1
|
Ji YW, Wen XY, Tang HP, Su WT, Xia ZY, Lei SQ. Necroptosis: a significant and promising target for intervention of cardiovascular disease. Biochem Pharmacol 2025; 237:116951. [PMID: 40268251 DOI: 10.1016/j.bcp.2025.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Due to changes in dietary structures, population aging, and the exacerbation of metabolic risk factors, the incidence of cardiovascular disease continues to rise annually, posing a significant health burden worldwide. Cell death plays a crucial role in the onset and progression of cardiovascular diseases. As a regulated endpoint encountered by cells under adverse stress conditions, the execution of necroptosis is regulated by classicalpathways, the calmodulin-dependent protein kinases (CaMK) pathway, and mitochondria-dependent pathways, and implicated in various cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury (IRI), heart failure, diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, chemotherapy drug-induced cardiomyopathy, and abdominal aortic aneurysm (AAA). To further investigate potential therapeutic targets for cardiovascular diseases, we also analyzed the main molecules and their inhibitors involved in necroptosis in an effort to uncover insights for treatment.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Farouk H, Moustafa PE, Khattab MS, El-Marasy SA. Diacerein ameliorates amiodarone-induced pulmonary fibrosis via targeting the TGFβ1/α-SMA/Smad3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4111-4122. [PMID: 39417843 PMCID: PMC11978552 DOI: 10.1007/s00210-024-03450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
This study is aimed at investigating the possible protective effect of diacerein (DIA) against AMD-induced pulmonary fibrosis in rats. Rats were classified into 4 groups: a normal group that received distilled water, control group that received AMD (100 mg/kg, p.o.) for 21 days to induce pulmonary fibrosis, and 2 treatment groups that received diacerein, in 2 dose levels (50 and 100 mg/kg, p.o., respectively) in addition to AMD (100 mg/kg, p.o.), for 21 days. Lung function test was assessed using a spirometer; serum and tissue were collected. Biochemical, real-time PCR, histopathological, and immunohistopathological analyses were carried out. AMD reduced tidal volume (TV), peripheral expiratory rate (PER), forced vital capacity (FVC), serum reduced glutathione (GSH) levels, Beclin, and LCII, while it elevated transform growth factor (TGF-β1) gene expression, serum malondialdehyde (MDA) level, alpha-smooth muscle actin (α-SMA), Smad3, phosphorylated signal transducer and activator of transcription (p-STAT3), and p62 lung content. Also, AMD elevated tumor necrosis factor-alpha (TNF-α) and caspase-3 protein expression. DIA elevated TV, PER, FVC, serum GSH level, Beclin, and LCII, while it reduced TGF-β1 gene expression, serum MDA level, α-SMA, Smad3, p-STAT-3, and p62 lung content. Moreover, DIA reduced TNF-α and caspase-3 protein expression. DIA attenuated AMD-induced pulmonary fibrosis via alleviating the TGF1/α-SMA/Smad3 pathway, reducing STAT-3 activation, and combating oxidative stress and inflammation in addition to promoting autophagy and abrogating apoptosis.
Collapse
Affiliation(s)
- Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| |
Collapse
|
3
|
Sun J, Shen H, Dong J, Zhang J, Yue T, Zhang R. Melanin-Deferoxamine Nanoparticles Targeting Ferroptosis Mitigate Acute Kidney Injury via RONS Scavenging and Iron Ion Chelation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:282-296. [PMID: 39705095 DOI: 10.1021/acsami.4c14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Rhabdomyolysis (RM)-induced acute kidney injury (AKI) involves the release of large amounts of iron ions from excess myoglobin in the kidneys, which mediates the overproduction of reactive species with the onset of iron overload via the Fenton reaction, thus inducing ferroptosis and leading to renal dysfunction. Unfortunately, there are no effective treatments for AKI other than supportive care. Herein, we developed a multifunctional nanoplatform (MPD) by covalently bonding melanin nanoparticles (MP NPs) to deferoxamine. The nanoplatform has good dispersion and physiological stability, excellent chelating performance to iron ions, and broad-spectrum reactive species scavenging activity. Furthermore, cellular experiments showed that the NPs possessed high biocompatibility, antiapoptotic activity, antioxidant properties, and strong scavenging capacity of Fe2+ to mitigate iron overload, protecting the intracellular mitochondria from oxidative stress. Meanwhile, the intrinsic photoacoustic imaging capability of melanin allows the real-time monitoring of MPD NPs' target uptake and metabolic behavior in healthy and AKI mice. Most importantly, MPD NPs led to downregulation of the antioxidant pathway by targeting ferroptosis, thus effectively rescuing renal function in vivo, mitigating oxidative stress and inflammatory responses, and inhibiting renal tubular cell apoptosis. The nanoplatform offers a novel therapeutic strategy for RM-induced AKI.
Collapse
Affiliation(s)
- Jinghua Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Hao Shen
- Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan 030001, China
| | - Jin Zhang
- Shanxi Medical University, Taiyuan 030001, China
| | - Tao Yue
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
4
|
Abd Elrazik NA, Abd El Salam ASG. Diacerein ameliorates thioacetamide-induced hepatic encephalopathy in rats via modulation of TLR4/AQP4/MMP-9 axis. Metab Brain Dis 2024; 40:10. [PMID: 39556255 PMCID: PMC11573817 DOI: 10.1007/s11011-024-01457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/27/2024] [Indexed: 11/19/2024]
Abstract
Astrocyte swelling, blood brain barrier (BBB) dissipation and the subsequent brain edema are serious consequences of persistent hyperammonemia in hepatic encephalopathy (HE) in which if inadequately controlled it will lead to brain death. The current study highlights the potential neuroprotective effect of diacerein against thioacetamide (TAA)-induced HE in acute liver failure rat model. HE was induced in male Sprague-Dawley rats via I.P. injection of TAA (200 mg/kg) for three alternative times/week at 3rd week of the experiment. Diacerein (50 mg/kg) was gavaged for 14 days prior to induction of HE and for further 7 days together with TAA injection for an overall period of 21 days. Diacerein attenuated TAA-induced HE in acute liver failure rat model; as proofed by significant lowering of serum and brain ammonia concentrations, serum AST and ALT activities and significant attenuation of both brain and hepatic MDA contents and IL-1β with marked increases in GSH contents (P < 0.0001). The neuroprotective effect of diacerein was demonstrated by marked improvement of motor and cognitive deficits, brain histopathological changes; hallmarks of HE. As shown by immunohistochemical results, diacerein markedly downregulated brain TLR4 expression which in turn significantly increased the GFAP expression, and significantly decreased AQP4 expression; the astrocytes swelling biomarkers (P < 0.0001). Moreover, diacerein preserved BBB integrity via downregulation of MMP-9 mediated digestion of tight junction proteins such as occludin (P < 0.0001). Collectively, diacerein ameliorated cerebral edema and maintained BBB integrity via modulation of TLR4/AQP4/MMP-9 axis thus may decrease the progression of HE induced in acute liver failure.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
5
|
Safari Samangani M, Mehri S, Aminifard T, Jafarian A, Yazdani PF, Hosseinzadeh H. Effect of verbascoside against acute kidney injury induced by rhabdomyolysis in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7939-7950. [PMID: 38753047 DOI: 10.1007/s00210-024-03144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/03/2024] [Indexed: 10/04/2024]
Abstract
Rhabdomyolysis is a pathological condition caused by muscle tissue degradation. In this condition, intracellular contents enter the bloodstream, and acute kidney injury (AKI) develops. Verbascoside (VB) is one of the most common phenylethanoid glycosides and has antioxidant and anti-inflammatory effects. This study investigated the effects of VB on AKI induced by rhabdomyolysis in rats. Male Wistar rats were divided into six groups (n = 6): (1) control group (normal saline), (2) 50% glycerol (10 ml/kg, IM, single injection, only on the first day), (3)-(5) 50% glycerol (same as group 2) + VB (30, 60, and 100 mg/kg, IP, 4 days), and (6) VB (100 mg/kg). Serum and kidney tissue samples were collected on day 5. Subsequently, serum creatinine (Cr), blood urea nitrogen (BUN), renal glutathione (GSH), malondialdehyde (MDA), lipocalin associated with neutrophil gelatinase (NGAL), tumor necrosis factor-alpha (TNF-α), and pathological changes were investigated. The injection of glycerol elevated levels of kidney damage markers, including Cr and BUN in serum, MDA, TNF-α, and NGAL, along with a reduction in GSH levels in the kidney tissue. The administration of VB (100 mg/kg) significantly lowered the levels of these markers, indicating the therapeutic effect of VB against AKI caused by rhabdomyolysis. Histopathological examinations revealed enhanced myoglobin cast formation and tubular necrosis in the glycerol group, which was reduced in rats that received VB, although this reduction did not reach statistical significance. VB can reduce rhabdomyolysis-induced AKI through its anti-inflammatory and antioxidant effects and decrease kidney damage severity.
Collapse
Affiliation(s)
- Maryam Safari Samangani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Aminifard
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Jafarian
- Department of Pathology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pooneh Fallah Yazdani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Shah MZUH, Shrivastava VK, Muzamil S, Olaniyi KS. Diacerein mitigates endocrine and cardio-metabolic disruptions in experimental PCOS mice model by modulating AdipoR1/ PON 1. BMC Endocr Disord 2024; 24:109. [PMID: 38982395 PMCID: PMC11234745 DOI: 10.1186/s12902-024-01639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND This study aimed to explore the impact of Diacerein (DIC) on endocrine and cardio-metabolic changes in polycystic ovarian syndrome (PCOS) mouse model. METHODS A total of 18 adult female mice (Parkes strain), aged 4-5 weeks, were randomly assigned to three groups, each comprising 6 animals, as follows: Group I (control), received normal diet and normal saline as vehicle for 51 days; Group II received Letrozole (LET; 6 mg/kg bw) for 21 days to induce PCOS; Group III received LET, followed by daily oral gavage administration of DIC (35 mg/kg bw) for 30 days. RESULTS This study indicates that treatment with LET resulted in PCOS with characteristics such as polycystic ovaries, elevated testosterone, weight gain, visceral adiposity, high levels of insulin as well as fasting blood glucose in addition to insulin resistance, improper handling of ovarian lipids, atherogenic dyslipidemia, impaired Na + /K + -ATPase activity and serum, cardiac, and ovarian oxidative stress. Serum/ovarian adiponectin levels were lowered in LET-treated mice. In mice treated with LET, we also discovered a reduction in cardiac and serum paraoxonase 1 (PON1). Interestingly, DIC restored ovarian andcardio-metabolic abnormalities in LET-induced PCOS mice. DIC prevented the endocrine and cardio-metabolic changes brought on by letrozole-induced PCOS in mice. CONCLUSION The ameliorative effects of DIC on letrozole-induced PCOS with concurrent oxidative stress, abdominal fat deposition, cardiac and ovarian substrate mishandling, glucometabolic dysfunction, and adiponectin/PON1 activation support the idea that DIC perhaps, restore compromised endocrine and cardio-metabolic regulators in PCOS.
Collapse
Affiliation(s)
- Mohd Zahoor Ul Haq Shah
- Laboratory of Endocrinology, Department of Bioscience, Barkatullah University, Madhya Predesh, Bhopal, 462026, India
- Department of obstetrics and Gynecology, Centre for Reproductive Medicine, the Fourth Affiliated Hospital of school of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Vinoy Kumar Shrivastava
- Laboratory of Endocrinology, Department of Bioscience, Barkatullah University, Madhya Predesh, Bhopal, 462026, India
| | - Showkeen Muzamil
- Molecular Biology Laboratory, Faculty of Veterinary Sciences and Animal Husbandary, SKAUST-K, Srinagar, India
| | - Kehinde S Olaniyi
- Department of Physiology, College of Medicine and Health Sciences, Cardio/Endo-metabolic and Microbiome Research Unit, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
| |
Collapse
|
7
|
Givechian N, Ashabi G, Kadkhodaee M, Seifi B, Abdi A, Kianian F, Kianfar T. Prevention of glycerol-induced acute kidney injury by isoflurane inhalation in male rats. PHYSIOLOGY AND PHARMACOLOGY 2024; 28:91-98. [DOI: 10.61186/phypha.28.2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
|
8
|
Abdel-Reheim MA, Ali GF, Hassanein EHM, Mohamed WR. Role of Nrf2/HO-1, PPAR-γ, and cytoglobin signals in the pathogenesis of methotrexate-induced testicular intoxication in rats and the protective effect of diacerein. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4235-4246. [PMID: 38060042 DOI: 10.1007/s00210-023-02876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Methotrexate (MTX) is an inhibitor of folic acid reductase used in managing a variety of malignancies. Testicular injury by MTX is one of its serious adverse effects. The current investigation aims to assess the protective effects of diacerein (DIA) on testicular injury by MTX and clarify the possible underlying mechanisms. Testicular injury in rats was induced by a single injection of 20 mg/kg body weight of MTX. DIA was given in 25 mg/kg body weight/day and 50 mg/kg body weight/day doses for 10 days. Compared to the MTX group, DIA attenuated testicular intoxication as evidenced by improvement of testicular histopathological abnormalities and increased serum testosterone and luteinizing hormone. DIA attenuated testicular oxidative stress changes by lowering testicular MDA and boosting GSH content and SOD activity. Moreover, administration of DIA attenuated MTX-induced testicular inflammation, as proved by decreased TNF-α and IL-6. At the molecular level, DIA induced significant upregulation in Nrf2, HO-1, PPAR-γ, and cytoglobin protein expression. The present results proved that DIA, in a dose-dependent manner, exhibited notable amelioration of testicular toxicity induced by MTX through augmentation of anti-inflammatory and antioxidant effects combined by upregulating Nrf2/HO-1, PPAR-γ, and cytoglobin signaling.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
9
|
Mansoure AN, Elshal M, Helal MG. Renoprotective effect of diacetylrhein on diclofenac-induced acute kidney injury in rats via modulating Nrf2/NF-κB/NLRP3/GSDMD signaling pathways. Food Chem Toxicol 2024; 187:114637. [PMID: 38582345 DOI: 10.1016/j.fct.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Diclofenac (DF)-induced acute kidney injury (AKI) is characterized by glomerular dysfunction and acute tubular necrosis. Due to limited treatment approaches, effective and safe drug therapy to protect against such AKI is still needed. Diacetylrhein (DAR), an anthraquinone derivative, has different antioxidant and anti-inflammatory properties. Therefore, the aim of the current study was to investigate the renoprotective effect of DAR on DF-induced AKI while elucidating the potential underlying mechanism. Our results showed that DAR (50 and 100 mg/kg) markedly abrogated DF-induced kidney dysfunction decreasing SCr, BUN, serum NGAL, and serum KIM1 levels. Moreover, DAR treatment remarkably maintained renal redox balance and reduced the levels of pro-inflammatory biomarkers in the kidney. Mechanistically, DAR boosted Nrf2/HO-1 antioxidant and anti-inflammatory response in the kidney while suppressing renal TLR4/NF-κB and NLRP3/caspase-1 inflammatory signaling pathways. In addition, DAR markedly inhibited renal pyroptosis via targeting of GSDMD activation. Collectively, this study confirmed that the interplay between Nrf2/HO-1 and TLR4/NF-κB/NLRP3/Caspase-1 signaling pathways and pyroptotic cell death mediates DF-induced AKI and reported that DAR has a dose-dependent renoprotective effect on DF-induced AKI in rats. This effect is due to powerful antioxidant, anti-inflammatory, and anti-pyroptotic activities that could provide a promising treatment approach to protect against DF-induced AKI.
Collapse
Affiliation(s)
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
10
|
El-Gohary RM, Okasha AH, Abd El-Azeem AH, Abdel Ghafar MT, Ibrahim S, Hegab II, Farghal EE, Shalaby SAF, Elshora OA, ElMehy AE, Barakat AN, Amer BS, Sobeeh FG, AboEl-Magd GH, Ghalwash AA. Uncovering the Cardioprotective Potential of Diacerein in Doxorubicin Cardiotoxicity: Mitigating Ferritinophagy-Mediated Ferroptosis via Upregulating NRF2/SLC7A11/GPX4 Axis. Antioxidants (Basel) 2024; 13:493. [PMID: 38671940 PMCID: PMC11047461 DOI: 10.3390/antiox13040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a life-threatening clinical issue with limited preventive approaches, posing a substantial challenge to cancer survivors. The anthraquinone diacerein (DCN) exhibits significant anti-inflammatory, anti-proliferative, and antioxidant actions. Its beneficial effects on DIC have yet to be clarified. Therefore, this study investigated DCN's cardioprotective potency and its conceivable molecular targets against DIC. Twenty-eight Wister rats were assigned to CON, DOX, DCN-L/DOX, and DCN-H/DOX groups. Serum cardiac damage indices, iron assay, oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis, ferritinophagy, and ferroptosis-related biomarkers were estimated. Nuclear factor E2-related factor 2 (NRF2) DNA-binding activity and phospho-p53 immunoreactivity were assessed. DCN administration effectively ameliorated DOX-induced cardiac cytomorphological abnormalities. Additionally, DCN profoundly combated the DOX-induced labile iron pool expansion alongside its consequent lethal lipid peroxide overproduction, whereas it counteracted ferritinophagy and enhanced iron storage. Indeed, DCN valuably reinforced the cardiomyocytes' resistance to ferroptosis, mainly by restoring the NRF2/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling axis. Furthermore, DCN abrogated the cardiac oxidative damage, inflammatory response, ER stress, and cardiomyocyte apoptosis elicited by DOX. In conclusion, for the first time, our findings validated DCN's cardioprotective potency against DIC based on its antioxidant, anti-inflammatory, anti-ferroptotic, and anti-apoptotic imprint, chiefly mediated by the NRF2/SLC7A11/GPX4 axis. Accordingly, DCN could represent a promising therapeutic avenue for patients under DOX-dependent chemotherapy.
Collapse
Affiliation(s)
- Rehab M. El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.H.O.); (A.A.G.)
| | - Asmaa H. Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.H.O.); (A.A.G.)
| | - Alaa H. Abd El-Azeem
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Muhammad T. Abdel Ghafar
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (E.E.F.); (O.A.E.)
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Islam I. Hegab
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
- Department of Bio-Physiology, Ibn Sina National College for Medical Studies, Jeddah 22413, Saudi Arabia
| | - Eman E. Farghal
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (E.E.F.); (O.A.E.)
| | | | - Ola A. Elshora
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (E.E.F.); (O.A.E.)
| | - Aisha E. ElMehy
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.E.E.); (F.G.S.)
| | - Amany Nagy Barakat
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Basma Saed Amer
- Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Fatma G. Sobeeh
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.E.E.); (F.G.S.)
| | - Gehan H. AboEl-Magd
- Chest Diseases Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Asmaa A. Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; (A.H.O.); (A.A.G.)
| |
Collapse
|
11
|
El-Aziz Fathy EA, Abdel-Gaber SAW, Gaber Ibrahim MF, Thabet K, Waz S. Downregulation of IL-1β/p38 mitogen activated protein kinase pathway by diacerein protects against kidney ischemia/reperfusion injury in rats. Cytokine 2024; 176:156511. [PMID: 38290257 DOI: 10.1016/j.cyto.2024.156511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Renal ischemia-reperfusion (I/R) can be precipitated by multiple clinical situations that lead to impaired renal function and associated mortality. The resulting tubular cell damage is the outcome of complex disorders including, an inflammatory process with an overproduction of cytokines. Here, diacerein (DIA), an inhibitor of proinflammatory cytokine interleukin-1 beta (IL-1β), was investigated against renal I/R in rats. DIA was orally administrated (50 mg/kg/day) for ten days before bilateral ischemia for 45 min with subsequent 2 hr. reperfusion. Interestingly, DIA alleviated the renal dysfunction and histopathological damage in the renal tissues. Pretreatment with DIA corrected the oxidative imbalance by prevented reduction in antioxidant levels of GSH and SOD, while it decreased the elevation of the oxidative marker, MDA. In addition, DIA downregulated IL-1β and TNF-α expression in the renal tissues. Consequent to inhibition of the oxidative stress and inflammatory cascades, DIA inhibited the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Therefore, downstream targets for p38 MAPK were also inhibited via DIA which prevented further increases of inflammatory cytokines and the apoptotic marker, caspase-3. Collectively, this study revealed the renoprotective role of DIA for renal I/R and highlighted the role of p38 MAPK encountered in its therapeutic application in renal disease.
Collapse
Affiliation(s)
- Eman Abd El-Aziz Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| | | | - Manar Fouli Gaber Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| | - Khaled Thabet
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| |
Collapse
|
12
|
Kassab RB, Elhenawy AA, AbdulrahmanTheyab, Hawsawi YM, Al-Amer OM, Oyouni AAA, Habotta OA, Althagafi HA, Alharthi F, Lokman MS, Alsharif KF, Albrakati A, Al-Ghamdy AO, Elmahallawy EK, Elhefny MA, Hassan KE, Albarakati AJA, Abdel Moneim AE, Moustafa AA. Modulation of inflammatory, oxidative, and apoptotic stresses mediates the renoprotective effect of daidzein against glycerol-induced acute kidney injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119016-119033. [PMID: 37919499 DOI: 10.1007/s11356-023-30461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Acute kidney injury (AKI) is a life-threatening complication that accompanies rhabdomyolysis. Daidzein is a dietary isoflavone that has various biological activities. This study examined the therapeutic potential of daidzein and the underlying mechanisms against AKI induced by glycerol in male rats. Animals were injected once with glycerol (50%, 10 ml/kg, intramuscular) for induction of AKI and pre-treated orally with daidzein (25, 50, and 100 mg/kg) for 2 weeks. Biochemical, histopathological, immunohistopathological, and molecular parameters were assessed to evaluate the effect of daidzein. The results revealed that the model group displayed remarkable functional, molecular, and structural changes in the kidney. However, pre-administration of daidzein markedly decreased the kidney relative weight as well as the levels of urea, creatinine, K, P, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and cystatin C. Further, daidzein lessened the rhabdomyolysis-related markers [lactate dehydrogenase (LDH) and creatine kinase (CK)]. Notably, the enhancement of the antioxidant biomarkers [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and reduced glutathione (GSH) is accompanied by a decrease in malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, upregulated gene expression levels of nuclear factor erythroid 2-related factor 2 (Nfe212) and hemeoxygenase-1 (Hmox1) were exerted by daidzein administration. Rats who received daidzein displayed markedly lower interleukin-1β (IL-1β), tumor nuclear factor-α (TNF-α), myleoperoxidase (MPO), and nuclear factor kappa B (NF-κB) levels together with higher interleukin-10 (IL-10) related to the model group. Remarkably, significant declines were noticed in the pro-apoptotic (Bax and caspase-3) and rises in antiapoptotic (Bcl-2) levels in the group that received daidzein. The renal histological screening validated the aforementioned biochemical and molecular alterations. Our findings support daidzein as a potential therapeutic approach against AKI-induced renal injury via suppression of muscle degradation, oxidative damage, cytokine release, and apoptosis.
Collapse
Affiliation(s)
- Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ain Helwan, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University (Boys' Branch), Nasr City, Cairo, Egypt
| | - AbdulrahmanTheyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, MBC-J04, P.O. Box 40047, Jeddah, 21499, Saudi Arabia
| | - Osama M Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ali O Al-Ghamdy
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Kalid E Hassan
- Pathology Department, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ain Helwan, 11795, Egypt
| | - Ahmed A Moustafa
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ain Helwan, 11795, Egypt
- Urology Department, Tulane University, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| |
Collapse
|
13
|
Atef MM, Abou Hashish NA, Hafez YM, Selim AF, Ibrahim HA, Eltabaa EF, Rizk FH, Shalaby AM, Ezzat N, Alabiad MA, Elshamy AM. The potential protective effect of liraglutide on valproic acid induced liver injury in rats: Targeting HMGB1/RAGE axis and RIPK3/MLKL mediated necroptosis. Cell Biochem Funct 2023; 41:1209-1219. [PMID: 37771193 DOI: 10.1002/cbf.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Valproic acid (VPA) is a commonly used drug for management of epilepsy. Prolonged VPA administration increases the risk of hepatotoxicity. Liraglutide is a glucagon-like peptide 1 receptor (GLP-1R) agonist that act as a novel antidiabetic drug with broad-spectrum anti-inflammatory and antioxidant effects. This study tested the protective effect of liraglutide against VPA-induced hepatotoxicity elucidating the possible underlying molecular mechanisms. Forty adult male rats were allocated in to four equally sized groups; Group I (control group) received oral distilled water and subcutaneous normal saline for 2 weeks followed by subcutaneous normal saline only for 2 weeks. Group II (liraglutide group) received subcutaneous liraglutide dissolved in normal saline daily for 4 weeks. Group III (valproic acid-treated group) received sodium valproate dissolved in distilled water for 2 weeks. Group IV (Combined valproic acid & liraglutide treated group) received valproic acid plus liraglutide daily for 2 weeks which was continued for additional 2 weeks after valproic acid administration. The hepatic index was calculated. Serum AST, ALT, GGT, and ALP activities were estimated. Hepatic tissue homogenate MDA, GSH, SOD, HMGB1, MAPK, RIPK1, and RIPK3 levels were evaluated using ELISA. However, hepatic RAGE and MLKL messenger RNA expression levels using the QRT-PCR technique. Hepatic NF-κB and TNF-α were detected immunohistochemically. Results proved that liraglutide coadministration significantly decreased liver enzymes, MDA, HMGB1, MAPK, RIPK1 RIPK3, RAGE, and MLKL with concomitant increased GSH and SOD in comparison to the correspondent values in VPA-hepatotoxicity group. Conclusions: Liraglutide's protective effects against VPA-induced hepatotoxicity are triggered by ameliorating oxidative stress, inflammation, and necroptosis.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Yasser Mostafa Hafez
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Fawzy Selim
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Fawzy Eltabaa
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fatma H Rizk
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Nadia Ezzat
- Department of Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Tanta, Egypt
| | - Amira M Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Samaha MM, Nour OA, Sewilam HM, El-Kashef DH. Diacerein mitigates adenine-induced chronic kidney disease in rats: Focus on TLR4/MYD88/TRAF6/NF-κB pathway. Life Sci 2023; 331:122080. [PMID: 37690574 DOI: 10.1016/j.lfs.2023.122080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Chronic kidney disease (CKD) is a serious problem which negatively affects human health. AIMS The purpose of this investigation was to explore the possible beneficial impacts of diacerein on adenine-induced CKD in rats. MAIN METHODS 32 male Sprague Dawley rats were allocated into 4 groups; normal, diseased (200 mg/kg adenine, orally) and diacerein (25 and 50 mg/kg, orally). KEY FINDINGS Adenine produced marked reduction in rats' body weights and a substantial increase in kidney/body weight index. Additionally, adenine significantly increased serum creatinine and BUN levels besides proteinuria levels, and also reduced creatinine clearance. Adenine induced oxidative stress as evidenced by increased MDA content and diminished GSH concentration in renal tissues. These biochemical measurements were confirmed by the morphological and histopathological results. Moreover, adenine revealed substantial elevation in renal level and expression of MYD88, TRAF6 and TNF-α, and renal level of IL-1β in addition to increased expression of TLR4, NF-κB p65 and p-NF-κB p65 while reduced the expression of IκB-α. Diacerein in a dose-dependent manner effectively ameliorated adenine-induced alterations. SIGNIFICANCE Diacerein could be used as a therapeutic agent to attenuate CKD after further clinical studies.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Omnia A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Haitham M Sewilam
- Department of Histology, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
15
|
Liu C, Cheng Q, Ao Q, Yang G, Liu Y, Zhao J. Induced pluripotent stem cells-podocytes promote repair in acute kidney injury is dependent on Mafb/CCR5/Nampt axis-mediated M2 macrophage polarization. Chem Biol Interact 2023; 380:110534. [PMID: 37182688 DOI: 10.1016/j.cbi.2023.110534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have been the focus of cellular therapy studies. The use of iPSCs in regenerative medicine is limited by their tumorigenic potential. This study sought to determine whether iPSCs-derived podocytes attenuate acute kidney injury (AKI) and the molecular mechanism. Inoculation of iPSCs-podocytes significantly promoted the repair of kidney injury in AKI mice, reduced the levels of kidney injury factors Scr, BUN, and urinary NAG, and alleviated the inflammatory response. Histological analysis revealed a significant increase in the number of M2 macrophages and a significant decrease in M1 macrophages in the kidney tissues. Subsequently, the genes and signaling pathways that may be associated with kidney injury repair in mice were analyzed by RNA-seq and bioinformatics prediction. The polarization of M2 macrophages was promoted by MAF bZIP transcription factor B (Mafb)-mediated activation of C-C motif chemokine receptor 5 (Ccr5) and nicotinamide phosphoribosyltransferase (Nampt) signaling pathway. Taken together, these results show that iPSCs-podocytes depend on Mafb to activate the Nampt signaling pathway through transcriptional activation of Ccr5, thereby promoting the repair of AKI caused by ischemia-reperfusion.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Qingli Cheng
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Qiangguo Ao
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Guang Yang
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yang Liu
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Jiahui Zhao
- Department of Nephrology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, PR China.
| |
Collapse
|
16
|
Investigation into the anti-inflammatory mechanism of coffee leaf extract in LPS-induced Caco-2/U937 co-culture model through cytokines and NMR-based untargeted metabolomics analyses. Food Chem 2023; 404:134592. [DOI: 10.1016/j.foodchem.2022.134592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
17
|
Administration of a single dose of lithium ameliorates rhabdomyolysis-associated acute kidney injury in rats. PLoS One 2023; 18:e0281679. [PMID: 36795689 PMCID: PMC9934413 DOI: 10.1371/journal.pone.0281679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Rhabdomyolysis is characterized by muscle damage and leads to acute kidney injury (AKI). Clinical and experimental studies suggest that glycogen synthase kinase 3β (GSK3β) inhibition protects against AKI basically through its critical role in tubular epithelial cell apoptosis, inflammation and fibrosis. Treatment with a single dose of lithium, an inhibitor of GSK3β, accelerated recovery of renal function in cisplatin and ischemic/reperfusion-induced AKI models. We aimed to evaluate the efficacy of a single dose of lithium in the treatment of rhabdomyolysis-induced AKI. Male Wistar rats were allocated to four groups: Sham, received saline 0.9% intraperitoneally (IP); lithium (Li), received a single IP injection of lithium chloride (LiCl) 80 mg/kg body weight (BW); glycerol (Gly), received a single dose of glycerol 50% 5 mL/kg BW intramuscular (IM); glycerol plus lithium (Gly+Li), received a single dose of glycerol 50% IM plus LiCl IP injected 2 hours after glycerol administration. After 24 hours, we performed inulin clearance experiments and collected blood / kidney / muscle samples. Gly rats exhibited renal function impairment accompanied by kidney injury, inflammation and alterations in signaling pathways for apoptosis and redox state balance. Gly+Li rats showed a remarkable improvement in renal function as well as kidney injury score, diminished CPK levels and an overstated decrease of renal and muscle GSK3β protein expression. Furthermore, administration of lithium lowered the amount of macrophage infiltrate, reduced NFκB and caspase renal protein expression and increased the antioxidant component MnSOD. Lithium treatment attenuated renal dysfunction in rhabdomyolysis-associated AKI by improving inulin clearance and reducing CPK levels, inflammation, apoptosis and oxidative stress. These therapeutic effects were due to the inhibition of GSK3β and possibly associated with a decrease in muscle injury.
Collapse
|
18
|
Abstract
A new flavonoid, (2'''E,6'''S)-4''-(6-hydroxy-2,6-dimethylocta-2,7-dienoyl)-vitexin (1), and five known compounds (2-6) were isolated from the thorn of Gleditsia sinensis Lam. Their structures were determined by comprehensive and comparative spectroscopic analysis of NMR and MS data. The absolute configuration of the new compound was deduced by analysis of the experimental and calculated 13C NMR data. The protective effects against lipopolysaccharide (LPS)-induced apoptosis in normal rat kidney tubule epithelioid (NRK 52e) cells of the isolated compounds were investigated in vitro, whose results showed that compound 1 showed significant protective effect with the EC50 value of 3.0 μM.
Collapse
Affiliation(s)
- Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Man Qi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Yuxuan Kan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Abdel-Aziz AM, Fathy EM, Hafez HM, Ahmed AF, Mohamed MZ. TLR4/ MyD88/NF-κB signaling pathway involved in the protective effect of diacerein against lung fibrosis in rats. Hum Exp Toxicol 2023; 42:9603271231200213. [PMID: 37664986 DOI: 10.1177/09603271231200213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
PURPOSE Pulmonary fibrosis (PF) is an inescapable problem. Diacerein, a chondro-protective drug, has antioxidant and anti-inflammatory effects. Its effect on PF injury has not yet been fully clarified. Therefore, the current study aimed to detect its protective effect on lung tissue with the explanation of possible underlying mechanisms. METHODS Adult male albino rats were assigned to four groups: control group, diacerein control group, PF non-treated group, and PF diacerein pretreated group. Lung tissue oxidative stress parameters, inflammatory biomarkers mainly Toll-like receptors-4 (TLR4), and myeloid differentiation factor 88 (MyD88) levels were determined. Histopathological examination of lung tissue and immunohistochemical studies of nuclear factor-kappa B (NF-κB), and transforming growth factor- β (TGF-β) were also done. RESULTS Diacerein pretreatment has the ability to restore the PF damaging effect, proved by the reduction of the oxidative stress and lung tissue inflammation via downregulation of TLR4/NF-κB signaling pathway together with the restoration of TGF-β level and improvement of the histopathological and immunohistochemical study findings in the lung tissue. CONCLUSION These results suggested the protective effect of diacerein on PF relies on its antioxidant and anti-inflammatory effects reducing TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | - Eman Mahmoud Fathy
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Amira F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Histology and Cell Biology, Misr University for Science and Technology, 6th of October City, Egypt
| | - Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
20
|
Alsharif KF, Albrakati A, Al Omairi NE, Almalki AS, Alsanie WF, Elmageed ZYA, Habotta OA, Lokman MS, Althagafi HA, Alghamdi AAA, Moneim AEA, Alyami H, Belal SKM, Alnefaie G, Alamri AS, Albezrah NKA, Kassab RB, Albarakati AJA, Hassan KE, Agil A. Therapeutic antischizophrenic activity of prodigiosin and selenium co-supplementation against amphetamine hydrochloride-induced behavioural changes and oxidative, inflammatory, and apoptotic challenges in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7987-8001. [PMID: 36048389 DOI: 10.1007/s11356-022-22409-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Schizophrenia (SCZ), a multifactorial neuropsychiatric disorder, is treated with inefficient antipsychotics and linked to poor treatment outcomes. This study, therefore, investigated the combined administration of prodigiosin (PDG) and selenium (Na2SeO3) against SCZ induced by amphetamine (AMPH) in rats. Animals were allocated into four groups corresponding to their respective 7-day treatments: control, AMPH (2 mg/kg), PDG (300 mg/kg) + Na2SeO3 (2 mg/kg), and AMPH + PDG + Na2SeO3. The model group exhibited biochemical, molecular, and histopathological changes similar to those of the SCZ group. Contrastingly, co-administration of PDG and Na2SeO3 significantly increased the time for social interaction and decreased AChE and dopamine. It also downregulated the gene expression of NMDAR1 and restored neurotrophin (BDNF and NGF) levels. Further, PDG combined with Na2SeO3 improved the antioxidant defence of the hippocampus by boosting the activities of SOD, CAT, GPx, and GR. These findings were accompanied by an increased GSH, alongside decreased MDA and NO levels. Furthermore, schizophrenic rats having received PDG and Na2SeO3 displayed markedly lower IL-1β and TNF-α levels compared to the model group. Interestingly, remarkable declines in the Bax (pro-apoptotic) and increases in Bcl-2 (anti-apoptotic) levels were observed in the SCZ group that received PDG and Na2SeO3. The hippocampal histological examination confirmed these changes. Collectively, these findings show that the co-administration of PDG and Na2SeO3 may have a promising therapeutic effect for SCZ. This is mediated by mechanisms related to the modulation of cholinergic, dopaminergic, and glutaric neurotransmission and neurotrophic factors, alongside the suppression of oxidative damage, neuroinflammation, and apoptosis machinery.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Naif E Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulraheem S Almalki
- Department of Chemistry, Faculty of Science, Taif University, Taif, 21974, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Zakaria Y Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA, 71203, USA
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Hussain Alyami
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Saied K M Belal
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ghaliah Alnefaie
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Nisreen Khalid Aref Albezrah
- Department of Obstetric and Gynecology, Medicine College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Rami B Kassab
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al Qura University, Makkah, Saudi Arabia
| | - Khalid Ebraheem Hassan
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, 18071, Granada, Spain
| |
Collapse
|
21
|
Wang M, Luo W, Yu T, Liang S, Zou C, Sun J, Li G, Liang G. Diacerein alleviates Ang II-induced cardiac inflammation and remodeling by inhibiting the MAPKs/c-Myc pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154387. [PMID: 36027716 DOI: 10.1016/j.phymed.2022.154387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Heart failure is a common event in the course of hypertension. Recent studies have highlighted the key role of the non-hemodynamic activity of angiotensin II (Ang II) in hypertension-related cardiac inflammation and remodeling. A naturally occurring compound, diacerein, exhibits anti-inflammatory activities in various systems. HYPOTHESIS/PURPOSE In this study, we have examined the potential effects of diacerein on Ang II-induced heart failure. METHODS C57BL/6 mice were administered Ang II by micro-osmotic pump infusion for 4 weeks to develop hypertensive heart failure. Mice were treated with diacerein by gavage for final 2 weeks. RNA-sequencing analysis was performed to explore the potential mechanism of diacerein. RESULTS We found that diacerein could inhibit inflammation, myocardial fibrosis, and hypertrophy to prevent heart dysfunction, without the alteration of blood pressure. To explore the potential mechanism of diacerein, RNA-sequencing analysis was performed, indicating that MAPKs/c-Myc pathway is involved in that cardioprotective effects of Diacerein. We further confirmed that diacerein inhibits Ang II-activated MAPKs/c-Myc pathway to reduce inflammatory response in mouse hearts and cultured cardiomyocytes. Deficiency of MAPKs or c-Myc in cardiomyocytes abolished the anti-inflammatory effects of diacerein. CONCLUSION Our results indicate that diacerein protects hearts in Ang II-induced mice through inhibiting MAPKs/c-Myc-mediated inflammatory responses, rendering diacerein a potential therapeutic candidate agent for hypertensive heart failure.
Collapse
Affiliation(s)
- Mengyang Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tianxiang Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shiqi Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
22
|
Zhu Y, Yang S, Lv L, Zhai X, Wu G, Qi X, Dong D, Tao X. Research Progress on the Positive and Negative Regulatory Effects of Rhein on the Kidney: A Review of Its Molecular Targets. Molecules 2022; 27:molecules27196572. [PMID: 36235108 PMCID: PMC9573519 DOI: 10.3390/molecules27196572] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, both acute kidney injury (AKI) and chronic kidney disease (CKD) are considered to be the leading public health problems with gradually increasing incidence rates around the world. Rhein is a monomeric component of anthraquinone isolated from rhubarb, a traditional Chinese medicine. It has anti-inflammation, anti-oxidation, anti-apoptosis, anti-bacterial and other pharmacological activities, as well as a renal protective effects. Rhein exerts its nephroprotective effects mainly through decreasing hypoglycemic and hypolipidemic, playing anti-inflammatory, antioxidant and anti-fibrotic effects and regulating drug-transporters. However, the latest studies show that rhein also has potential kidney toxicity in case of large dosages and long use times. The present review highlights rhein's molecular targets and its different effects on the kidney based on the available literature and clarifies that rhein regulates the function of the kidney in a positive and negative way. It will be helpful to conduct further studies on how to make full use of rhein in the kidney and to avoid kidney damage so as to make it an effective kidney protection drug.
Collapse
|
23
|
Youssef NS, Elzatony AS, Abdel Baky NA. Diacerein attenuate LPS-induced acute lung injury via inhibiting ER stress and apoptosis: Impact on the crosstalk between SphK1/S1P, TLR4/NFκB/STAT3, and NLRP3/IL-1β signaling pathways. Life Sci 2022; 308:120915. [PMID: 36055546 DOI: 10.1016/j.lfs.2022.120915] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
Abstract
AIMS Acute lung injury (ALI) is a life-threatening clinical problem with high mortality rate and limited treatments or preventive options that represents a major challenge for clinicians. Diacerein (DIA) is a multi-target anthraquinone derivative with potent anti-inflammatory action. The aim of this study is to assess the protective effect of DIA and its potential molecular targets against lipopolysaccharide (LPS)-induced ALI in rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats were orally administrated DIA (50 mg/kg) for 5 consecutive days followed by a single intraperitoneal injection of LPS (5mg/kg). KEY FINDINGS DIA mitigated oxidative lung injury in LPS-challenged rats via significantly decreasing lung wet/dry (W/D) ratio, inflammatory cells infiltration, and lipid peroxidation, with concomitant elevation in enzymatic and non-enzymatic antioxidant levels in lung tissue. Likewise, DIA alleviated endoplasmic reticulum stress and markedly halted inflammation triggered by LPS challenge in pulmonary tissue by suppressing NLRP3/IL-1β and TLR4/NF-κB signaling with parallel decrease in proinflammatory cytokine levels. Interestingly, DIA down regulated Sphk1/S1P axis, reduced GSK-3β and STAT3 proteins expression, and markedly decreased caspase-3 besides increasing Bcl-2 levels in lung tissue of LPS-challenged animals. These biochemical findings was simultaneously associated with marked improvement in histological alterations of lung tissue. SIGNIFICANCE These findings verify the protective effect of DIA against LPS-induced ALI through targeting oxidative stress, endoplasmic reticulum stress, and apoptosis. Importantly, DIA halted the hyperinflammatory state triggered by LPS via multi-faceted inhibitory effect on different signaling pathways, hence DIA could potentially reduce mortality in patients with ALI.
Collapse
Affiliation(s)
- Nagwa Salah Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Asmaa Sameer Elzatony
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
24
|
Mohamed Kamel GA, Harahsheh E, Hussein S. Diacerein ameliorates acetaminophen hepatotoxicity in rats via inhibiting HMGB1/TLR4/NF-κB and upregulating PPAR-γ signal. Mol Biol Rep 2022; 49:5863-5874. [PMID: 35366176 PMCID: PMC8975726 DOI: 10.1007/s11033-022-07366-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/10/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acetaminophen (APAP) is a worldwide antipyretic as well as an analgesic medication. It has been extensively utilized during the outbreak of coronavirus 2019 (COVID-19). APAP misuse would lead to liver injury. Diacerein (DIA), an anthraquinone derivative, has antioxidant and inflammatory properties. Hence, this study attempted to evaluate the impact of DIA treatment on liver injury induced by APAP and its influence on nuclear factor-κB (NF-κB) /toll-like receptor 4 (TLR4)/high mobility group box-1(HMGB-1) signaling as well as the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression. METHODS Male albino rats received 25 as well as 50 mg/kg/day DIA orally for seven days. One hour after the last administration, rats received APAP (1gm/kg, orally). For histopathological analysis, liver tissues and blood were collected, immunohistochemical (IHC) assay, biochemical assay, as well as quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS DIA markedly reduced liver injury markers and ameliorated histopathological changes. Moreover, DIA dose-dependently alleviated oxidative stress status caused by APAP administration along with inflammatory markers, including the level of interleukin-1 beta (IL-1β), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Furthermore, DIA downregulated protein levels as well as mRNA of HMGB-1, TLR4, NF-κB p65 expression, and enhanced PPAR-γ expression. Moreover, DIA ameliorated apoptotic (Bax) and caspase-3 expressions and increased the anti-apoptotic (Bcl2) expression. CONCLUSIONS This study demonstrated that DIA exerts anti-apoptotic, anti-inflammatory, and antioxidant properties against liver injury induced by APAP that is attributed to inhibition of the HMGB1/TLR4/NF-κB pathway, besides upregulation of the expression of PPAR-γ.
Collapse
Affiliation(s)
- Gellan Alaa Mohamed Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11754, Egypt.
| | - Eman Harahsheh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
25
|
Diacerein ameliorates letrozole-induced polycystic ovarian syndrome in rats. Biomed Pharmacother 2022; 149:112870. [PMID: 35367769 DOI: 10.1016/j.biopha.2022.112870] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common gynaecological endocrine disease that causes anovulatory infertility. The current study aimed to explore the possible role of diacerein (DIA), an IL-1β inhibitor, in treating letrozole-induced PCOS in rats that exhibit the metabolic and endocrinal criteria of PCOS patients. PCOS was induced in female Wistar rats by the oral administration of letrozole (1 mg/kg, per orally, p.o.) for 21 days. Rats were then treated with DIA (25 mg/kg/day, p.o.), DIA (50 mg/kg/day, p.o.), or metformin (2 mg/100 g/day, p.o.) for 14 days after the PCOS induction. PCOS resulted in a significantly higher body weight, ovarian weight, ovarian size, and cysts, as well as an elevation in serum testosterone, LH, insulin, glycemia, and lipid profile levels. All of these effects were significantly reduced by the DIA administration. Additionally, DIA remarkably inhibited the letrozole-induced oxidative stress in the ovaries, muscles, and liver by reducing the upraised levels of malondialdehyde and total nitrite and increasing the suppressed levels of superoxide dismutase and catalase. DIA enhanced the protective proteins Keap-1, Nrf2, and OH-1 levels. Finally, DIA inhibited the elevated mRNA levels of NLRP3 and caspase-1, the up-regulated inflammatory cytokines IL-6, TNF-α, and the IL-1β/NFκB signaling pathway. Our results proved that DIA ameliorates letrozole-induced PCOS through its antioxidant and anti-inflammatory properties.
Collapse
|
26
|
Wang M, Sun J, Yu T, Wang M, Jin L, Liang S, Luo W, Wang Y, Li G, Liang G. Diacerein protects liver against APAP-induced injury via targeting JNK and inhibiting JNK-mediated oxidative stress and apoptosis. Biomed Pharmacother 2022; 149:112917. [PMID: 36068777 DOI: 10.1016/j.biopha.2022.112917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
27
|
Roy S, Dhaneshwar S, Mahmood T. Exploring the Potential of IL-1β Inhibitor Diacerein and its Combination with 5-Aminosalicylic Acid for the Possible Ameliorating Effect in TNBS-induced Experimental Colitis in Wistar Rats. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220328142715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Pro-inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin (IL), and oxidative stress are crucial players in the pathophysiology of inflammatory bowel disease (IBD) that contribute in perpetuating intestinal inflammation. Targeting them presents a novel approach in disease management. In the present study, the potential of an antiosteoarthritic IL-inhibitor drug, diacerein (DIA) was investigated in 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)- instigated ulcerative colitis (UC) in Wistar rats. A comparative study was also undertaken to investigate the potential of combination therapy of DIA with the standard drug 5-aminosalicylic acid (5-ASA) versus monotherapy.
Methods:
Colitis was developed by single intra-colonic administration of TNBS (100mg/kg); whereas drugs 5-ASA (25.5 mg/kg), DIA (100 mg/kg), and DIA+5-ASA (100+ 25.5 mg/kg) were administered orally for five days post-induction to various groups of rats. Parameters like disease activity score, colon/body weight ratio, colon length, diameter, gut pH were assessed, and histopathological analysis was carried out. Biochemical markers of colonic inflammation such as IL-1β, TNF-α, reduced glutathione (GSH), and malondialdehyde (MDA) were also estimated.
Results:
Combination of DIA and 5-ASA demonstrated the most significant reduction of the colon to body weight ratio and disease activity score. It prominently restored the colon length, diameter, and gut pH to normal. It attenuated the biochemical alterations induced by TNBS, indicating a highly significant defensive outcome against colonic inflammation. The histopathological report demonstrated the renovating effect of the combination of disrupted colonic histology with minimally distressing liver, stomach, or pancreas compared to individual drugs.
Conclusion:
The combination remarkably downregulated the level of inflammation by suppressing both provocative cytokines and reactive oxygen species production. It can be evaluated further in a clinical setup as a novel and promising drug therapy for UC.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Dasauli, Lucknow, India
| |
Collapse
|
28
|
Atef MM, Shafik NM, Hafez YM, Watany MM, Selim A, Shafik HM, Safwat El-Deeb O. The evolving role of long noncoding RNA HIF1A-AS2 in diabetic retinopathy: a cross-link axis between hypoxia, oxidative stress and angiogenesis via MAPK/VEGF-dependent pathway. Redox Rep 2022; 27:70-78. [PMID: 35285425 PMCID: PMC8928809 DOI: 10.1080/13510002.2022.2050086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Diabetic retinopathy (DR) signifies a frequent serious diabetic complication influencing retinal structure and function. Dysregulation of lncRNAs drives a wide array of human diseases especially diabetes; thus, we aimed to study lncRNA HIF1A-AS2 role and its interplay with hypoxia, oxidative stress (OS), and angiogenesis in DR. Materials and methods 60 DM patients in addition to 15 healthy subjects. were enrolled. LncRNA HIF1A-AS2 mRNA relative gene expression was assessed. Hypoxia inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), mitogen activated protein kinase (MAPK), and endoglin levels were assessed. Detection of DNA damage using comet assay, and Redox status parameters were also detected. Results LncRNA HIF1A-AS2 expression was significantly increased in diabetic patients with the highest levels in proliferative DR patients. Moreover, HIFα, VEGF, MAPK, and Endogolin levels were significantly higher in the diabetic patients compared to control group with the highest levels in in proliferative DR patients. Significant DNA damage in comet assay was observed to be the highest in this group. Conclusion We observed for the first time the imminent role of long noncoding RNA HIF1A-AS2 in DR throughout its stages and its interplay with hypoxia, OS, and angiogenesis via MAPK/VEGF-dependent pathway.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Noha M. Shafik
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mona Mohamed Watany
- Clinical pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amal Selim
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba M. Shafik
- Ophthalmology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Omnia Safwat El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
29
|
Samaha MM, Helal MG, El-Sherbiny M, Said E, Salem HA. Diacerein versus adipoRon as adiponectin modulators in experimentally-induced end-stage type 2 diabetes mellitus in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103806. [PMID: 34974166 DOI: 10.1016/j.etap.2021.103806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The objective of the present study is to evaluate and compare the possible anti-diabetic effects of adipoRon and diacerein in type 2 diabetes mellitus (T2DM) rats. T2DM is marked by impaired oxidative, inflammatory and metabolic signaling. Indeed, T2DM progression is associated with elevated HbA1C%, low adiponectin and insulin concentration. Moreover, in this study epididymal adipose tissue and soleus muscle MDA contents significantly escalated, while serum TAC and epididymal adipose Nrf2 significantly declined. Nevertheless, serum TNF-α, epididymal NLRP3, NF-κB, PPARγ and CD68 expression rose significantly with a parallel significant reduction in serum IL-10 and soleus muscle expression of IRS1. Both adipoRon and diacerein significantly improved adiponectin and insulin secretion with augmentation of anti-oxidant defenses and diminution of oxidative burden, with obvious anti-inflammatory consequences (p < 0.05). Thus, adipoRon and diacerein positively modulated adiponectin expression with down-regulation of NF-κB/NLRP3/PPARγ expression with subsequent improvement in glycemic control, inflammatory and oxidative signaling.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Faculty of Pharmacy, New Mansoura University, 7723730 New Mansoura, Egypt.
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
30
|
He A, Shen J, Xue Y, Xiang Li, Li Y, Huang L, Lv D, Luo M. Diacerein attenuates vascular dysfunction by reducing inflammatory response and insulin resistance in type 2 diabetic rats. Biochem Biophys Res Commun 2021; 585:68-74. [PMID: 34801936 DOI: 10.1016/j.bbrc.2021.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022]
Abstract
AIM To examine the effect of diacerein on vascular dysfunction in type 2 diabetic rats and elucidate the mechanism of diacerein. METHODS In a rat model, type 2 diabetes was induced by high-fat diet and streptozotocin. Vascular function was assessed in vascular reactivity experiment. The effect of diacerein (10 or 20 mg/kg/day) on blood glucose, inflammation and insulin signaling, and modulators in vascular tissue in diabetic rats were investigated by molecular and biochemical approaches. RESULTS In this study, diacerein inhibited diabetes-induced vascular dysfunction. Diacerein treatment normalized blood glucose, insulin tolerance test, inflammatory cytokine levels and nitric oxide synthases expression in diabetic rats. Moreover, diacerein inhibited NF-κB and NLRP3 pathways and activated insulin signaling pathway related proteins IRS-1 and AKT in diabetic rats. CONCLUSION Diacerein improved vascular function effectively in diabetic rats by suppressing inflammation and reducing insulin resistance. These results suggest that diacerein may represent a novel therapy for patients with diabetes.
Collapse
Affiliation(s)
- An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Shen
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuzhou Xue
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanjing Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Longxiang Huang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dingyi Lv
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Minghao Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
31
|
Barakat N, Barakat LA, Zakaria MM, Khirallah SM. Diacerein ameliorates kidney injury induced by cisplatin in rats by activation of Nrf2/Ho-1 pathway and Bax down-regulation. Saudi J Biol Sci 2021; 28:7219-7226. [PMID: 34867025 PMCID: PMC8626266 DOI: 10.1016/j.sjbs.2021.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 01/24/2023] Open
Abstract
Cisplatin is an antineoplastic medicine used for solid tumor treatment. The main side effect that limits its dose is nephrotoxicity. Diacerein has been used for the treatment of joint diseases like osteoarthritis. It also has exhibited analgesic effects and antipyretic activities in animal models so this study targets to indicate the diacerein effect on nephrotoxicity induced by cisplatin in rats. Rats were distributed into four groups: normal healthy control; diacerein, which received diacerein daily by gastric gavage (50 mg/kg/day); cisplatin, which received only one intraperitoneal injection of cisplatin (6 mg/kg) and cisplatin and diacerein, which received diacerein daily after the cisplatin injection till 7th and 12th days, respectively. Diacerein treatment decreased kidney function markers so the cisplatin effect was reversed. Also, diacerein increased the renal antioxidants and decreased oxidative stress. Diacerein up-regulated Ho-1 (heme oxygenase 1), Nrf2 (Nuclear factor erythroid 2–related factor 2) and endothelial nitric oxide synthase (eNOS) genes expression, while down-regulated Bcl-2-associated X protein (Bax) gene expression. Furthermore, the renal transforming growth factor beta-1 (TGF-β1) decreased by the diacerein effect. Consequently, diacerein has a curative effect against cisplatin due to its anti-inflammatory, antioxidant, and antiapoptotic properties.
Collapse
Affiliation(s)
- Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Lamiaa A.A. Barakat
- Department of Biochemistry, Faculty of Science, Port Said University, Port Said, Egypt
| | | | - Salma M. Khirallah
- Department of Biochemistry, Faculty of Science, Port Said University, Port Said, Egypt
- Corresponding author.
| |
Collapse
|
32
|
Chronic Ethanol Consumption Induces Osteopenia via Activation of Osteoblast Necroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3027954. [PMID: 34745415 PMCID: PMC8566044 DOI: 10.1155/2021/3027954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
Chronic high-dose alcohol consumption impairs bone remodeling, reduces bone mass, and increases the risk of osteoporosis and bone fracture. However, the mechanisms underlying alcohol-induced osteoporosis are yet to be elucidated. In this study, we showed that excess intake of ethyl alcohol (EtOH) resulted in osteopenia and osteoblast necroptosis in mice that led to necrotic lesions and reduced osteogenic differentiation in bone marrow mesenchymal stem cells (BMMSCs). We found that EtOH treatment led to the activation of the RIPK1/RIPK3/MLKL signaling, resulting in increased osteoblast necroptosis and decreased osteogenic differentiation and bone formation both in vivo and in vitro. We further discovered that excessive EtOH treatment-induced osteoblast necroptosis might partly depend on reactive oxygen species (ROS) generation; concomitantly, ROS contributed to necroptosis of osteoblasts through a positive feedback loop involving RIPK1/RIPK3. In addition, blocking of the RIPK1/RIPK3/MLKL signaling by necrostatin-1 (Nec-1), a key inhibitor of RIPK1 kinase in the necroptosis pathway, or antioxidant N-acetylcysteine (NAC), an inhibitor of ROS, could decrease the activation of osteoblast necroptosis and ameliorate alcohol-induced osteopenia both in vivo and in vitro. Collectively, we demonstrated that chronic high-dose alcohol consumption induced osteopenia via osteoblast necroptosis and revealed that RIPK1 kinase may be a therapeutic target for alcohol-induced osteopenia.
Collapse
|
33
|
Mohamed Kamel GA. Vinpocetine attenuates fluoxetine-induced liver damage in rats; Role of Nrf2 and PPAR-γ. Hum Exp Toxicol 2021; 40:S509-S518. [PMID: 34669537 DOI: 10.1177/09603271211051597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Fluoxetine (FLX) has been widely used as first-line treatment in cases of depression and other neuropsychiatric disorders. Although its safety has been approved, the use of FLX was associated with liver injury and chronic liver disease. Vinpocetine (Vinpo), a nootropic drug, possesses antioxidant and anti-inflammatory effects. OBJECTIVE This study aimed to evaluate the protective effects of Vinpo on FLX-induced liver damage pointing to the role of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and nuclear factor erythroid 2-related factor 2 (Nrf2). METHODS Rats were randomized to four groups: control group, Vinpo group (20 mg/kg/day; orally), FLX group (10 mg/kg/day; orally), and Vinpo + FLX group. RESULTS FLX-induced liver damage was evidenced through elevated liver function biomarkers and induced hepatic histopathological changes. Concurrent Vinpo treatment resulted in a significant decrease in hepatotoxicity biomarkers and histopathological alterations. FLX-induced oxidative stress and inflammation were attenuated by Vinpo. In addition, Vinpo attenuated the hepatic NRF2 and HO-1 levels and up-regulated PPAR-γ expression. Moreover, FLX elevated Bcl-2-associated X protein (Bax) mRNA expression and decreased B-cell lymphoma 2 (Bcl2) mRNA expression were markedly reversed by Vinpo. CONCLUSION Vinpo possesses ameliorative effects against FLX-induced liver injury in rats. This effect may be due to attenuation of oxidative stress and inflammation, in addition to upregulation of PPAR-γ expression.
Collapse
Affiliation(s)
- Gellan Alaa Mohamed Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), 68820Al-Azhar University, Cairo, Egypt
| |
Collapse
|
34
|
Al-Brakati A, Alsharif KF, Alzahrani KJ, Kabrah S, Al-Amer O, Oyouni AA, Habotta OA, Lokman MS, Bauomy AA, Kassab RB, Abdel Moneim AE. Using Green Biosynthesized Lycopene-Coated Selenium Nanoparticles to Rescue Renal Damage in Glycerol-Induced Acute Kidney Injury in Rats. Int J Nanomedicine 2021; 16:4335-4349. [PMID: 34234429 PMCID: PMC8254550 DOI: 10.2147/ijn.s306186] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/09/2021] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Selenium nanoparticles (SeNPs) have recently gained much attention in nanomedicine applications owing to their unique biological properties. Biosynthesis of SeNPs using nutraceuticals as lycopene (LYC) maximizes their stability and bioactivities. In this context, this study aimed to elucidate the renoprotective activity of SeNPs coated with LYC (LYC-SeNPs) in the acute kidney injury (AKI) model. METHODS Rats were divided into six groups: control, AKI (glycerol-treated), AKI+sodium selenite (Na2SeO3; 0.5 mg/kg), AKI+LYC (10 mg/kg), AKI+LYC-SeNPs (0.5 mg/kg) and treated for 14 days. RESULTS Glycerol treatment evoked significant increases in rhabdomyolysis-related markers (creatine kinase and LDH). Furthermore, relative kidney weight, Kim-1, neutrophil gelatinase-associated lipocalin (NGAL), serum urea, and creatinine in the AKI group were elevated. Glycerol-injected rats displayed declines in reduced glutathione level, and superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities, paralleled with downregulations in Nfe2l2 and Hmox-1 expressions and high renal MDA and NO contents. Glycerol-induced renal inflammation was evident by rises in TNF-α, IL-1β, IL-6, and upregulated Nos2 expression. Also, apoptotic (elevated caspase-3, Bax, and cytochrome-c with lowered Bcl-2) and necroptotic (elevated Pipk3 expression) changes were reported in damaged renal tissue. Co-treatment with Na2SeO3, LYC, or LYC-SeNPs restored the biochemical, molecular, and histological alterations in AKI. In comparison with Na2SeO3 or LYC treatment, LYC-SeNPs had the best nephroprotective profile. CONCLUSION Our findings authentically revealed that LYC-SeNPs co-administration could be a prospective candidate against AKI-mediated renal damage via antioxidant, anti-inflammatory, anti-apoptotic and anti-necroptotic activities.
Collapse
Affiliation(s)
- Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, 21944, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Saeed Kabrah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm AlQura University, Makkah, Saudi Arabia
| | - Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Atif Abdulwahab Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Amira A Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, ArRass, 52719, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
35
|
Deng F, Zheng X, Sharma I, Dai Y, Wang Y, Kanwar YS. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism. Am J Physiol Renal Physiol 2021; 320:F578-F595. [PMID: 33615890 PMCID: PMC8083971 DOI: 10.1152/ajprenal.00016.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Regulated cell death (RCD), distinct from accidental cell death, refers to a process of well-controlled programmed cell death with well-defined pathological mechanisms. In the past few decades, various terms for RCDs were coined, and some of them have been implicated in the pathogenesis of various types of acute kidney injury (AKI). Cisplatin is widely used as a chemotherapeutic drug for a broad spectrum of cancers, but its usage was hampered because of being highly nephrotoxic. Cisplatin-induced AKI is commonly seen clinically, and it also serves as a well-established prototypic model for laboratory investigations relevant to acute nephropathy affecting especially the tubular compartment. Literature reports over a period of three decades have indicated that there are multiple types of RCDs, including apoptosis, necroptosis, pyroptosis, ferroptosis, and mitochondrial permeability transition-mediated necrosis, and some of them are pertinent to the pathogenesis of cisplatin-induced AKI. Interestingly, myo-inositol metabolism, a vital biological process that is largely restricted to the kidney, seems to be relevant to the pathogenesis of certain forms of RCDs. A comprehensive understanding of RCDs in cisplatin-induced AKI and their relevance to myo-inositol homeostasis may yield novel therapeutic targets for the amelioration of cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Xiaoping Zheng
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Yingbo Dai
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yet-Sen University, Zhuhai, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
36
|
Sun T, Liu Q, Wang Y, Deng Y, Zhang D. MBD2 mediates renal cell apoptosis via activation of Tox4 during rhabdomyolysis-induced acute kidney injury. J Cell Mol Med 2021; 25:4562-4571. [PMID: 33764669 PMCID: PMC8107094 DOI: 10.1111/jcmm.16207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Our study investigated the role of Methyl‐CpG–binding domain protein 2 (MBD2) in RM‐induced acute kidney injury (AKI) both in vitro and in vivo. MBD2 was induced by myoglobin in BUMPT cells and by glycerol in mice. MBD2 inhibition via MBD2 small interfering RNA and MBD2‐knockout (KO) attenuated RM‐induced AKI and renal cell apoptosis. The expression of TOX high mobility group box family member 4 (Tox4) induced by myoglobin was markedly reduced in MBD2‐KO mice. Chromatin immunoprecipitation analysis indicated that MBD2 directly bound to CpG islands in the Tox4 promoter region, thus preventing promoter methylation. Furthermore, siRNA inhibition of Tox4 attenuated myoglobin‐induced apoptosis in BUMPT cells. Finally, MBD2‐KO mice exhibited glycerol‐induced renal cell apoptosis by inactivation of Tox4. Altogether, our results suggested that MBD2 plays a role in RM‐induced AKI via the activation of Tox4 and represents a potential target for treatment of RM‐associated AKI.
Collapse
Affiliation(s)
- Tianshi Sun
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital of Central South University, Changsha, China
| | - Qing Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Wang
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital of Central South University, Changsha, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital of Central South University, Changsha, China.,Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
37
|
Chen H, Guan B, Chen S, Yang D, Shen J. Peroxynitrite activates NLRP3 inflammasome and contributes to hemorrhagic transformation and poor outcome in ischemic stroke with hyperglycemia. Free Radic Biol Med 2021; 165:171-183. [PMID: 33515754 DOI: 10.1016/j.freeradbiomed.2021.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
This study aims to test the hypothesis that peroxynitrite-mediated inflammasome activation could be a crucial player in the blood-brain barrier (BBB) disruption, hemorrhagic transformation (HT) and poor outcome in ischemic stroke with hyperglycemia. We used an experimental rat stroke model subjected to 90 min of middle cerebral artery occlusion plus 24 h or 7 days of reperfusion with or without acute hyperglycemia. We detected the production of peroxynitrite, the expression of NADPH oxidase, iNOS, MMPs and NLRP3 inflammasome in the ischemic brains, and evaluated infarct volume, brain edema, HT, neurological deficit score and survival rates. Our results show that: (1) Hyperglycemia increased the expression of NADPH oxidase subunits p47phox and p67phox, and iNOS, and the production of peroxynitrite. (2) Hyperglycemia increased infarct volume, aggravated the BBB hyperpermeability, induced brain edema and HT, and worsened neurological outcomes. These brain damages and poor outcome were reversed by the treatments of FeTmPyP (a representative peroxynitrite decomposition catalyst, PDC), peroxynitrite scavenger uric acid, and iNOS inhibitor 1400W. Furthermore, the activations of MMPs and NLRP3 inflammasome including pro/active-caspase-1 and IL-1β were inhibited both PDC and 1400W, indicating the roles of peroxynitrite in the inductions of MMPs and NLRP3 inflammasome in the ischemic brains under hyperglycemia. (3) NLRP3 inflammasome inhibitor MCC950, caspase-1 inhibitor VX-765 and IL-1β inhibitor diacerein attenuated brain edema, minimized hemorrhagic transformation and improved neurological outcome, demonstrating the roles of NLRP3 inflammasome in the hyperglycemia-mediated HT and poor outcome in the ischemic stroke rats with acute hyperglycemia. In conclusion, peroxynitrite could mediate activations of MMPs and NLRP3 inflammasome, aggravate the BBB damage and HT, and induce poor outcome in ischemic stroke with hyperglycemia. Therefore, targeting peroxynitrite-mediated NLRP3 inflammasome could be a promising strategy for ischemic stroke with hyperglycemia.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Binghe Guan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Dan Yang
- Department of Chemistry, Morningside Laboratory for Chemical Biology, The University of Hong Kong, Hong Kong, SAR, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China.
| |
Collapse
|
38
|
Ying L, Benjanuwattra J, Chattipakorn SC, Chattipakorn N. The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury. Acta Physiol (Oxf) 2021; 231:e13541. [PMID: 32687661 DOI: 10.1111/apha.13541] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Despite advancements in management of acute myocardial infarction, this disease remains one of the leading causes of death. Timely reestablishment of epicardial coronary blood flow is the cornerstone of therapy; however, substantial amount of damage can occur as a consequence of cardiac ischaemia/reperfusion (I/R) injury. It has been previously proposed that the pathway leading to major cell death, apoptosis, is responsible for cardiac I/R injury. Nevertheless, there is compelling evidence to suggest that necroptosis, a programmed necrosis, contributes remarkably to both myocardial injury and microcirculatory dysfunction following cardiac I/R injury. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like pseudokinase (MLKL) are shown as the major mediators of necroptosis. In addition to the traditional perception that RIPK1/RIPK3/MLKL-dependent plasma membrane rupture is fundamental to this process, several RIPK3-related pathways such as endoplasmic reticulum stress and mitochondrial fragmentation have also been implicated in cardiac I/R injury. In this review, reports from both in vitro and in vivo studies regarding the roles of necroptosis and RIPK3-regulated necrosis in cardiac I/R injury have been collectively summarized and discussed. Furthermore, reports on potential interventions targeting these processes to attenuate cardiac I/R insults to the heart have been presented in this review. Future investigations adding to the knowledge obtained from these previous studies are needed in the pursuit of discovering the most effective pharmacological agent to improve cardiac I/R outcomes.
Collapse
Affiliation(s)
- Luo Ying
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Juthipong Benjanuwattra
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
39
|
Ibrahim MA, Abdelzaher WY, Ibrahim YF, Ahmed AF, Welson NN, Al-Rashed S, Batiha GES, Abdel-Aziz AM. Diacerein protects rats with liver ischemia/reperfusion damage: Down-regulation of TLR4/ NFκ-B signaling pathway. Biomed Pharmacother 2020; 134:111063. [PMID: 33348310 DOI: 10.1016/j.biopha.2020.111063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Liver ischemia-reperfusion (I/R) injury is an inescapable problem. Diacerein, a chondro-protective drug, has antioxidant and anti-inflammatory effects. Its effect on liver I/R injury has not yet been fully clarified. Therefore, the current study aimed to detect its hepatic protective effect with the explanation of possible underlying mechanisms. METHODS Adult male albino rats were assigned to 4 groups: sham group, diacerein pretreated sham group, I/R non-treated group, and I/R diacerein pretreated group. Serum liver enzymes, hepatic tissue oxidative stress parameters, inflammatory biomarkers mainly Toll-like receptors-4 (TLR4), and liver fatty acid binding protein (L-FABP) levels were determined. Histopathological examination of liver tissues and immunohistochemical studies of heat shock protein 70, nuclear factor-kappa B, and Cluster of Differentiation 68 were also done. RESULTS Diacerein pretreatment has the ability to restore the hepatic I/R damaging effect, proved by the reduction of serum liver enzymes, the decrease of the oxidative stress and hepatic inflammation via down-regulation of TLR4/ NFκ-B signaling pathway together with the restoration of L-FABP level and improvement of the histopathological and immunohistochemical study findings in the hepatic tissue. CONCLUSION These results suggested the hepatoprotective effect of diacerein relies on its antioxidant and anti-inflammatory effects reducing TLR4/ NFκ-B signaling pathway.
Collapse
Affiliation(s)
| | | | - Yasmine F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Amira F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt; Department of Histology and Cell Biology, Misr University for Science and Technology, Egypt.
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt.
| | | |
Collapse
|
40
|
Almezgagi M, Zhang Y, Hezam K, Shamsan E, Gamah M, Al-Shaebi F, Abbas AB, Shoaib M, Saif B, Han Y, Jia R, Zhang W. Diacerein: Recent insight into pharmacological activities and molecular pathways. Biomed Pharmacother 2020; 131:110594. [PMID: 32858499 DOI: 10.1016/j.biopha.2020.110594] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/11/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Diacerein is a symptomatic slow-acting drug in osteoarthritis (SYSADOA) and the active metabolite is rhein. It is a non-steroidal anti-inflammatory drug with unique pharmacological properties as anti-oxidant and anti-apoptosis. Diacerein has recently shown to have a potential role by mediating anti-inflammatory as well as anti-oxidant and anti-apoptosis in kidney injury, diabetes mullites, and a beneficial effect on pain relief. It may have a therapeutic role in cancer, ulcerative colitis, testicular injury and cervical hyperkeratosis. Furthermore, diacerein has a valuable addition in combination therapy as a synergetic agent. This review, the first of its kind, highlights the proposed roles of diacerein in osteoarthritis and discusses recent results supporting its emerging roles with a particular focus on how these new insights may facilitate the rational development of diacerein for targeted therapies in the future.
Collapse
Affiliation(s)
- Maged Almezgagi
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai Xining 810001, China; Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China; Department of Medical Microbiology, Faculty of Sciences, Ibb University, Ibb City 70270, Yemen
| | - Yu Zhang
- Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China
| | - Kamal Hezam
- Nankai University School of Medicine, Tianjin 300071, China
| | - Emad Shamsan
- Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China
| | - Mohammed Gamah
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai Xining 810001, China; Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China
| | - Fadhl Al-Shaebi
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Abdul Baset Abbas
- Department of Medical Microbiology, Faculty of Sciences, Ibb University, Ibb City 70270, Yemen
| | - Muhammad Shoaib
- Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China
| | - Bassam Saif
- Department of Medical Microbiology, Faculty of Sciences, Ibb University, Ibb City 70270, Yemen
| | - Ying Han
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai Xining 810001, China
| | - Ruhan Jia
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai Xining 810001, China
| | - Wei Zhang
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai Xining 810001, China; Department of Immunology, Medical College of Qinghai University, Qinghai Xining 810001, China.
| |
Collapse
|
41
|
Fouad AA, Abdel-Aziz AM, Hamouda AAH. Diacerein Downregulates NLRP3/Caspase-1/IL-1β and IL-6/STAT3 Pathways of Inflammation and Apoptosis in a Rat Model of Cadmium Testicular Toxicity. Biol Trace Elem Res 2020; 195:499-505. [PMID: 31401744 DOI: 10.1007/s12011-019-01865-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
Abstract
The potential gonadal protective effect of diacerein (DCN) and its underlying mechanisms were studied in a rat model of cadmium-induced testicular toxicity. The rats received DCN (50 mg/kg/day, p.o.) for 10 days and one injection of CdCl2 (2 mg/kg, i.p.) on day 9. Cadmium significantly declined serum testosterone and significantly raised interleukin-1β, interleukin-6, interleukin-18, tumor necrosis factor-α, caspase-1, phosphorylated signal transducer and activator of transcription-3 (pSTAT3), nuclear factor-κB p65, Bax, and caspase-3 in rat testes. DCN significantly ameliorated the changes in the biochemical measurements observed with CdCl2 insult. Additionally, DCN preserved the normal testicular architecture, maintained spermatogenesis, and lowered the expression of NOD-like receptor family protein 3 (NLRP3) inflammasome in testes of rats that received CdCl2. It was concluded that DCN significantly protected the gonads of male rats exposed to cadmium toxicity through modulation of NLRP3/caspase-1/IL-1β and IL-6/STAT3 pathways of inflammation and apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61519, Egypt.
| | - Asmaa M Abdel-Aziz
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61519, Egypt
| | - Azza A H Hamouda
- Department of Histology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
42
|
Kim DJ, Moon JY, Kim SM, Seo JW, Lee YH, Jung SW, Kim K, Kim YG, Lim SJ, Lee S, Son Y, Lee SH. Substance P Improves Renal Ischemia Reperfusion Injury Through Modulating Immune Response. Front Immunol 2020; 11:600. [PMID: 32391002 PMCID: PMC7190869 DOI: 10.3389/fimmu.2020.00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Substance P (SP), an injury-inducible messenger that mobilizes bone marrow stem cells and modulates the immune response, has been suggested as a novel target for therapeutic agents. We evaluated the role of SP as an immune cell modulator during the progression of renal ischemic/reperfusion injury (IRI). Unilateral IRI induced the transient expression of endogenous SP and the infiltration of CCR7+ M1 macrophages in injured kidneys. However, SP altered the intrarenal macrophage polarization from CCR7+ M1 macrophages to CD206+ M2 macrophages in injured kidneys. SP also modulated bone marrow-derived neutrophils and mesenchymal stromal cells after IRI. SP treatment for 4 weeks starting one week after unilateral IRI significantly preserved kidney size and length and normal tubular structures and alleviated necrotic tubules, inflammation, apoptosis, and tubulointerstitial fibrosis. The beneficial effects of SP were accompanied by attenuation of intrarenal recruitment of CD4, CD8, and CD20 cells and abnormal angiogenesis. The immunomodulatory effect of SP suggested that SP could be a promising therapeutic target for preventing the progression of acute kidney injury to chronic kidney disease.
Collapse
Affiliation(s)
- Dong-Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea.,Laboratory of Tissue Engineering, Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University Global Campus, Yongin, South Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Su-Mi Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Jung-Woo Seo
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Kipyo Kim
- Division of Nephrology and Hypertension, Department of Internal Medicine, College of Medicine, Inha University, Incheon, South Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Sung-Jig Lim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | | | - Youngsook Son
- Laboratory of Tissue Engineering, Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University Global Campus, Yongin, South Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
43
|
Molnár T, Mázló A, Tslaf V, Szöllősi AG, Emri G, Koncz G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis 2019; 10:860. [PMID: 31719524 PMCID: PMC6851151 DOI: 10.1038/s41419-019-2094-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Vera Tslaf
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
44
|
Lin Z, Jin J, Shan X. Fish oils protects against cecal ligation and puncture‑induced septic acute kidney injury via the regulation of inflammation, oxidative stress and apoptosis. Int J Mol Med 2019; 44:1771-1780. [PMID: 31545434 PMCID: PMC6777667 DOI: 10.3892/ijmm.2019.4337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
Septic acute kidney injury (AKI) is usually caused by sepsis. ω3 fatty acid has been reported to suppress sepsis-induced organ dysfunction to a certain degree. The present study aimed to investigate the effects of ω3 fatty acid in septic renal injury. Sprague Dawley rats were used to establish a cecal ligation and puncture (CLP) model in order to mimic the development of septic injury. The rats were treated with dexamethasone and fish oils (FOs) for 4 days prior to CLP. Alterations in the morphology of the tissues, the renal function and the induction of inflammation, oxidative stress and apoptosis were evaluated. The effects of FOs on nuclear factor-κB (NF-κB), JAK2/STAT3 and p38-MAPK were determined. The rats of the CLP model group exhibited low survival rates and increased expression of serum creatine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin, kidney injury molecule-1 and of proinflammatory cytokines. In addition, the levels of the markers of oxidative injury and apoptosis were increased. The induction of renal injury was notably reversed by administration of dexamethasone and FOs. The expression levels of the protein markers involved in inflammation and apoptosis were measured and the results indicated that FOs inhibited JAK/STAT3 and p-38MAPK signaling, while they concomitantly increased the expression of NF-κB. The present study highlighted that FOs improve CLP-induced mortality and renal injury by inhibiting inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Intensive Care Unit, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Jinghong, Yunnan 666100, P.R. China
| | - Jing Jin
- Intensive Care Unit, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Jinghong, Yunnan 666100, P.R. China
| | - Xiyun Shan
- Intensive Care Unit, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Jinghong, Yunnan 666100, P.R. China
| |
Collapse
|