1
|
Oumeddour DZ, Al-Dalali S, Zhao L, Zhao L, Wang C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem Biophys Res Commun 2024; 729:150344. [PMID: 38976946 DOI: 10.1016/j.bbrc.2024.150344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
2
|
Wang S, Zhu C, Zhang S, Ma S, Li B, Zhao S, Zhang W, Sun Z. The Combination of Gastrodin and Gallic Acid Synergistically Attenuates AngII-Induced Apoptosis and Inflammation via Regulation of Sphingolipid Metabolism. J Inflamm Res 2024; 17:6971-6988. [PMID: 39372584 PMCID: PMC11456272 DOI: 10.2147/jir.s477554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Background Hypertension (HTN) is closely related to endothelial damage. While tianma (TM) and gouqizi (GQZ) have the potential to be effective in the treatment of HTN in traditional Chinese medicine, their main active ingredients and whether its exert synergistic effects and the underlying mechanisms of synergistic effects are still unclear. Objective This study screened the active ingredients of TM and GQZ, investigated the synergistic effects of the active ingredients and explored possible mechanisms. Methods The potential targets and mechanisms of TM and GQZ were screened using network pharmacology, and gastrodin (GAS) and gallic acid (GA) were identified as compounds with significant antihypertensive activity. The synergistic effects of the combination of GAS and GA was assessed by measuring biomarkers of AngII-induced human umbilical vein endothelial cell (HUVECs) dysfunction model. Furthermore, the anti-apoptotic and anti-inflammatory effects were evaluated by measuring inflammatory cytokine secretion, and apoptosis-related markers. Finally, key targets of the sphingolipid signaling pathway were experimentally validated by Western blotting. Results In network pharmacology, the herb-pair exerted a synergetic effect by regulating sphingolipid pathways. The GAS and GA exerted synergistic protective effects in AngII-induced HUVECs injury by improving Nitric Oxide Content (NO) levels, alleviating lactate Endothelin-1 (ET-1), and Thromboxane B2 (TX-B2) release, reducing the secretion of inflammatory factors like interleukin-6 (IL-6), interleukin-1β (IL-1β), Tumor Necrosis Factor Alpha (TNF-α)), decreasing the pro-apoptotic protein BAX, and increasing the anti-apoptotic protein BCL-2. Furthermore, the results showed that the GAS and GA combination could elevate the level of S1PR1 and inhibit the expression of ROCK2 and the phosphorylation of NF-κB, which are key targets involved in sphingolipid pathways. Conclusion Our study revealed that the combination of GAS and GA could suppress inflammation and apoptosis, which are highly correlated with sphingolipid signaling pathways, making it a potential candidate for the treatment of HTN.
Collapse
Affiliation(s)
- Shangtao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chenghao Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shurui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Siyu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Baoshan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shengbo Zhao
- Ningqiang Tianma Research Institution Limited Liability Company, Hanzhong, Shaanxi, People’s Republic of China
| | - Wei Zhang
- Ningqiang County Traditional Chinese Medicinal Industry Development Center, Hanzhong, Shaanxi, People’s Republic of China
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Sun X, Zhou Q, Xiao C, Mao C, Liu Y, Chen G, Song Y. Role of post-translational modifications of Sp1 in cardiovascular diseases. Front Cell Dev Biol 2024; 12:1453901. [PMID: 39252788 PMCID: PMC11381397 DOI: 10.3389/fcell.2024.1453901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Specific protein 1 (Sp1) is pivotal in sustaining baseline transcription as well as modulating cell signaling pathways and transcription factors activity. Through interactions with various proteins, especially transcription factors, Sp1 controls the expression of target genes, influencing numerous biological processes. Numerous studies have confirmed Sp1's significant regulatory role in the pathogenesis of cardiovascular disorders. Post-translational modifications (PTMs) of Sp1, such as phosphorylation, ubiquitination, acetylation, glycosylation, SUMOylation, and S-sulfhydration, can enhance or modify its transcriptional activity and DNA-binding stability. These modifications also regulate Sp1 expression across different cell types. Sp1 is crucial in regulating non-coding gene expression and the activity of proteins in response to pathophysiological stimuli. Understanding Sp1 PTMs advances our knowledge of cell signaling pathways in controlling Sp1 stability during cardiovascular disease onset and progression. It also aids in identifying novel pharmaceutical targets and biomarkers essential for preventing and managing cardiovascular diseases.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Synopsis of the Golden Chamber, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Zhou
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Typhoid, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Liu
- The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Guozhen Chen
- Department of Pediatrics, Yantai Yuhuangding Hospital, Shandong, China
| | - Yunjia Song
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
He Q, Yin Z, Chen Y, Wu Y, Pan D, Cui Y, Zhang Z, Ma H, Li X, Shen C, Qin J, Wang S. Cyanidin-3-O-glucoside alleviates ethanol-induced liver injury by promoting mitophagy in a Gao-binge mouse model of alcohol-associated liver disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167259. [PMID: 38796918 DOI: 10.1016/j.bbadis.2024.167259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a leading cause of liver disease-related deaths worldwide. Unfortunately, approved medications for the treatment of this condition are quite limited. One promising candidate is the anthocyanin, Cyanidin-3-O-glucoside (C3G), which has been reported to protect mice against hepatic lipid accumulation, as well as fibrosis in different animal models. However, the specific effects and mechanisms of C3G on ALD remain to be investigated. EXPERIMENTAL APPROACH In this report, a Gao-binge mouse model of ALD was used to investigate the effects of C3G on ethanol-induced liver injury. The mechanisms of these C3G effects were assessed using AML12 hepatocytes. RESULTS C3G administration ameliorated ethanol-induced liver injury by suppressing hepatic oxidative stress, as well as through reducing hepatic lipid accumulation and inflammation. Mechanistically, C3G activated the AMPK pathway and enhanced mitophagy to eliminate damaged mitochondria, thus reducing mitochondria-derived reactive oxidative species in ethanol-challenged hepatocytes. CONCLUSIONS The results of this study indicate that mitophagy plays a potentially important role underlying the hepatoprotective action of C3G, as demonstrated in a Gao-binge mouse model of ALD. Accordingly, C3G may serve as a promising, new therapeutic drug candidate for use in ALD.
Collapse
Affiliation(s)
- Qiao He
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Zhaoqing Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yunling Chen
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Yunxiao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Di Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yuanhao Cui
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Zinuo Zhang
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Hanyu Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xuanji Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chang Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Junfang Qin
- School of Medicine, Nankai University, Tianjin, China.
| | - Shuanglian Wang
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.
| |
Collapse
|
5
|
Mandal P, Pradhan SM, Mathew AA, Benny S, Kumar S, Unni AR, S K K. Exploring the effects of vasoactive constituents in large cardamom: implications for the anti-hypertensive effect via eNOS coupling pathway - an in-vitro study in rat endothelial cells. Nat Prod Res 2024:1-7. [PMID: 38742417 DOI: 10.1080/14786419.2024.2351534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Endothelial dysfunction, linked to reduced eNOS expression and nitric oxide (NO) availability, contributes to cardiovascular diseases (CVDs). Large cardamom exhibits antihypertensive effects by augmenting NO levels and antioxidant activity. To decipher its mechanisms, selected constituents were docked with eNOS-associated target genes such as GTP cyclohydrolase I (GTPCH-1) and (dihydrofolate reductase [DHFR]). Endothelial damage induced by L-NAME and fructose was countered by assessing nitric oxide metabolites (NOx), tetrahydrobipterin (BH4 levels), GCH-I expression and super oxide dismutase (SOD) activity after constituent incubation. Cyanidin-3-O-glucoside and petunidin-3-O-glucoside notably restored impaired vascular markers in both models. These phytoconstituents are likely to activate GCH-BH4-eNOS pathways, upregulating SOD and NO expression, maintaining endothelial integrity. Large cardamom's antihypertensive effects may stem from these components, synergistically enhancing endothelial NO release via the eNOS pathway.
Collapse
Affiliation(s)
- Pronay Mandal
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, India
| | | | | | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Kochi, India
| | - Ashok R Unni
- Central Lab Animal Facility, Amrita Institute of Medical Sciences, Kochi, India
| | - Kanthlal S K
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, India
| |
Collapse
|
6
|
Yang H, Chen Z, Hu X, Wei N, Li J, Wei Y, Chen Q. A Study on Vascular Regulators as Early Biomarkers of Hand Arm Vibration Syndrome. J Occup Environ Med 2023; 65:1070-1076. [PMID: 37696808 DOI: 10.1097/jom.0000000000002957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
OBJECTIVES Purposes of this study are to study the changes in expression of vascular regulators after vibration exposure and during the onset of vibration-induced white finger (VWF) and to screen for vascular regulatory factors that could be used as early biomarkers of HAVS. METHODS Using judgmental sampling from a Chinese factory, workers with VWF and hand-transmitted vibration exposure but without VWF were selected for research. Blood samples were taken from all subjects, and the levels of nine of the vascular regulators were measured using ELISA. RESULTS Receiver operating characteristic curve analysis was performed on nine vascular regulators to assess their diagnostic sensitivity for VWF with the following area under the curve results: PGI 2 = 0.861, ANP = 0.840. CONCLUSIONS Collectively, PGI 2 and ANP exhibited the most potential for the early diagnosis of HAVS.
Collapse
Affiliation(s)
- Hongyu Yang
- From the School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China; and Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Frountzas M, Karanikki E, Toutouza O, Sotirakis D, Schizas D, Theofilis P, Tousoulis D, Toutouzas KG. Exploring the Impact of Cyanidin-3-Glucoside on Inflammatory Bowel Diseases: Investigating New Mechanisms for Emerging Interventions. Int J Mol Sci 2023; 24:9399. [PMID: 37298350 PMCID: PMC10254033 DOI: 10.3390/ijms24119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G), the most widely distributed anthocyanin (ACN) in edible fruits, has been proposed for several bioactivities, including anti-inflammatory, neuro-protective, antimicrobial, anti-viral, anti-thrombotic and epigenetic actions. However, habitual intake of ACNs and C3G may vary widely among populations, regions, and seasons, among individuals with different education and financial status. The main point of C3G absorption occurs in the small and large bowel. Therefore, it has been supposed that the treating properties of C3G might affect inflammatory bowel diseases (IBD), such as ulcerative colitis (UC) and Crohn's disease (CD). IBDs develop through complex inflammatory pathways and sometimes may be resistant to conventional treatment strategies. C3G presents antioxidative, anti-inflammatory, cytoprotective, and antimicrobial effects useful for IBD management. In particular, different studies have demonstrated that C3G inhibits NF-κB pathway activation. In addition, C3G activates the Nrf2 pathway. On the other hand, it modulates the expression of antioxidant enzymes and cytoprotective proteins, such as NAD(P)H, superoxide dismutase, heme-oxygenase (HO-1), thioredoxin, quinone reductase-oxide 1 (NQO1), catalase, glutathione S-transferase and glutathione peroxidase. Interferon I and II pathways are downregulated by C3G inhibiting interferon-mediating inflammatory cascades. Moreover, C3G reduces reactive species and pro-inflammatory cytokines, such as C reactive protein, interferon-γ, tumor necrosis factor-α, interleukin (IL)-5, IL-9, IL-10, IL-12p70, and IL-17A in UC and CD patients. Finally, C3G modulates gut microbiota by inducing an increase in beneficial gut bacteria and increasing microbial abundances, thus mitigating dysbiosis. Thus, C3G presents activities that may have potential therapeutic and protective actions against IBD. Still, in the future, clinical trials should be designed to investigate the bioavailability of C3G in IBD patients and the proper therapeutic doses through different sources, aiming to the standardization of the exact clinical outcome and efficacy of C3G.
Collapse
Affiliation(s)
- Maximos Frountzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Karanikki
- Department of Clinical Nutrition, Hippocration General Hospital, 11527 Athens, Greece;
| | - Orsalia Toutouza
- School of Medicine, Imperial College of London, London SW7 2AZ, UK
| | - Demosthenis Sotirakis
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Theofilis
- First Cardiology Department, “Hippocration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- First Cardiology Department, “Hippocration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos G. Toutouzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
8
|
Rajput A, Sharma P, Singh D, Singh S, Kaur P, Attri S, Mohana P, Kaur H, Rashid F, Bhatia A, Jankowski J, Arora V, Tuli HS, Arora S. Role of polyphenolic compounds and their nanoformulations: a comprehensive review on cross-talk between chronic kidney and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:901-924. [PMID: 36826494 DOI: 10.1007/s00210-023-02410-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Vanita Arora
- Sri Sukhmani Dental College & Hospital, Derabassi, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
9
|
Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur J Pharmacol 2023; 941:175503. [PMID: 36641100 DOI: 10.1016/j.ejphar.2023.175503] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cervical and endometrial cancers are among the most dangerous gynaecological malignancies, with high fatality and recurrence rates due to frequent diagnosis at an advanced stage and chemoresistance onset. The NRF2/KEAP1 signalling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. NRF2, activated by ROS, induces the expression of antioxidant enzymes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase which neutralize ROS, protecting cells against oxidative stress damage. However, activation of NRF2/KEAP1 signalling in cancer cells results in chemoresistance, inactivating drug-mediated oxidative stress and protecting cancer cells from drug-induced cell death. We review the literature on the role of the NRF2/KEAP1 pathway in cervical and endometrial cancers, with a focus on the expression of its components and downstream genes. We also examine the role of the NRF2/KEAP1 pathway in chemotherapy resistance and how this pathway can be modulated by natural and synthetic modulators.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
10
|
Zannou O, Oussou KF, Chabi IB, Awad NMH, Aïssi MV, Goksen G, Mortas M, Oz F, Proestos C, Kayodé APP. Nanoencapsulation of Cyanidin 3- O-Glucoside: Purpose, Technique, Bioavailability, and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:617. [PMID: 36770579 PMCID: PMC9921781 DOI: 10.3390/nano13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Kouame F. Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Ifagbémi B. Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Nour M. H. Awad
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Midimahu V. Aïssi
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété 00 BP 144, Benin
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Mustafa Mortas
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Adéchola P. P. Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
11
|
Dietary Intervention with Blackcurrant Pomace Protects Rats from Testicular Oxidative Stress Induced by Exposition to Biodiesel Exhaust. Antioxidants (Basel) 2022; 11:antiox11081562. [PMID: 36009280 PMCID: PMC9404818 DOI: 10.3390/antiox11081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The exposure to diesel exhaust emissions (DEE) contributes to negative health outcomes and premature mortality. At the same time, the health effects of the exposure to biodiesel exhaust emission are still in scientific debate. The aim of presented study was to investigate in an animal study the effects of exposure to DEE from two types of biodiesel fuels, 1st generation B7 biodiesel containing 7% of fatty acid methyl esters (FAME) or 2nd generation biodiesel (SHB20) containing 7% of FAME and 13% of hydrotreated vegetable oil (HVO), on the oxidative stress in testes and possible protective effects of dietary intervention with blackcurrant pomace (BC). Adult Fisher344/DuCrl rats were exposed by inhalation (6 h/day, 5 days/week for 4 weeks) to 2% of DEE from B7 or SHB20 fuel mixed with air. The animals from B7 (n = 14) and SHB20 (n = 14) groups subjected to filtered by a diesel particulate filter (DPF) or unfiltered DEE were maintained on standard feed. The rats from B7+BC (n = 12) or SHB20+BC (n = 12), exposed to DEE in the same way, were fed with feed supplemented containing 2% (m/m) of BC. The exposure to exhaust emissions from 1st and 2nd generation biodiesel resulted in induction of oxidative stress in the testes. Higher concentration of the oxidative stress markers thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides (LOOHs), 25-dihydroxycholesterols (25(OH)2Ch), and 7-ketocholesterol (7-KCh) level), as well as decreased level of antioxidant defense systems such as reduced glutathione (GSH), GSH/GSSG ratio, and increased level of oxidized glutathione (GSSG)) were found. Dietary intervention reduced the concentration of TBARS, 7-KCh, LOOHs, and the GSSG level, and elevated the GSH level in testes. In conclusion, DEE-induced oxidative stress in the testes was related to the biodiesel feedstock and the application of DPF. The SHB20 DEE without DPF technology exerted the most pronounced toxic effects. Dietary intervention with BC in rats exposed to DEE reduced oxidative stress in testes and improved antioxidative defense parameters, however the redox balance in the testes was not completely restored.
Collapse
|
12
|
Sanjay, Shin JH, Park M, Lee HJ. Cyanidin-3-O-Glucoside Regulates the M1/M2 Polarization of Microglia via PPARγ and Aβ42 Phagocytosis Through TREM2 in an Alzheimer's Disease Model. Mol Neurobiol 2022; 59:5135-5148. [PMID: 35670898 PMCID: PMC9363298 DOI: 10.1007/s12035-022-02873-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
Abstract
Microglial polarization plays an essential role in the progression and regression of neurodegenerative disorders. Cyanidin-3-O-glucoside (C3G), a dietary anthocyanin found in many fruits and vegetables, has been reported as an antioxidant, anti-inflammatory, and antitumor agent. However, there have been no reports on whether C3G can regulate the M1/M2 shift in an Alzheimer's disease model. We attempted to investigate the effects of C3G on M1/M2 polarization and the mechanism to regulate anti-inflammation and phagocytosis, both in vitro and in vivo. HMC3 cells were treated with β-amyloid (Aβ42) in the presence or absence of 50 μM C3G for different time intervals, and APPswe/PS1ΔE9 mice were orally administered 30 mg/kg/day of C3G for 38 weeks. The in vitro data revealed that C3G could shift the M1 phenotype of microglia to M2 by reducing the expression of M1-specific markers (CD86 and CD80), inflammatory cytokines (IL-Iβ, IL-6, TNF-α), reactive oxygen species, and enhancing the expression of M2-specific markers (CD206 and CD163). The APPswe/PS1ΔE9 mice results were consistent with the in vitro data, indicating a significant reduction in inflammatory cytokines and higher expression of M2-specific markers such as CD206 and Arg1 in C3G-treated Alzheimer's disease model mice. Additionally, C3G was found to upregulate PPARγ expression levels both in vitro and in vivo, whereas a PPARγ antagonist (GW9662) was found to block C3G-mediated effects in vitro. In this study, we confirmed that C3G could regulate microglial polarization by activating PPARγ and eliminating accumulated β-amyloid by enhancing Aβ42 phagocytosis through the upregulation of TREM2.
Collapse
Affiliation(s)
- Sanjay
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do 461-713, Seongnam-si, Republic of Korea
| | - Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
| |
Collapse
|
13
|
Dissanayake IH, Zak V, Kaur K, Jaye K, Ayati Z, Chang D, Li CG, Bhuyan DJ. Australian native fruits and vegetables: Chemical composition, nutritional profile, bioactivity and potential valorization by industries. Crit Rev Food Sci Nutr 2022; 63:8511-8544. [PMID: 35491610 DOI: 10.1080/10408398.2022.2057913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Australian native plants have adapted themselves to harsh climatic conditions enabling them to produce unique and high levels of secondary metabolites. Native fruits and vegetables have been an integral part of the Indigenous Australian diet and Bush medicine for centuries. They have recently gained popularity owing to their rich dietary fiber, minerals, polyphenolic and antioxidant contents. This review presents a comprehensive summary and critical assessment of the studies performed in the last few decades to understand the phytochemical and nutritional profiles and therapeutic properties of Australian native fruits and vegetables. Furthermore, the potential of these fruits and vegetables as functional food ingredients and in the prevention and treatment of different diseases is discussed. Research on the nutritional and phytochemical profiles and therapeutic activity of Australian vegetables is limited with most studies focused on native fruits. These fruits have demonstrated promising antioxidant, anticancer, anti-inflammatory and antimicrobial activities mostly in in vitro models. More research to a) identify novel bioactive compounds, b) define optimal post-harvest and extraction methods, and c) understand molecular mechanisms of pharmacological activity through preclinical and clinical studies is prudent for the prospective and wider use of Australian native fruits and vegetables by the food, pharmaceutical, and nutraceutical industries.
Collapse
Affiliation(s)
| | - Valeria Zak
- School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Kirandeep Kaur
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Zahra Ayati
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
14
|
An ACE inhibitory peptide from Isochrysis zhanjiangensis exhibits antihypertensive effect via anti-inflammation and anti-apoptosis in HUVEC and hypertensive rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
The Effects of Berry Extracts on Oxidative Stress in Cultured Cardiomyocytes and Microglial Cells: A Potential Cardioprotective and Neuroprotective Mechanism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092789. [PMID: 35566133 PMCID: PMC9100120 DOI: 10.3390/molecules27092789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Oxidative stress is a key underlying factor in cognitive decline and atherosclerosis. Oxidative stress occurs at the cellular level with an imbalance between reactive oxygen species and reactive nitrogen species and a deficiency in antioxidants. Mounting evidence suggests that berry flavonoids may promote cellular health by exerting antioxidant properties. Black currant and various berry extracts were tested in microglia (BV-2) and cardiomyocyte (HL-1) cell lines to study their biological effects. The principal ingredients in black currant and cranberry extract–delphinidin 3-rutinoside (D3R) and cyanidin 3-glucoside (C3G), were also assessed. A menadione-induced oxidative stressor was used, and its output was quantified to detect oxidative stress (CellROXTM). Black currant extract had similar antioxidant effects as N-acetylcysteine (NAC) in HL-1 cells with regard to cellular protection, whereas cranberry extract was ineffective. In contrast, cranberry extract was comparable in effectiveness to black currant extract in BV-2 cells. D3R and C3G also reduced oxidative stress similarly to whole berry extracts, which indicates that these ingredients may confer the antioxidant effects of berries. Black currant and cranberry extracts inhibit oxidative stress in microglial and cardiomyocyte cell lines. Black currant extract was more effective in reducing oxidative stress in the HL-1 cells, whereas cranberry extract was comparable in reducing oxidative stress in the BV-2 cells. The results suggest that berry flavonoids exert neuro- and cardioprotective effects.
Collapse
|
16
|
Vascular Protective Effect and Its Possible Mechanism of Action on Selected Active Phytocompounds: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3311228. [PMID: 35469164 PMCID: PMC9034927 DOI: 10.1155/2022/3311228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Vascular endothelial dysfunction is characterized by an imbalance of vasodilation and vasoconstriction, deficiency of nitric oxide (NO) bioavailability and elevated reactive oxygen species (ROS), and proinflammatory factors. This dysfunction is a key to the early pathological development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. Therefore, modulation of the vascular endothelium is considered an important therapeutic strategy to maintain the health of the cardiovascular system. Epidemiological studies have shown that regular consumption of medicinal plants, fruits, and vegetables promotes vascular health, lowering the risk of cardiovascular diseases. This is mainly attributed to the phytochemical compounds contained in these resources. Various databases, including Google Scholar, MEDLINE, PubMed, and the Directory of Open Access Journals, were searched to identify studies demonstrating the vascular protective effects of phytochemical compounds. The literature had revealed abundant data on phytochemical compounds protecting and improving the vascular system. Of the numerous compounds reported, curcumin, resveratrol, cyanidin-3-glucoside, berberine, epigallocatechin-3-gallate, and quercetin are discussed in this review to provide recent information on their vascular protective mechanisms in vivo and in vitro. Phytochemical compounds are promising therapeutic agents for vascular dysfunction due to their antioxidative mechanisms. However, future human studies will be necessary to confirm the clinical effects of these vascular protective mechanisms.
Collapse
|
17
|
Najjar RS, Mu S, Feresin RG. Blueberry Polyphenols Increase Nitric Oxide and Attenuate Angiotensin II-Induced Oxidative Stress and Inflammatory Signaling in Human Aortic Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040616. [PMID: 35453301 PMCID: PMC9026874 DOI: 10.3390/antiox11040616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence indicate that blueberries have anti-hypertensive properties, which may be mainly due to its rich polyphenol content and their high antioxidant capacity. Thus, we aimed to investigate the mechanisms by which blueberry polyphenols exert these effects. Human aortic endothelial cells (HAECs) were incubated with 200 µg/mL blueberry polyphenol extract (BPE) for 1 h prior to a 12 h treatment with angiotensin (Ang) II, a potent vasoconstrictor. Our results indicate that Ang II increased levels of superoxide anions and decreased NO levels in HAECs. These effects were attenuated by pre-treatment with BPE. Ang II increased the expression of the pro-oxidant enzyme NOX1, which was not attenuated by BPE. Pre-treatment with BPE attenuated the Ang II-induced increase in the phosphorylation of the redox-sensitive MAPK kinases, SAPK/JNK and p38. BPE increased the expression of the redox-transcription factor NRF2 as well as detoxifying and antioxidant enzymes it transcribes including HO-1, NQO1, and SOD1. We also show that BPE attenuates the Ang II-induced phosphorylation of the NF-κB p65 subunit. Further, we show that inhibition of NRF2 leads to a decrease in the expression of HO-1 and increased phosphorylation of the NF-κB p65 subunit in HAECs treated with BPE and Ang II. These findings indicate that BPE acts through a NRF2-dependent mechanism to reduce oxidative stress and increase NO levels in Ang II-treated HAECs.
Collapse
Affiliation(s)
- Rami S. Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
| | - Shengyu Mu
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
- Department of Nutrition & Dietetics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-404-413-1233
| |
Collapse
|
18
|
Ye X, Chen W, Tu P, Jia R, Liu Y, Li Y, Tang Q, Zheng X, Chu Q. Food-derived cyanidin-3- O-glucoside alleviates oxidative stress: evidence from the islet cell line and diabetic db/db mice. Food Funct 2021; 12:11599-11610. [PMID: 34713882 DOI: 10.1039/d1fo02385c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type 2 diabetes mellitus is a disease associated with an oxidative milieu that often leads to adverse health outcomes. Multiple anthocyanins have been reported to possess outstanding antioxidant activity, however, their effects on hyperglycemia-related oxidative stress remain elusive. In the present study, cyanidin-3-O-glucoside (C3G), a typical anthocyanin with various widely accepted health benefits, was applied to alleviate oxidative stress in pancreas islets under the conditions of hyperglycemia. Firstly, significantly decreased mitochondrial membrane potential (MMP) and antioxidant enzymes, as well as increased reactive oxygen species (ROS) and O2- levels, were detected after exposure to a series of concentrations of high glucose (HG) and palmitic acid (PA), which manifested oxidative stress triggered by mitochondrial damage. To evaluate the antioxidant effect of C3G in vitro, the islet cell line NIT-1 was used, and results proved that C3G could effectively relieve cellular oxidative stress induced by HG and PA. Furthermore, we found that the antioxidant effect of C3G was achieved by activating mitophagy via the PINK1-PARKIN signaling pathway. More importantly, an autophagy inhibitor chloroquine (CQ) was added to verify our findings at the protein level, and we observed the co-localization of mitochondria and lysosomes, which may form autophagolysosomes to clean damaged mitochondria. Immediately afterwards, more studies were conducted on pancreatic islets of diabetic db/db mice to verify the antioxidant effect of C3G discovered in islet cells. Along with the decline in fasting blood glucose, the oxidative stress in pancreas islets was successfully alleviated in diabetic db/db mice after supplementation with C3G. This was demonstrated by increased levels of ROS, and the impaired activities of anti-oxidative enzymes superoxide dismutase (SOD) and catalase (CAT) were partly reversed by C3G intervention. Our study has provided evidence for the alleviation effect of C3G against oxidative stress in pancreas islets, which may provide enlightenment for improving the health situation of diabetic patients in the future.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Wen Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Pengcheng Tu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Ruoyi Jia
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Yangyang Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Yonglu Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Qiong Tang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Qiang Chu
- Tea Research Institute, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Meephat S, Prasatthong P, Rattanakanokchai S, Bunbupha S, Maneesai P, Pakdeechote P. Diosmetin attenuates metabolic syndrome and left ventricular alterations via the suppression of angiotensin II/AT 1 receptor/gp 91phox/p-NF-κB protein expression in high-fat diet fed rats. Food Funct 2021; 12:1469-1481. [PMID: 33449987 DOI: 10.1039/d0fo02744h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diosmetin, a monomethoxyflavone, is isolated from citrus fruits. The objective of this research was to test the biological role of diosmetin on parameters of metabolic syndrome (MS) and left ventricular (LV) alterations in rats fed with a high-fat (HF) diet. MS was induced by feeding male Sprague-Dawley rats with a HF diet plus 15% fructose in drinking water for 16 weeks. MS rats were given diosmetin (20 or 40 mg per kg per day) or metformin (100 mg per kg per day) for the final four weeks. Diosmetin attenuated signs of MS including, hypertension, hyperglycemia, insulin resistance, and dyslipidemia in rats that received the HF diet (p < 0.05). A decreased stroke volume, ejection fraction, fractional shortening, LV hypertrophy and fibrosis present in the MS group were alleviated by diosmetin treatment (p < 0.05). Diosmetin also suppressed angiotensin-converting enzyme activity, plasma angiotensin II (Ang II) levels and angiotensin II type 1 (AT1) receptor protein expression in MS rats. Increases in superoxide (O2˙-) formation, plasma malondialdehyde, plasma nitrate and nitrite and gp91phox expression induced by a HF diet were ameliorated in the diosmetin treated group. Inflammation indicated by an increased phospho nuclear factor kappa B (p-NF-κB) protein expression and cardiac TNF-α concentration was reduced in MS rats receiving diosmetin (p < 0.05). Metformin also attenuated MS, cardiac abnormalities relevant to decreasing the renin-angiotensin system stimulation, reactive oxygen species and inflammation in MS rats (p < 0.05). Diosmetin alleviated MS and LV dysfunction and remodeling in HF diet-induced MS rats. These results could be associated with the suppression of the Ang II/AT1 receptor/gp91phox/p-NF-κB protein pathway.
Collapse
Affiliation(s)
- Sariya Meephat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Patoomporn Prasatthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand.
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. and Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
20
|
Li X, Mu J, Lin Y, Zhao J, Meng X. Combination of cyanidin-3-O-glucoside and cisplatin induces oxidative stress and apoptosis in HeLa cells by reducing activity of endogenous antioxidants, increasing bax/bcl-2 mRNA expression ratio, and downregulating Nrf2 expression. J Food Biochem 2021; 45:e13806. [PMID: 34080212 DOI: 10.1111/jfbc.13806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Investigation on potentiation of existing drugs with natural compounds to enhance efficacy and reduce toxic effect of the drugs has been increasing in recent years. This paper reports cytotoxic effect (apoptosis-related and oxidative stress-related effect) of cyanidin-3-O-glucoside (C3G), cisplatin (DDP), and their combination (C3G-DDP) on cervical cancer HeLa cells. Concentration of intracellular reactive oxygen species (ROS) was determined by employing fluorescent marker 2',7'-dichlorodihydrofluorescein diacetate. On the other hand, malondialdehyde (MDA) and glutathione (GSH) concentration, and activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were quantitated by commercially available assay kits. C3G-DDP significantly inhibited the activity of SOD, CAT, and GSH-Px. Simultaneously, C3G-DDP reduced GSH concentration while increased the concentration of ROS and MDA. Moreover, Western blot analysis suggested that C3G-DDP significantly reduced the expression of nuclear factor erythroid 2-related factor-2 (Nrf2) and Nrf2 target proteins: heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1). In contrast, C3G-DDP increased the expression of Keap1. Furthermore, C3G-DDP significantly upregulated and downregulated the mRNA expressions of bax and bcl-2, respectively, thereby increasing bax/bcl-2 mRNA expression ratio. Overall, our findings propose that potentiation of DDP with C3G improves cancer cell susceptibility, specifically cervical cancer cells, to DDP. PRACTICAL APPLICATIONS: Cisplatin is recommended by most medical oncologists worldwide to treat cancer. Despite its neoplastic efficacy, it has undesirable side effects including nausea, vomiting, nephrotoxicity, and hepatotoxicity. Natural biologically active food ingredients are suggested to be used as antioxidants along with DDP therapy to prevent cisplatin-induced toxicity. C3G-DDP protected HeLa cells from oxidative stress by reducing NQO1 and HO-1 levels and regulated the Nrf2 signaling pathway. In addition, C3G-DDP protected HeLa cells from oxidative stress-induced apoptosis by increasing bcl-2 levels and decreasing bax levels. These results expanded our understanding of the role of C3G in a cervical cancer cell model, and provided a potential new treatment strategy for this cancer, as well as a theoretical basis for the development of new drugs in the future.
Collapse
Affiliation(s)
- Xu Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Vocational Technical College of Modern Service, Shenyang, China
| | - Jingjing Mu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yang Lin
- Liaoning Vocational Technical College of Modern Service, Shenyang, China
| | - Jin Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
21
|
Zhang X, Qin Y, Ruan W, Wan X, Lv C, He L, Lu L, Guo X. Targeting inflammation-associated AMPK//Mfn-2/MAPKs signaling pathways by baicalein exerts anti-atherosclerotic action. Phytother Res 2021; 35:4442-4455. [PMID: 34008261 DOI: 10.1002/ptr.7149] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
Abstract
Inflammatory responses in macrophages, endothelial cells, and vascular smooth muscle cells play crucial roles in the development of atherosclerosis. Baicalein, a flavonoid phytochemical, possesses anti-inflammatory properties, but the underlying mechanisms of its action are not fully understood. The aim of this study was to explore whether baicalein inhibited inflammatory activities in RAW264.7, HUVEC, and MOVAS cells and to analyze its underlying mechanisms. Our results showed that baicalein treatment effectively reduced the levels of IL-6, TNF-α, PAI-1, and MMP-9 released by these cells upon stimulation with Ang II or ox-LDL. We discovered that the molecular mechanisms underlying baicalein suppression of the generation of proinflammatory cytokines were associated with the inhibition of MAPK/NF-κB pathway activity. Moreover, Ang II and ox-LDL intervention decreased the content of Mfn-2 in the three types of cells, but incubation of baicalein alleviated the Ang II/ox-LDL-induced reduction of Mfn-2 levels. Adv-Mfn2 treatment not only increased the expression of Mfn-2 but also reduced the levels of phosphorylated ERK1/2, p38, JNK, and NF-κB, followed by a decrease in the concentrations of IL-6, TNF-α, PAI-1, and MMP-9 in the supernatant. Furthermore, our findings indicated that baicalein treatment markedly suppressed the decrease in AMPK activity induced with Ang II and ox-LDL, and incubation with Compound C reversed the effects of baicalein on AMPK activation and Mfn-2 expression. In conclusion, our data suggest that baicalein shows anti-inflammatory properties, probably by activating the AMPK/Mfn-2 axis, accompanied by inhibition of downstream MAPKs/NF-κB signaling transduction.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weibin Ruan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin He
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) Shanghai Jiaotong University, Shanghai, China
| | - Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Najjar RS, Schwartz AM, Wong BJ, Mehta PK, Feresin RG. Berries and Their Polyphenols as a Potential Therapy for Coronary Microvascular Dysfunction: A Mini-Review. Int J Mol Sci 2021; 22:3373. [PMID: 33806050 PMCID: PMC8036956 DOI: 10.3390/ijms22073373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemia with no obstructive coronary artery disease (INOCA) is a common diagnosis with a higher prevalence in women compared to men. Despite the absence of obstructive coronary artery disease and no structural heart disease, INOCA is associated with major adverse cardiovascular outcomes as well a significant contributor to angina and related disability. A major feature of INOCA is coronary microvascular dysfunction (CMD), which can be detected by non-invasive imaging and invasive coronary physiology assessments in humans. CMD is associated with epicardial endothelial-dependent and -independent dysfunction, diffuse atherosclerosis, and left-ventricular hypertrophy, all of which lead to insufficient blood flow to the myocardium. Inflammatory and oxidative stress signaling, upregulation of the renin-angiotensin-aldosterone system and adrenergic receptor signaling are major drivers of CMD. Treatment of CMD centers around addressing cardiovascular risk factors; however, there are limited treatment options for those who do not respond to traditional anti-anginal therapies. In this review, we highlight the ability of berry-derived polyphenols to modulate those pathways. The evidence supports the need for future clinical trials to investigate the effectiveness of berries and their polyphenols in the treatment of CMD in INOCA patients.
Collapse
Affiliation(s)
- Rami S. Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
| | - Arielle M. Schwartz
- J. Willis Hurst Internal Medicine Residency Program, Emory University, Atlanta, GA 30322, USA;
| | - Brett J. Wong
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30302, USA;
| | - Puja K. Mehta
- Division of Cardiology, Emory Women’s Heart Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
| |
Collapse
|
23
|
Najjar RS, Turner CG, Wong BJ, Feresin RG. Berry-Derived Polyphenols in Cardiovascular Pathologies: Mechanisms of Disease and the Role of Diet and Sex. Nutrients 2021; 13:nu13020387. [PMID: 33513742 PMCID: PMC7911141 DOI: 10.3390/nu13020387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) prevalence, pathogenesis, and manifestation is differentially influenced by biological sex. Berry polyphenols target several signaling pathways pertinent to CVD development, including inflammation, oxidative stress, and cardiac and vascular remodeling, and there are innate differences in these pathways that also vary by sex. There is limited research systematically investigating sex differences in berry polyphenol effects on these pathways, but there are fundamental findings at this time that suggest a sex-specific effect. This review will detail mechanisms within these pathological pathways, how they differ by sex, and how they may be individually targeted by berry polyphenols in a sex-specific manner. Because of the substantial polyphenolic profile of berries, berry consumption represents a promising interventional tool in the treatment and prevention of CVD in both sexes, but the mechanisms in which they function within each sex may vary.
Collapse
Affiliation(s)
- Rami S. Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
| | - Casey G. Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Brett J. Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
- Correspondence:
| |
Collapse
|
24
|
Kumar N, Jose J. Current developments in the nanomediated delivery of photoprotective phytochemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38446-38471. [PMID: 32761528 DOI: 10.1007/s11356-020-10100-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Natural products have been used to protect the skin from harmful UV radiation for decades. Due to the ecotoxicological implications of synthetic sunscreen exposure in aquatic ecosystems, there is a greater need to explore alternative sources of UV filters. Recent research has focused on discovering novel UV absorbing photoprotective molecules from nature. In response to the excessive damage caused by UVB rays, plants induce the production of high concentrations of phytoprotective secondary metabolites and anti-oxidative enzymes. Despite promising UV absorbing and photoprotective properties, plant secondary metabolites have been underutilized in topical delivery due to low solubility and high instability. Numerous phytochemicals have been effectively nanosized, incorporated in formulations, and studied for their sustained effects in photoprotection. The present review outlines recent developments in nanosizing and delivering photoprotective crude plant extract and phytochemicals from a phytochemical perspective. We searched for articles using keywords: "UV damage," "skin photoprotection," "photodamage," and "nano delivery" in varied combinations. We identified and reviewed literature from 43 original research articles exploring nanosized phytochemicals and crude plant extracts with photoprotective activity. Nanosized phytochemicals retained higher amounts of bioactive compounds in the skin and acted as depots for their sustained release. Novel approaches in nanosizing considerably improved the photostability, efficacy, and water resistance of plant secondary metabolites. We further discuss the need for broad-spectrum sunscreen products, potential challenges, and future growth in this area.
Collapse
Affiliation(s)
- Nimmy Kumar
- Department of Pharmacognosy, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, 575018, Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Mangalore, 575018, India.
| |
Collapse
|
25
|
Yu L, Zhang SD, Zhao XL, Ni HY, Song XR, Wang W, Yao LP, Zhao XH, Fu YJ. Cyanidin-3-glucoside protects liver from oxidative damage through AMPK/Nrf2 mediated signaling pathway in vivo and in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
26
|
Madduma Hewage S, Prashar S, Debnath SC, O K, Siow YL. Inhibition of Inflammatory Cytokine Expression Prevents High-Fat Diet-Induced Kidney Injury: Role of Lingonberry Supplementation. Front Med (Lausanne) 2020; 7:80. [PMID: 32292787 PMCID: PMC7119336 DOI: 10.3389/fmed.2020.00080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic low-grade inflammation is a major stimulus for progression of chronic kidney disease (CKD) in individuals consuming high-fat diet. Currently, there are limited treatment options for CKD other than controlling the progression rate and its associated complications. Lingonberry (Vaccinium vitis-idaea L.) is rich in anthocyanins with demonstrated anti-inflammatory effect. In the current study, we investigated the potential renal protective effect of lingonberry and its anthocyanin (cyanidin-3-glucoside) in high-fat diet fed obese mice and in human proximal tubular cells. Prolonged consumption of high-fat diets is strongly associated with obesity, abnormal lipid and glucose metabolism. Mice (C57BL/6J) fed a high-fat diet (62% kcal fat) for 12 weeks developed renal injury as indicated by an elevation of blood urea nitrogen (BUN) level as well as an increase in renal kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL) and renin expression. Those mice displayed an activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and increased expression of inflammatory cytokines-monocyte chemoattractant-1 (MCP-1), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) in the kidneys. Mice fed a high-fat diet also had a significant elevation of inflammatory cytokine levels in the plasma. Dietary supplementation of lingonberry for 12 weeks not only attenuated high-fat diet-induced renal inflammatory response but also reduced kidney injury. Such a treatment improved plasma lipid and glucose profiles, reduced plasma inflammatory cytokine levels but did not affect body weight gain induced by high-fat diet feeding. Lingonberry extract or its active component cyanidin-3-glucoside effectively inhibited palmitic acid-induced NF-κB activation and inflammatory cytokine expression in proximal tubular cells. These results suggest that lingonberry supplementation can reduce inflammatory response and prevent chronic kidney injury. Such a renal protective effect by lingonberry and its active component may be mediated, in part, through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Susara Madduma Hewage
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Suvira Prashar
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Samir C Debnath
- Agriculture and Agri-Food Canada, St. John's Research and Development Centre, St. John's, NL, Canada
| | - Karmin O
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Yaw L Siow
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
27
|
Kanthlal SK, Joseph J, Paul B, M V, P UD. Antioxidant and vasorelaxant effects of aqueous extract of large cardamom in L-NAME induced hypertensive rats. Clin Exp Hypertens 2020; 42:581-589. [PMID: 32202168 DOI: 10.1080/10641963.2020.1739699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The present work aimed to study the effect of aqueous extract of large cardamom (AELC) to prevent vascular remodeling and oxidative stress in Nω-Nitro-L-arginine methyl ester (L-NAME)-induced hypertension. METHOD Male Wistar rats were administered with L-NAME 40 mg/kg/day for 28 days by oral gavage. The treatments included captopril (20 mg/kg/day) or AELC (100, 200 and 400 mg/kg/day) along with L-NAME administration. RESULTS L-NAME treated rats showed high systolic, diastolic and mean arterial pressure, decreased nitric oxide level, increased level of malondialdehyde in plasma, heart, aorta and kidney, hypertrophy of the vascular wall and reduced vascular response to acetylcholine in phenylephrine-precontracted aorta. Treatment with AELC markedly reduced the blood pressure, restored the nitric oxide level, reduced the malondialdehyde level, alleviated the hypertrophy in L-NAME-induced hypertensive rats. Additionally, it also improved the vascular response to acetylcholine in phenylephrine pre-contracted aorta. CONCLUSION In conclusion, our results demonstrate the preventive effect of AELC in L-NAME-induced hypertensive model, which is possibly related to antioxidant activities and restoration of nitric oxide level.
Collapse
Affiliation(s)
- S K Kanthlal
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Jipnomon Joseph
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Bindhu Paul
- Amrita Centre for Nano Sciences and Molecular Medicine, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Vijayakumar M
- Department of Cardiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Uma Devi P
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham , Kochi, India
| |
Collapse
|
28
|
In Vitro Vascular-Protective Effects of a Tilapia By-Product Oligopeptide on Angiotensin II-Induced Hypertensive Endothelial Injury in HUVEC by Nrf2/NF-κB Pathways. Mar Drugs 2019; 17:md17070431. [PMID: 31340575 PMCID: PMC6669485 DOI: 10.3390/md17070431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Angiotensin II (Ang II) is closely involved in endothelial injury during the development of hypertension. In this study, the protective effects of the tilapia by-product oligopeptide Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) on oxidative stress and endothelial injury in Angiotensin II (Ang II)-stimulated human umbilical vein endothelial cells (HUVEC) were evaluated. LSGYGP dose-dependently suppressed the fluorescence intensities of nitric oxide (NO) and reactive oxygen species (ROS), inhibited the nuclear factor-kappa B (NF-κB) pathway, and reduced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and endothelin-1 (ET-1) expression, as shown by western blot. In addition, it attenuated the expression of gamma-glutamyltransferase (GGT) and heme oxygenase 1 (HO-1), as well as increasing superoxide dismutase (SOD) and glutathione (GSH) expression through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Other experiments revealed that LSGYGP increased the apoptotic inhibition ratio between cleaved-caspase-3/procaspase-3, reduced expressions of pro-apoptotic ratio between Bcl-2/Bax, inhibited phosphorylation of mitogen-activated protein kinases (MAPK), and increased phosphorylation of the serine/threonine kinase (Akt) pathway. Furthermore, LSGYGP significantly decreased Ang II-induced DNA damage in a comet assay, and molecular docking results showed that the steady interaction between LSGYGP with NF-κB may be attributed to hydrogen bonds. These results suggest that this oligopeptide is effective in protecting against Ang II-induced HUVEC injury through the reduction of oxidative stress and alleviating endothelial damage. Thus, it has the potential for the therapeutic treatment of hypertension-associated diseases.
Collapse
|
29
|
Anthocyanins from Nitraria tangutorun: qualitative and quantitative analyses, antioxidant and anti-inflammatory activities and their stabilities as affected by some phenolic acids. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-018-9956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Udomkasemsab A, Ngamlerst C, Adisakwattana P, Aroonnual A, Tungtrongchitr R, Prangthip P. Maoberry (Antidesma bunius) ameliorates oxidative stress and inflammation in cardiac tissues of rats fed a high-fat diet. Altern Ther Health Med 2018; 18:344. [PMID: 30591041 PMCID: PMC6307262 DOI: 10.1186/s12906-018-2400-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022]
Abstract
Backgound Chronic fat-rich diets consumption is increased risk associated with cardiovascular diseases (CVD). Prevention or reduction the progression of cardiac tissue deterioration could benefit in CVD. This study aimed to examine the effects of maoberry (Antidesma bunius), a antioxidant-rich tropical fruit, supplementation on oxidative stress and inflammation in cardiac tissues of rats fed a high-fat diet (HFD). Methods The male rats orally received HFD with maoberry extract doses of 0.38, 0.76 or 1.52 g/kg or simvastatin (10 mg/kg) for 12 weeks. At the end of the experimental period, the rats were fasted, euthanized and harvested for the hearts. Results Significantly reduced oxidative stress (malondialdehyde levels) and enhanced antioxidant capacity (ferric-reducing activities) in cardiac tissues of the rats were found. Maoberry extract remarkably ameliorated the expressions of genes involved with pro-inflammatory such as the tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1) and endothelial nitric oxide synthase (eNOS). Conclusions Our findings suggest that maoberry extract has remarkable effects on preventing progression of cardiac tissue deterioration at least through lowering oxidative stress and inflammation.
Collapse
|
31
|
Jiang X, Li X, Zhu C, Sun J, Tian L, Chen W, Bai W. The target cells of anthocyanins in metabolic syndrome. Crit Rev Food Sci Nutr 2018; 59:921-946. [DOI: 10.1080/10408398.2018.1491022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Cuijuan Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| |
Collapse
|
32
|
Exercise Training-Induced Changes in MicroRNAs: Beneficial Regulatory Effects in Hypertension, Type 2 Diabetes, and Obesity. Int J Mol Sci 2018; 19:ijms19113608. [PMID: 30445764 PMCID: PMC6275070 DOI: 10.3390/ijms19113608] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene expression post-transcriptionally. They are involved in the regulation of physiological processes, such as adaptation to physical exercise, and also in disease settings, such as systemic arterial hypertension (SAH), type 2 diabetes mellitus (T2D), and obesity. In SAH, microRNAs play a significant role in the regulation of key signaling pathways that lead to the hyperactivation of the renin-angiotensin-aldosterone system, endothelial dysfunction, inflammation, proliferation, and phenotypic change in smooth muscle cells, and the hyperactivation of the sympathetic nervous system. MicroRNAs are also involved in the regulation of insulin signaling and blood glucose levels in T2D, and participate in lipid metabolism, adipogenesis, and adipocyte differentiation in obesity, with specific microRNA signatures involved in the pathogenesis of each disease. Many studies report the benefits promoted by exercise training in cardiovascular diseases by reducing blood pressure, glucose levels, and improving insulin signaling and lipid metabolism. The molecular mechanisms involved, however, remain poorly understood, especially regarding the participation of microRNAs in these processes. This review aimed to highlight microRNAs already known to be associated with SAH, T2D, and obesity, as well as their possible regulation by exercise training.
Collapse
|
33
|
Theoduloz C, Burgos-Edwards A, Schmeda-Hirschmann G, Jiménez-Aspee F. Effect of polyphenols from wild Chilean currants ( Ribes spp.) on the activity of intracellular antioxidant enzymes in human gastric AGS cells. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Raj P, McCallum JL, Kirby C, Grewal G, Yu L, Wigle JT, Netticadan T. Effects of cyanidin 3-0-glucoside on cardiac structure and function in an animal model of myocardial infarction. Food Funct 2018; 8:4089-4099. [PMID: 28990610 DOI: 10.1039/c7fo00709d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cyanidin 3-0-glucoside (CG) is a polyphenol with potential health benefits. In this study, we investigated, for the first time, the cardioprotective effects of CG in an animal model of myocardial infarction (MI), a major cause of death worldwide. Sham and MI rats were administered CG (10 mg kg-1 day-1) daily for one week prior to surgery, and 8 weeks post-surgery. Echocardiography was performed to assess cardiac structure and function at 4 and 8 weeks. At 4 weeks, MI rats had significantly lower body mass when compared to control rats, and CG administration significantly prevented this decrease. Four-week MI rats also showed significantly increased left ventricle dilation, end systolic and end diastolic volumes in comparison to controls, and CG significantly prevented these adverse changes. Ejection fraction was significantly lower in 4-week MI rats in comparison to controls, and CG had no effect on this parameter. At 8 weeks, body mass was significantly lower in MI rats when compared to control rats, and CG significantly prevented this decrease. At 8 weeks, MI rats showed a significant increase in left ventricle dilation and isovolumic relaxation time, while ejection fraction was significantly lower when compared to controls; these parameters were not altered by CG treatment. Eight-week MI rats had significantly higher level of oxidative stress in heart tissue in comparison to controls, and CG administration did not prevent this increase. In conclusion, administration of CG was able to significantly preserve body mass in both 4 and 8 weeks MI rats, as well as significantly prevent cardiac dilation in 4 weeks MI rats. However, CG was unable to sustain this cardioprotection, as cardiac structure and function were not significantly improved in 8 weeks MI rats.
Collapse
Affiliation(s)
- Pema Raj
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Canada.
| | | | | | | | | | | | | |
Collapse
|
35
|
Mastantuono T, Di Maro M, Chiurazzi M, Battiloro L, Muscariello E, Nasti G, Starita N, Colantuoni A, Lapi D. Rat Pial Microvascular Changes During Cerebral Blood Flow Decrease and Recovery: Effects of Cyanidin Administration. Front Physiol 2018; 9:540. [PMID: 29867577 PMCID: PMC5963394 DOI: 10.3389/fphys.2018.00540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/26/2018] [Indexed: 11/13/2022] Open
Abstract
The reactive oxygen species (ROS) are known to play a major role in many pathophysiological conditions, such as ischemia and reperfusion injury. The present study was aimed to evaluate the in vivo cyanidin (anthocyanin) effects on damages induced by rat pial microvascular hypoperfusion-reperfusion injury by cerebral blood flow decrease (CBFD) and subsequent cerebral blood flow recovery (CBFR). In particular, the main purpose was to detect changes in ROS production after cyanidin administration. Rat pial microvasculature was investigated using fluorescence microscopy through a cranial window (closed); Strahler's method was utilized to define the geometric features of pial vessels. ROS production was investigated in vivo by 2'-7'-dichlorofluorescein-diacetate assay and neuronal damage was measured on isolated brain sections by 2,3,5-triphenyltetrazolium chloride staining. After 30 min of CBFD, induced by bilateral common carotid artery occlusion, and 60 min of CBFR, rats showed decrease of arteriolar diameter and capillary perfusion; furthermore, increase in microvascular leakage and leukocyte adhesion was observed. Conversely, cyanidin administration induced dose-related arteriolar dilation, reduction in microvascular permeability as well as leukocyte adhesion when compared to animals subjected to restriction of cerebral blood flow; moreover, capillary perfusion was protected. ROS generation increase and marked neuronal damage were detected in animals subjected to CBFD and CBFR. On the other hand, cyanidin was able to reduce ROS generation and neuronal damage. In conclusion, cyanidin treatment showed dose-related protective effects on rat pial microcirculation during CBFD and subsequent CBFR, inducing arteriolar dilation by nitric oxide release and inhibiting ROS formation, consequently preserving the blood brain barrier integrity.
Collapse
Affiliation(s)
- Teresa Mastantuono
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School, Naples, Italy
| | - Martina Di Maro
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School, Naples, Italy
| | - Martina Chiurazzi
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School, Naples, Italy
| | - Laura Battiloro
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School, Naples, Italy
| | - Espedita Muscariello
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School, Naples, Italy
| | - Gilda Nasti
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School, Naples, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School, Naples, Italy
| | - Dominga Lapi
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School, Naples, Italy
| |
Collapse
|
36
|
Wei J, Wu H, Zhang H, Li F, Chen S, Hou B, Shi Y, Zhao L, Duan H. Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice. Int J Mol Med 2018; 41:1608-1618. [PMID: 29328429 PMCID: PMC5819916 DOI: 10.3892/ijmm.2018.3378] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/04/2018] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress is an important contributory factor resulting the development of kidney injury in patients with diabetes. Numerous in vitro and in vivo studies have suggested that anthocyanins, natural phenols commonly existing in numerous fruits and vegetables, exhibit important antioxidative, anti‑inflammatory and antihyperlipidemic effects; however, their effects and underlying mechanisms on diabetic nephropathy (DN) have not yet been fully determined. In the present study, the regulation of apoptosis metabolism and antioxidative effects exhibited by anthocyanins [grape seed procyanidin (GSPE) and cyanidin‑3‑O‑β‑glucoside chloride (C3G)] were investigated, and the molecular mechanism underlying this process was investigated in vivo and in vitro. GSPE administration was revealed to suppress renal cell apoptosis, as well as suppress the expression of Bcl‑2 in diabetic mouse kidneys. Furthermore, GSPE administration was demonstrated to suppress the expression of thioredoxin interacting protein (TXNIP), in addition to enhancing p38 mitogen‑activation protein kinase (MAPK) and extracellular signal‑regulated kinase 1/2 (ERK1/2) oxidase activity in diabetic mouse kidneys. In vitro experiments using HK‑2 cells revealed that C3G suppressed the generation of HG‑mediated reactive oxygen species, cellular apoptosis, the expression of cleaved caspase‑3 and the Bax/Bcl‑2 ratio; and enhanced the expression of cytochrome c released from mitochondria. Furthermore, treatment with C3G was revealed to suppress the expression of TXNIP, in addition to the phosphorylation of p38 MAPK and ERK1/2 oxidase activity in HK‑2 cells under HG conditions. In addition, treatment with C3G was revealed to attenuate the HG‑induced suppression of the biological activity of thioredoxin, and to enhance the expression of thioredoxin 2 in HK‑2 cells under HG conditions. In conclusion, the present study demonstrated that anthocyanins may exhibit protective effects against HG‑induced renal injury in DN via antioxidant activity.
Collapse
Affiliation(s)
- Jinying Wei
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Haiqiang Zhang
- Department of Gastrointestinal Surgery Hernia and Abdominal Wall Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000
| | - Fang Li
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Shurui Chen
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Baohua Hou
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Lijuan Zhao
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| |
Collapse
|
37
|
Wu S, Hu Y, Li Z, Bai W, Zhao J, Huang C, Li Q, Fan C, Deng L, Lu D. The effect of Cyanidin-3-o-glucoside on UVA-induced damage in human dermal fibroblasts. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 34:224-231. [PMID: 29235191 DOI: 10.1111/phpp.12374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Shi Wu
- Department of Dermatology; The First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - Yunfeng Hu
- Department of Dermatology; The First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - Zhen Li
- Department of Dermatology; The First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - Weibin Bai
- Department of Food Science and Engineering; Jinan University; Guangzhou Guangdong China
| | - Jiayi Zhao
- Department of Pathophysiology; School of Medicine; Jinan University; Guangzhou Guangdong China
| | - Cuiqin Huang
- Department of Pathophysiology; School of Medicine; Jinan University; Guangzhou Guangdong China
| | - Qin Li
- Department of Pathophysiology; School of Medicine; Jinan University; Guangzhou Guangdong China
| | - Chongzhu Fan
- Department of Pathophysiology; School of Medicine; Jinan University; Guangzhou Guangdong China
| | - Liehua Deng
- Department of Dermatology; The First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - Daxiang Lu
- Department of Pathophysiology; School of Medicine; Jinan University; Guangzhou Guangdong China
| |
Collapse
|
38
|
Meng LS, Li B, Li DN, Wang YH, Lin Y, Meng XJ, Sun XY, Liu N. Cyanidin-3-O-glucoside attenuates amyloid-beta (1–40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
39
|
The Role of Nrf2 in Cardiovascular Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9237263. [PMID: 29104732 PMCID: PMC5618775 DOI: 10.1155/2017/9237263] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production, contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.
Collapse
|
40
|
NPC-EXs Alleviate Endothelial Oxidative Stress and Dysfunction through the miR-210 Downstream Nox2 and VEGFR2 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28630660 PMCID: PMC5467331 DOI: 10.1155/2017/9397631] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have demonstrated that neural progenitor cells (NPCs) protect endothelial cells (ECs) from oxidative stress. Since exosomes (EXs) can convey the benefit of parent cells through their carried microRNAs (miRs) and miR-210 is ubiquitously expressed with versatile functions, we investigated the role of miR-210 in the effects of NPC-EXs on oxidative stress and dysfunction in ECs. NPCs were transfected with control and miR-210 scramble/inhibitor/mimic to generate NPC-EXscon, NPC-EXssc, NPC-EXsanti-miR-210, and NPC-EXsmiR-210. The effects of various NPC-EXs on angiotensin II- (Ang II-) induced reactive oxygen species (ROS) overproduction, apoptosis, and dysfunction, as well as dysregulation of Nox2, ephrin A3, VEGF, and p-VEGFR2/VEGFR2 in ECs were evaluated. Results showed (1) Ang II-induced ROS overproduction, increase in apoptosis, and decrease in tube formation ability, accompanied with Nox2 upregulation and reduction of p-VEGFR2/VEGFR2 in ECs. (2) Compared to NPC-EXscon or NPC-EXssc, NPC-EXsanti-miR-210 were less whereas NPC-EXsmiR-210 were more effective on attenuating these detrimental effects induced by Ang II in ECs. (3) These effects of NPC-EXsanti-miR-210 and NPC-EXsmiR-210 were associated with the changes of miR-210, ephrin A3, VEGF, and p-VEGFR2/VEGFR2 ratio in ECs. Altogether, the protective effects of NPC-EXs on Ang II-induced endothelial injury through miR-210 which controls Nox2/ROS and VEGF/VEGFR2 signals were studied.
Collapse
|
41
|
Liang T, Guan R, Wang Z, Shen H, Xia Q, Liu M. Comparison of anticancer activity and antioxidant activity between cyanidin-3-O-glucoside liposomes and cyanidin-3-O-glucoside in Caco-2 cells in vitro. RSC Adv 2017. [DOI: 10.1039/c7ra06387c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we compared the antioxidant activities of cyanidin-3-O-glucoside (C3G) and C3G liposomes.
Collapse
Affiliation(s)
- Tisong Liang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine
- China Jiliang University
- Hangzhou 310018
- China
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine
- China Jiliang University
- Hangzhou 310018
- China
| | - Zhe Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine
- China Jiliang University
- Hangzhou 310018
- China
| | - Haitao Shen
- Zhejiang Provincial Center for Disease Control and Prevention
- Hangzhou 310051
- China
| | - Qile Xia
- Food Science Institute
- Zhejiang Academy of Agricultural Sciences
- Hangzhou 310021
- China
| | - Mingqi Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine
- China Jiliang University
- Hangzhou 310018
- China
| |
Collapse
|