1
|
Liu T, Qiao Z, Gong K, Yang Y, Han Y, Tan J, Peng C, Zhang W. Synergistic toxicity of DBDPE and Cd in a microcosm agrosystem: Insights into physiological, biochemical, nutrient elements and amino acid metabolic responses. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138421. [PMID: 40306244 DOI: 10.1016/j.jhazmat.2025.138421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Agricultural soil contamination by flame retardants and heavy metals has become an environmental concern, with decabromodiphenyl ethane (DBDPE) and cadmium (Cd) being frequently detected in e-waste dismantling areas. While previous studies mostly focused on single-organism system or individual toxicity, the combined effects of DBDPE and Cd on agricultural ecosystems remain largely unknown. This study aimed to reveal the joint toxicity mechanisms of DBDPE and Cd by examining physiological responses, amino acid metabolism, nutrient element distribution, and DBDPE degradation pathways in this integrated system. Results demonstrated that co-exposure to DBDPE and Cd intensified toxicity compared to single exposure. In lettuce, DBDPE amplified the inhibitory effects of Cd on plant growth (height and fresh weight of the aerial part decreased by 3.8 % and 5.8 %). Co-exposure inhibited chlorophyll synthesis (particularly carotenoid production, decreased by 53.33 %), disrupted amino acid metabolism, and impaired nutrient elements uptake, ultimately leading to reduced plant growth. In earthworms, co-exposure altered amino acid profiles, disrupted nutrient elements absorption and transport, thereby reducing their antioxidant defense capacity. Both organisms showed limited ability to detoxify DBDPE through similar debromination pathways. This study reveals the synergistic toxicological impacts of DBDPE and Cd in agricultural systems, highlighting the elevated ecological risks of their co-occurrence and emphasizing the need for comprehensive pollution control strategies in contaminated agricultural soils.
Collapse
Affiliation(s)
- Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shandong Institute of Sericulture, Jiaodong Innovation Center, Shandong Academy of Agricultural Sciences, Yantai, China.
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhe Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Zhang X, Zhang Y, Wang T, Xiao D, Wang J, Ma C, Liu T, Zhao D, Li S, Wang J, Li C. Protective Effect of Lycium Barbarum Polysaccharides and Sodium Selenite on Cadmium Chloride-Induced Testicular Toxicity in Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04637-7. [PMID: 40287904 DOI: 10.1007/s12011-025-04637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Cadmium (Cd) is a major environmental pollutant associated with male reproductive health. Lycium barbarum polysaccharides (LBP) and selenium (Se) have been shown to protect against testicular damage. Male rats (180-200 g) were selected to construct a Cd-exposed model by intraperitoneal injection with concentrations of 0.0, 0.5, 1.0, 1.5, and 2.0 mg/kg. Then, LBP and sodium selenite (Na2SeO3) were given by gavage for treatment. The results showed that Cd accumulates in the testis in a dose-dependent manner, and compared with the control group, after Cd-exposed, the testis suffered significant toxic damage. The differences in mRNA enrichment analysis between the Cd-exposed and the control groups showed that the differential genes were mainly involved in peroxidase activity, iron regulation, and cellular energy metabolism. Compared with the Cd-exposed group, LBP and Na2SeO3 intervention could antagonize the toxic damaging effects caused by Cd, and the combined intervention of LBP and Na2SeO3 could better antagonize the toxic damaging effects caused by Cd compared with the intervention alone. In general, Cd exposure caused testicular damage, increased testicular hormonal disorders, oxidative stress damage, energy metabolism disorders, and iron atrophy in the testis, while treatment with LBP and selenium alleviated the effects of Cd-induced testicular toxicity damage.
Collapse
Affiliation(s)
- Xueling Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yongxin Zhang
- Qinghai Center for Disease Control and Prevention, Qinghai, 810000, China
| | - Ting Wang
- Chengdu Center for Disease Control and Prevention, Xindu District, Chengdu, 610000, China
| | - Deng Xiao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jianding Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Chao Ma
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tong Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Duoming Zhao
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Sheng Li
- Department of Public Health, The Second Hospital of Lanzhou, Lanzhou, 730000, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Liu R, Wu Y, Wang J. Health Hazards Associated with Dietary Exposure of Female Rat to Cadmium-Contaminated Cooked Rice: Biochemical, Hormonal, and Histopathological Analysis. Biol Trace Elem Res 2024:10.1007/s12011-024-04390-3. [PMID: 39317853 DOI: 10.1007/s12011-024-04390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The actual exposure, bioavailability, and body burden of dietary cadmium (Cd) vary with the food matrix. Here, we evaluated the health hazards of 45-day long-term exposure of growing Sprague-Dawley (SD) female rats to a natural and endogenous Cd-contaminated brown and white cooked rice dietary model. Cd was found mainly in the duodenum, kidney, and liver; the cecum and colon also contained substantial amounts of Cd in rats fed Cd-contaminated cooked white rice (cWR-test) but not Cd-contaminated cooked brown rice (cBR-test). Damage due to Cd exposure was reflected in liver dysfunction, altered estradiol levels, and distinctive pathologies in organ systems, although urinary Cd (U-Cd) excretion and blood Cd (B-Cd) were not detectable, suggesting that these are not the most accurate or appropriate biomarkers for evaluating dietary Cd exposure. Brown rice, despite being higher in Cd, can reduce Cd absorption and distribution in organs and increase the volume of Cd-containing feces, even achieving slightly higher excretion and lower apparent absorption rates of Cd than white rice, thereby reducing Cd damage to the body. The beneficial components of brown rice such as more dietary fiber, rice bran oil and polyphenol were speculated therefore to confer a degree of protection or repair. Nevertheless, the high apparent absorption levels observed here (> 5%) and signs of significant physical damage indicate that more stringent Cd intake guidelines and measures are needed to minimize Cd levels in rice.
Collapse
Affiliation(s)
- Ruying Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yue Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Jinqiu Wang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
4
|
Altinbasak F, Unal MS, Tan S, Yildirim G. The effects of testicular stromal stem cells on surgically injured testicular tissue in rats. Anat Histol Embryol 2024; 53:e13100. [PMID: 39137161 DOI: 10.1111/ahe.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
This study investigated the effects of transplanted testicular stromal stem cells (tSSCs) on surgically damaged testis tissue. Ten-week-old male Wistar albino rats were divided into three groups: control (n = 6), damage (DG) (n = 6) and testicular stromal stem cell (TSSC) (n = 6) groups. Surgically induced damage was inflicted on the left testes of both the DG and TSSC groups, with no intervention on the right testes. In the TSSC group, damaged testes were treated with transplanted tSSCs, followed by orchiectomy after 15 days. Testes tissues were stained with haematoxylin-eosin (H&E), and recovery rates of functional structures were assessed by modified Johnsen scoring. The effects of tSSCs on testicular tissue were demonstrated by immunohistochemistry using BAX, BCL-2 and caspase 3. Serum testosterone levels were analysed using the enzyme-linked immunosorbent assay (ELISA) method. Surgical damage caused germ cell degeneration in some seminiferous tubules and a decrease in interstitial areas. With tSSC treatment, improvements in testicular architecture were identified through spermatogenesis in the seminiferous tubules and normal histological structures in the interstitial areas. Correspondingly, in the modified Johnsen score, the DG group showed a significant difference compared to the other groups (p = 0.001). High expressions of BAX, BCL-2 and caspase-3 in the DG group revealed prominent features of apoptosis. With the injection of tSSCs, these expressions significantly normalized according to H score analysis (all p = 0.004). Although serum testosterone levels in the tSSC group were higher compared to the control and DG groups, this difference was not statistically significant (p = 0.119). This study suggests transplanting tSSCs could accelerate tissue healing after testicular sperm extraction (TESE) surgery for azoospermia patients, potentially paving the way for a new and important clinical treatment.
Collapse
Affiliation(s)
- Faruk Altinbasak
- Department of Histology and Embryology, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Murat Serkant Unal
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Semih Tan
- Department of Histology and Embryology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Gul Yildirim
- Department of Stem Cell, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
5
|
Tao H, Zhu P, Xia W, Chu M, Chen K, Wang Q, Gu Y, Lu X, Bai J, Geng D. The Emerging Role of the Mitochondrial Respiratory Chain in Skeletal Aging. Aging Dis 2024; 15:1784-1812. [PMID: 37815897 PMCID: PMC11272194 DOI: 10.14336/ad.2023.0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of mitochondrial homeostasis is crucial for ensuring healthy mitochondria and normal cellular function. This process is primarily responsible for regulating processes that include mitochondrial OXPHOS, which generates ATP, as well as mitochondrial oxidative stress, apoptosis, calcium homeostasis, and mitophagy. Bone mesenchymal stem cells express factors that aid in bone formation and vascular growth. Positive regulation of hematopoietic stem cells in the bone marrow affects the differentiation of osteoclasts. Furthermore, the metabolic regulation of cells that play fundamental roles in various regions of the bone, as well as interactions within the bone microenvironment, actively participates in regulating bone integrity and aging. The maintenance of cellular homeostasis is dependent on the regulation of intracellular organelles, thus understanding the impact of mitochondrial functional changes on overall bone metabolism is crucially important. Recent studies have revealed that mitochondrial homeostasis can lead to morphological and functional abnormalities in senescent cells, particularly in the context of bone diseases. Mitochondrial dysfunction in skeletal diseases results in abnormal metabolism of bone-associated cells and a secondary dysregulated microenvironment within bone tissue. This imbalance in the oxidative system and immune disruption in the bone microenvironment ultimately leads to bone dysplasia. In this review, we examine the latest developments in mitochondrial respiratory chain regulation and its impacts on maintenance of bone health. Specifically, we explored whether enhancing mitochondrial function can reduce the occurrence of bone cell deterioration and improve bone metabolism. These findings offer prospects for developing bone remodeling biology strategies to treat age-related degenerative diseases.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| |
Collapse
|
6
|
Chen Z, Mo J, Yang Q, Guo Z, Li X, Xie D, Deng C. MSC-derived exosomes mitigate cadmium-induced male reproductive injury by ameliorating DNA damage and autophagic flux. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116306. [PMID: 38631218 DOI: 10.1016/j.ecoenv.2024.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Cadmium, an environmental toxicant, severely impairs male reproductive functions and currently lacks effective clinical treatments. Mesenchymal stem cell-derived exosomes (MSC-Exos) are increasingly recognized as a potential alternative to whole-cell therapy for tissue injury and regeneration. This study aims to investigate the protective effects of MSC-Exos against cadmium toxicity on male reproduction. Our findings reveal that MSC-Exos treatment significantly promotes spermatogenesis, improves sperm quality, and reduces germ cell apoptosis in cadmium-exposed mice. Mechanistically, MSC-Exos dramatically mitigate cadmium-induced cell apoptosis in a spermatogonia cell line (GC-1 spg) in vitro by reducing DNA damage and promoting autophagic flux. These results suggest that MSC-Exos have a protective effect on cadmium-induced germ cell apoptosis by ameliorating DNA damage and autophagy flux, demonstrating the therapeutic potential of MSC-Exos for cadmium toxicity on male reproduction.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China
| | - Jiahui Mo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China
| | - Qiyun Yang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China
| | - Zexin Guo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China; Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China
| | - Xinyu Li
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China
| | - Dongmei Xie
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CN 510080, China.
| |
Collapse
|
7
|
Huang R, Chen J, Guo B, Jiang C, Sun W. Diabetes-induced male infertility: potential mechanisms and treatment options. Mol Med 2024; 30:11. [PMID: 38225568 PMCID: PMC10790413 DOI: 10.1186/s10020-023-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Male infertility is a physiological phenomenon in which a man is unable to impregnate a fertile woman during a 12-month period of continuous, unprotected sexual intercourse. A growing body of clinical and epidemiological evidence indicates that the increasing incidence of male reproductive problems, especially infertility, shows a very similar trend to the incidence of diabetes within the same age range. In addition, a large number of previous in vivo and in vitro experiments have also suggested that the complex pathophysiological changes caused by diabetes may induce male infertility in multiple aspects, including hypothalamic-pituitary-gonadal axis dysfunction, spermatogenesis and maturation disorders, testicular interstitial cell damage erectile dysfunction. Based on the above related mechanisms, a large number of studies have focused on the potential therapeutic association between diabetes progression and infertility in patients with diabetes and infertility, providing important clues for the treatment of this population. In this paper, we summarized the research results of the effects of diabetes on male reproductive function in recent 5 years, elaborated the potential pathophysiological mechanisms of male infertility induced by diabetes, and reviewed and prospected the therapeutic measures.
Collapse
Affiliation(s)
- Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Jiawang Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Weiming Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000.
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
8
|
Liakath Ali F, Park HS, Beckman A, Eddy AC, Alkhrait S, Ghasroldasht MM, Al-Hendy A, Raheem O. Fertility Protection, A Novel Concept: Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Protect against Chemotherapy-Induced Testicular Cytotoxicity. Int J Mol Sci 2023; 25:60. [PMID: 38203232 PMCID: PMC10779299 DOI: 10.3390/ijms25010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Currently, there is no viable option for fertility preservation in prepubertal boys. Experimentally, controlled vitrification of testicular tissue has been evaluated and found to cause potential structural damage to the spermatogonial stem cell (SSC) niche during cryopreservation. In this report, we leveraged the regenerative effect of human umbilical cord-derived Mesenchymal stem cell exosomes (h-UCMSC-Exo) to protect against testicular damage from the cytotoxic effects of polychemotherapy (CTX). A chemotherapy-induced testicular dysfunctional model was established by CTX treatment with cyclophosphamide and Busulfan in vitro (human Sertoli cells) and in prepubescent mice. We assessed the effects of the exosomes by analyzing cell proliferation assays, molecular analysis, immunohistochemistry, body weight change, serum hormone levels, and fertility rate. Our data indicates the protective effect of h-UCMSC-Exo by preserving the SSC niche and preventing testicular damage in mice. Interestingly, mice that received multiple injections of h-UCMSC-Exo showed significantly higher fertility rates and serum testosterone levels (p < 0.01). Our study demonstrates that h-UCMSC-Exo can potentially be a novel fertility protection approach in prepubertal boys triaged for chemotherapy treatment.
Collapse
Affiliation(s)
- Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Analea Beckman
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Adrian C. Eddy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | | | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Omer Raheem
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Khamis T, Abdelkhalek A, Abdellatif H, Dwidar N, Said A, Ahmed R, Wagdy K, Elgarhy R, Eltahan R, Mohamed H, Said Amer E, Hanna M, Ragab T, Kishk A, Wael J, Sarhan E, Saweres L, Reda M, Elkomy S, Mohamed A, Samy A, Khafaga A, Shaker Y, Yehia H, Alanazi A, Alassiri M, Tîrziu E, Bucur IM, Arisha AH. BM-MSCs alleviate diabetic nephropathy in male rats by regulating ER stress, oxidative stress, inflammation, and apoptotic pathways. Front Pharmacol 2023; 14:1265230. [PMID: 38044936 PMCID: PMC10690373 DOI: 10.3389/fphar.2023.1265230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: Diabetic nephropathy (DN), a chronic kidney disease, is a major cause of end-stage kidney disease worldwide. Mesenchymal stem cells (MSCs) have become a promising option to mitigate several diabetic complications. Methods: In this study, we evaluated the therapeutic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model of STZ-induced DN. After the confirmation of diabetes, rats were treated with BM-MSCs and sacrificed at week 12 after treatment. Results: Our results showed that STZ-induced DN rats had extensive histopathological changes, significant upregulation in mRNA expression of renal apoptotic markers, ER stress markers, inflammatory markers, fibronectin, and intermediate filament proteins, and reduction of positive immunostaining of PCNA and elevated P53 in kidney tissue compared to the control group. BM-MSC therapy significantly improved renal histopathological changes, reduced renal apoptosis, ER stress, inflammation, and intermediate filament proteins, as well as increased positive immunostaining of PCNA and reduced P53 in renal tissue compared to the STZ-induced DN group. Conclusion: In conclusion, our study indicates that BM-MSCs may have therapeutic potential for the treatment of DN and provide important insights into their potential use as a novel therapeutic approach for DN.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nourelden Dwidar
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Ahmed Said
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rama Ahmed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Kerolos Wagdy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rowina Elgarhy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rawan Eltahan
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hisham Mohamed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman Said Amer
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Maria Hanna
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Tarek Ragab
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdallah Kishk
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Judy Wael
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Eyad Sarhan
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Linda Saweres
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Mohamed Reda
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Sara Elkomy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdalah Mohamed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdullah Samy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Ateya Khafaga
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Youliana Shaker
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hamdy Yehia
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alassiri
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of the National Guard—Health Affairs, Riyadh, Saudi Arabia
| | - Emil Tîrziu
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, “King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Iulia Maria Bucur
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, “King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Talukder M, Bi SS, Lv MW, Ge J, Zhang C, Li JL. Involvement of the heat shock response (HSR) regulatory pathway in cadmium-elicited cerebral damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106648-106659. [PMID: 37730984 DOI: 10.1007/s11356-023-29880-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
The heat shock response (HSR) is a cellular protective mechanism that is characterized by the induction of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) in response to diverse cellular and environmental stressors, including cadmium (Cd). However, little is known about the relationship between the damaging effects of Cd and the HSR pathway in the chicken cerebrum following Cd exposure. To explore whether Cd exposure elicits cerebral damage and triggers the HSR pathway, chicks were exposed to Cd in the daily diet at different concentrations (35, 70, or 140 mg/kg feed) for 90 days, while a control group was fed the standard diet without Cd. Histopathological examination of cerebral tissue from Cd-exposed chickens showed neuronal damage, as evidenced by swelling and degeneration of neurons, loss of neurons, and capillary damage. Cd exposure significantly increased mRNA expression of HSF1, HSF2, and HSF3, and mRNA and protein expression of three major stress-inducible HSPs (HSP60, HSP70, and HSP90). Moreover, Cd exposure differentially modulated mRNA expression of small HSP (sHSPs), most notably reducing expression of HSP27 (HSPB1). Furthermore, Cd exposure increased TUNEL-positive neuronal apoptotic cells and up-regulated protein expression of caspase-1, caspase-8, caspase-3, and p53, leading to apoptosis. Taken together, these data demonstrate that activation of the HSR and apoptotic pathways by Cd exposure is involved in Cd-elicited cerebral damage in the chicken. Synopsis for the graphical abstract Cadmium (Cd)-induced neuronal damage triggers the heat shock response (HSR) by activating heat shock transcription factors (HSFs) and subsequent induction of major heat shock proteins (notably, HSP60, HSP70, and HSP90). Moreover, Cd exposure activates caspase-1, caspase-8, caspase-3, and p53 protein, thereby resulting in neuronal apoptosis in the chicken brain.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
11
|
Tong X, Zhang Y, Zhao Y, Li Y, Li T, Zou H, Yuan Y, Bian J, Liu Z, Gu J. Vitamin D Alleviates Cadmium-Induced Inhibition of Chicken Bone Marrow Stromal Cells' Osteogenic Differentiation In Vitro. Animals (Basel) 2023; 13:2544. [PMID: 37570352 PMCID: PMC10417335 DOI: 10.3390/ani13152544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Vitamin D is a lipid soluble vitamin that is mostly used to treat bone metabolism-related diseases. In this study, the effect of Cd toxicity in vitro on osteogenic differentiation derived from BMSCs and the alleviating effect of lα, 25-(OH)2D3 were investigated. Cell index in real time was monitored using a Real-time cell analyzer (RTCA) system. The activity of alkaline phosphatase (ALP), and the calcified nodules and the distribution of Runx2 protein were detected using ALP staining, alizarin red staining, and immunofluorescence, respectively. Furthermore, the mitochondrial membrane potential and the apoptotic rate of BMSCs, the mRNA levels of RUNX2 and type Ⅰ collagen alpha2 (COL1A2) genes, and the protein expression of Col1 and Runx2 were detected using flow cytometry, qRT-PCR and western blot, respectively. The proliferation of BMSCs and osteogenic differentiation were enhanced after treatment with different concentrations of lα, 25-(OH)2D3 compared with the control group. However, 5 μmol/L Cd inhibited the proliferation of BMSCs. In addition, 10 nmol/L lα,25-(OH)2D3 attenuated the toxicity and the apoptosis of BMSCs treated by Cd, and also promoted the osteogenic differentiation including the activity of ALP, and the protein expression of Col1 and Runx2. lα, 25-(OH)2D3 can alleviate cadmium-induced osteogenic toxicity in White Leghorn chickens in vitro.
Collapse
Affiliation(s)
- Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Ying Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| | - Yutian Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yawen Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Tan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Hui Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yan Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jianchun Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jianhong Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.T.); (H.Z.); (Y.Y.); (J.B.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
12
|
Li X, Zhang D, Zhao Y, Kuang L, Huang H, Chen W, Fu X, Wu Y, Li T, Zhang J, Yuan L, Hu H, Liu Y, Hu F, Zhang M, Sun X, Hu D. Correlation of heavy metals' exposure with the prevalence of coronary heart disease among US adults: findings of the US NHANES from 2003 to 2018. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6745-6759. [PMID: 37378736 DOI: 10.1007/s10653-023-01670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
We sought to explore the association between heavy metal exposure and coronary heart disease (CHD) based on data from the US National Health and Nutrition Examination Survey (NHANES, 2003-2018). In the analyses, participants were all aged > 20 and had participated in heavy metal sub-tests with valid CHD status. The Mann-Kendall test was employed to assess the trends in heavy metals' exposure and the trends in CHD prevalence over 16 years. Spearman's rank correlation coefficient and a logistics regression (LR) model were used to estimate the association between heavy metals and CHD prevalence. 42,749 participants were included in our analyses, 1802 of whom had a CHD diagnosis. Total arsenic, dimethylarsonic acid, monomethylarsonic acid, barium, cadmium, lead, and antimony in urine, and cadmium, lead, and total mercury in blood all showed a substantial decreasing exposure level tendency over the 16 years (all Pfor trend < 0.05). CHD prevalence varied from 3.53 to 5.23% between 2003 and 2018. The correlation between 15 heavy metals and CHD ranges from - 0.238 to 0.910. There was also a significant positive correlation between total arsenic, monomethylarsonic acid, and thallium in urine and CHD by data release cycles (all P < 0.05). The cesium in urine showed a negative correlation with CHD (P < 0.05). We found that exposure trends of total arsenic, dimethylarsonic acid, monomethylarsonic acid, barium, cadmium, lead, and antimony in urine and blood decreased. CHD prevalence fluctuated, however. Moreover, total arsenic, monomethylarsonic acid, and thallium in urine all showed positive relationships with CHD, while cesium in urine showed a negative relationship with CHD.
Collapse
Affiliation(s)
- Xi Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dongdong Zhang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Lei Kuang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Hao Huang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, People's Republic of China
| | - Weiling Chen
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Xueru Fu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yuying Wu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Tianze Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jinli Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Lijun Yuan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Huifang Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yu Liu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Xizhuo Sun
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
13
|
Zhao YC, Wang CC, Yang JY, Li XY, Yanagita T, Xue CH, Zhang TT, Wang YM. N-3 PUFA Deficiency from Early Life to Adulthood Exacerbated Susceptibility to Reactive Oxygen Species-Induced Testicular Dysfunction in Adult Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6908-6919. [PMID: 37098125 DOI: 10.1021/acs.jafc.2c07328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Homeostasis of reactive oxygen species is required to maintain sperm maturation and capacitation. Docosahexaenoic acid (DHA) is accumulated in testicles and spermatozoa and has the ability to manipulate the redox status. The effects of dietary n-3 polyunsaturated fatty acid (n-3 PUFA) deficiency from early life to adulthood on the physiological and functional properties of males under the redox imbalance of testicular tissue deserve attention. The consecutive injection of hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) for 15 days to induce oxidative stress in testicular tissue was used to elucidate the consequences of testicular n-3 PUFA deficiency. The results indicated that reactive oxygen species treatment in adult male mice with DHA deficiency in the testis could reduce spermatogenesis and disrupt sex hormone production, as well as trigger testicular lipid peroxidation and tissue damage. N-3 PUFA deficiency from early life to adulthood resulted in higher susceptibility to testicular dysfunction in the germinal function of supplying germ cells and the endocrine role of secreting hormones through the mechanism of aggravating mitochondria-mediated apoptosis and destruction of blood testicular barrier under oxidative stress, which might provide a basis for humans to reduce susceptibility to chronic disease and maintain reproductive health in adulthood through dietary interventions of n-3 PUFAs.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| |
Collapse
|
14
|
Zhuge R, Li Z, He C, Ma W, Yan J, Xue Q, Wang R, Liu Y, Lu R, Du H, Yin F, Guo L. Bone marrow mesenchymal stem cells repair hexavalent chromium-induced testicular injury by regulating autophagy and ferroptosis mediated by the AKT/mTOR pathway in rats. ENVIRONMENTAL TOXICOLOGY 2023; 38:289-299. [PMID: 36416502 DOI: 10.1002/tox.23713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
There is no ideal therapy for testicular damage induced by Cr(VI); however, bone marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapy. A Cr(VI) solution was administered to rats by intraperitoneal injection for 30 days, then BMSCs from donor rats were transplanted. Two weeks later, decreased activity and appetite, along with other pathological changes, were improved in the BMSCs group. The location of BMSCs in damaged testes was observed via laser confocal microscopy. Chromium content in the Cr(VI) and BMSCs groups significantly increased compared with that in the control group, but there was no significant difference between the two groups, as revealed by atomic absorption spectrometry. The ferrous iron and the total iron content of testes in the BMSCs group were significantly lower than those in the Cr(VI) group, as observed by Lillie staining and a tissue iron assay kit. Western blotting and immunohistochemical analyses revealed that the expression of Beclin 1, LC3B, 4-hydroxynonenal, and transferrin receptor 1 was decreased in the BMSCs group, compared with the Cr(VI) group. The expression of glutathione peroxidase 4 (GPX4), SLC7A11, p-AKT, mammalian target of rapamycin (mTOR), and p-mTOR in the BMSCs group was higher than that in the Cr(VI) group. Taken together, we propose that BMSCs repair Cr(VI)-damaged testes by alleviating ferroptosis and downregulating autophagy-associated proteins through the upregulation of AKT and mTOR phosphorylation.
Collapse
Affiliation(s)
- Ruijian Zhuge
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Zhongrun Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Changhao He
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Wenxuan Ma
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Jun Yan
- Department of Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rifeng Lu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Haiying Du
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Fei Yin
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
15
|
Ahmed EH, Grawish ME, Anees MM, Elhindawy MM, Abdulrahman M, Helal ME. Impact of bone marrow mesenchymal stem cells on the submandibular gland structure of adult male albino rats exposed to cadmium chloride toxicity. Arch Oral Biol 2023; 145:105585. [PMID: 36403440 DOI: 10.1016/j.archoralbio.2022.105585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study was carried out in submandibular salivary glands of rats to demonstrate the changes induced by cadmium intoxication and the possible prophylactic and therapeutic effects of bone marrow mesenchymal stem cells (BMSCs). DESIGN Sixty-five rats were divided into five groups. Rats in Group I were controls while those of Group II received daily dose of 10 mg/kg cadmium for 24 days. Rats in Group III received single prophylactic dose of 1 × 106 BMSCs one week before cadmium administration. Rats of Group IV were concomitantly administered cadmium and BMSCs, while those of Group V received cadmium for 24 days and were then treated with single dose of 1 × 106 BMSCs. Rats of Groups I, II, III, and IV were euthanized at the end of the experiment while those of Group V were euthanized one week later. Salivary gland specimens were processed and stained with H&E and inducible nitric oxide synthase; other specimens were used to demonstrate metallothionein gene expression using RT-PCR, malondialdehyde and catalase enzymes were detected by ELISA. RESULTS Groups III and IV had nearly comparable findings to Group I regarding histological pattern with normal gland features. Group III recorded a lower fold of change for metallothionein gene (1.14 ± 0.20), a lower malondialdehyde enzyme (21.67 ± 1.63 nmol/mg), and a higher catalase enzyme (66.33 ± 2.16 mmol/mg). Regarding all variables, significant differences were found between the different groups (P < 0.001). CONCLUSION BMSCs have prophylactic and therapeutic effects against cadmium-induced cytotoxicity in rat salivary glands.
Collapse
Affiliation(s)
| | - Mohammed E Grawish
- Faculty of Dentistry, Mansoura University, Egypt; Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Costal International Road in Front of Industrial Area, Mansoura 11152, Gamasa, Egypt
| | | | | | | | | |
Collapse
|
16
|
Roshandel E, Mehravar M, Nikoonezhad M, Alizadeh AM, Majidi M, Salimi M, Hajifathali A. Cell-Based Therapy Approaches in Treatment of Non-obstructive Azoospermia. Reprod Sci 2022; 30:1482-1494. [PMID: 36380137 PMCID: PMC9666961 DOI: 10.1007/s43032-022-01115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
The rate of infertility has globally increased in recent years for a variety of reasons. One of the main causes of infertility in men is azoospermia that is defined by the absence of sperm in the ejaculate and classified into two categories: obstructive azoospermia and non-obstructive azoospermia. In non-obstructive azoospermia, genital ducts are not obstructed, but the testicles do not produce sperm at all, due to various reasons. Non-obstructive azoospermia in most cases has no therapeutic options other than assisted reproductive techniques, which in most cases require sperm donors. Here we discuss cell-based therapy approaches to restore fertility in men with non-obstructive azoospermia including cell-based therapies of non-obstructive azoospermia using regenerative medicine and cell-based therapies of non-obstructive azoospermia by paracrine and anti-inflammatory pathway, technical and ethical challenges for using different cell sources and alternative options will be described, and then the more effectual approaches will be mentioned as future trends.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Maryam Mehravar
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Afshin Mohammad Alizadeh
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| |
Collapse
|
17
|
Nageeb MM, Saadawy SF, Attia SH. Breast milk mesenchymal stem cells abate cisplatin-induced cardiotoxicity in adult male albino rats via modulating the AMPK pathway. Sci Rep 2022; 12:17554. [PMID: 36266413 PMCID: PMC9585145 DOI: 10.1038/s41598-022-22095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
Myocardial injury influenced by cisplatin (Cis) is a compelling reason to hunt out a treatment modality to overcome such a threat in cisplatin-treated patients. Breast Milk mesenchymal stem cells (Br-MSCs) are a non-invasive, highly reproducible source of stem cells. Herein, we investigate Br-MSCs' role in cardiotoxicity induced by cisplatin. Rats were divided into; control, Cis-treated (received 12 mg/kg single intraperitoneal injection), BrMSCs-treated (received single intraperitoneal injection of 0.5 ml sterilized phosphate-buffered saline containing 2 × 107 cells of Br-MSCs); metformin-treated (received 250 mg/kg/day orally) and BrMSCs + metformin + Cis treated groups. At the experiment end, serum creatine kinase (CK-MB) and cardiac troponin T (cTnT) activates were estimated, cardiac malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) levels were measured, cardiac expression of Bax and Bcl-2 and AMP-activated protein kinase (AMPK), as well as heart histopathology, were evaluated. Study results showed that Cis explored acute cardiotoxicity evidenced by deteriorated cardiac indices, induction of oxidative stress, and inflammation with myocardium histological alterations. Treatment with Br-MSCs restored heart function and structure deteriorated by Cis injection. The antioxidant/anti-inflammatory/anti-apoptotic results of Br-MSCs were supported by AMPK activation denoting their protective role against cisplatin-induced cardiac injury. These results were superior when metformin was added to the treatment protocol.
Collapse
Affiliation(s)
- Mahitab M Nageeb
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara F Saadawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Seba Hassan Attia
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
18
|
Tahmasbpour Marzouni E, Stern C, Henrik Sinclair A, Tucker EJ. Stem Cells and Organs-on-chips: New Promising Technologies for Human Infertility Treatment. Endocr Rev 2022; 43:878-906. [PMID: 34967858 DOI: 10.1210/endrev/bnab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides a unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications, and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome before clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human-induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSC-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide prospects for improving fertility to individuals and couples who experience reproductive failure.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Catharyn Stern
- Royal Women's Hospital, Parkville and Melbourne IVF, Melbourne, Australia
| | - Andrew Henrik Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena Jane Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Chen D, Chen G, Zhang X, Chen J, Li J, Kang K, He W, Kong Y, Wu L, Su B, Zhao K, Si D, Wang X. Fabrication And In Vitro Evaluation Of 3D Printed Porous Silicate Substituted Calcium Phosphate Scaffolds For Bone Tissue Engineering. Biotechnol Bioeng 2022; 119:3297-3310. [PMID: 35923072 DOI: 10.1002/bit.28202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/07/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Abstract
Silicate-substituted calcium phosphate (Si-CaP) ceramics, alternative materials for autogenous bone grafting, exhibit excellent osteoinductivity, osteoconductivity, biocompatibility and biodegradability; thus, they have been widely used for treating bone defects. However, the limited control over the spatial structure and weak mechanical properties of conventional Si-CaP ceramics hinder their wide application. Here, we used digital light processing (DLP) printing technology to fabricate a novel porous 3D printed Si-CaP scaffold to enhance the scaffold properties. Scanning electron microscopy, compression tests, and computational fluid dynamics simulations of the 3D printed Si-CaP scaffolds revealed a uniform spatial structure, appropriate mechanical properties, and effective interior permeability. Furthermore, compared to Si-CaP groups, 3D printed Si-CaP groups exhibited sustained release of silicon (Si), calcium (Ca) and phosphorus (P) ions. Furthermore, 3D printed Si-CaP groups had more comprehensive and persistent osteogenic effects due to increased osteogenic factor expression and calcium deposition. Our results show that the 3D printed Si-CaP scaffold successfully improved bone marrow mesenchymal stem cell (BMSCs) adhesion, proliferation and osteogenic differentiation and possessed a distinct apatite mineralization ability. Overall, with the help of DLP printing technology, Si-CaP ceramic materials facilitate the fabrication of ideal bone tissue engineering scaffolds with essential elements, providing a promising approach for bone regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dechun Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Guanghua Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Xin Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Jingtao Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Jinmeng Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Kunlong Kang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Weitao He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Yuanhang Kong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Leilei Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Bo Su
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Kui Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Daiwei Si
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Xintao Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| |
Collapse
|
20
|
Mesenchymal stem cells promote spermatogonial stem/progenitor cell pool and spermatogenesis in neonatal mice in vitro. Sci Rep 2022; 12:11494. [PMID: 35798781 PMCID: PMC9263145 DOI: 10.1038/s41598-022-15358-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Prepubertal cancer treatment leads to irreversible infertility in half of the male patients. Current in vitro spermatogenesis protocols and cryopreservation techniques are inadequate to expand spermatogonial stem/progenitor cells (SSPC) from testicles. Bone marrow derived mesenchymal stem cells (BM-MSC) bearing a close resemblance to Sertoli cells, improved spermatogenesis in animal models. We asked if a co-culture setup supported by syngeneic BM-MSC that contributes to the air–liquid interphase (ALI) could lead to survival, expansion and differentiation of SSPCs in vitro. We generated an ALI platform able to provide a real-time cellular paracrine contribution consisting of syngeneic BM-MSCs to neonatal C57BL/6 mice testes. We aimed to evaluate the efficacy of this culture system on SSPC pool expansion and spermatogenesis throughout a complete spermatogenic cycle by measuring the number of total germ cells (GC), the undifferentiated and differentiating spermatogonia, the spermatocytes and the spermatids. Furthermore, we evaluated the testicular cell cycle phases, the tubular and luminal areas using histochemical, immunohistochemical and flow cytometric techniques. Cultures in present of BM-MSCs displayed survival of ID4(+) spermatogonial stem cells (SSC), expansion of SALL4(+) and OCT4(+) SSPCs, VASA(+) total GCs and Ki67(+) proliferative cells at 42 days and an increased number of SCP3(+) spermatocytes and Acrosin(+) spermatids at 28 days. BM-MSCs increased the percentage of mitotic cells within the G2-M phase of the total testicular cell cycle increased for 7 days, preserved the cell viability for 42 days and induced testicular maturation by enlargement of the tubular and luminal area for 42 days in comparison to the control. The percentage of PLZF(+) SSPCs increased within the first 28 days of culture, after which the pool started to get smaller while the number of spermatocytes and spermatids increased simultaneously. Our findings established the efficacy of syngeneic BM-MSCs on the survival and expansion of the SSPC pool and differentiation of spermatogonia to round spermatids during in vitro culture of prepubertal mice testes for 42 days. This method may be helpful in providing alternative cures for male fertility by supporting in vitro differentiated spermatids that can be used for round spermatid injection (ROSI) to female oocyte in animal models. These findings can be further exploited for personalized cellular therapy strategies to cure male infertility of prepubertal cancer survivors in clinics.
Collapse
|
21
|
El-Sawah SG, Rashwan HM, Althobaiti F, Aldhahrani A, Fayad E, Shabana ES, El-Hallous EI, Amen RM. AD-MSCs and BM-MSCs Ameliorating Effects on The Metabolic and Hepato-renal Abnormalities in Type 1 Diabetic Rats. Saudi J Biol Sci 2022; 29:1053-1060. [PMID: 35197774 PMCID: PMC8847940 DOI: 10.1016/j.sjbs.2021.09.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most serious threats in the 21th century throughout the human population that needs to be addressed cautiously. Nowadays, stem cell injection is considered among the most promising protocols for DM therapy; owing to its marked tissues and organs repair capability. Therefore, our 4 weeks study was undertaken to elucidate the probable beneficial effects of two types of adult mesenchymal stem cells (MSCs) on metabolism disturbance and some tissue function defects in diabetic rats. Animals were classified into 4 groups; the control group, the diabetic group, the diabetic group received a single dose of adipose tissue-derived MSCs and the diabetic group received a single dose of bone marrow-derived MSCs. Herein, both MSCs treated groups markedly reduced hyperglycemia resulting from diabetes induction via lowering serum glucose and rising insulin and C-peptide levels, compared to the diabetic group. Moreover, the increased lipid fractions levels were reverted back to near normal values as a consequence to MSCs injection compared to the diabetic untreated rats. Furthermore, both MSCs types were found to have hepato-renal protective effects indicated through the decreased serum levels of both liver and kidney functions markers in the treated diabetic rats. Taken together, our results highlighted the therapeutic benefits of both MSCs types in alleviating metabolic anomalies and hepato-renal diabetic complications.
Collapse
Key Words
- AD-MSCs, Adipose-derived mesenchymal stem cells
- AGEs, Advanced glycation end products
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BM-MSCs, Bone marrow-derived mesenchymal stem cells
- BUN, Blood urea nitrogen
- CD, Cluster of differentiation
- D, Diabetic
- DM, Diabetes mellitus
- DMEM, Dulbecco's modified Eagle's medium
- DN, Diabetic nephropathy
- Diabetes
- Diabetic nephropathy
- FBG, Fasting blood glucose
- FBS, Fetal bovine serum
- HDL-C, High-density lipoprotein cholesterol
- HO-1, Heme-oxygenase 1
- HbA1c, Glycosylated hemoglobin
- Hyperlipidemia
- IPCs, Insulin producing cells
- ISCT, International Society for Cellular Therapy
- LDL-C, Low-density lipoprotein cholesterol
- LPO, Lipid peroxidation
- MSCs
- MSCs, Mesenchymal stem cells
- PBS, Phosphate-buffered saline
- ROS, Reactive oxygen species
- SEM, Standard error of mean
- SPSS, Statistical Package for Social Scientists
- STZ, Streptozotocin
- T1DM, Type 1 diabetes mellitus
- TC, Total cholesterol
- TG, Triglycerides
- TL, Total lipids
- γ-GT, gamma glutamyl transferase
Collapse
Affiliation(s)
- Shady G. El-Sawah
- Zoology Department, Faculty of Science, Arish University, North Sinai, Egypt
| | - Hanan M. Rashwan
- Zoology Department, Faculty of Science, Arish University, North Sinai, Egypt
| | - Fayez Althobaiti
- Biotechnology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Eman Fayad
- Biotechnology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - El-Shaimaa Shabana
- Fellow of Biochemistry, Genetic Unit, Children Hospital, Faculty of Medicine, Mansoura University, Egypt
| | | | - Rehab M. Amen
- Biology Department, College of Science, University of Bisha, Bisha 61922, P.O. Box 344, Saudi Arabia
| |
Collapse
|
22
|
Qamar AY, Hussain T, Rafique MK, Bang S, Tanga BM, Seong G, Fang X, Saadeldin IM, Cho J. The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility. Cells 2021; 10:2460. [PMID: 34572109 PMCID: PMC8468931 DOI: 10.3390/cells10092460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Infertility is a globally recognized issue caused by different reproductive disorders. To date, various therapeutic approaches to restore fertility have been attempted including etiology-specific medication, hormonal therapies, surgical excisions, and assisted reproductive technologies. Although these approaches produce results, however, fertility restoration is not achieved in all cases. Advances in using stem cell (SC) therapy hold a great promise for treating infertile patients due to their abilities to self-renew, differentiate, and produce different paracrine factors to regenerate the damaged or injured cells and replenish the affected germ cells. Furthermore, SCs secrete extracellular vesicles (EVs) containing biologically active molecules including nucleic acids, lipids, and proteins. EVs are involved in various physiological and pathological processes and show promising non-cellular therapeutic uses to combat infertility. Several studies have indicated that SCs and/or their derived EVs transplantation plays a crucial role in the regeneration of different segments of the reproductive system, oocyte production, and initiation of sperm production. However, available evidence triggers the need to testify the efficacy of SC transplantation or EVs injection in resolving the infertility issues of the human population. In this review, we highlight the recent literature covering the issues of infertility in females and males, with a special focus on the possible treatments by stem cells or their derived EVs.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tariq Hussain
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Kamran Rafique
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Faculty of Veterinary Medicine, Hawassa University, Hawassa 05, Ethiopia
| | - Gyeonghwan Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
23
|
Khamis T, Abdelalim AF, Saeed AA, Edress NM, Nafea A, Ebian HF, Algendy R, Hendawy DM, Arisha AH, Abdallah SH. Breast milk MSCs upregulated β-cells PDX1, Ngn3, and PCNA expression via remodeling ER stress /inflammatory /apoptotic signaling pathways in type 1 diabetic rats. Eur J Pharmacol 2021; 905:174188. [PMID: 34004210 DOI: 10.1016/j.ejphar.2021.174188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is one of the autoimmune diseases characterized by beta-cell dysfunction with serious health complications. Br-MSCs represent a novel valid candidate in regenerative medicine disciplines. Yet, the full potential of Br-MSCs in managing type 1 diabetes remains elusive. Indeed, this study was designed to explore a novel approach investigating the possible regenerative capacity of Br-MSCs in type1 diabetic islet on the level of the cellular mRNA expression of different molecular pathways involved in pancreatic beta-cell dysfunction. Sixty adult male Sprague-Dawley rats were randomly assigned into 3 groups (20 rats each); the control group, type1 diabetic group, and the type 1 diabetic Br-MSCs treated group. And, for the first time, our results revealed that intraperitoneally transplanted Br-MSCs homed to the diabetic islet and improved fasting blood glucose, serum insulin level, pancreatic oxidative stress, upregulated pancreatic mRNA expression for: regenerative markers (Pdx1, Ngn3, PCNA), INS, beta-cell receptors (IRS1, IRβ, PPARγ), pancreatic growth factors (IGF-1, VEGFβ1, FGFβ), anti-inflammatory cytokine (IL10) and anti-apoptotic marker (BCL2) too, Br-MSCs downregulated pancreatic mRNA expression for: inflammatory markers (NFKβ, TNFα, IL1β, IL6, IL8, MCP1), apoptotic markers for both intrinsic and extrinsic pathways (FAS, FAS-L, P53, P38, BAX, Caspase3), ER stress markers (ATF6, ATF3, ATF4, BIP, CHOP, JNK, XBP1) and autophagy inhibitor (mTOR). In conclusion, Br-MSCs could be considered as a new insight in beta cell regenerative therapy improving the deteriorated diabetic islet microenvironment via modulating; ER stress, inflammatory, and apoptotic signaling pathways besides, switching on the cellular quality control system (autophagy) thus enhancing beta-cell function.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt.
| | - Abdelalim F Abdelalim
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Ahmed A Saeed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Nagah M Edress
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Alaa Nafea
- Department of Pediatrics, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Huda F Ebian
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Reem Algendy
- Department of Milk Hygiene, Food Control Department, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Doaa M Hendawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt.
| | - Somia Hassan Abdallah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, 44511, Zagazig, Egypt
| |
Collapse
|
24
|
Atia MM, Alghriany AA. Adipose-derived mesenchymal stem cells rescue rat hippocampal cells from aluminum oxide nanoparticle-induced apoptosis via regulation of P53, Aβ, SOX2, OCT4, and CYP2E1. Toxicol Rep 2021; 8:1156-1168. [PMID: 34150525 PMCID: PMC8190131 DOI: 10.1016/j.toxrep.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess a preventive capacity against free radical toxicity in various tissues. The present study aimed to demonstrate the reformative and treatment roles of adipose-derived MSCs (AD-MSCs) against severe toxicity in the hippocampal cells of the brain caused by aluminum oxide nanoparticles (Al2O3-NPs). Rats were divided into five experimental groups: an untreated control group, a control group receiving NaCl, a group receiving Al2O3-NPs (6 mg/kg) for 20 days, a group that was allowed to recover (R) for 20 days following treatment with Al2O3-NPs, and a Al2O3-NPs + AD-MSCs group, where each rat was injected with 0.8 × 106 AD-MSCs via the caudal vein. Oral administration of Al2O3-NPs increased the protein levels of P53, cleaved caspase-3, CYP2E1, and beta-amyloid (Aβ); contrarily, AD-MSCs transplantation downregulated the levels of these proteins. In addition, the AD-MSCs-treated hippocampal cells were protected from Al2O3-NPs-induced toxicity, as detected by the expression levels of Sox2 and Oct4 that are essential for the maintenance of self-renewal. It was also found that AD-MSCs injection significantly altered the levels of brain total peroxide and monoamine oxidase (MAO)-A and MAO-B activities. Histologically, our results indicated that AD-MSCs alleviated the severe damage in the hippocampal cells induced by Al2O3-NPs. Moreover, the role of AD-MSCs in reducing hippocampal cell death was reinforced by the regulation of P53, cleaved caspase-3, Aβ, and CYP2E1 proteins, as well as by the regulation of SOX2 and OCT4 levels and MAO-A and MAO-B activities.
Collapse
Key Words
- AD-MSCs, adipose-derived mesenchymal stem cells
- Adipose-Derived mesenchymal stem cells
- Al2O3-NPs, Aluminum oxide nanoparticles
- Aluminum oxide nanoparticles
- Apoptosis
- Aβ, amyloid beta
- EGTA, ethylene glycol tetraacetic acid
- Hippocampal cells
- MAO-A and B, monoamine oxidase A, B
- Oct4, octamer-binding transcription factor 4
- ROS, reactive oxygen species
- Sox2, sex-determining region Y-box 2
- TEM, transmission electron microscopy
Collapse
Affiliation(s)
- Mona M. Atia
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Egypt
| | - Alshaimaa A.I. Alghriany
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Egypt
| |
Collapse
|
25
|
Abdel Latif H, Abdel Khalek R, AbdelGalil W, AbdAllah H, Fawzy A, AbdelFattah S. Nanocurcumin versus mesenchymal stem cells in ameliorating the deleterious effects in the cadmium-induced testicular injury: A crosstalk between oxidative and apoptotic markers. Andrologia 2020; 52:e13760. [PMID: 32692431 DOI: 10.1111/and.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd), a grave occupational pollutant, can result in; testicular damage. This study was designed to distinguish the potential effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) versus that of curcumin nanoemulsion on Cd-induced testicular damage. Fifty adult male Sprague Dawley rats were distributed into five groups; control, sham control, Cd-treated, stem cell-treated and nanocurcumin-treated groups. Histological, immune histochemical; caspase 3 and proliferating cell nuclear antigen (PCNA) and CD 68, testosterone levels, nitric oxide, malondialdehyde (MDA)/glutathione (GSH) superoxide, dismutase (SOD), Western blot; B-cell lymphoma (Bcl-2), BCL2-Associated X Protein (BAX), BAX/Bcl-2 ratio and morphometry were done. Cadmium-treated group showed degenerated, detached seminiferous tubules, vacuolations and wide interstitial spaces containing fluid exudates. The same group revealed increased expression of BAX, BAX/Bcl-2 ratio, caspase 3, CD 68 and increased mean values of MDA, NO. Concomitantly, Cd has significant reduction in PCNA, Bcl-2 and sperm cell count when compared to control group. BM-MSCs- and nanocurcumin-treated groups revealed well-structured tubules and were perceived to expressively enhance the deleterious changes induced by Cd. The injurious changes on the testis induced by Cd were obviously improved when treated with either MSCs or nano-curcumin. BM-MSCs exerted more ameliorative changes.
Collapse
Affiliation(s)
- Hany Abdel Latif
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha Abdel Khalek
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walid AbdelGalil
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend AbdAllah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad Fawzy
- Medical Physiology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen AbdelFattah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Can mesenchymal stem cells ameliorate testicular damage? Current researches. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.770063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Li L, Sima Y, Wang Y, Zhou J, Wang L, Chen Y. The cytotoxicity of advanced glycation end products was attenuated by UCMSCs in human vaginal wall fibroblasts by inhibition of an inflammatory response and activation of PI3K/AKT/PTEN. Biosci Trends 2020; 14:263-270. [PMID: 32493859 DOI: 10.5582/bst.2020.03125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pelvic organ prolapse (POP) occurs when the pelvic organs (bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, and bowel and sexual dysfunction, negatively impacting upon a woman's quality of life. Intermediate intermolecular cross-links and advanced glycation cross-links increase in prolapsed tissue. Stem cells are able to participate in tissue repair due to their ability to differentiate into multiple lineages, and thus into various types of connective tissue cells, so they therefore hold great promise for treating pelvic floor dysfunction. The current study found that advanced glycation end products (AGEs) inhibited the viability and proliferation of human vaginal wall fibroblasts (VWFs), were cytotoxic to VWFs, and also induced the apoptosis of VWFs. In contrast, umbilical cord-derived mesenchymal stem cells (UCMSCs) secreted anti-inflammation cytokines to protect against the cytotoxic effects of fibroblasts induced by AGEs and attenuated the cytotoxic effect of AGE on fibroblasts by activation of the PI3K/Akt-PTEN pathway. This study demonstrated that UCMSCs inhibited the cytotoxic effect of AGE in cells from patients with POP by inducing an anti-inflammatory reaction and activating the PI3K/AKT/PTEN signaling pathway. The current results provide important insights into use of stem cells to treat POP.
Collapse
Affiliation(s)
- Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Yizhen Sima
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yan Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Yisong Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
28
|
Gu X, Li Y, Chen K, Wang X, Wang Z, Lian H, Lin Y, Rong X, Chu M, Lin J, Guo X. Exosomes derived from umbilical cord mesenchymal stem cells alleviate viral myocarditis through activating AMPK/mTOR-mediated autophagy flux pathway. J Cell Mol Med 2020; 24:7515-7530. [PMID: 32424968 PMCID: PMC7339183 DOI: 10.1111/jcmm.15378] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Human umbilical cord mesenchymal stem cell‐derived exosomes (hucMSC‐exosomes) have been implicated as a novel therapeutic approach for tissue injury repair and regeneration, but the effects of hucMSC‐exosomes on coxsackievirus B3 (CVB3)‐induced myocarditis remain unknown. The object of the present study is to investigate whether hucMSC‐exosomes have therapeutic effects on CVB3‐induced myocarditis (VMC). HucMSC‐exosomes were identified using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western blot. The purified hucMSC‐exosomes tagged with PKH26 were tail intravenously injected into VMC model mice in vivo and used to administrate CVB3‐infected human cardiomyocytes (HCMs) in vitro, respectively. The effects of hucMSC‐exosomes on myocardial pathology injury, proinflammatory cytokines and cardiac function were evaluated through haematoxylin and eosin (H&E) staining, quantitative polymerase chain reaction (qPCR) and Doppler echocardiography. The anti‐apoptosis role and potential mechanism of hucMSC‐exosomes were explored using TUNEL staining, flow cytometry, immunohistochemistry, Ad‐mRFP‐GFP‐LC3 transduction and Western blot. In vivo results showed that hucMSC‐exosomes (50 μg iv) significantly alleviated myocardium injury, shrank the production of proinflammatory cytokines and improved cardiac function. Moreover, in vitro data showed that hucMSC‐exosomes (50 μg/mL) inhibited the apoptosis of CVB3‐infected HCM through increasing pAMPK/AMPK ratio and up‐regulating autophagy proteins LC3II/I, BECLIN‐1 and anti‐apoptosis protein BCL‐2 as well as decreasing pmTOR/mTOR ratio, promoting the degradation of autophagy flux protein P62 and down‐regulating apoptosis protein BAX. In conclusion, hucMSC‐exosomes could alleviate CVB3‐induced myocarditis via activating AMPK/mTOR‐mediated autophagy flux pathway to attenuate cardiomyocyte apoptosis, which will be benefit for MSC‐exosome therapy of myocarditis in the future.
Collapse
Affiliation(s)
- Xiaohong Gu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuechun Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaixin Chen
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingang Wang
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongyu Wang
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Lian
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanzheng Lin
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing Rong
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Maoping Chu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiafeng Lin
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoling Guo
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Khamis T, Abdelalim AF, Abdallah SH, Saeed AA, Edress NM, Arisha AH. Early intervention with breast milk mesenchymal stem cells attenuates the development of diabetic-induced testicular dysfunction via hypothalamic Kisspeptin/Kiss1r-GnRH/GnIH system in male rats. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165577. [DOI: 10.1016/j.bbadis.2019.165577] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
|
30
|
Zhao Y, Yan J, Li AP, Zhang ZL, Li ZR, Guo KJ, Zhao KC, Ruan Q, Guo L. Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats. Toxicol Lett 2019; 310:31-38. [DOI: 10.1016/j.toxlet.2019.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
|
31
|
Yin F, Yan J, Zhao Y, Guo KJ, Zhang ZL, Li AP, Meng CY, Guo L. Bone marrow mesenchymal stem cells repair Cr (VI)- injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:234-241. [PMID: 30939403 DOI: 10.1016/j.ecoenv.2019.03.093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
The present study aimed to explore the repair effect and mechanism of bone marrow mesenchymal stem cells (BMSCs) transplantation on injured kidneys caused by hexavalent chromium (Cr (VI)). Wistar rats were intraperitoneally injected with 0.4 mg/kg•bw Cr (VI) ion solution. After 30 days, 1 × 107 BMSCs were transplanted into rats. After cell transplantation for 2 weeks, there was no significant difference in the chromium content between the model and BMSCs-therapy group by atomic absorption spectrometry. In BMSCs-therapy group, the renal organ index, the serum levels of blood urea nitrogen (BUN) and creatinine (CRE), malonaldehyde (MDA) content were significantly decreased, superoxide dismutase (SOD) activity was significantly elevated, and the pathological changes were improved compared with the model group. The results of immunohistochemical and western blot assays showed that the expressions of apoptosis-related proteins Bax, Cytochrome c, and Caspase-3, as well as autophagy-associated proteins Beclin 1, PINK1, Parkin, p-Parkin, LC3B, and the MAPK signaling pathway, including the ratio of p-p38 to p38 and p-JNK to JNK were all significantly decreased, Bcl-2 and p62 expressions, and the ratio of p-ERK to ERK were significantly elevated in BMSCs-therapy group compared with the model group. These results suggested that BMSCs repaired Cr (VI)-injured kidney through decreasing mitochondria-mediated apoptosis and mitophagy mediated by downregulating phosphorylation of p38 and JNK, upregulating phosphorylation of ERK.
Collapse
Affiliation(s)
- Fei Yin
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Jun Yan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Yue Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Ke-Jun Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Zhi-Li Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - An-Pei Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chun-Yang Meng
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
32
|
Liu Y, He Y, Wang Q, Guo F, Huang F, Ji L, An T, Qin G. Vitamin D 3 supplementation improves testicular function in diabetic rats through peroxisome proliferator-activated receptor-γ/transforming growth factor-beta 1/nuclear factor-kappa B. J Diabetes Investig 2019; 10:261-271. [PMID: 29953732 PMCID: PMC6400168 DOI: 10.1111/jdi.12886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION Vitamin D3 deficiency can lead to male hypogonadism in diabetes mellitus, but the target organs and the mechanism driving the disorder are unclear. This experiment was designed to study the relationship between vitamin D3 deficiency and hypogonadism in diabetes mellitus. MATERIALS AND METHODS Rats with streptozotocin-induced diabetes were randomly divided into four groups and treated with different doses of vitamin D3 : blank (no vitamin D3 ), low (0.025 μg/kg/day), high (0.1 μg/kg/day), high (0.1 μg/kg/day) and with bisphenol A diglycidyl ether (peroxisome proliferator-activated receptor gamma inhibitor 30 mg/kg/day). They were compared with wild-type rats. RESULTS After 12 weeks, the vitamin D3 supplements had partially restored testicular pathological changes, as shown by reduced testicular fibrosis related to downregulation transforming growth factor beta 1 and apoptosis related to downregulation of nuclear factor kappa B, but not the pituitary gland. The expression of peroxisome proliferator-activated receptor gamma, which can inhibit transforming growth factor beta 1 and nuclear factor kappa B, was significantly increased after treatment with vitamin D3 . CONCLUSIONS These results suggest that treatment with vitamin D3 can improve testicular function in diabetic rats through the peroxisome proliferator-activated receptor gamma/transforming growth factor beta 1/nuclear factor kappa B signaling pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of Clinical Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Yanyan He
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of Clinical Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Qingzhu Wang
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Feng Guo
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Fengjuan Huang
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of Clinical Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Linlin Ji
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of Clinical Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Tingting An
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of Clinical Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Guijun Qin
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| |
Collapse
|
33
|
Stimulation of Spermatogenesis and Synthesis of Testosterone by Allotransplantation of Neonatal Testicular Tissue under Tunica Albuginea of Cryptorchid Testis. Bull Exp Biol Med 2019; 166:497-502. [PMID: 30788742 DOI: 10.1007/s10517-019-04381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 10/27/2022]
Abstract
The abdominal type of cryptorchism was modeled on random-bred albino rats by replacing both testes from the scrotum into the abdominal cavity for 3 weeks; thereupon they were manipulated into the scrotum. In control rats, no additional surgery was performed. In experimental rats, the testicular tissue obtained from 1-2-day rat pups was transplanted under testicular tunica albuginea. Prior to orchiopexy, the weight of testes decreased by 62.5-64.1%. In 6 month after the surgery, it increased by 36.1% in the control group, whereas in experimental rats the weight of testes elevated by 123.2% and approximated the normal value. Histologically, the control group demonstrated persistent disturbance in spermatogenesis with emptiness of numerous seminiferous tubules where only Sertoli cells could be revealed and with pronounced dystrophic alterations in the spermatogenous epithelium of the partially preserved tubules where spermatogenesis was blocked at the spermatogonial level. In contrast, the transplantation region of the experimental testes exhibited formation of novel mature testicular tissue enclosed by a connective tissue capsule incorporating the seminiferous tubules with differentiated epithelium and with the clusters of Leydig cells in the stroma. In 6 month, spermatogenesis was observed in most seminiferous tubules of the host testicular tissue, which had spermatozoa in the lumens. To the moment of orchiopexy, the blood testosterone decreased by about 2.5-fold. In control group it remained diminished during entire observation period (up to 6 month), while in the experiment group its level normalized completely as early as in 2 month and remained even elevated to the end of observation period.
Collapse
|
34
|
Elbaghdady HAM, Alwaili MA, El-Demerdash RS. Regenerative potential of bone marrow mesenchymal stem cells on cadmium chloride-induced hepato-renal injury and testicular dysfunction in sprague dawley rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:41-49. [PMID: 30096602 DOI: 10.1016/j.ecoenv.2018.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The effect of bone marrow-derived mesenchymal stem cells on cadmium-induced liver and kidney damage was studied in Sprague Dawley rats. The study employed three animal groups: Group 1 served as control animals; Group 2 rats were dosed intra-peritoneally with 2 mg of cadmium chloride per kg body weight, and Group 3 rats were again dosed with a single intraperitoneal injection of 2 mg of cadmium chloride per kg body weight two doses of 106 cells each intravenously. Finally, the animals were killed using halothane inhalation anesthesia. Semen analysis (total sperm count, viability, motility, and % of normal sperm), biochemical estimations (serum total protein, uric acid, creatinine, levels of enzymes ALT, AST, and ALP, and levels of hormones LH, FSH, Inhibin, and testosterone), and histopathological analysis of liver and kidney tissue sections (using hematoxylene and eosin stains) were conducted. The results showed that when compared to controls, cadmium exposure drastically decreased total sperm count, viability, motility, and % of normal sperm, decreased serum total protein, increased serum uric acid and creatinine levels, increased levels of ALT, AST, and ALP enzymes, decreased levels of testosterone and inhibin, increased levels of LH and FSH, and caused significant histopathological abnormalities in both kidney and liver tissues. Treatment with stem cells ameliorated the effects of cadmium-induced toxicity significantly (p < 0.05) of the histopathological and biochemical parameters. In conclusion, the study reinforces previous findings that bone marrow mesenchymal stem cells can ameliorate the toxic effects of cadmium chloride and may be used as a potential therapeutic strategy for cadmium-induced adverse effects.
Collapse
Affiliation(s)
- Heba Allah M Elbaghdady
- Zoology Department, Environmental Sciences Division, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt; Department of Biological Sciences, Princes Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Maha A Alwaili
- Department of Biological Sciences, Princes Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Deanship of Scientific Research, Princes Nora Bint Abdulrahman University, Saudi Arabia
| | | |
Collapse
|
35
|
Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, Wu P, Shi Y, Mao F, Yan Y, Xu W, Qian H. Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving β-Cell Destruction. ACS NANO 2018; 12:7613-7628. [PMID: 30052036 DOI: 10.1021/acsnano.7b07643] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Exosomes are nanosized extracellular vesicles (EVs) that show great promise in tissue regeneration and injury repair as mesenchymal stem cell (MSC). MSC has been shown to alleviate diabetes mellitus (DM) in both animal models and clinical trials. In this study, we aimed to investigate whether exosomes from human umbilical cord MSC (hucMSC-ex) have a therapeutic effect on type 2 DM (T2DM). We established a rat model of T2DM using a high-fat diet and streptozotocin (STZ). We found that the intravenous injection of hucMSC-ex reduced blood glucose levels as a main paracrine approach of MSC. HucMSC-ex partially reversed insulin resistance in T2DM indirectly to accelerate glucose metabolism. HucMSC-ex restored the phosphorylation (tyrosine site) of the insulin receptor substrate 1 and protein kinase B in T2DM, promoted expression and membrane translocation of glucose transporter 4 in muscle, and increased storage of glycogen in the liver to maintain glucose homeostasis. HucMSC-ex inhibited STZ-induced β-cell apoptosis to restore the insulin-secreting function of T2DM. Taken together, exosomes from hucMSC can alleviate T2DM by reversing peripheral insulin resistance and relieving β-cell destruction, providing an alternative approach for T2DM treatment.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
- Department of Clinical Laboratory , The Affiliated Yixing Hospital of Jiangsu University , Yixing , Jiangsu 214200 , China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Siqi Yin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Bin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Peipei Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Yongmin Yan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| |
Collapse
|
36
|
Song Y, Zhang R, Wang H, Yan Y, Ming G. Protective Effect of Agaricus blazei Polysaccharide Against Cadmium-Induced Damage on the Testis of Chicken. Biol Trace Elem Res 2018; 184:491-500. [PMID: 29127548 DOI: 10.1007/s12011-017-1196-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) exposure can cause reproductive toxicity through oxidative stress and inflammatory response. A polysaccharide extract of the edible mushroom Agaricus blazei Murill has been isolated and exhibits antioxidant activity and immunoregulatory effect. The aim of this study was to investigate the protective role of Agaricus blazei polysaccharide (ABP) against Cd-induced damage in chicken testis through enhancing antioxidant activity and alleviating inflammatory response. One hundred twenty healthy 7-day-old Hy-Line male chickens (Harbin, China) were randomly divided into four groups, and each group consisted of 30 chickens: Normal control was fed daily with full feed and 0.2 mL distilled water per day via oral gavage; Cd-treated group was fed daily with full feed that contained 140 mg/kg CdCl2 and 0.2 mL distilled water per day by gavage; Polysaccharide-treated group was fed daily with full feed with 0.2 mL ABP(30 mg/ml) solution per day via oral gavage; Cd/polysaccharide-treated group was fed daily with full feed containing 140 mg/kg CdCl2 and 0.2 mL ABP(30 mg/ml) solution per day by gavage. On the 20, 40, and 60 days, the testis was immediately removed. The contents of Cd in the testis, activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), malondialdehyde (MDA) production, messenger RNA (m RNA) levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), protein expressions of heat shock proteins (HSPs) (HSP60, HSP70, and HSP90), and the histopathological changes of the testis were determined. The results indicated that ABP improved Cd-caused testicular tissue damage by increasing the SOD and GSH-Px activities: decreasing the Cd accumulation and MDA content, mRNA levels of TNF-α, IL-1β, and IL-6, and protein expressions of HSP60, HSP70, and HSP90. Results suggest that ABP for the mitigation of damage induced by cadmium in chicken testis through enhancing antioxidant activity and alleviating Inflammatory response.
Collapse
Affiliation(s)
- Yangyang Song
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Diseases, Harbin, 150030, People's Republic of China
| | - Ruili Zhang
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Diseases, Harbin, 150030, People's Republic of China
| | - Hongmei Wang
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Diseases, Harbin, 150030, People's Republic of China
| | - Yan Yan
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Diseases, Harbin, 150030, People's Republic of China
| | - Ge Ming
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Diseases, Harbin, 150030, People's Republic of China.
| |
Collapse
|
37
|
Sherif IO, Sabry D, Abdel-Aziz A, Sarhan OM. The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Res Ther 2018; 9:196. [PMID: 30021657 PMCID: PMC6052634 DOI: 10.1186/s13287-018-0946-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/10/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Background The therapeutic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) against cisplatin-induced nephrotoxicity has been reported, however, its efficacy in gonadotoxicity still has not been addressed. Herein, we investigated the effect of BM-MSCs in cisplatin-induced testicular toxicity and its underlying mechanism of action. Methods Thirty male Sprague–Dawley rats were divided into a control group: injected with phosphate-buffered saline (PBS) intraperitoneal (ip), a cisplatin group: injected with a single dose of 7 mg/kg cisplatin ip to induce gonadotoxicity and a BM-MSCs group: received cisplatin ip followed by BM-MSCs injection 1 day after cisplatin. In testicular tissues, malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) levels were assessed. Additionally, gene expressions of inducible nitric oxide synthase (iNOS), caspase-3, and p38 mitogen-activated protein kinase (MAPK) were measured. The testicular tumor necrosis factor alpha (TNF-α) protein contents and Bcl-2 associated X protein (BAX) expression were determined. Histopathology of testicular tissues was examined. Results Cisplatin injection showed a significant decrease in GSH and SOD testicular levels besides a significant increase of MDA and TNF-α testicular levels and upregulation of testicular gene expressions of iNOS, caspase-3, and p38-MAPK in comparison to the control group. Moreover, a marked increase in BAX protein expression was observed in the cisplatin group when compared with the control one. Histopathological examination exhibited significant seminiferous tubules atrophy in cisplatin-treated rats. Conclusions The BM-MSCs injection significantly repaired the testicular injury and improved both biochemical and histopathological changes. The MSCs mitigated the gonadotoxicity induced by cisplatin through antioxidative, anti-inflammatory, and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Azza Abdel-Aziz
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Osama M Sarhan
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
38
|
Elbaghdady HAM, Alwaili MA, El-Demerdash RS. Amelioration of cadmium-induced testes' damage in rats by the bone marrow mesenchymal stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:763-769. [PMID: 29182986 DOI: 10.1016/j.ecoenv.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) and its compounds are highly toxic to virtually all organ systems of the mammals. Cd-induced testicular injuries have been reported in various animal species, using different protocols. The self-renewal capacity and the ability to generate different specialized cell types make the mesenchymal stem cells (MSCs) one of the ideal choices for restoring tissue damages of various etiologies. The use of bone marrow-derived MSCs (BM-MSCs) is among the most recent strategies to repair the Cd-induced testicular damage, but empirical studies in this regard are largely missing. Keeping in view the CD-induced testicular damage and the suggested restorative functions of BM-MSCs, the objectives of the current study were twofold: to induce testicular injury in Sprague-Dawley (SD) rats by a single intraperitoneal (i.p.) 2mg/kg Cd injection; and to study the reparative potential of BM-MSCs in Cd-induced testicular damage in adult male rats. The SD rats were randomly divided into three groups (n = 10 each): control (untreated), Cd-group (i.p. 2mg/kg Cd), and Cd+SC group (i.p. 2mg/kg Cd plus two intravenous doses of 1 × 106 BM-MSCs via penile vein). After four weeks, Cd-group showed a significantly lower (p < 0.05) weight-gain, sperm count, and sperm viability, as well as led to testicular atrophy, necrosis, fibrosis, calcification, and marked perivascular lymphocytic infiltration, as compared to the untreated controls. As hypothesized, the rats exposed to Cd, but treated with BM-MSCs (Cd+SC group), showed a lesser degree of Cd-induced damage. In conclusion, the findings of current investigation indicate a reversal of Cd-induced testicular injury by BM-MSCs. The study supports the previously suggested notion that BM-MSCs can repair the Cd-induced testes' damage in rats.
Collapse
Affiliation(s)
- Heba Allah M Elbaghdady
- Zoology Department, Environmental Sciences Division, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt; Department of Biological Sciences, Princes Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Maha A Alwaili
- Department of Biological Sciences, Princes Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | |
Collapse
|