate (UA) is used in civilian and military applications, predisposing it to wide dispersion in ecosystems. Using high-performance liquid chromatography, gas chromatography-mass spectrometry, and 2,2-Diphenyl-1-picrylhydrazyl scavenging radical analysis, we confirmed that Moringa oleifera leaf ethanolic extract (MLEE) is rich in biologically active phytochemicals. Thus, this study aims to investigate the possible defensive effect of MLEE against UA-induced testicular dysfunction. To achieve this, rats were divided randomly and evenly into three groups for 14 days. The control group received no treatment, while the UA group received a single intraperitoneal injection of UA at a dose of 5 mg/kg BW dissolved in saline on the 12th day of the experiment, followed by no treatment the following day. The MLEE + UA group received daily oral administration of MLEE (300 mg/kg BW) dissolved in distilled water before exposure to UA intoxication. The disruption observed in the pituitary-gonadal axis of UA-intoxicated rats was characterized by a significant decrease in luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol 17beta levels. Additionally, there was a notable increase in malondialdehyde and a decrease in catalase, superoxide dismutase, reduced glutathione, and nitric oxide, accompanied by an up-regulation in the immuno-expression of nuclear factor-kappa B, indicating a disturbance in the redox balance. The TUNEL assay confirmed a substantial rise in apoptotic cell numbers in the UA group. Testicular histopathological changes, excessive collagen deposition, and reduced glycogen content were evident following UA exposure. However, supplementation with MLEE effectively countered these mentioned abnormalities. MLEE is proposed to combat the toxicological molecular targets in the UA-affected testis by restoring the balance between oxidants and antioxidants while obstructing the apoptotic cascade. MLEE contains an abundance of redox-stabilizing and cytoprotective phytochemicals that have the potential to counteract the mechanistic pathways associated with UA exposure. These findings encourage further research into other plausible protective aspects of Moringa oleifera against the UA challenge.
Collapse
Affiliation(s)
- Sohair M M Ragab
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Sciences, Assiut University, Assiut, Egypt
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Nasser S Abou Khalil
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Elham A Abd-Allah
- Department of Zoology, Faculty of Science, New Valley University, El-Kharga, Egypt
| |
Collapse
|
6
|
The damage mechanism of uranium(VI) to HK-2 cells. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
7
|
Yang Y, Lu M, Qian J, Xu Y, Li B, Le G, Xie Y. Dietary Methionine Restriction Promotes Fat Browning and Attenuates Hepatic Lipid Accumulation in High-Choline-Fed Mice Associated with the Improvement of Thyroid Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1447-1463. [PMID: 36632677 DOI: 10.1021/acs.jafc.2c05535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study aims to explore the influences of a methionine-restricted diet (MRD) on fat browning and hepatic lipid accumulation in mice fed with a high-choline diet (HCD) and their possible mechanisms. ICR mice were randomly divided into three groups and fed with a normal diet (0.86% methionine + 0.20% choline, ND), HCD (0.86% methionine + 1.20% choline), or MRD (0.17% methionine + 1.20% choline) for 90 consecutive days. We found that MRD reduced body weight and fat mass; increased heat production and ambulatory locomotor activity; reduced hepatic and plasma lipid levels, hepatic fatty infiltration area, and adipocyte volume in white and brown adipose tissue; promoted fat browning, especially upregulated gene and protein expression levels of uncoupling protein 1 (UCP1); and promoted fat catabolism and inhibited fat anabolism in the liver and adipose tissue. Moreover, MRD increased antioxidant defenses and reduced inflammatory cytokine levels in the thyroid, blood, and liver. Furthermore, MRD improved thyroid morphological structure, promoted the synthesis and secretion of thyroid hormones, and enhanced the actions of thyroid hormones on its receptor organs (liver and adipose tissue). These findings suggested that MRD promoted fat browning and attenuated hepatic lipid accumulation in HCD mice associated with the improvement of thyroid function.
Collapse
Affiliation(s)
- Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Manman Lu
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jing Qian
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
8
|
Hu Q, Zhang R, Zheng J, Song M, Gu C, Li W. Hydrogen sulfide attenuates uranium-induced kidney cells pyroptosis via upregulation of PI3K/AKT/mTOR signaling. J Biochem Mol Toxicol 2023; 37:e23220. [PMID: 36094782 DOI: 10.1002/jbt.23220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
We have identified that hydrogen sulfide (H2 S), a gaseous mediator, plays a crucial role in antioxidative, anti-inflammatory, and cytoprotective effects on uranium (U)-triggered rat nephrotoxicity. Pyroptosis is a special mode of inflammation and programmed cell death involved in the activation of inflammasome and Caspase-1 and the release of inflammatory cytokines. This study aims to confirm whether H2 S can alleviate U-induced rat NRK-52E cell pyroptosis and to investigate the H2 S underlying regulatory mechanism. Our results indicate that pretreatment with NaHS (an H2 S donor) significantly inhibited U-increased reactive oxygen species level, NLRP3, apoptosis-related speck-like protein consisting of a caspase recruitment domain (ASC), and cleaved Caspase-1 proteins expression, gasdermin D messenger RNA (GSDMD mRNA) expression, interleukin (IL)-1β and IL-18 contents, lactate dehydrogenase leakage, and numbers of double-positive dying kidney cells. NaHS application evidently augmented phosphorylated PI3K, AKT, and mTOR expression as well as ratios of their respective phosphorylation to the corresponding total proteins which were downregulated by U treatment. But, LY294002 (a PI3K inhibitor) administration effectively abrogated the consequences of NaHS on the levels of p-PI3K, cleaved Caspase-1, ASC and NLRP3 proteins, GSDMD mRNA expression, and (IL)-1β and IL-18 contents. Simultaneously, LY294002 significantly reversed the effects of NaHS on U-induced pyroptosis rate and cytotoxicity. Taken together, these results indicate that H2 S ameliorated U-triggered NRK-52E cells pyroptosis via upregulation of PI3K/AKT/mTOR pathway, suggesting a novel role for H2 S in the management of nephrotoxicity caused by U exposure.
Collapse
Affiliation(s)
- Qiaoni Hu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Rui Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Jifang Zheng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Menghui Song
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| |
Collapse
|
9
|
Verma R, Fu M, Yang G, Wu L, Wang R. Hydrogen Sulfide Promotes Adipocyte Differentiation, Hyperplasia, and Hypertrophy. ENGINEERING 2023; 20:36-48. [DOI: 10.1016/j.eng.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
de Mello AH, Liu T, Garofalo RP, Casola A. Hydrogen Sulfide Donor GYY4137 Rescues NRF2 Activation in Respiratory Syncytial Virus Infection. Antioxidants (Basel) 2022; 11:1410. [PMID: 35883901 PMCID: PMC9311616 DOI: 10.3390/antiox11071410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause severe respiratory illness in infants, immunocompromised, and older adults. Despite its burden, no vaccine or specific treatment is available. RSV infection is associated with increased reactive oxygen species (ROS) production, degradation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), and decreased antioxidant enzymes (AOEs), leading to oxidative damage and lung injury. Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays a physiological role in numerous cellular processes and a protective role in multiple pathological conditions, displaying vasoactive, cytoprotective, anti-inflammatory, and antioxidant activities. H2S can promote NRF2 activation through the sulfhydration of Kelch-like ECH-associated protein 1, the cytoplasmic repressor of NRF2. Here we investigated whether increasing cellular H2S levels could rescue NRF2 and NRF2-dependent gene expression in RSV-infected primary airway epithelial cells. We found that treatment with the H2S donor GYY4137 significantly increased NRF2 levels and AOEs gene expression by decreasing KEAP1 levels, and by modulating pathways involved in RSV-induced NRF2 degradation, such as NRF2 ubiquitination, and promyelocytic leukemia (PML) protein levels. These results suggest that the administration of exogenous H2S can positively impact the altered redox balance associated with RSV infection, which represents an important determinant of RSV-induced lung disease.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
11
|
Wolf PG, Cowley ES, Breister A, Matatov S, Lucio L, Polak P, Ridlon JM, Gaskins HR, Anantharaman K. Diversity and distribution of sulfur metabolic genes in the human gut microbiome and their association with colorectal cancer. MICROBIOME 2022; 10:64. [PMID: 35440042 PMCID: PMC9016944 DOI: 10.1186/s40168-022-01242-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Recent evidence implicates microbial sulfidogenesis as a potential trigger of colorectal cancer (CRC), highlighting the need for comprehensive knowledge of sulfur metabolism within the human gut. Microbial sulfidogenesis produces genotoxic hydrogen sulfide (H2S) in the human colon using inorganic (sulfate) and organic (taurine/cysteine/methionine) substrates; however, the majority of studies have focused on sulfate reduction using dissimilatory sulfite reductases (Dsr). RESULTS Here, we show that genes for microbial sulfur metabolism are more abundant and diverse than previously observed and are statistically associated with CRC. Using ~ 17,000 bacterial genomes from publicly available stool metagenomes, we studied the diversity of sulfur metabolic genes in 667 participants across different health statuses: healthy, adenoma, and carcinoma. Sulfidogenic genes were harbored by 142 bacterial genera and both organic and inorganic sulfidogenic genes were associated with carcinoma. Significantly, the anaerobic sulfite reductase (asr) genes were twice as abundant as dsr, demonstrating that Asr is likely a more important contributor to sulfate reduction in the human gut than Dsr. We identified twelve potential pathways for reductive taurine metabolism and discovered novel genera harboring these pathways. Finally, the prevalence of metabolic genes for organic sulfur indicates that these understudied substrates may be the most abundant source of microbially derived H2S. CONCLUSIONS Our findings significantly expand knowledge of microbial sulfur metabolism in the human gut. We show that genes for microbial sulfur metabolism in the human gut are more prevalent than previously known, irrespective of health status (i.e., in both healthy and diseased states). Our results significantly increase the diversity of pathways and bacteria that are associated with microbial sulfur metabolism in the human gut. Overall, our results have implications for understanding the role of the human gut microbiome and its potential contributions to the pathogenesis of CRC. Video abstract.
Collapse
Affiliation(s)
- Patricia G Wolf
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Elise S Cowley
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Breister
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah Matatov
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Luke Lucio
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Paige Polak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | | |
Collapse
|
12
|
Guéguen Y, Frerejacques M. Review of Knowledge of Uranium-Induced Kidney Toxicity for the Development of an Adverse Outcome Pathway to Renal Impairment. Int J Mol Sci 2022; 23:ijms23084397. [PMID: 35457214 PMCID: PMC9030063 DOI: 10.3390/ijms23084397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
An adverse outcome pathway (AOP) is a conceptual construct of causally and sequentially linked events, which occur during exposure to stressors, with an adverse outcome relevant to risk assessment. The development of an AOP is a means of identifying knowledge gaps in order to prioritize research assessing the health risks associated with exposure to physical or chemical stressors. In this paper, a review of knowledge was proposed, examining experimental and epidemiological data, in order to identify relevant key events and potential key event relationships in an AOP for renal impairment, relevant to stressors such as uranium (U). Other stressors may promote similar pathways, and this review is a necessary step to compare and combine knowledge reported for nephrotoxicants. U metal ions are filtered through the glomerular membrane of the kidneys, then concentrate in the cortical and juxtaglomerular areas, and bind to the brush border membrane of the proximal convoluted tubules. U uptake by epithelial cells occurs through endocytosis and the sodium-dependent phosphate co-transporter (NaPi-IIa). The identified key events start with the inhibition of the mitochondria electron transfer chain and the collapse of mitochondrial membrane potential, due to cytochrome b5/cytochrome c disruption. In the nucleus, U directly interacts with negatively charged DNA phosphate, thereby inducing an adduct formation, and possibly DNA strand breaks or cross-links. U also compromises DNA repair by inhibiting zing finger proteins. Thereafter, U triggers the Nrf2, NF-κB, or endoplasmic reticulum stress pathways. The resulting cellular key events include oxidative stress, DNA strand breaks and chromosomal aberrations, apoptosis, and pro-inflammatory effects. Finally, the main adverse outcome is tubular damage of the S2 and S3 segments of the kidneys, leading to tubular cell death, and then kidney failure. The attribution of renal carcinogenesis due to U is controversial, and specific experimental or epidemiological studies must be conducted. A tentative construction of an AOP for uranium-induced kidney toxicity and failure was proposed.
Collapse
|
13
|
Hu Q, Zheng J, Xu XN, Gu C, Li W. Uranium induces kidney cells apoptosis via reactive oxygen species generation, endoplasmic reticulum stress and inhibition of PI3K/AKT/mTOR signaling in culture. ENVIRONMENTAL TOXICOLOGY 2022; 37:899-909. [PMID: 35044038 DOI: 10.1002/tox.23453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 05/20/2023]
Abstract
Uranium (U) induces generation of excessive intracellular reactive oxygen species (ROS), which is generally considered as a possible mediator of U-triggered kidney tubular cells injury and nephrotoxicity. Our goal is designed to elucidate that the precise molecular mechanism in ROS downstream is association with U-induced NRK-52E cells apoptosis. The results show that U intoxication in NRK-52E cells reduced cell activity and triggered apoptosis, as demonstrated by flow cytometry and apoptotic marker cleaved Caspase-3 expression. U exposure triggered endoplasmic reticulum (ER) stress, which is involvement of apoptosis determined by marker molecules including GRP78, PERK, IRE1, ATF6, CHOP, cleaved Caspase-12, and Caspase-3. Administration of antioxidant N-acetylcysteine (NAC) effectively blocked U-triggered ROS generation, ER stress, and apoptosis. U contamination evidently decreased the expression of phosphorylation PI3K, AKT, and mTOR and ratios of their respective phosphorylation to the corresponding total proteins. Application of a PI3K activator IGF-1 significantly abolished these adverse effects of U intoxication on PI3K/AKT/mTOR signaling and subsequently abrogated U-triggered apoptosis. NAC also effectively reversed down-regulation of phosphorylated PI3K induced by U exposure. Taken together, these data strongly suggest that U treatment induces NRK-52E cells apoptosis through ROS production, ER stress, and down-regulation of PI3K/AKT/mTOR signaling. Targeting ROS formation-, ER stress-, and PI3K/AKT/mTOR pathway-mediated apoptosis could be a novel approach for attenuating U-triggered nephrotoxicity.
Collapse
Affiliation(s)
- Qiaoni Hu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Jifang Zheng
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Xiao Na Xu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
14
|
Li W, Yu L, Fu B, Chu J, Chen C, Li X, Ma J, Tang W. Protective effects of Polygonatum kingianum polysaccharides and aqueous extract on uranium-induced toxicity in human kidney (HK-2) cells. Int J Biol Macromol 2022; 202:68-79. [PMID: 35033528 DOI: 10.1016/j.ijbiomac.2022.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/18/2022]
Abstract
The current detoxification options of uranium, a toxic radioactive heavy metal, have obvious side effects. Polygonatum kingianum (PK), a natural product with the function of antioxidant, may be effective in detoxification and prevention of uranium-induced nephrotoxicity. Here, we studied the protective effects of PK polysaccharides (PKP) and aqueous extract (PKAE) on uranium-induced toxicity in human kidney (HK-2) cells. First, the physicochemical properties of PKP and PKAE were characterized. Assays on cultured cells demonstrated that pretreatment with PKP and PKAE significantly increased metabolic activity, relieved morphological impairments, and alleviated apoptosis. The impairments caused by uranium exposure were ameliorated (mitochondrial membrane potential and ATP level increased while reactive oxygen species decreased). Molecular mechanistic studies revealed that PKP and PKAE alleviated uranium-induced cytotoxicity by regulating mitochondria-mediated apoptosis and the GSK-3β/Fyn/Nrf2 pathway. Collectively, our data support the preventive and therapeutic applications of PKP and PKAE for uranium poisoning.
Collapse
Affiliation(s)
- Wenjing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Bo Fu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jian Chu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Chun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Xijian Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Jiahua Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| |
Collapse
|
15
|
Zheng J, Hu Q, Zou X, Xu G, Cao Y. Uranium induces kidney cells pyroptosis in culture involved in ROS/NLRP3/Caspase-1 signaling. Free Radic Res 2022; 56:40-52. [DOI: 10.1080/10715762.2022.2032021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jifang Zheng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Qiaoni Hu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Xia Zou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Gang Xu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Yunchang Cao
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| |
Collapse
|
16
|
Duan J, Xiang L, Yang Z, Chen L, Gu J, Lu K, Ma D, Zhao H, Yi B, Zhao H, Ning J. Methionine Restriction Prevents Lipopolysaccharide-Induced Acute Lung Injury via Modulating CSE/H 2S Pathway. Nutrients 2022; 14:322. [PMID: 35057502 PMCID: PMC8777780 DOI: 10.3390/nu14020322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) result in high mortality, whereas effective treatments are limited. Methionine restriction (MR) has been reported to offer various benefits against multiple pathological processes of organ injuries. However, it remains unknown whether MR has any potential therapeutic value for ALI/ARDS. The current study was set to investigate the therapeutic potential of MR on lipopolysaccharide (LPS)-induced ALI and its underlying mechanisms. We found that MR attenuated LPS-induced pulmonary edema, hemorrhage, atelectasis, and alveolar epithelial cell injuries in mice. MR upregulated cystathionine-gamma-lyase (CSE) expression and enhanced the production of hydrogen sulfide (H2S). MR also inhibited the activation of Toll-like receptors 4 (TLR4)/NF-κB/NOD-like receptor protein 3 (NLRP3), then reduced IL-1β, IL-6, and TNF-α release and immune cell infiltration. Moreover, the protective effects of MR on LPS-induced ALI were abrogated by inhibiting CSE, whereas exogenous H2S treatment alone mimicked the protective effects of MR in Cse-/- mice after LPS administration. In conclusion, our findings showed that MR attenuated LPS-induced lung injury through CSE and H2S modulation. This work suggests that developing MR towards clinical use for ALI/ARDS patients may be a valuable strategy.
Collapse
Affiliation(s)
- Jiaxiang Duan
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Lunli Xiang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Zhen Yang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Li Chen
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Jianteng Gu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Kaizhi Lu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK; (D.M.); (H.Z.)
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK; (D.M.); (H.Z.)
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Hongwen Zhao
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Jiaolin Ning
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| |
Collapse
|
17
|
Mendiola PJ, Naik JS, Bosc LVG, Gardiner AS, Birg A, Kanagy NL. Hydrogen Sulfide Actions in the Vasculature. Compr Physiol 2021; 11:2467-2488. [PMID: 34558672 PMCID: PMC11758848 DOI: 10.1002/cphy.c200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hydrogen sulfide (H2 S) is a small, gaseous molecule with poor solubility in water that is generated by multiple pathways in many species including humans. It acts as a signaling molecule in many tissues with both beneficial and pathological effects. This article discusses its many actions in the vascular system and the growing evidence of its role to regulate vascular tone, angiogenesis, endothelial barrier function, redox, and inflammation. Alterations in some disease states are also discussed including potential roles in promoting tumor growth and contributions to the development of metabolic disease. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
Affiliation(s)
| | - Jay S. Naik
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Amy S. Gardiner
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Aleksandr Birg
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Nancy L. Kanagy
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
18
|
Lv S, Liu H, Wang H. Exogenous Hydrogen Sulfide Plays an Important Role by Regulating Autophagy in Diabetic-Related Diseases. Int J Mol Sci 2021; 22:ijms22136715. [PMID: 34201520 PMCID: PMC8268438 DOI: 10.3390/ijms22136715] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a vital cell mechanism which plays an important role in many physiological processes including clearing long-lived, accumulated and misfolded proteins, removing damaged organelles and regulating growth and aging. Autophagy also participates in a variety of biological functions, such as development, cell differentiation, resistance to pathogens and nutritional hunger. Recently, autophagy has been reported to be involved in diabetes, but the mechanism is not fully understood. Hydrogen sulfide (H2S) is a colorless, water-soluble, flammable gas with the typical odor of rotten eggs, which has been known as a highly toxic gas for many years. However, it has been reported recently that H2S, together with nitric oxide and carbon monoxide, is an important gas signal transduction molecule. H2S has been reported to play a protective role in many diabetes-related diseases, but the mechanism is not fully clear. Recent studies indicate that H2S plays an important role by regulating autophagy in many diseases including cancer, tissue fibrosis diseases and glycometabolic diseases; however, the related mechanism has not been fully studied. In this review, we summarize recent research on the role of H2S in regulating autophagy in diabetic-related diseases to provide references for future related research.
Collapse
|
19
|
Lv S, Wang Z, Wang J, Wang H. Exogenous Hydrogen Sulfide Plays an Important Role Through Regulating Autophagy in Ischemia/Reperfusion Injury. Front Mol Biosci 2021; 8:681676. [PMID: 34055892 PMCID: PMC8155623 DOI: 10.3389/fmolb.2021.681676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is characterized by limiting blood supply to organs, then restoring blood flow and reoxygenation. It leads to many diseases, including acute kidney injury, myocardial infarction, circulatory arrest, ischemic stroke, trauma, and sickle cell disease. Autophagy is an important and conserved cellular pathway, in which cells transfer the cytoplasmic contents to lysosomes for degradation. It plays an important role in maintaining the balance of cell synthesis, decomposition and reuse, and participates in a variety of physiological and pathological processes. Hydrogen sulfide (H2S), along with carbon monoxide (CO) and nitric oxide (NO), is an important gas signal molecule and regulates various physiological and pathological processes. In recent years, there are many studies on the improvement of I/R injury by H2S through regulating autophagy, but the related mechanisms are not completely clear. Therefore, we summarize the related research in the above aspects to provide theoretical reference for future in-depth research.
Collapse
Affiliation(s)
- Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhu Wang
- Henan Technician College of Medicine and Health, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
20
|
Li X, Yu P, Yu Y, Xu T, Liu J, Cheng Y, Yang X, Cui X, Yin C, Liu Y. Hydrogen sulfide ameliorates high glucose-induced pro-inflammation factors in HT-22 cells: Involvement of SIRT1-mTOR/NF-κB signaling pathway. Int Immunopharmacol 2021; 95:107545. [PMID: 33765609 DOI: 10.1016/j.intimp.2021.107545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Hyperglycemia-induced neuroinflammation promotes the progression of diabetic encephalopathy. Hydrogen sulfide (H2S) exerts anti-inflammatory and neuroprotective activities against neurodegenerative diseases. However, the effects of H2S on hyperglycemia-induced neuroinflammation has not been investigated in neurons. Herein, by using HT-22 neuronal cells, we found that high glucose decreased the levels of endogenous H2S and its catalytic enzyme, cystathionine-β-synthase (CBS). The administration of sodium hydrosulfide (NaHS, a H2S donor) or S-adenosylmethionine (SAMe, an allosteric activator of CBS) restored high glucose-induced downregulation of CBS and H2S levels. Importantly, H2S ameliorated high glucose-induced inflammation in HT-22 cells, evidenced by NaHS or SAMe inhibited the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) expression in HT-22 cells exposed to high glucose. Furthermore, NaHS or SAMe restored the SIRT1 level and the phosphorylation of mTOR and NF-κB p65 disturbed by high glucose in HT-22 cells, suggesting H2S reversed high glucose-induced alteration of SIRT1-mTOR/NF-κB signaling pathway. Our results demonstrated that exogenous H2S treatment or enhancing endogenous H2S synthesis prevents the inflammatory processes in the neurons with the exposure of high glucose. Therefore, increasing the H2S level using NaHS or SAMe might shed light on the prophylactic treatment of diabetic encephalopathy.
Collapse
Affiliation(s)
- Xinrui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Peiquan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuan Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xia Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4113, Australia
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
21
|
Ling K, Zhou W, Guo Y, Hu G, Chu J, Xie F, Li Y, Wang W. H 2S attenuates oxidative stress via Nrf2/NF-κB signaling to regulate restenosis after percutaneous transluminal angioplasty. Exp Biol Med (Maywood) 2021; 246:226-239. [PMID: 32996350 PMCID: PMC7871122 DOI: 10.1177/1535370220961038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Restenosis after angioplasty of peripheral arteries is a clinical problem involving oxidative stress. Hydrogen sulfide (H2S) participates in oxidative stress regulation and activates nuclear factor erythroid 2-related factor 2 (Nrf2). This study investigated the effect of H2S and Nrf2 on restenosis-induced arterial injury. Using an in vivo rat model of restenosis, we investigated whether H2S inhibits restenosis after percutaneous transluminal angioplasty (PTA) and the oxidative stress-related mechanisms implicated therein. The involvement of Nrf2 was explored using Nrf2-shRNA. Neointimal formation and the deposition of elastic fibers were assessed histologically. Inflammatory cytokine secretion and the expression of proteins associated with oxidative stress and inflammation were evaluated. The artery of rats subjected to restenosis showed increased arterial intimal thickness, with prominent elastic fiber deposition. Sodium hydrosulfide (NaHS), an H2S donor, counteracted these changes in vivo. Restenosis caused a decrease in anti-oxidative stress signaling. This phenomenon was inhibited by NaHS, but Nrf2-shRNA counteracted the effects of NaHS. In terms of inflammation, inflammatory cytokines were upregulated, whereas NaHS suppressed the induced inflammatory reaction. Similarly, Nrf2 downregulation blocked the effect of NaHS. In vitro studies using aortic endothelial and vascular smooth muscle cells isolated from experimental animals showed consistent results as those of in vivo studies, and the participation of the nuclear factor-kappa B signaling pathway was demonstrated. Collectively, H2S played a role in regulating post-PTA restenosis by alleviating oxidative stress, modulating anti-oxidant defense, and targeting Nrf2-related pathways via nuclear factor-kappa B signaling.
Collapse
Affiliation(s)
- Ken Ling
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guofu Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Chu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Xie
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
22
|
Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V. Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis. Antioxidants (Basel) 2020; 9:antiox9121303. [PMID: 33353117 PMCID: PMC7767317 DOI: 10.3390/antiox9121303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence indicates that the dysregulation of cellular redox homeostasis and chronic inflammatory processes are implicated in the pathogenesis of kidney and brain disorders. In this light, endogenous dipeptide carnosine (β-alanyl-L-histidine) and hydrogen sulfide (H2S) exert cytoprotective actions through the modulation of redox-dependent resilience pathways during oxidative stress and inflammation. Several recent studies have elucidated a functional crosstalk occurring between kidney and the brain. The pathophysiological link of this crosstalk is represented by oxidative stress and inflammatory processes which contribute to the high prevalence of neuropsychiatric disorders, cognitive impairment, and dementia during the natural history of chronic kidney disease. Herein, we provide an overview of the main pathophysiological mechanisms related to high levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and neurotoxins, which play a critical role in the kidney–brain crosstalk. The present paper also explores the respective role of H2S and carnosine in the modulation of oxidative stress and inflammation in the kidney–brain axis. It suggests that these activities are likely mediated, at least in part, via hormetic processes, involving Nrf2 (Nuclear factor-like 2), Hsp 70 (heat shock protein 70), SIRT-1 (Sirtuin-1), Trx (Thioredoxin), and the glutathione system. Metabolic interactions at the kidney and brain axis level operate in controlling and reducing oxidant-induced inflammatory damage and therefore, can be a promising potential therapeutic target to reduce the severity of renal and brain injuries in humans.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| |
Collapse
|
23
|
Ma M, Wang R, Xu L, Xu M, Liu S. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. ENVIRONMENT INTERNATIONAL 2020; 145:106107. [PMID: 32932066 DOI: 10.1016/j.envint.2020.106107] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Uranium contamination is a global health concern. Regarding natural or anthropogenic uranium contamination, the major sources of concern are groundwater, mining, phosphate fertilizers, nuclear facilities, and military activities. Many epidemiological and laboratory studies have demonstrated that environmental and occupational uranium exposure can induce multifarious health problems. Uranium exposure may cause health risks because of its chemotoxicity and radiotoxicity in natural or anthropogenic scenarios: the former is generally thought to play a more significant role with regard to the natural uranium exposure, and the latter is more relevant to enriched uranium exposure. The understanding of the health risks and underlying toxicological mechanisms of uranium remains at a preliminary stage, and many controversial findings require further research. In order to present state-of-the-art status in this field, this review will primarily focus on the chemotoxicity of uranium, rather than its radiotoxicity, as well as the involved toxicological mechanisms. First, the natural or anthropogenic uranium contamination scenarios will be briefly summarized. Second, the health risks upon natural uranium exposure, for example, nephrotoxicity, bone toxicity, reproductive toxicity, hepatotoxicity, neurotoxicity, and pulmonary toxicity, will be discussed based on the reported epidemiological cases and laboratory studies. Third, the recent advances regarding the toxicological mechanisms of uranium-induced chemotoxicity will be highlighted, including oxidative stress, genetic damage, protein impairment, inflammation, and metabolic disorder. Finally, the gaps and challenges in the knowledge of uranium-induced chemotoxicity and underlying mechanisms will be discussed.
Collapse
Affiliation(s)
- Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Ngowi EE, Sarfraz M, Afzal A, Khan NH, Khattak S, Zhang X, Li T, Duan SF, Ji XY, Wu DD. Roles of Hydrogen Sulfide Donors in Common Kidney Diseases. Front Pharmacol 2020; 11:564281. [PMID: 33364941 PMCID: PMC7751760 DOI: 10.3389/fphar.2020.564281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) plays a key role in the regulation of physiological processes in mammals. The decline in H2S level has been reported in numerous renal disorders. In animal models of renal disorders, treatment with H2S donors could restore H2S levels and improve renal functions. H2S donors suppress renal dysfunction by regulating autophagy, apoptosis, oxidative stress, and inflammation through multiple signaling pathways, such as TRL4/NLRP3, AMP-activated protein kinase/mammalian target of rapamycin, transforming growth factor-β1/Smad3, extracellular signal-regulated protein kinases 1/2, mitogen-activated protein kinase, and nuclear factor kappa B. In this review, we summarize recent developments in the effects of H2S donors on the treatment of common renal diseases, including acute/chronic kidney disease, renal fibrosis, unilateral ureteral obstruction, glomerulosclerosis, diabetic nephropathy, hyperhomocysteinemia, drug-induced nephrotoxicity, metal-induced nephrotoxicity, and urolithiasis. Novel H2S donors can be designed and applied in the treatment of common renal diseases.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Muhammad Sarfraz
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Attia Afzal
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- College of Pharmacy, Henan University, Kaifeng, China
| | - Saadullah Khattak
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin Zhang
- College of Pharmacy, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- College of Pharmacy, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Diseases and Bio-Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
25
|
He X, Zheng Z, Zhang F, Xu C, Xu W, Ye L, Sun X, Zhou Z, Shen J. Mitochondria-Targeted Chemosensor to Discriminately and Continuously Visualize HClO and H 2S with Multiresponse Fluorescence Signals for In Vitro and In Vivo Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:7886-7897. [PMID: 35019529 DOI: 10.1021/acsabm.0c01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive molecules play a vital role in the process of regulating the redox balance in the intracellular environment, especially in maintaining the function of organelles. To explore the association and function of bioactive molecules in organelles, it is essential to develop a chemosensor tool that uses multiresponse fluorescence signals to distinguish between and track two related bioactive molecules in organelles. However, the development of sensors with multiresponse functions is still a challenging task. Herein, we present a unique and practical single chemosensor (Mito-CTC) that can monitor HClO (as an oxidative substance) and H2S (as a reductive substance) in mitochondria (organelle targeting) with multiresponse fluorescence signals. The response of the sensor to HClO and H2S changes from red to green and blue channel emission simultaneously, respectively, thereby providing a specific signal response to reductive/oxidative substances in the mitochondria. Using a single chemosensor, we have realized multichannel bioimaging of the exogenous and endogenous HClO and H2S in cellular mitochondria. Additionally, the excellent properties of the sensor Mito-CTC can be used to reveal the relationship between HClO and H2S in mitochondria. Meanwhile, Mito-CTC has been endowed with the ability to image in bacteria and zebrafish attributed to the good permeability and low cytotoxicity. Expectantly, drug-induced liver injury (DILI) caused by fluoxetine (an antidepressant drug) and the degree of drug-induced toxicity to the liver were evaluated using Mito-CTC through discriminating and imaging HClO, indicating that Mito-CTC has the potential function of evaluating the toxicity of the drug to the liver.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ziman Zheng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Feifan Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Chuchu Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lisong Ye
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoshuai Sun
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhan Zhou
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
26
|
Beck KF, Pfeilschifter J. Gasotransmitter synthesis and signalling in the renal glomerulus. Implications for glomerular diseases. Cell Signal 2020; 77:109823. [PMID: 33152441 DOI: 10.1016/j.cellsig.2020.109823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023]
Abstract
Glomerular injury is a hallmark of kidney diseases such as diabetic nephropathy, IgA nephropathy or other forms of glomerulonephritis. Glomerular endothelial cells, mesangial cells, glomerular epithelial cells (podocytes) and, in an inflammatory context, infiltrating immune cells crosstalk to mediate signalling processes in the glomerulus. Under physiological conditions, mesangial cells act by the control of extracellular matrix production and degradation, by the synthesis of growth factors and by preserving a well-defined crosstalk with glomerular podocytes and endothelial cells to regulate glomerular structure and function. It is well known that mesangial cells are able to amplify an inflammatory process by the formation of cytokines, reactive oxygen species (ROS) and nitric oxide (NO). This exaggerated reaction may result in a vicious cycle with subsequent damage of neighboured podocytes and endothelial cells, loss of the filtration barrier and, finally destruction of the whole glomerulus. Unfortunately, all efforts to develop new therapies for the treatment of glomerular diseases by controlling unbridled ROS or NO production directly had so far no success. However, on-going research on ROS and NO defined these autacoids more as important signalling molecules than as endogenously produced cytotoxic compounds. New findings on signalling activities of ROS, NO but also hydrogen sulfide (H2S) and carbon monoxide (CO) supported this paradigm shift. Because of their similar chemical properties and their similar signal transduction capacities, NO, H2S and CO are meanwhile designated as the group of gasotransmitters. In this review, we describe the current knowledge of the signalling properties of gasotransmitters with a focus on glomerular cells and their role in glomerular diseases.
Collapse
Affiliation(s)
- Karl-Friedrich Beck
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Germany.
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Dashner-Titus EJ, Schilz JR, Simmons KA, Duncan TR, Alvarez SC, Hudson LG. Differential response of human T-lymphocytes to arsenic and uranium. Toxicol Lett 2020; 333:269-278. [PMID: 32866568 PMCID: PMC7590629 DOI: 10.1016/j.toxlet.2020.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 08/23/2020] [Indexed: 01/10/2023]
Abstract
Elevated levels of arsenic and uranium have been detected in water sources near abandoned uranium mines in the Southwest. Evidence suggests uranium exposure increases the likelihood of immune dysfunction and this study investigates the impact of arsenic and uranium on human immune cell lines. Concentration-dependent cytotoxicity occurred following exposure to arsenite, whereas cells remained viable after 48 -h treatment with up to 100 μM uranyl acetate despite uptake of uranium into cells. Arsenite stimulated an oxidative stress response as detected by Nrf-2 nuclear accumulation and induction of HMOX-1 and NQO1, which was not detected with up to 30 μM uranyl acetate. Cellular oxidative stress can promote DNA damage and arsenite, but not uranium, stimulated DNA damage as measured by pH2AX. Arsenic enhanced the cytotoxic response to etoposide suggesting an inhibition of DNA repair, unlike uranium. Similarly, uranium did not inhibit PARP-1 activity. Because uranium reportedly stimulates oxidative stress, DNA damage and cytotoxicity in adherent epithelial cells, the current study suggests distinct cell type differences in response to uranium that may relate to generation of oxidative stress and associated downstream consequences. Delineating the actions of uranium across different cell targets will be important for understanding the potential health effects of uranium exposures.
Collapse
Affiliation(s)
- Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| | - Jodi R Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| | - Karen A Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| | - Tammi R Duncan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| | - Sandra C Alvarez
- Early Childhood Services Center, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
28
|
Ran Y, Wang S, Zhao Y, Li J, Ran X, Hao Y. A review of biological effects and treatments of inhaled depleted uranium aerosol. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 222:106357. [PMID: 32755761 DOI: 10.1016/j.jenvrad.2020.106357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Depleted uranium (DU) is primarily used for DU bombs and DU tanks in the military. Aerosol inhalation is considered the primary route of DU exposure. Although laboratory tests have confirmed that inhalation of DU aerosol can cause lung, kidney, and other organ damage, epidemiological studies have found no conclusive evidence that persons in areas with prolonged exposure to DU-containing bombs are affected. After the body inhaled DU aerosols, we first clear the insoluble DU through whole-lung lavage (WLL). Then we eliminate the soluble uranium by the chelating agent. Besides, reducing DU damage to tissues and cells through drugs is also an important treatment method. In future research, emphasis should be placed on the damage mechanism of DU aerosol, the laboratory and clinical research of DU chelating agents, the research on the combination of DU chelating agent and WLL, and the research and development of new drugs to prevent DU damage.
Collapse
Affiliation(s)
- Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xinze Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
29
|
Wiegman CH, Li F, Ryffel B, Togbe D, Chung KF. Oxidative Stress in Ozone-Induced Chronic Lung Inflammation and Emphysema: A Facet of Chronic Obstructive Pulmonary Disease. Front Immunol 2020; 11:1957. [PMID: 32983127 PMCID: PMC7492639 DOI: 10.3389/fimmu.2020.01957] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke and characterized by chronic inflammation, alveolar destruction (emphysema) and bronchiolar obstruction. Ozone is a gaseous constituent of urban air pollution resulting from photochemical interaction of air pollutants such as nitrogen oxide and organic compounds. While acute exposure to ozone induces airway hyperreactivity and neutrophilic inflammation, chronic ozone exposure in mice causes activation of oxidative pathways resulting in cell death and a chronic bronchial inflammation with emphysema, mimicking cigarette smoke-induced COPD. Therefore, the chronic exposure to ozone has become a model for studying COPD. We review recent data on mechanisms of ozone induced lung disease focusing on pathways causing chronic respiratory epithelial cell injury, cell death, alveolar destruction, and tissue remodeling associated with the development of chronic inflammation and AHR. The initial oxidant insult may result from direct effects on the integrity of membranes and organelles of exposed epithelial cells in the airways causing a stress response with the release of mitochondrial reactive oxygen species (ROS), DNA, and proteases. Mitochondrial ROS and mitochondrial DNA activate NLRP3 inflammasome and the DNA sensors cGAS and STING accelerating cell death pathways including caspases with inflammation enhancing alveolar septa destruction, remodeling, and fibrosis. Inhibitors of mitochondrial ROS, NLRP3 inflammasome, DNA sensor, cell death pathways, and IL-1 represent novel therapeutic targets for chronic airways diseases underlined by oxidative stress.
Collapse
Affiliation(s)
- Coen H. Wiegman
- Section of Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Dieudonnée Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
- ArtImmune SAS, Orléans, France
| | - Kian Fan Chung
- Section of Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Wang H, Shi X, Qiu M, Lv S, Zheng H, Niu B, Liu H. Hydrogen Sulfide Plays an Important Role by Influencing NLRP3 inflammasome. Int J Biol Sci 2020; 16:2752-2760. [PMID: 33110394 PMCID: PMC7586428 DOI: 10.7150/ijbs.47595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammasome is a complex composed of several proteins and an important part of the natural immune system. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is composed of NLRP3, apoptosis associated speck like protein (ASC) and pro-caspase-1. It plays an important role in many diseases. Hydrogen sulfide (H2S) is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicated that H2S played anti-inflammatory and pro-inflammatory roles in many diseases through influencing NLRP3 inflammasome, but its mechanism was not fully understood. This article reviewed the progress about the effects of H2S on NLRP3 inflammasome and its mechanisms involved in recent years to provide theoretical basis for in-depth study.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Xingzhuo Shi
- School of Life Science, Henan University, Kaifeng, Henan, 475000, China
| | - Mengyuan Qiu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Shuangyu Lv
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Hong Zheng
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Baohua Niu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Huiyang Liu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| |
Collapse
|
31
|
Abstract
Gastrointestinal disease is a major global threat to public health. In the past few decades, numerous studies have focuses on the application of small molecule gases in the disease treatment. Increasing evidence has shown that hydrogen sulfide (H2S) has anti-inflammatory and anti-oxidative effects, and can regulate gastric mucosal blood flow in the gastric mucosa. After gastric mucosa damage, the level of H2S in the stomach decreases. Administration of H2S can protect and repair the damaged gastric mucosa. Therefore, H2S is a new target for the repair and treatment of gastric mucosa damage. In this review, we introduce the roles of H2S in the treatment of gastric mucosa damage and provide the potential strategies for further clinical treatment.
Collapse
Affiliation(s)
- Fang Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Chong-Shun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei-Fen Shen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
32
|
Tannic acid ameliorates arsenic trioxide-induced nephrotoxicity, contribution of NF-κB and Nrf2 pathways. Biomed Pharmacother 2020; 126:110047. [PMID: 32146384 DOI: 10.1016/j.biopha.2020.110047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/16/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Tannic acid (TA), a group of polyphenolic compounds, has multiple anticancer, antimutagenic, antioxidant and anti-inflammatory activities. However, the effects of TA on arsenic trioxide (ATO)-induced nephrotoxicity are still relatively unknown. This study investigated the protective effects and potential mechanisms of TA on ATO-induced nephrotoxicity in rats. METHODS Rats were intragastrically administered TA with concurrent ATO infused intraperitoneally over 10 days. Renal morphology changes were observed through light microscopy. The levels of antioxidants and pro-inflammatory factors were measured in the serum and renal tissue, respectively. Further, expression of B-cell lymphoma-2, B-cell lymphoma-extra large, p53, and Bcl-2-associated X protein were measured using an immunohistochemical method. The protein expression of nuclear factor kappa B (NF-κB), nuclear factor-erythroid-2-related factor 2 (Nrf2), and kelch-like ECH-associated protein 1 (Keap1) were measured by Western blot. RESULTS The data showed that ATO exposure significantly increased the serum nephritic, oxidative stress, apoptosis and inflammatory markers in the renal tissue of rats. Conversely, pretreatment with TA reversed these changes. Furthermore, TA treatment caused a significant decrease in NF-κB expression (P < 0.05), while increasing Nrf2 and Keap1 expressions (P < 0.05). CONCLUSION TA ameliorates ATO-induced nephrotoxicity, which is related to the inhibition of oxidative stress, inflammation and apoptosis, potentially through the NF-κB/Nrf2 pathway.
Collapse
|
33
|
Aziz NM, Elbassuoni EA, Kamel MY, Ahmed SM. Hydrogen sulfide renal protective effects: possible link between hydrogen sulfide and endogenous carbon monoxide in a rat model of renal injury. Cell Stress Chaperones 2020; 25:211-221. [PMID: 32088905 PMCID: PMC7058727 DOI: 10.1007/s12192-019-01055-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide (H2S), along with nitric oxide (NO) and carbon monoxide (CO), proved to have renoprotective effects in various renal diseases. Therefore, this study investigated the renoprotective effect of H2S, in a renal injury model, and its crosstalk with other gasotransmitters such as CO. Thirty-two adult rats were divided into four groups: control, gentamicin (GEN)-treated, GEN + sodium hydrosulfide (NaHS), and GEN + NaHS + zinc protoporphyrin (ZnPP) groups. GEN was used to induce renal injury, NaHS is a water-soluble H2S, and ZnPP is a selective heme oxygenase-1 (HO-1) inhibitor used to inhibit CO synthesis in vivo. NaHS improved kidney functions in the GEN group as evidenced by significantly lower levels of renal injury markers: serum urea, creatinine, uric acid, urinary albumin excretion, and urinary albumin/creatinine. Moreover, NaHS administration to the GEN-treated group significantly lowered renal levels of NO and tumor necrosis factor-α with an increase in total antioxidant, HO-1, and interleukin-10 levels. Furthermore, NaHS administration downregulated the GEN-induced overexpression of the renal inducible nitric oxide synthase (iNOS) and upregulated the suppression of endothelial nitric oxide synthase (eNOS) with improvement in the histological examination and periodic acid Schiff (PAS) staining. However, this improvement in kidney function produced by NaHS was reduced by combination with ZnPP but still improved as compared with the GEN-treated group. The renoprotective effects of H2S can be through its effects on renal tissue antioxidants, pro-inflammatory and anti-inflammatory cytokines, and expression of eNOS and iNOS which can be partially dependent on CO pathway via induction of HO-1 enzyme.
Collapse
Affiliation(s)
- Neven M Aziz
- Department of Physiology, Faculty of Medicine, Minia University, Minya, Egypt
- Deraya University, New Minya City, Egypt
| | - Eman A Elbassuoni
- Department of Physiology, Faculty of Medicine, Minia University, Minya, Egypt.
| | - Maha Y Kamel
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Sabreen M Ahmed
- Deraya University, New Minya City, Egypt
- Department of Human Anatomy and Embryology, Faculty of Medicine, Minia University, Minya, Egypt
| |
Collapse
|
34
|
Zhang W, Liu W, Bao S, Liu H, Zhang Y, Zhang B, Zhou A, Chen J, Hao K, Xia W, Li Y, Sheng X, Xu S. Association of adverse birth outcomes with prenatal uranium exposure: A population-based cohort study. ENVIRONMENT INTERNATIONAL 2020; 135:105391. [PMID: 31874351 DOI: 10.1016/j.envint.2019.105391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/10/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Uranium (U) is a well-recognized hazardous heavy metal with embryotoxicity and fetotoxicity. However, little is known about its association with adverse birth outcomes. We aimed to investigate the potential correlation between prenatal U exposure and birth outcomes. Urine samples of 8500 women were collected before delivery from a birth cohort in Wuhan, China. Concentrations of urinary U and other metals were measured by inductively coupled plasma mass spectrometry. We used multivariable logistic regressions to evaluate the associations between urinary U concentrations and adverse birth outcomes, such as preterm birth (PTB), low birth weight (LBW) and small for gestational age (SGA). Associations of urinary U concentrations with gestational age, birth weight, and birth length were investigated by linear regressions. The geometric mean of U concentration was 0.03 μg/L. After adjustment for potential confounders, we found each Log2-unit increase in U concentration was associated with a significant decrease in gestational age [adjusted β = -0.32 day; 95% confidence interval (CI): -0.44, -0.20] and a significant increased likelihood of PTB (adjusted OR = 1.18, 95% CI: 1.07, 1.29). This birth cohort uncovered an association of maternal exposure to U during pregnancy with decreased gestational age and increased risk of PTB. Our findings reveal an association of maternal exposure to U during pregnancy with decreased gestational age and increased risk of PTB.
Collapse
Affiliation(s)
- Weiping Zhang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenyu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuangshuang Bao
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuzeng Zhang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Zhang
- Wuhan Women and Children Medical Care Center, Wuhan, Hubei, China
| | - Aifen Zhou
- Wuhan Women and Children Medical Care Center, Wuhan, Hubei, China
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Sheng
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
35
|
Hydrogen Sulfide Protects against Paraquat-Induced Acute Liver Injury in Rats by Regulating Oxidative Stress, Mitochondrial Function, and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6325378. [PMID: 32064027 PMCID: PMC6998754 DOI: 10.1155/2020/6325378] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
In addition to the lung, the liver is considered another major target for paraquat (PQ) poisoning. Hydrogen sulfide (H2S) has been demonstrated to be effective in the inhibition of oxidative stress and inflammation. The aim of this study was to investigate the protective effect of exogenous H2S against PQ-induced acute liver injury. The acute liver injury model was established by a single intraperitoneal injection of PQ, evidenced by histological alteration and elevated serum aminotransferase levels. Different doses of NaHS were administered intraperitoneally one hour before exposure to PQ. Analysis of the data shows that exogenous H2S attenuated the PQ-induced liver injury and oxidative stress in a dose-dependent manner. H2S significantly suppressed reactive oxygen species (ROS) generation and the elevation of malondialdehyde content while it increased the ratio of GSH/GSSG and levels of antioxidant enzymes including SOD, GSH-Px, HO-1, and NQO-1. When hepatocytes were subjected to PQ-induced oxidative stress, H2S markedly enhanced nuclear translocation of Nrf2 via S-sulfhydration of Keap1 and resulted in the increase in IDH2 activity by regulating S-sulfhydration of SIRT3. In addition, H2S significantly suppressed NLRP3 inflammasome activation and subsequent IL-1β excretion in PQ-induced acute liver injury. Moreover, H2S cannot reverse the decrease in SIRT3 and activation of the NLRP3 inflammasome caused by PQ in Nrf2-knockdown hepatocytes. In summary, H2S attenuated the PQ-induced acute liver injury by enhancing antioxidative capability, regulating mitochondrial function, and suppressing ROS-induced NLRP3 inflammasome activation. The antioxidative effect of H2S in PQ-induced liver injury can at least partly be attributed to the promotion of Nrf2-driven antioxidant enzymes via Keap1 S-sulfhydration and regulation of SIRT3/IDH2 signaling via Nrf2-dependent SIRT3 gene transcription as well as SIRT3 S-sulfhydration. Thus, H2S supplementation can form the basis for a promising novel therapeutic strategy for PQ-induced acute liver injury.
Collapse
|
36
|
Wang H, Shi X, Qiu M, Lv S, Liu H. Hydrogen Sulfide Plays an Important Protective Role through Influencing Endoplasmic Reticulum Stress in Diseases. Int J Biol Sci 2020; 16:264-271. [PMID: 31929754 PMCID: PMC6949148 DOI: 10.7150/ijbs.38143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum is an important organelle responsible for protein synthesis, modification, folding, assembly and transport of new peptide chains. When the endoplasmic reticulum protein folding ability is impaired, the unfolded or misfolded proteins accumulate to lead to endoplasmic reticulum stress. Hydrogen sulfide is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicate that H2S plays an important protective role in many diseases through influencing endoplasmic reticulum stress, but its mechanism is not fully understood. This article reviewed the progress about the effect of H2S on endoplasmic reticulum stress and its mechanisms involved in diseases in recent years to provide theoretical basis for in-depth study.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Xingzhuo Shi
- School of Life Science, Henan University, Kaifeng, Henan, 475000, China
| | - Mengyuan Qiu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Shuangyu Lv
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Huiyang Liu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| |
Collapse
|
37
|
Guan R, Cai Z, Wang J, Ding M, Li Z, Xu J, Li Y, Li J, Yao H, Liu W, Qian J, Deng B, Tang C, Sun D, Lu W. Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Aging (Albany NY) 2019; 11:11844-11864. [PMID: 31881011 PMCID: PMC6949053 DOI: 10.18632/aging.102454] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous signal molecule, regulates many pathologies related to aging. Sirtuin 1 (SIRT1) has been shown to protect against mitochondrial dysfunction and other pathological processes, including premature senescence. This study was aimed to investigate whether and how H2S attenuates senescence and apoptosis of alveolar epithelial cells via a SIRT1-dependent mechanism. Our results showed that treatment with sodium hydrosulfide (NaHS), a donor of H2S, attenuated cigarette smoke extract (CSE)-induced oxidative stress, mitochondrial dysfunction, cellular senescence and apoptosis in A549 cells. This was associated with SIRT1 upregulation. SIRT1 activation by a pharmacological activator, SRT1720, attenuated CSE-induced oxidative stress and mitochondrial dysfunction in A549 cells. While SIRT1 inhibition by EX 527 or silencing by siRNA transfection significantly attenuated or abolished the ability of NaHS to reverse the CSE-induced oxidative stress, mitochondrial dysfunction and the imbalance of mitochondrial fusion and fission. Also, SIRT1 inhibition or silencing abolished the protection of NaHS against CSE-induced cellular senescence and apoptosis. In conclusion, H2S attenuates CSE-induced cellular senescence and apoptosis by improving mitochondrial function and reducing oxidative stress in alveolar epithelial cells in a SIRT1-dependent manner. These findings provide novel mechanisms underlying the protection of H2S against cigarette smoke-induced COPD.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingjing Ding
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Departments of Respiratory and Critical Diseases, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Ziying Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingpei Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Qian
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Departments of Respiratory and Critical Diseases, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Bingxian Deng
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chun Tang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dejun Sun
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Departments of Respiratory and Critical Diseases, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Zhou Y, Zhu X, Wang X, Peng Y, Du J, Yin H, Yang H, Ni X, Zhang W. H 2S alleviates renal injury and fibrosis in response to unilateral ureteral obstruction by regulating macrophage infiltration via inhibition of NLRP3 signaling. Exp Cell Res 2019; 387:111779. [PMID: 31846625 DOI: 10.1016/j.yexcr.2019.111779] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
Renal fibrosis is a key pathological feature in chronic kidney diseases (CKDs). Dysregulation of hydrogen sulfide (H2S) homeostasis is implicated in the pathogenesis of CKDs. Here, C57/BL6 mice were allocated to Sham and unilateral ureteral obstruction (UUO) groups, which were treated with NaHS or NLRP3 inflammasome inhibitor 16673-34-0 for 3-14 days. UUO mice displayed downregulation of H2S production and increased macrophage infiltration in obstructed kidneys. H2S donor NaHS treatment attenuated renal damage and fibrosis and inhibited M1 and M2 macrophage infiltration. NLPR3 inflammasome was activated and levels of phosphorylated nuclear factor κB (NF-κB) p65 subunit, phosphorylated signal transducer and activator of transcription 6 (STAT6) and interleukin (IL)-4 protein were increased in the kidneys after UUO. NLRP3 inhibitor inactivated NF-κB and IL-4/STAT6 signaling, suppressed M1 and M2 macrophage infiltration and attenuated renal damage and fibrosis in UUO mice. NaHS treatment also suppressed NLRP3, NF-κB and IL-4/STAT6 activation in the obstructed kidneys. In conclusion, the therapeutic effects of H2S on UUO-induced renal injury and fibrosis are at least in part by inhibition of M1 and M2 macrophage infiltration. H2S suppresses NLRP3 activation and subsequently inactivates NF-κB and IL-4/STAT6 signaling, which may contribute to the anti-inflammatory and anti-fibrotic effects of H2S.
Collapse
Affiliation(s)
- Yueyuan Zhou
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Peng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiankui Du
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, Second Military Medical University, Shanghai, China
| | - Hongling Yin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Yang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Ni
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, Second Military Medical University, Shanghai, China.
| | - Weiru Zhang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
39
|
Zhang J, Shi C, Wang H, Gao C, Chang P, Chen X, Shan H, Zhang M, Tao L. Hydrogen sulfide protects against cell damage through modulation of PI3K/Akt/Nrf2 signaling. Int J Biochem Cell Biol 2019; 117:105636. [PMID: 31654751 DOI: 10.1016/j.biocel.2019.105636] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/01/2023]
Abstract
Hydrogen sulfide as the third endogenous gaseous mediator had protective effects against traumatic brain injury-induced neuronal damage in mice. However, the exact pathophysiological mechanism underlying traumatic brain injury is complicated and the protective role of H2S is not yet fully known. Therefore, we combined the mechanical injury (scratch) with secondary injury including metabolic impairment (no glucose) together to investigate the underlying cellular mechanism of hydrogen sulfide in vitro models of traumatic brain injury. In the present study, we found that H2S could prevent the scratch-induced decrease in the expression of cystathionine-β-synthetase, a key enzyme involved in the source of hydrogen sulfide, and endogenous hydrogen sulfide generation in PC12 cells. We also found that hydrogen sulfide could prevent scratch-induced cellular injury, alteration of mitochondrial membrane potential, intracellular accumulation of reactive oxygen species and cell death (autophagic cell death and apoptosis) in PC12 cells. It was also found that blocking PI3K/AKT pathway by LY294002, abolished the protection of H2S against scratch-induced cellular reactive oxygen species level and NRF2 accumulation and function in the nucleus. These results suggest that hydrogen sulfide protects against cell damage induced by scratch injury through modulation of the PI3K/Akt/Nrf2 pathway. This study raises the possibility that hydrogen sulfide may have therapeutic efficacy in traumatic brain injury.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Chaoqun Shi
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Haochen Wang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gao
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Pan Chang
- Central Laboratory, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi, 710038, China
| | - Xiping Chen
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China.
| | - Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China; School of Pharmacy, Soochow University, Suzhou, 215000, China.
| | - Luyang Tao
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
40
|
Zhang Y, Ali A, Jin Z, Pei Y, Yang G. Induction of cystathionine gamma-lyase expression and metallothionein-1 S-sulfhydration alleviate cadmium-induced cell death in myoblast cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:222-231. [PMID: 31048218 DOI: 10.1016/j.ecoenv.2019.04.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S), a multifunctional gasotransmitter, participates in a wide range of cellular signal transduction and pathophysiological processes. Cystathionine gamma-lyase (CSE) acts as a major H2S-generating enzyme in peripheral organs and tissues. As a cysteine-rich and heavy metal-binding protein, metallothionein-1 (MT-1) is known to protect cells from various environmental stresses. Here we demonstrated that exposure of cadmium (Cd) induced oxidative stress, depleted intracellular thiols, and stimulated apoptotic cell death in mouse myoblast cells. CSE expression and H2S production were significantly enhanced by Cd treatment. NaHS, a well-known H2S donor, at physiologically relevant concentration significantly alleviated Cd-induced damage in both myoblasts and mouse skeletal muscles. In contrast, down-regulation of CSE/H2S system deteriorated Cd-stimulated oxidative stress and cell death. Exposure of the cells to Cd lead to increased expressions of metal regulatory transcription factor 1 and MT-1, while siRNA-mediated MT-1 knockdown alleviated Cd-induced CSE expression and caused more oxidative stress and cell death. In addition, H2S post-translationally modified MT-1 by S-sulfhydration and stabilized zinc-protein complex. Taken together, these data suggest that CSE/H2S system would protect myoblasts and skeletal muscles from Cd-induced damage by S-sufhydrating MT-1.
Collapse
Affiliation(s)
- Yanjie Zhang
- School of Life Science, Shanxi University, Taiyuan, China; Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Zhuping Jin
- School of Life Science, Shanxi University, Taiyuan, China; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan, China.
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
41
|
Yan X, Zhao F, Zhang S, Lei F, Wang W, Zheng Y. Hydrogen sulfide ameliorates disorders in the parafacial respiratory group region of neonatal rats caused by prenatal cigarette smoke exposure via an antioxidative effect. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:80-90. [PMID: 30878717 DOI: 10.1016/j.etap.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
We previously found that hydrogen sulfide (H2S) ameliorated the dysfunction of central chemoreception caused by prenatal cigarette smoke exposure (CSE). In the present study, we further explored whether the parafacial respiratory group (pFRG) is involved in the protection of central chemoreception by H2S against prenatal CSE-induced injury. We found that NaHS, a donor of H2S, restored the expression of Phox2b, which was downregulated by prenatal CSE, in the pFRG region of neonatal rats. NaHS also relieved the prenatal CSE-induced excitatory synapse disturbance in the pFRG region of neonatal rats. Additionally, NaHS prevented the increase in the malondialdehyde level and suppression of antioxidase activity in the pFRG region of neonatal rats induced by prenatal CSE. Furthermore, NaHS prevented the downregulation of the expression of antioxidases and Nrf2 in the pFRG region of neonatal rats with prenatal CSE. These results suggest that H2S can protect the pFRG of neonatal rats against prenatal CSE-induced injury via an antioxidative effect.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Fusheng Zhao
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, 157011 Heilongjiang, PR China
| | - Senfeng Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Fang Lei
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Wen Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Yu Zheng
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China.
| |
Collapse
|
42
|
Yilmaz E, Kaya‐Sezginer E, Yilmaz‐Oral D, Cengiz T, Bayatli N, Gur S. Effects of hydrogen sulphide donor, sodium hydrosulphide treatment on the erectile dysfunction in L‐NAME‐induced hypertensive rats. Andrologia 2019; 51:e13240. [DOI: 10.1111/and.13240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/15/2018] [Accepted: 01/05/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Enis Yilmaz
- Department of Pharmacology, Faculty of Pharmacy Ankara University Ankara Turkey
| | - Ecem Kaya‐Sezginer
- Department of Biochemistry, Faculty of Pharmacy Ankara University Ankara Turkey
| | - Didem Yilmaz‐Oral
- Department of Pharmacology, Faculty of Pharmacy Ankara University Ankara Turkey
- Department of Pharmacology, Faculty of Pharmacy Cukurova University Adana Turkey
| | - Tugba Cengiz
- Department of Pharmacology, Faculty of Pharmacy Ankara University Ankara Turkey
| | - Nur Bayatli
- Department of Pharmacology, Faculty of Pharmacy Ankara University Ankara Turkey
| | - Serap Gur
- Department of Pharmacology, Faculty of Pharmacy Ankara University Ankara Turkey
- Department of Urology Tulane University Health Sciences Center New Orleans Los Angeles
| |
Collapse
|
43
|
Xiao Q, Ying J, Xiang L, Zhang C. The biologic effect of hydrogen sulfide and its function in various diseases. Medicine (Baltimore) 2018; 97:e13065. [PMID: 30383685 PMCID: PMC6221678 DOI: 10.1097/md.0000000000013065] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Hydrogen sulfide (H2S), a colorless, water soluble, flammable gas with a characteristic smell of rotten eggs, has been known as a highly toxic gas for several years. However, much like carbon monoxide (CO) and nitric oxide (NO), the initial negative perception of H2S has developed with the discovery that H2S is generated enzymatically in animals under normal conditions. With the result of this discovery, much more work is needed to elucidate the biologic effects of H2S. In recent years, its cytoprotective properties have been recognized in multiple organs and tissues. In particular, H2S plays important roles in combating oxidative species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) and protect the body from oxidative stress. Therefore, this review discusses the biologic effect of H2S and how it protects cells in various diseases by acting as an antioxidant that reduces excessive amounts of ROS and RNS. ETHICS AND DISSEMINATION Ethical approval and informed consent are not required, as the study will be a literature review and will not involve direct contact with patients or alterations to patient care. CONCLUSION H2S has been found to be cytoprotective in oxidative stress in a wide range of physiologic and pathologic conditions, an increasing number of therapeutic potentials of H2S also have been revealed. However, there is still much debate on the clear mechanism of action of H2S, so that the mechanisms of cell signaling that promote cellular survival and organ protection need to be further investigated to provide better H2S-based therapeutics.
Collapse
|
44
|
Yi J, Yuan Y, Zheng J, Hu N. Hydrogen sulfide alleviates uranium-induced kidney cell apoptosis mediated by ER stress via 20S proteasome involving in Akt/GSK-3β/Fyn-Nrf2 signaling. Free Radic Res 2018; 52:1020-1029. [DOI: 10.1080/10715762.2018.1514603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Juan Yi
- School of Pharmaceutical and Biological Science, Institute of Biology, University of South China, Hengyang, China
| | - Yan Yuan
- School of Pharmaceutical and Biological Science, Institute of Biology, University of South China, Hengyang, China
| | - Jifang Zheng
- School of Pharmaceutical and Biological Science, Institute of Biology, University of South China, Hengyang, China
| | - Nan Hu
- School of Pharmaceutical and Biological Science, Institute of Biology, University of South China, Hengyang, China
| |
Collapse
|
45
|
Hydrogen Sulfide Protects against Chemical Hypoxia-Induced Injury via Attenuation of ROS-Mediated Ca 2+ Overload and Mitochondrial Dysfunction in Human Bronchial Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2070971. [PMID: 30363932 PMCID: PMC6186369 DOI: 10.1155/2018/2070971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022]
Abstract
Oxidative stress induced by hypoxia/ischemia resulted in the excessive reactive oxygen species (ROS) and the relative inadequate antioxidants. As the initial barrier to environmental pollutants and allergic stimuli, airway epithelial cell is vulnerable to oxidative stress. In recent years, the antioxidant effect of hydrogen sulfide (H2S) has attracted much attention. Therefore, in this study, we explored the impact of H2S on CoCl2-induced cell injury in 16HBE14o- cells. The effect of CoCl2 on the cell viability was detected by Cell Counting Kit (CCK-8) and the level of ROS in 16HBE14o- cells in response to varying doses (100–1000 μmol/L) of CoCl2 (a common chemical mimic of hypoxia) was measured by using fluorescent probe DCFH-DA. It was shown that, in 16HBE14o- cells, CoCl2 acutely increased the ROS content in a dose-dependent manner, and the increased ROS was inhibited by the NaHS (as a donor of H2S). Moreover, the calcium ion fluorescence probe Fura-2/AM and fluorescence dye Rh123 were used to investigate the intracellular calcium concentration ([Ca2+]i) and mitochondria membrane potential (MMP) in 16HBE14o- cells, respectively. In addition, we examined apoptosis of 16HBE14o- cells with Hoechst 33342. The results showed that the CoCl2 effectively elevated the Ca2+ influx, declined the MMP, and aggravated apoptosis, which were abrogated by NaHS. These results demonstrate that H2S could attenuate CoCl2-induced hypoxia injury via reducing ROS to perform an agonistic role for the Ca2+ influx and MMP dissipation.
Collapse
|
46
|
Corsello T, Komaravelli N, Casola A. Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance. Antioxidants (Basel) 2018; 7:antiox7100129. [PMID: 30274149 PMCID: PMC6210431 DOI: 10.3390/antiox7100129] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide (H2S) has arisen as a critical gasotransmitter signaling molecule modulating cellular biological events related to health and diseases in heart, brain, liver, vascular systems and immune response. Three enzymes mediate the endogenous production of H2S: cystathione β-synthase (CBS), cystathione γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). CBS and CSE localizations are organ-specific. 3-MST is a mitochondrial and cytosolic enzyme. The generation of H2S is firmly regulated by these enzymes under normal physiological conditions. Recent studies have highlighted the role of H2S in cellular redox homeostasis, as it displays significant antioxidant properties. H2S exerts antioxidant effects through several mechanisms, such as quenching reactive oxygen species (ROS) and reactive nitrogen species (RNS), by modulating cellular levels of glutathione (GSH) and thioredoxin (Trx-1) or increasing expression of antioxidant enzymes (AOE), by activating the transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2). H2S also influences the activity of the histone deacetylase protein family of sirtuins, which plays an important role in inhibiting oxidative stress in cardiomyocytes and during the aging process by modulating AOE gene expression. This review focuses on the role of H2S in NRF2 and sirtuin signaling pathways as they are related to cellular redox homeostasis.
Collapse
Affiliation(s)
- Tiziana Corsello
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Narayana Komaravelli
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
47
|
Dashner-Titus EJ, Hoover J, Li L, Lee JH, Du R, Liu KJ, Traber MG, Ho E, Lewis J, Hudson LG. Metal exposure and oxidative stress markers in pregnant Navajo Birth Cohort Study participants. Free Radic Biol Med 2018; 124:484-492. [PMID: 29723666 PMCID: PMC6381929 DOI: 10.1016/j.freeradbiomed.2018.04.579] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
Contamination of soil and water by waste from abandoned uranium mines has led to chronic exposures to metal mixtures in Native American communities. Our previous work demonstrated that community exposures to mine waste increase the likelihood of developing cardiovascular disease, as well as the likelihood of developing multiple chronic diseases including diabetes, hypertension and kidney disease. Exposure to various environmental metals is associated with elevated oxidative stress, which is considered a contributor to these and other chronic disease states. The purpose of the current research was to assess potential associations between exposure to uranium and arsenic and evidence for increased oxidative stress as measured by urinary F2 -isoprostanes in pregnant women enrolled in the Navajo Birth Cohort Study. The current study also included an analysis of zinc as a potential mediator of oxidative stress in the study population. Urinary arsenic and uranium, serum zinc and urinary F2 -isoprostanes were measured for each study participant at enrollment. Study participants were pregnant women with median age of 26.8; 18.9% were enrolled in the 1st trimester, 44.7% were enrolled in the 2nd trimester, and 36.4% were enrolled in the 3rd trimester. Median urinary metal levels were 5.5 and 0.016 µg/g creatinine for arsenic and uranium, respectively. Multivariable regression analysis indicated a significant association between arsenic exposure and the lipid peroxidation product 8-iso-prostaglandin F2α, controlling for zinc and trimester. No associations were detected with uranium despite evidence that levels were in the Navajo Birth Cohort samples were 2.3 times the median reported for women in the National Health and Nutrition Examination Survey (2011-12). Zinc was not found to have any causal mediation of the effects of the other metals on oxidative stress. The current work is consistent with other studies that have detected an association between arsenic and elevated oxidative stress. In contrast to arsenic, uranium did not appear to increase oxidative stress response in this study population. These findings are relevant to assessing the potential human impact of chronic exposure to mixed metal waste from abandoned uranium mines.
Collapse
Affiliation(s)
- Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, USA.
| | - Joseph Hoover
- Community Environmental Health Program, College Of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Luo Li
- Biostatistics Shared Resource, The UNM Comprehensive Cancer Center, Albuquerque, NM, 87131, USA; UNM METALS Biostatistics and Data Management (BDM) Core (Luo, Senior author for BDM team).
| | - Ji-Hyun Lee
- Division of Quantitative Sciences and Biostatistics Shared Resource, University of Florida Health Cancer Center Gainsville , FL 32601, USA.
| | - Ruofei Du
- Biostatistics Shared Resource, The UNM Comprehensive Cancer Center, Albuquerque, NM, 87131, USA; UNM METALS Biostatistics and Data Management (BDM) Core (Luo, Senior author for BDM team).
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, USA.
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331, USA.
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331, USA; Moore Family Center for Whole Grain Foods, Nutrition & Preventive Health, School of Biological & Population Health Sciences, College of Public Health & Human Sciences, 211 Milam Hall, Oregon State University, Corvallis, OR 97331, USA.
| | - Johnnye Lewis
- Community Environmental Health Program, College Of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
48
|
Reversal of Sp1 transactivation and TGFβ1/SMAD1 signaling by H 2S prevent nickel-induced fibroblast activation. Toxicol Appl Pharmacol 2018; 356:25-35. [PMID: 30055191 DOI: 10.1016/j.taap.2018.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023]
Abstract
Nickel as a heavy metal is known to bring threat to human health, and nickel exposure is associated with changes in fibroblast activation which may contribute to its fibrotic properties. H2S has recently emerged as an important gasotransmitter involved in numerous cellular signal transduction and pathophysiological responses. Interaction of nickel and H2S on fibroblast cell activation has not been studied so far. Here, we showed that a lower dose of nickel (200 μM) induced the activation of human fibroblast cells, as evidenced by increased cell growth, migration and higher expressions of α-smooth muscle actin (αSMA) and fibronectin, while high dose of nickel (1 mM) inhibited cell viability. Nickel reduced intracellular thiol contents and stimulated oxidative stress. Nickel also repressed the mRNA and protein expression of cystathionine gamma-lyase (CSE, a H2S-generating gene) and blocked the endogenous production of H2S. Exogenously applied NaHS (a H2S donor) had no effect on nickel-induced cell viability but significantly attenuated nickel-stimulated cell migration and the expression of αSMA and fibronectin. In contrast, CSE deficiency worsened nickel-induced αSMA expression. Moreover, H2S incubation reversed nickel-stimulated TGFβ1/SMAD1 signal and blocked TGFβ1-initiated expressions of αSMA and fibronectin. Nickel inhibited the interaction of Sp1 with CSE promoter but strengthened the binding of Sp1 with TGFβ1 promoter, which was reversed by exogenously applied NaHS. These data reveal that H2S protects from nickel-stimulated fibroblast activation and CSE/H2S system can be a potential target for the treatment of tissue fibrosis induced by nickel.
Collapse
|
49
|
Kuang Q, Xue N, Chen J, Shen Z, Cui X, Fang Y, Ding X. Low Plasma Hydrogen Sulfide Is Associated with Impaired Renal Function and Cardiac Dysfunction. Am J Nephrol 2018; 47:361-371. [PMID: 29779029 DOI: 10.1159/000489606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) has been proposed to associate with decreased hydrogen sulfide (H2S) level. Nevertheless, the role of H2S in the pathogenesis of CKD has not been fully investigated. Our study aimed to investigate the plasma level of endogenous H2S in patients with different stages of CKD, and to identify the role of H2S in the progression of CKD and its relationship with cardiovascular diseases. METHODS A total of 157 non-dialysis CKD patients were recruited in our study, with 37 age- and sex-matched healthy individuals as control. Plasma concentration of H2S was measured with spectrophotometry. Sulfhemoglobin, the integration of H2S and hemoglobin, was characterized and measured by dual wavelength spectrophotometry. Serum levels of homocysteine (Hcy), cardiac troponin T (cTnT), and N-terminal pro B type natriuretic peptide were measured using automated analyzers. Conventional transthoracic echocardiography was performed and left ventricular ejection fraction (LVEF) was analyzed as a sensitive parameter of cardiac dysfunction. RESULTS The plasma H2S level (μmol/L) in CKD patients was significantly lower than those in healthy controls (7.32 ± 4.02 vs. 14.11 ± 5.24 μmol/L, p < 0.01). Plasma H2S level was positively associated with estimated glomerular filtration rate (eGFR; ρ = 0.577, p < 0.01) and negatively associated with plasma indoxyl sulfate concentration (ρ = -0.554, p < 0.01). The mRNA levels of cystathionine β-synthase and cystathionine γ-lyase, 2 catalytic enzymes of H2S formation, were significantly lower in blood mononuclear cells of CKD patients with respect to controls; however, the mRNA level of 3-mercaptopyruvate sulfurtransferase, as another H2S-producing enzyme, was significantly higher in CKD patients. The serum concentration of Hcy, acting as the substrate of H2S synthetase, was higher in the CKD group (p < 0.01). Specifically, the content of serum Hcy in CKD stages 3-5 patients was significantly higher than that in CKD stages 1-2, indicating an increasing trend of serum Hcy with the decline of renal function. Examination of ultrasonic cardiogram revealed a negative -correlation between plasma H2S level and LVEF (ρ = -0.204, p < 0.05) in CKD patients. The H2S level also correlated negatively with cTnT concentration (ρ = -0.249, p < 0.01). CONCLUSIONS Plasma H2S level decreased with the decline of eGFR, which may contribute to the cardiac dysfunction in CKD -patients.
Collapse
Affiliation(s)
- Qing Kuang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xiaomeng Cui
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China,
- Shanghai Medical Center of Kidney, Shanghai, China,
- Shanghai Institute of Kidney and Dialysis, Shanghai, China,
- Key Laboratory of Kidney and Blood Purification, Shanghai, China,
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
| |
Collapse
|
50
|
Yue YC, Li MH, Wang HB, Zhang BL, He W. The toxicological mechanisms and detoxification of depleted uranium exposure. Environ Health Prev Med 2018; 23:18. [PMID: 29769021 PMCID: PMC5956823 DOI: 10.1186/s12199-018-0706-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/30/2018] [Indexed: 01/03/2023] Open
Abstract
Depleted uranium (DU) has been widely applied in industrial and military activities, and is often obtained from producing fuel for nuclear reactors. DU may be released into the environment, polluting air, soil, and water, and is considered to exert both radiological and chemical toxicity. In humans and animals, DU can induce multiple health effects, such as renal tubular necrosis and bone malignancies. This review summarizes the known information on DU’s routes of entry, mechanisms of toxicity, and health effects. In addition, we survey the chelating agents used in ameliorating DU toxicity.
Collapse
Affiliation(s)
- Yong-Chao Yue
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Ming-Hua Li
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Hai-Bo Wang
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Wei He
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|