1
|
Pinto TJDS, Martínez-Guitarte JL, Dias MA, Montagner CC, Espindola ELG, Muñiz-González AB. New insights about the toxicity of 2,4-D: Gene expression analysis reveals modulation on several subcellular responses in Chironomus riparius. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106088. [PMID: 39277401 DOI: 10.1016/j.pestbp.2024.106088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Herbicides are the main class of pesticides applied in crops and are capable of polluting the surrounding freshwater system; thus, understanding their impact on non-target species, whose mechanism of action is not described, helps to elucidate the real risks of these pollutants to the environment. 2,4-dichlorophenoxyacetic acid (2,4-D) is frequently detected in water and, due to its persistence, poses a risk to wildlife. In this way, the present work aimed to describe the implication of exposure to concentrations of 2,4-D already reported in aquatic environments in several physiological mechanisms of C. riparius at molecular and biochemical levels. To achieve this, bioassays were conducted with fourth instar larvae exposed to three concentrations of 2,4-D (0.1, 1.0, and 7.5 μg L-1). Larvae were collected after 24 and 96 h of exposure, and the expression of 42 genes, related to six subcellular mechanisms, was assessed by Real-Time PCR (RT-PCR). Besides, the activity of the enzymes catalase (CAT), glutathione S-transferase (GST), and acetylcholinesterase (AChE) was determined. The main metabolic route altered after exposure to 2,4-D was the endocrine system (mainly related to 20-hydroxyecdysone and juvenile hormone), confirming its endocrine disruptor potential. Four of the eleven stress response genes studied were down-regulated, and later exposure modulated DNA-repair genes suggesting genotoxic capacity. Moreover, only one gene from each detoxification phase was modulated at short exposure to 1.0 μg L-1. The molecular responses were not dose-dependent, and some early responses were not preserved after 96 h, indicating a transient response to the herbicide. Exposure to 2,4-D did not alter the activity of CAT, GST, and AChE enzymes. The responses described in this study reveal new mechanistic pathways of toxicity for 2,4-D in non-target organisms and highlight potential ecological consequences for chironomids in aquatic systems at the edges of agricultural fields.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Brazil; University of Campinas (UNICAMP), Institute of Chemistry, Campinas, São Paulo, Brazil.
| | - José-Luis Martínez-Guitarte
- Department of Physics, Mathematics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | - Mariana Amaral Dias
- University of Campinas (UNICAMP), Institute of Chemistry, Campinas, São Paulo, Brazil
| | | | | | - Ana-Belén Muñiz-González
- Department of Physics, Mathematics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| |
Collapse
|
2
|
Gasque-Belz L, Raes K, Park B, Colville C, Siciliano S, Hogan N, Weber L, Campbell P, Peters R, Hanson M, Hecker M. Hazard assessment of complex legacy-contaminated groundwater mixtures using a novel approach method in adult fathead minnows. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133299. [PMID: 38141307 DOI: 10.1016/j.jhazmat.2023.133299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Traditional risk assessment methods face challenges in the determination of drivers of toxicity for complex mixtures such as those present at legacy-contaminated sites. Bioassay-driven analysis across several levels of biological organization represents an approach to address these obstacles. This study aimed to apply a novel transcriptomics tool, the EcoToxChip, to characterize the effects of complex mixtures of contaminants in adult fathead minnows (FHMs) and to compare molecular response patterns to higher-level biological responses. Adult FHMs were exposed for 4 and 21 days to groundwater mixtures collected from a legacy-contaminated site. Adult FHM showed significant induction of micronuclei in erythrocytes, decrease in reproductive capacities, and some abnormal appearance of liver histology. Parallel EcoToxChip analyses showed a high proportion of upregulated genes and a few downregulated genes characteristic of compensatory responses. The three most enriched pathways included thyroid endocrine processes, transcription and translation cellular processes, and xenobiotics and reactive oxygen species metabolism. Several of the most differentially regulated genes involved in these biological pathways could be linked to the apical outcomes observed in FHMs. We concluded that molecular responses as determined by EcoToxChip analysis show promise for informing of apical outcomes and could support risk assessments of complex contaminated sites.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Katherine Raes
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bradley Park
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
3
|
Pinto TJDS, Moreira RA, Freitas JSS, da Silva LCM, Yoshii MPC, de Palma Lopes LF, Ogura AP, de Mello Gabriel GV, Rosa LMT, Schiesari L, do Carmo JB, Montagner CC, Daam MA, Espindola ELG. Responses of Chironomus sancticaroli to the simulation of environmental contamination by sugarcane management practices: Water and sediment toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159643. [PMID: 36306835 DOI: 10.1016/j.scitotenv.2022.159643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane management practices include the application of pesticides, including the herbicide 2,4-D and the insecticide fipronil. In addition, a by-product from the ethanol industry, called vinasse, is commonly applied to fertilize sugarcane areas. The potential risks of these practices to the edge-of-field aquatic ecosystems were assessed in the present study. This was done by contaminating mesocosms with (single and mixtures of) both pesticides and vinasse and evaluating the effects on the midge Chironomus sancticaroli through in-situ and laboratory bioassays. To this end, outdoor mesocosms were treated with fipronil (F), 2,4-D (D), and vinasse (V) alone and with the mixture of fipronil and 2,4-D (M), as well as with both pesticides and vinasse (MV). C. sancticaroli was deployed in mesocosms before contamination in cages, which were taken out 4- and 8-days-post-contamination. Water and sediment samples were also taken for laboratory bioassays on the first day of contamination, as well as 7-, 14-, 21-, 30-, 45-, and 75-days post-contamination. The responses assessed in subchronic assays (8-day) were survival, growth, head capsule width, development, and mentum deformities. Low survival occurred in the in-situ experiments of all treatments due to the low oxygen levels. In the laboratory tests, effects on survival occurred for F, V, and M over time after exposure to both water and sediment. All organisms died post-exposure to water samples from the MV treatment, even 75-days-post-contamination. Impairments in body length and head capsule width occurred for F, V, and M for water and F, V, M, and MV for sediment samples over time. All treatments increased mentum deformities in exposed larvae for any of the sampling periods. The negative effects observed were more significant in the mixture mesocosms (M and MV), thus indicating increased risks from management practices applying these compounds together or with a short time interval in crops.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Juliane Silber Schmidt Freitas
- Department of Biological Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, s/n - Universitário, 38302-192 Ituiutaba, MG, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Gabriele Verônica de Mello Gabriel
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Luana Maria Tavares Rosa
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Luis Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP 03828-000, Brazil
| | - Janaina Braga do Carmo
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| |
Collapse
|
4
|
Da Silva AP, Morais ER, Oliveira EC, Ghisi NDC. Does exposure to environmental 2,4-dichlorophenoxyacetic acid concentrations increase mortality rate in animals? A meta-analytic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119179. [PMID: 35314208 DOI: 10.1016/j.envpol.2022.119179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The 2,4-dichlorophenoxyacetic acid (2,4-D) is an auxinic herbicide widely used in agriculture that is effective in controlling weeds. It is directly applied to the soil, to ponds or sprayed onto crops; thus, it can progressively accumulate in environmental compartments and affect non-target organisms. The aim of the present meta-analytic review is to investigate the toxic effects of 2,4-D, based on a compilation of results from different studies, which were synthesized to form a statistically reliable conclusion about the lethal effect of potentially ecological concentrations of 2,4-D in several animal species. The search was carried out in the Web of Science and Scopus databases. After the selection process was over, 87 datasets were generated and analyzed. The overall effect has indicated significant increase in the mortality rate recorded for animals exposed to environmental concentrations of 2,4-D compared to the control in the experiment (unexposed animals). The segregation of animals into taxonomic categories has shown that fish and birds presented higher mortality rates after exposure to the investigated substance. The present meta-analysis indicated larval and adult animals were susceptible among the ontogenetic development stages. Juvenile individuals exposed to different 2,4-D concentrations did not show significant difference in comparison to the control. Organisms exposed to 2,4-D immersion were the most impacted compared to those exposed by oral, spray and contact. Animals subjected to commercial formulation presented higher mortality rate than the analytical standard. Thus, 2,4-D can, in fact, increase mortality rate in animals, but it depends on species sensitivity, life stage and exposure route. This is the first meta-analytical study evaluating the mortality rate after 2,4-D exposure in several animal species.
Collapse
Affiliation(s)
- Ana Paula Da Silva
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| | - Elizete Rodrigues Morais
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| | - Elton Celton Oliveira
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| | - Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| |
Collapse
|
5
|
Ahmad A, Priyadarshani M, Das S, Ghangrekar MM. Role of bioelectrochemical systems for the remediation of emerging contaminants from wastewater: A review. J Basic Microbiol 2022; 62:201-222. [PMID: 34532865 DOI: 10.1002/jobm.202100368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 02/05/2023]
Abstract
Bioelectrochemical systems (BESs) are a unique group of wastewater remediating technology that possesses the added advantage of valuable recovery with concomitant wastewater treatment. Moreover, due to the application of robust microbial biocatalysts in BESs, effective removal of emerging contaminants (ECs) can be accomplished in these BESs. Thus, this review emphasizes the recent demonstrations pertaining to the removal of complex organic pollutants of emerging concern present in wastewater through BES. Owing to the recalcitrant nature of these pollutants, they are not effectively removed through conventional wastewater treatment systems and thereby are discharged into the environment without proper treatment. Application of BES in terms of ECs removal and degradation mechanism along with valuables that can be recovered are discussed. Moreover, the factors affecting the performance of BES, like biocatalyst, substrate, salinity, and applied potential are also summarized. In addition, the present review also elucidates the occurrence and toxic nature of ECs as well as future recommendations pertaining to the commercialization of this BES technology for the removal of ECs from wastewater. Therefore, the present review intends to aid the researchers in developing more efficient BESs for the removal of ECs from wastewater.
Collapse
Affiliation(s)
- Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Monali Priyadarshani
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Makarand Madhao Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
6
|
Freitas IBF, Ogura AP, Cunha DGF, Cossolin AS, Ferreira MDS, Goulart BV, Montagner CC, Espíndola ELG. The Longitudinal Profile of a Stream Contaminated With 2,4-D and its Effects on Non-Target Species. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:131-141. [PMID: 34797381 DOI: 10.1007/s00244-021-00903-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Pesticides can cause harmful effects to aquatic communities, even at concentrations below the threshold limit established as guidelines for the water bodies by environmental agencies. In this research, an input of the herbicide 2,4-dichlorophenoxyacetic acid (i.e., 2,4-D) was simulated under controlled conditions in a 500-m-long reach of a first-order tropical stream in Southeastern Brazil. Two water samplings at eight stations investigated the stream longitudinal contamination profile. The ecotoxicological effects were analyzed using Eruca sativa L. seed germination assays and the acute and chronic toxicity tests with the neotropical cladoceran Ceriodaphnia silvestrii. Physicochemical parameters of water quality were evaluated to characterize the study area and quantify 2,4-D concentrations along the stream to assess pesticide retention. The 2,4-D concentration was reduced by approximately 50% downstream in the samplings, indicating that the herbicide was retained along the stream. Moreover, C. silvestrii reproduction in long-term assays decreased approximately 50% in the stations with higher concentrations of 2,4-D than the laboratory control. After contamination, E. sativa L. showed a lower average root growth (1.0 cm), statistically different from the control (2.2 cm). On the other hand, similar growth values were obtained among the background and the most downstream stations. Our study highlighted the relevance of reviewing and updating herbicide guidelines and criteria to prevent possible ecological risks.
Collapse
Affiliation(s)
- Isabele Baima Ferreira Freitas
- Nucleus of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil.
| | - Allan Pretti Ogura
- Nucleus of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Davi Gasparini Fernandes Cunha
- Department of Hydraulic and Sanitation, BIOTACE/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Aline Silva Cossolin
- Department of Hydraulic and Sanitation, BIOTACE/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Murilo de Souza Ferreira
- Department of Hydraulic and Sanitation, BIOTACE/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, LQA, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, LQA, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- Nucleus of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| |
Collapse
|
7
|
Varg JE, Kunce W, Outomuro D, Svanbäck R, Johansson F. Single and combined effects of microplastics, pyrethroid and food resources on the life-history traits and microbiome of Chironomus riparius. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117848. [PMID: 34332169 DOI: 10.1016/j.envpol.2021.117848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/17/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
There is growing evidence of widespread contamination of freshwater ecosystems with microplastics. However, the effects of chronic microplastic ingestion and its interaction with other pollutants and stress factors on the life-history traits and the host-microbiome of aquatic invertebrates are not well understood. This study investigates the effects of exposure to sediment spiked with 1 μm polystyrene-based latex microplastic spheres, an environmentally realistic concentration of a pyrethroid pesticide (esfenvalerate), and a combination of both treatments on the life-history traits of the benthic-dwelling invertebrate, Chironomus riparius and its microbial community. The chironomid larvae were also exposed to two food conditions: abundant or limited food in the sediment, monitored for 28 and 34 days respectively. The microplastics and esfenvalerate had negative effects on adult emergence and survival, and these effects differed between the food level treatments. The microbiome diversity was negatively affected by the exposure to microplastics, while the relative abundances of the four top phyla were significantly affected only in the high food level treatment. Although the combined exposure to microplastics and esfenvalerate showed some negative effects on survival and emergence, there was little evidence for synergistic effects when compared to the single exposure. The food level affected all life-history traits and the microbiota, and lower food levels intensified the negative effects of the exposure to microplastics, esfenvalerate and their combination. We argue that these pollutants can affect crucial life-history traits such as successful metamorphosis and the host-microbiome. Therefore, it should be taken into consideration for toxicological assessment of pollutant acceptability. Our study highlights the importance of investigating possible additive and synergic activities between stressors to understand the effects of pollutants in the life story traits and host-microbiome.
Collapse
Affiliation(s)
- Javier Edo Varg
- Department of Ecology and Genetics, Section of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| | - Warren Kunce
- Department of Ecology and Genetics, Section of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - David Outomuro
- Department of Ecology and Genetics, Section of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden; Department of Biological Sciences, Rieveschl Hall, University of Cincinnati, Cincinnati, OH, USA
| | - Richard Svanbäck
- Department of Ecology and Genetics, Section of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Frank Johansson
- Department of Ecology and Genetics, Section of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
8
|
Pinto TJDS, Rocha GS, Moreira RA, Silva LCMD, Yoshii MPC, Goulart BV, Montagner CC, Daam MA, Espindola ELG. Multi-generational exposure to fipronil, 2,4-D, and their mixtures in Chironomus sancticaroli: Biochemical, individual, and population endpoints. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117384. [PMID: 34030066 DOI: 10.1016/j.envpol.2021.117384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Conventional farming delivers a range of pesticides to aquatic ecosystems leading to implications for the indigenous species. Due to the multiple applications and persistence of molecules, organisms may be exposed for a prolonged period over multiple generations. The present study outlines a full life-cycle design over three generations of Chironomus sancticaroli exposed to the insecticide fipronil, the herbicide 2,4-D, and their mixtures. The experiment started with newly hatched larvae from the parental generation and lasted with the emerged adults from the second generation. Five nominal concentrations of fipronil and 2,4-D were tested, as well as six combinations of both pesticides. As additional responses, the total carbohydrates and the lipid classes were evaluated in the parental generation. The first and second generations were more susceptible to the tested compounds compared with the parental ones. Survival of larvae and pupae was decreased by both pesticides and their mixtures along with the generations. Only fipronil impaired the survival of emerged adults. Both pesticides (isolated and in the mixture) altered the emergence and the fraction of males and females. Moreover, the number of eggs produced, and their hatchability decreased. Only one combination of the pesticides increased the content of carbohydrates. Fipronil, 2,4-D, and its mixture altered the profile of the lipid classes. All mixture treatments and the three highest concentrations of fipronil extinguished the population of C. sancticaroli at the end of the first generation. In the remaining treatments with the insecticide, the population did not survive the second generation. Only three concentrations of 2,4-D and the control persisted until the end of the experiment. The results indicate that a prolonged exposition to these pesticides may disrupt the natural populations of exposed organisms with consequences to ecosystems' functioning, considering the importance of chironomids to aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil.
| | - Giseli Swerts Rocha
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| |
Collapse
|
9
|
da Silva Pinto TJ, Moreira RA, da Silva LCM, Yoshii MPC, Goulart BV, Fraga PD, da Silva Rolim VL, Montagner CC, Daam MA, Espindola ELG. Toxicity of fipronil and 2,4-D formulations (alone and in a mixture) to the tropical amphipod Hyalella meinerti. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38308-38321. [PMID: 33733415 DOI: 10.1007/s11356-021-13296-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/01/2021] [Indexed: 05/22/2023]
Abstract
Conventional farming uses a large volume of pesticides that may reach aquatic ecosystems. This is also the case for the insecticide fipronil and the herbicide 2,4-D, which are widely used in many crops. This study aimed at evaluating the individual and mixture toxicity of these pesticides to the tropical amphipod Hyalella meinerti. To this end, acute toxicity tests (96 h) were conducted. Chronic bioassays (10 days) were also carried out, in which the body length and dry biomass were evaluated as endpoints. In addition, a complete factorial mixture chronic toxicity test was carried out. H. meinerti was sensitive to fipronil in the acute toxicity tests, with a LC50-96-h of 0.86 μg L-1 (95% CI 0.26-0.46), and no acute effects were observed after 2,4-D exposure even at the highest test concentration of 100 mg L-1. In the chronic toxicity tests, all tested concentrations of both pesticides decreased the growth of H. meinerti, in which losses on biomass reached 45% and 65% for 2,4-D and fipronil, respectively. The pesticide mixture indicated antagonism although it still significantly decreased the body growth. The results obtained indicate a high sensitivity of H. meinerti exposed to environmentally realistic concentrations, demonstrating that there are risks for the species in real field conditions.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Priscille Dreux Fraga
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Victor Luiz da Silva Rolim
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| |
Collapse
|
10
|
Pinto TJDS, Moreira RA, Silva LCMD, Yoshii MPC, Goulart BV, Fraga PD, Montagner CC, Daam MA, Espindola ELG. Impact of 2,4-D and fipronil on the tropical midge Chironomus sancticaroli (Diptera: Chironomidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111778. [PMID: 33338803 DOI: 10.1016/j.ecoenv.2020.111778] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Increased use of pesticides in conventional agriculture implies potential risks to the environment. In aquatic ecosystems, benthic organisms may be exposed to pesticides via contaminated water and sediment, leading to several potential cascading effects on the food web. The aim of this study was to assess the functional implications of environmental realistic concentrations of the herbicide 2,4-D and the insecticide fipronil (alone and in combination) to the native tropical chironomid Chironomus sancticaroli. These two pesticides are widely applied to different crops and have frequently been detected (together) in surface water bodies in Brazil and elsewhere. Commercial products containing fipronil (Regent® 800WG) and 2,4-D (DMA® 806BR) were evaluated in 8-day toxicity tests for their effects on larval survival, growth (body length and biomass), head capsule width, development, and mentum deformities. Fipronil decreased the larval survival at the highest test concentration and the effective concentrations (EC) after eight days of exposure were: EC10 = 0.48 µg L-1 (0.395-0.565), EC20 = 1.06 µg L-1 (0.607-1.513), and EC50 = 3.70 µg L-1 (1.664-5.736). All sublethal test concentrations of fipronil decreased the larval growth, causing reductions in biomass up to 72%. The two highest test concentrations of fipronil decreased the head capsule width and after exposure to 3.7 µg fipronil L-1, only half of the larvae reached the fourth instar. The incidence of deformities was increased by fipronil in a concentration dependent manner with an increase ranging from 23% to 75%. The highest test concentration of 2.4-D (426 µg L-1) decreased the head capsule width, but larval development was unaffected at all concentrations evaluated. In the mixture tests, antagonism was observed at lower fipronil concentrations and synergism at higher fipronil concentrations for growth. The incidence of deformities rose with increasing fipronil concentrations. The results showed that environmental realistic concentrations of fipronil may have serious ecological implications for C. sancticaroli populations and that a mixture with the herbicide 2,4-D can have synergistic effects, potentiating the risks to the aquatic ecosystem.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Priscille Dreux Fraga
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| |
Collapse
|
11
|
Pinto TJDS, Freitas JS, Moreira RA, Silva LCMD, Yoshii MPC, Lopes LFDP, Goulart BV, Vanderlei MR, Athayde DB, Fraga PD, Ogura AP, Schiesari L, Montagner CC, Daam MA, Espindola ELG. Functional responses of Hyalella meinerti after exposure to environmentally realistic concentrations of 2,4-D, fipronil, and vinasse (individually and in mixture). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105712. [PMID: 33340833 DOI: 10.1016/j.aquatox.2020.105712] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Sugarcane crops management in Brazil includes the use of pesticides, as well as alternative organic fertilizers such as vinasse obtained from waste of the ethanol industry. In order to assess the effects of the environmental contamination generated by such sugarcane practices, this study was aimed to investigate the effects of the pesticides 2,4-Dichlorophenoxyacetic acid (2,4-D) and fipronil, as well as vinasse, on the survival, behavior, and reproduction of the native epibenthic macroinvertebrate Hyalella meinerti through in situ and laboratory experiments. In situ assays were conducted in mesocosms with six treatments, i.e. untreated control, 2,4-D, fipronil, and vinasse, the mixture of the two pesticides, and both pesticides mixed with vinasse. Survival, swimming behavior, and reproduction were evaluated over time post contamination, from 0-96 h (T1) and 7-14 days (T2) through in situ experiments and 30-44 days (T3) and 75-89 days (T4) post contamination by laboratory bioassays with mesocosm water. In the T1 period, survival of H. meinerti was registered only in controls and mesocosms treated with 2,4-D. In the T2 period, treatments containing fipronil and vinasse (isolated or in both mixture treatments) still caused 100 % of mortality. Survival was recorded only in 2,4-D and control treatments, whereas reproduction only occurred in the control. In the T3 period, no survival occurred to fipronil and both mixture treatments. Vinasse and 2,4-D decreased total reproduction in comparison to control. In the T4 period, amphipods survival was detected when exposed to fipronil and its mixture with 2,4-D. However, these same treatments decreased the amplexus rates and total reproduction, with synergism denoted for the pesticide mixture. The swimming activity of males, females, and couples was decreased in surviving organisms exposed to 2,4-D, fipronil, vinasse, and the mixture of pesticides along all experimental periods. Our study showed that the application of fipronil, 2,4-D, and vinasse isolated or mixed at realistic concentrations of actual sugarcane management practices may negatively impact functional responses of indigenous amphipods in natural aquatic systems.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil.
| | - Juliane Silberschmidt Freitas
- Department of Biological Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, s/n - Universitário, 38302-192, Ituiutaba, MG, Brazil
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marina Reghini Vanderlei
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Danillo Badolato Athayde
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Priscille Dreux Fraga
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Luis Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP, 03828-000, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| |
Collapse
|
12
|
Park K, Kwak IS. Multi-Level Gene Expression in Response to Environmental Stress in Aquatic Invertebrate Chironomids: Potential Applications in Water Quality Monitoring. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:77-122. [PMID: 34661753 DOI: 10.1007/398_2021_79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In freshwater ecosystems, aquatic invertebrates are influenced continuously by both physical stress and xenobiotics. Chironomids (Diptera; Chironomidae), or non-biting midges, are the most diverse and abundant invertebrates in freshwater habitats. They are a fundamental link in food chains of aquatic ecosystems. Chironomid larvae tolerate stress factors in their environments via various physiological processes. At the molecular level, environmental pollutants induce multi-level gene responses in Chironomus that regulate cellular protection through the activation of defense processes. This paper reviews literature on the transcriptional responses of biomarker genes to environmental stress in chironomids at the molecular level, in studies conducted from 1991 to 2020 (120 selected literatures of 374 results with the keywords "Chironomus and gene expression" by PubMed search tool). According to these studies, transcriptional responses in chironomids vary depending on the type of stress factor and defensive responses associated with antioxidant activity, the endocrine system, detoxification, homeostasis and stress response, energy metabolism, ribosomal machinery, apoptosis, DNA repair, and epigenetics. These data could provide a comprehensive overview of how Chironomus species respond to pollutants in aquatic environments. Furthermore, the transcriptomic data could facilitate the development of genetic tools for water quality and environmental monitoring based on resident chironomid species.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science and Fisheries Science Institute, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
13
|
Park K, Kwak IS. Cadmium-induced developmental alteration and upregulation of serine-type endopeptidase transcripts in wild freshwater populations of Chironomus plumosus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110240. [PMID: 32014723 DOI: 10.1016/j.ecoenv.2020.110240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Cadmium, a toxic heavy metal, is a persistent environmental contaminant with irreversible toxicity to aquatic organisms. Chironomus plumosus, a natural species, is the largest sediment-burrowing aquatic midge in freshwater environments. In this study, we evaluated developmental defects in C. plumosus resulting from Cd exposure. In C. plumosus larvae, Cd exposure induced decreased survival and growth rates, reduction of emergence rate and sex ratio, and delayed emergence, as well as elevating the incidence of split tooth deformities. To identify potential biomarker genes to assess environmental pollutants such as Cd, we identified differentially expressed genes (DEGs) in C. plumosus exposed to various Cd concentrations. Among fourteen characterized DEGs, serine-type endopeptidase (SP) and heat shock protein 70 (HSP70) genes exhibited significant upregulation in C. plumosus larvae after Cd exposure. Therefore, we evaluated SP and HSP70 responses in natural C. plumosus populations collected from three sites of a Korean river and analyzed their correlations with eighteen environmental quality characteristics using principal component analysis. The highest expression of SP and HSP70 transcripts was observed in C. plumosus populations from Yeosu in Korea, which has high concentrations of polluting heavy metals. SP transcript expression was positively correlated with concentrations of Cd, Pb, Al, Fe, NO2, and NO3. These results suggested that environmental pollutants such as Cd can impair proteolytic activity in the digestive system of C. plumosus and may ultimately induce developmental alterations. We therefore suggest SP as a potential biomarker to assess the effects of environmental pollutants in aquatic ecosystems.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Faculty of Marine Technology, Chonnam National University, Yeosu, 550-749, South Korea.
| |
Collapse
|
14
|
Ejomah AJ, Uyi OO, Ekaye SO. Exposure of the African mound building termite, Macrotermes bellicosus workers to commercially formulated 2,4-D and atrazine caused high mortality and impaired locomotor response. PLoS One 2020; 15:e0230664. [PMID: 32208460 PMCID: PMC7093002 DOI: 10.1371/journal.pone.0230664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/05/2020] [Indexed: 11/19/2022] Open
Abstract
Recent empirical evidence suggests that herbicides have damaging effects on non-target organisms in both natural and semi-natural ecosystems. The African mound building termite, Macrotermes bellicosus, is an important beneficial insect that functions as an ecosystem engineer due to its role in the breakdown of dead and decaying materials. Here, we examined the effects of 2,4-D amine salt (2,4-D) and atrazine based herbicides viz. Vestamine® and Ultrazine® on the survival and locomotion response of M. bellicosus. Worker termites were treated with a range of concentrations of Vestamine® (the recommended concentration: 6.25 ml per 500 ml of water, 0.25- and 0.5-fold below the recommended concentration and distilled water as control) and Ultrazine® (the recommended concentration: 3.75 ml per 500 ml of water, 0.25-, 0.5-, 2.0- and 4-fold of the recommended concentration and distilled water as control) for 24 hours for the mortality test, and allowed to run for 15 seconds for the locomotion trial. All concentrations of both Vestamine® and Ultrazine® were highly toxic to worker termites and mortality increased as the concentration and time after treatment increased. For both herbicides, concentrations far less than the recommended rates caused 100% mortality. The speed of termites was significantly influenced by both Vestamine® and Ultrazine® as termites exposed to all tested concentrations of the herbicides exhibited reduced running speed than the control. These findings suggest that beneficial insects, especially M. bellicosus may experience high mortality (up to 100%) and reduced mobility if they are sprayed upon or come in contact with plant materials that have been freshly sprayed with (less or more than) the recommended concentrations of Vestamine® and Ultrazine®. The findings of our study calls for the reassessment of the usage of 2,4-D and atrazine based herbicides in weed control in termite and other beneficial insect populated habitats.
Collapse
Affiliation(s)
- Afure J. Ejomah
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - Osariyekemwen O. Uyi
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
| | - Sese-Owei Ekaye
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| |
Collapse
|
15
|
Arambourou H, Llorente L, Moreno-Ocio I, Herrero Ó, Barata C, Fuertes I, Delorme N, Méndez-Fernández L, Planelló R. Exposure to heavy metal-contaminated sediments disrupts gene expression, lipid profile, and life history traits in the midge Chironomus riparius. WATER RESEARCH 2020; 168:115165. [PMID: 31614238 DOI: 10.1016/j.watres.2019.115165] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Despite the concern about anthropogenic heavy metal accumulation, there remain few multi-level ecotoxicological studies to evaluate their effects in fluvial ecosystems. The toxicity of field-collected sediments exhibiting a gradient of heavy metal contamination (Cd, Pb, and Zn) was assessed in Chironomus riparius. For this purpose, larvae were exposed throughout their entire life cycle to these sediments, and toxic effects were measured at different levels of biological organization, from the molecular (lipidomic analysis and transcriptional profile) to the whole organism response (respiration rate, shape markers, and emergence rate). Alterations in the activity of relevant genes, as well as an increase of storage lipids and decrease in membrane fluidity, were detected in larvae exposed to the most contaminated sediments. Moreover, reduced larval and adult mass, decrease of larval respiration rate, and delayed emergence were observed, along with increased mentum and mandible size in larvae and decreased wing loading in adults. This study points out the deleterious effects of heavy metal exposure at various levels of biological organization and provides some clues regarding the mode of toxic action. This integrative approach provides new insights into the multi-level effects on aquatic insects exposed to heavy metal mixtures in field sediments, providing useful tools for ecological risk assessment in freshwater ecosystems.
Collapse
Affiliation(s)
| | - Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Iñigo Moreno-Ocio
- Department of Zoology and Animal Cellular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | - Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | | | - Leire Méndez-Fernández
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| |
Collapse
|
16
|
Villada-Bedoya S, Córdoba-Aguilar A, Escobar F, Martínez-Morales I, González-Tokman D. Dung Beetle Body Condition: A Tool for Disturbance Evaluation in Contaminated Pastures. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2392-2404. [PMID: 31550063 DOI: 10.1002/etc.4548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The use of veterinary medical products and herbicides is a common practice in intensified livestock systems. These compounds affect nontarget organisms that perform important ecosystem functions, such as dung beetles. The assessment of body condition allows us to determine how individuals respond to changes in the environment. However, assessments of how contamination associated with cattle farming affects coprophagous insects such as dung beetles have not been conducted in natural systems. In the present study, we evaluated the effect of ivermectin (an antiparasitic drug) and herbicides on the body condition of 3 species of dung beetles collected in the field: Copris incertus, Euoniticellus intermedius, and Digitonthophagus gazella. We recorded 3 condition indicators (body size, lipid mass, and muscle mass) of beetles collected from 19 livestock ranches in northeastern Mexico. In general, the use of ivermectin had adverse effects on C. incertus and E. intermedius whereas the effects were positive for D. gazella. Conversely, the use of herbicides had adverse effects on D. gazella and positive effects on C. incertus. The different effects of ivermectin and herbicides found in males and females show that sex can be important in determining individual responses to environmental contamination. Importantly, we provide the first evidence under natural conditions that native and exotic species of dung beetles are highly sensitive to different types of livestock management, with veterinary medications and herbicides having the ability to alter body condition. Changes in dung beetle condition can reduce the ecosystem services that dung beetles provide in livestock systems. Environ Toxicol Chem 2019;38:2392-2404. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Federico Escobar
- Red de Ecoetología, Instituto de Ecología, El Haya, Xalapa, Veracruz, México
| | | | - Daniel González-Tokman
- Red de Ecoetología, Instituto de Ecología, El Haya, Xalapa, Veracruz, México
- Consejo Nacional de Ciencia y Tecnología, Ciudad de, México, México
| |
Collapse
|
17
|
Muñiz-González AB, Martínez-Guitarte JL. Effects of single exposure and binary mixtures of ultraviolet filters octocrylene and 2-ethylhexyl 4-(dimethylamino) benzoate on gene expression in the freshwater insect Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35501-35514. [PMID: 30350147 DOI: 10.1007/s11356-018-3516-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Ultraviolet filters are used extensively in the production of many personal care and industrial products. These products can inadvertently pollute the environment through recreational activities. They have been associated with endocrine disruption in vertebrates but their effects in invertebrates are poorly understood. Chironomus riparius is a species of the dipteran order, with aquatic larvae that are frequently used in toxicity tests. Previously, we showed that octocrylene (OC) and 2-ethylhexyl 4-(dimethylamino) benzoate (OD-PABA) differentially affected the mRNA levels of the ecdysone receptor and Hsp70 genes. For a better understanding of their mode of action, transcriptional activity by real-time PCR was analyzed in fourth instar larvae exposed to OC, OD-PABA, or a binary mixture of both. We studied 16 genes related to the endocrine system, stress, the immune system, and biotransformation mechanisms to elucidate the putative interactions between these compounds. No response was observed for the genes involved in biotransformation, suggesting that enzymes other than cytochromes P450 and glutathione-S-transferases (GSTs) could get involved in transformation of these compounds. Similarly, no response was observed for endocrine-related genes while the stress gene HYOU1 was inhibited by OD-PABA, suggesting an effect in response to hypoxia. In addition, no significant interactions were observed following exposure to a binary mixture of these compounds. Overall, the results suggest a weak, acute response in different metabolic pathways and a lack of interaction between the compounds. Finally, new genes are identified in this organism, opening the possibility to analyze new cellular pathways as targets of toxicants.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain.
- Facultad de Ciencias, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Mantilla JG, Gomes L, Cristancho MA. The differential expression of Chironomus spp genes as useful tools in the search for pollution biomarkers in freshwater ecosystems. Brief Funct Genomics 2018; 17:151-156. [PMID: 28968626 DOI: 10.1093/bfgp/elx021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Insects of the Chironomidae family are characterized by a wide ecological diversity in freshwater ecosystems. The larvae have the physiological potential to tolerate environmental stress even when there is a low concentration of oxygen, the presence of toxic substances or when there are changes in temperature and salinity. On the other hand, it is important to consider that at a cellular level, when individual insects are exposed to environmental changes, it induces responses of groups of genes that govern the molecular mechanisms related to such tolerance. In this review, using fourth instar larvae of Chironomus spp. in natural conditions and of Chironomus columbiensis under controlled conditions, we will discuss the genetic expression of a group of genes that respond to detoxification and also the biological functions involved and impacted on by mining stressors. The study of macroinvertebrate bioindicator species and their gene expression as a result of mining activity opens a window on the search for genetic biomarkers that could be used in environmental pollution assessments in freshwater ecosystems.
Collapse
|
19
|
Martínez-Guitarte JL. Transcriptional activity of detoxification genes is altered by ultraviolet filters in Chironomus riparius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:64-71. [PMID: 29154136 DOI: 10.1016/j.ecoenv.2017.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Ultraviolet (UV) filters are compounds used to prevent the damage produced by UV radiation in personal care products, plastics, etc. They have been associated with endocrine disruption, showing anti-estrogen activity in vertebrates and altering the ecdysone pathway in invertebrates. Although they have attracted the attention of multiple research teams there is a lack of data about how animals activate detoxification systems, especially in invertebrates. Here, analysis of the effects of two UV filters, benzophenone-3 (BP3) and 4-methylbenzylidene camphor (4MBC), on the transcriptional activity of nine genes covering the three steps of the detoxification process has been performed. Four cytochrome P450 genes belonging to different members of this family, five GST genes, and the multidrug resistance protein 1 (MRP1) gene were studied by RT-PCR to analyze their transcriptional activity in fourth instar larvae exposed to the UV filters for 8 and 24h. The obtained results show a differential response with downregulation of the different Cyp450s tested by 4MBC while BP3 seems not to modify their expression. On the other hand, some of the GST genes were affected by one or other of the filters, showing a less homogenous response. Finally, MRP1 was activated by both filters but at different times. These results demonstrate for first time that UV filters alter the expression of genes involved in the different steps of the detoxification process and that they can be processed by phase I enzymes other than Cyp450s. They also suggest that UV filters affect biotransformation processes, compromising the ability of the individual to respond to chemical stress, so further research is needed to know the extent of the damage that they can produce in the resistance of the cell to chemicals.
Collapse
Affiliation(s)
- José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
20
|
Islam F, Wang J, Farooq MA, Khan MSS, Xu L, Zhu J, Zhao M, Muños S, Li QX, Zhou W. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. ENVIRONMENT INTERNATIONAL 2018; 111:332-351. [PMID: 29203058 DOI: 10.1016/j.envint.2017.10.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 05/03/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is applied directly to aquatic and conventional farming systems to control weeds, and is among the most widely distributed pollutants in the environment. Non-target organisms are exposed to 2,4-D via several ways, which could produce toxic effects depending on the dose, frequency of exposure, and the host factors that influence susceptibility and sensitivity. An increasing number of experimental evidences have shown concerns about its presence/detection in the environment, because several investigations have pointed out its potential lethal effects on non-target organisms. In this review, we critically evaluated the environmental fate and behavior of 2,4-D along with its eco-toxicological effects on aquatic, plants and human life to provide concise assessment in the light of recently published reports. The findings demonstrate that 2,4-D is present in a low concentration in surface water of regions where its usage is high. The highest concentrations of 2,4-D were detected in soil, air and surface water surrounded by crop fields, which suggest that mitigation strategies must be implanted locally to prevent the entry of 2,4-D into the environment. A general public may have frequent exposure to 2,4-D due to its wide applications at home lawns and public parks, etc. Various in vivo and in vitro investigations suggest that several species (or their organs) at different trophic levels are extremely sensitive to the 2,4-D exposure, which may explain variation in outcomes of reported investigations. However, implications for the prenatal exposure to 2,4-D remain unknown because 2,4-D-induced toxicity thresholds in organism have only been derived from juveniles or adults. In near future, introduction of 2,4-D resistant crops will increase its use in agriculture, which may cause relatively high and potentially unsafe residue levels in the environment. The recent findings indicate the urgent need to further explore fate, accumulation and its continuous low level exposure impacts on the environment to generate reliable database which is key in drafting new regulation and policies to protect the population from further exposure.
Collapse
Affiliation(s)
- Faisal Islam
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Jian Wang
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Muhammad A Farooq
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad S S Khan
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Ling Xu
- Zhejiang Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinwen Zhu
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Min Zhao
- Zhejiang Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Micro-organismes, Université de Toulouse, CNRS-INRA, 441-2594, France
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu 96822, USA
| | - Weijun Zhou
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Martín-Folgar R, Aquilino M, Ozáez I, Martínez-Guitarte JL. Ultraviolet filters and heat shock proteins: effects in Chironomus riparius by benzophenone-3 and 4-methylbenzylidene camphor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:333-344. [PMID: 29034430 DOI: 10.1007/s11356-017-0416-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Benzophenone-3 (BP3) and 4-methylbenzylidene camphor (4MBC) are common ultraviolet filters (UV filters), compounds considered as emergent contaminants, used in different products like plastics and personal care products. The levels of these compounds are rising in the wild, but the effects they have on invertebrates are poorly understood. Chironomus riparius is a benthic insect widely used in toxicology, and several studies have been previously performed in our laboratory to determine the effects these compounds have on this organism at the molecular level. We have shown that UV filters can alter the mRNA levels of heat shock protein 70 (Hsp70), one of the most studied heat shock proteins. Although these proteins are crucial for the survival of organisms, little data is available on the effects these emergent contaminants have on them, especially in invertebrates. Here, we analyzed the transcriptional activity of 12 genes covering the different groups of heat shock protein [Hsp10, Hsp17, Hsp21, Hsp22, Hsp23, Hsp24, Hsp27, Hsp34, Hsp40, Hsp60, Hsc70 (3), and Hsc70 (4)] in response to 0.1 and 1 mg/L concentrations of BP3 and 4MBC at 8 and 24 h. The results showed that some small Hsp (sHsp) genes were altered by these compounds, while the genes of proteins present in mitochondria, Hsp10 and Hsp60, did not change. sHsps are also involved in developmental processes, so the observed variations could be due to the endocrine disruption activity described for these compounds rather than to a stress response.
Collapse
Affiliation(s)
- Raquel Martín-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain
| | - Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain
| | - Irene Ozáez
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Park K, Kwak IS. Disrupting effects of antibiotic sulfathiazole on developmental process during sensitive life-cycle stage of Chironomus riparius. CHEMOSPHERE 2018; 190:25-34. [PMID: 28972920 DOI: 10.1016/j.chemosphere.2017.09.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 05/26/2023]
Abstract
Antibiotics in the environment are a concern due to their potential to harm humans and interrupt ecosystems. Sulfathiazole (STZ), a sulfonamide antibiotic, is commonly used in aquaculture and is typically found in aquatic ecosystems. We evaluated the ecological risk of STZ by examining biological, molecular and biochemical response in Chironomus riparius. Samples were exposed to STZ for 12, 24 and 96 h, and effects of STZ were evaluated at the molecular level by analyzing changes in gene expression related to the endocrine system, cellular stress response and enzyme activity of genes on antioxidant and detoxification pathways. STZ exposure induced significant effects on survival, growth and sex ratio of emergent adults and mouthpart deformity in C. riparius. STZ caused concentration and time-dependent toxicity in most of the selected biomarkers. STZ exposure leads to significant heat-shock response of protein genes (HSP70, HSP40, HSP90 and HSP27) and to disruption by up-regulating selected genes, including the ecdysone receptor gene, estrogen-related receptors, ultraspiracle and E74 early ecdysone-responsive gene. Furthermore, STZ induced alteration of enzyme activities on antioxidant and detoxification responses (catalase, superoxide dismutase, glutathione peroxidase and peroxidase) in C. riparius. By inducing oxidative stress, antibiotic STZ disturbs the endocrine system and produces adverse effects in growth processes of invertebrates.
Collapse
Affiliation(s)
- Kiyun Park
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea
| | - Ihn-Sil Kwak
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea.
| |
Collapse
|
23
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
24
|
Lencioni V, Grazioli V, Rossaro B, Bernabò P. Transcriptional profiling induced by pesticides employed in organic agriculture in a wild population of Chironomus riparius under laboratory conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:183-191. [PMID: 26994805 DOI: 10.1016/j.scitotenv.2016.03.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Copper (Cu) and azadirachtin (AZA-A+B) are pesticides allowed in organic agriculture whose environmental risk and toxicity for aquatic wildlife is only partially known. Reverse Transcription Polymerase Chain Reaction was used to assess the molecular effect of acute and short-term exposure (3, 24h) of Cu (0.01, 0.05, 1, 10, 25mgl(-1)) and AZA-A+B (0.2, 0.3, 0.4, 0.5, 1mgl(-1)) on the expression of five candidate genes (hsp70, hsc70, hsp40, hsp10 and cyP450) in a non-target species, Chironomus riparius. Fourth-instar larvae were collected from a mountain stream polluted by agricultural land run-off. All genes were responsive to both pesticides but each gene had a specific response to the different experimental concentrations and exposure times. A few similarities in transcriptional profiling were observed, such as a linear concentration-dependent response of hsp70 after 24h of exposure (at ≥1mgl(-1) of Cu and ≥0.2mgl(-1) of AZA-A+B) and an up-regulation regardless of the concentration of hsc70 after 24h of exposure (at ≥0mgl(-1) of Cu and ≥0.2mgl(-1) of AZA-A+B and the up-regulation of hsp70 after 3h of exposure at ~LC50 (Cu-LC50=26.1±2.5mgl(-1), AZA-A+B-LC50=1.1±0.2mgl(-1)). According to the results, hsp40, hsp10 and cyP450 may be defined as pesticide-dependent (i.e., hsp40 and hsp10 seemed to responded mainly to AZA-A+B and cyP450 to Cu), while hsc70 as time-dependent regardless of the pesticide (i.e., hsc70 responded only after 24h of treatment with Cu and AZA-A+B). This study gives new insights on the potential role of the C. riparius's hsps and cyP450 genes as sensitive biomarkers for freshwater monitoring.
Collapse
Affiliation(s)
- Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38123 Trento, Italy.
| | - Valentina Grazioli
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38123 Trento, Italy; Department of Agrifood and Urban Systems Protection and Biodiversity Enhancement (DiPSA), University of Milan, Via Celoria 1, 20133 Milano, Italy
| | - Bruno Rossaro
- Department of Agrifood and Urban Systems Protection and Biodiversity Enhancement (DiPSA), University of Milan, Via Celoria 1, 20133 Milano, Italy
| | - Paola Bernabò
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38123 Trento, Italy; CNR-Institute of Biophysics, Via Sommarive 18, 38123 Povo (Trento), Italy.
| |
Collapse
|
25
|
Katagi T, Tanaka H. Metabolism, bioaccumulation, and toxicity of pesticides in aquatic insect larvae. JOURNAL OF PESTICIDE SCIENCE 2016; 41:25-37. [PMID: 30363088 PMCID: PMC6140630 DOI: 10.1584/jpestics.d15-064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/14/2016] [Indexed: 05/23/2023]
Abstract
Aquatic insects having a high diversity are good biotic indicators for freshwater quality. Their larvae living in freshwater are sensitive to pesticides, and its impacts has been examined not only through laboratory toxicity studies using water and sediment exposure but also through higher-tier micro-/mesocosm studies and field monitoring. Many sophisticated statistical methods have been applied to assess the impacts of pesticides at levels from species to community, but their body burden has been studied much less, especially in relation to toxicity. We review the uptake, metabolism with relevant detoxifying enzymes, and depuration of pesticides in aquatic insect larvae, which determine their body burden and help to understand the toxicity profiles specific to each chemical class. We also discuss experimental conditions, environmental factors, and species sensitivity in relation to the bioconcentration/-accumulation and toxicity of pesticides.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3–1–98 Kasugadenaka, Konohana-ku, Osaka 554–8558, Japan
| | - Hitoshi Tanaka
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4–2–1 Takatsukasa, Takarazuka, Hyogo 665–8555, Japan
| |
Collapse
|
26
|
Lachowiec J, Queitsch C, Kliebenstein DJ. Molecular mechanisms governing differential robustness of development and environmental responses in plants. ANNALS OF BOTANY 2016; 117:795-809. [PMID: 26473020 PMCID: PMC4845800 DOI: 10.1093/aob/mcv151] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/08/2015] [Accepted: 08/25/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Robustness to genetic and environmental perturbation is a salient feature of multicellular organisms. Loss of developmental robustness can lead to severe phenotypic defects and fitness loss. However, perfect robustness, i.e. no variation at all, is evolutionarily unfit as organisms must be able to change phenotype to properly respond to changing environments and biotic challenges. Plasticity is the ability to adjust phenotypes predictably in response to specific environmental stimuli, which can be considered a transient shift allowing an organism to move from one robust phenotypic state to another. Plants, as sessile organisms that undergo continuous development, are particularly dependent on an exquisite fine-tuning of the processes that balance robustness and plasticity to maximize fitness. SCOPE AND CONCLUSIONS This paper reviews recently identified mechanisms, both systems-level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible for the robustness of specific developmental states also has to be built such that it enables plastic yet robust shifts in response to environmental changes. In plants, the interactions and functions of signal transduction pathways activated by phytohormones and the tendency for plants to tolerate whole-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability in networks controlling different phenotypes are under-studied.
Collapse
Affiliation(s)
- Jennifer Lachowiec
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48197, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA 98155, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA and DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
27
|
Herrero Ó, Planelló R, Morcillo G. The ribosome biogenesis pathway as an early target of benzyl butyl phthalate (BBP) toxicity in Chironomus riparius larvae. CHEMOSPHERE 2016; 144:1874-1884. [PMID: 26539713 DOI: 10.1016/j.chemosphere.2015.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/14/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Butyl benzyl phthalate (BBP) is a ubiquitous contaminant whose presence in the environment is expected for decades, since it has been extensively used worldwide as a plasticizer in the polyvinyl chloride (PVC) industry and the manufacturing of many other products. In the present study, the interaction of BBP with the ribosome biogenesis pathway and the general transcriptional profile of Chironomus riparius aquatic larvae were investigated by means of changes in the rDNA activity (through the study of the internal transcribed spacer 2, ITS2) and variations in the expression profile of ribosomal protein genes (rpL4, rpL11, and rpL13) after acute 24-h and 48-h exposures to a wide range of BBP doses. Furthermore, cytogenetic assays were conducted to evaluate the transcriptional activity of polytene chromosomes from salivary gland cells, with special attention to the nucleolus and the Balbiani rings (BRs) of chromosome IV. BBP caused a dose and time-dependent toxicity in most of the selected biomarkers, with a general depletion in the gene expression levels and the activity of BR2 after 48-h treatments. At the same time, decondensation and activation of some centromeres took place, while the activity of nucleolus remained unaltered. Withdrawal of the xenobiotic allowed the larvae to reach control levels in the case of rpL4 and rpL13 genes, which were previously slightly downregulated in 24-h tests. These data provide the first evidence on the interaction of BBP with the ribosome synthesis pathways, which results in a significant impairment of the functional activity of ribosomal protein genes. Thus, the depletion of ribosomes would be a long-term effect of BBP-induced cellular damage. These findings may have important implications for understanding the adverse biological effects of BBP in C. riparius, since they provide new sensitive biomarkers of BBP exposure and highlight the suitability of this organism for ecotoxicological risk assessment, especially in aquatic ecosystems.
Collapse
Affiliation(s)
- Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
28
|
Planelló R, Herrero Ó, Gómez-Sande P, Ozáez I, Cobo F, Servia MJ. Ecdysone-Related Biomarkers of Toxicity in the Model Organism Chironomus riparius: Stage and Sex-Dependent Variations in Gene Expression Profiles. PLoS One 2015; 10:e0140239. [PMID: 26448051 PMCID: PMC4598127 DOI: 10.1371/journal.pone.0140239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
Despite being considered a model organism in toxicity studies, particularly in assessing the environmental impact of endocrine disrupting compounds (EDCs) and other chemicals, the molecular basis of development is largely unknown in Chironomus riparius. We have characterized the expression patterns of important genes involved in the ecdysone pathway from embryos to pupa, but specially during the different phases of C. riparius fourth larval instar, according to the development of genital and thoracic imaginal discs. Real-Time PCR was used to analyze: EcR and usp, two genes encoding the two dimerizing partners of the functional ecdysone receptor; E74, an early response gene induced by ecdysteroids; vg (vitellogenin), an effector gene; hsp70 and hsc70, two heat-shock genes involved in the correct folding of the ecdysone receptor; and rpL13, as a part of the ribosomal machinery. Our results show for the first time stage and sex-dependent variations in ecdysone-responsive genes, specially during the late larval stage of C. riparius. The induction in the expression of EcR and usp during the VII-VIII phase of the fourth instar is concomitant with a coordinated response in the activity of the other genes analyzed, suggesting the moment where larvae prepare for pupation. This work is particularly relevant given that most of the analyzed genes have been proposed previously in this species as sensitive biomarkers for the toxicological evaluation of aquatic ecosystems. Identifying the natural regulation of these molecular endpoints throughout the Chironomus development will contribute to a more in-depth and accurate evaluation of the disrupting effects of EDCs in ecotoxicological studies.
Collapse
Affiliation(s)
- Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
- * E-mail:
| | - Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Pablo Gómez-Sande
- Departamento de Zoología y Antropología Física, Universidad de Santiago de Compostela, USC, Campus Sur s/n, 15782 Santiago de Compostela, Spain
- Estación de Hidrobioloxía “Encoro do Con”, EHEC, Universidad de Santiago de Compostela, USC, Castroagudín s/n, 36617 Vilagarcía de Arousa, Pontevedra, Spain
| | - Irene Ozáez
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Fernando Cobo
- Departamento de Zoología y Antropología Física, Universidad de Santiago de Compostela, USC, Campus Sur s/n, 15782 Santiago de Compostela, Spain
- Estación de Hidrobioloxía “Encoro do Con”, EHEC, Universidad de Santiago de Compostela, USC, Castroagudín s/n, 36617 Vilagarcía de Arousa, Pontevedra, Spain
| | - María J. Servia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias, Universidade da Coruña, UDC, Campus da Zapateira s/n, 15008 A Coruña, Spain
| |
Collapse
|
29
|
Planelló R, Servia MJ, Gómez-Sande P, Herrero Ó, Cobo F, Morcillo G. Transcriptional responses, metabolic activity and mouthpart deformities in natural populations of Chironomus riparius larvae exposed to environmental pollutants. ENVIRONMENTAL TOXICOLOGY 2015; 30:383-395. [PMID: 23893657 DOI: 10.1002/tox.21893] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
Biomarkers are an important tool in laboratory assays that link exposure or effect of specific toxicants to key molecular and cellular events, but they have not been widely used in invertebrate populations exposed to complex mixtures of environmental contaminants in their natural habitats. The present study focused on a battery of biomarkers and their comparative analysis in natural populations of the benthic larvae of Chironomus riparius (Diptera), sampled in three differentially polluted rivers (the Con, Sar, and Louro in Galicia, Spain). In our study, some parameters were identified, such as hsp70 gene activity, GST enzymatic activity, total glycogen content and mouthpart deformities, which showed significant differences among populations from the three rivers that differed in the levels and types of sedimentary contaminants analyzed (metals, organic-chlorine pesticides, alkylphenols, pharmaceutical, and personal care products). In contrast to these sensitive biomarkers, other parameters showed no significant differences (hsc70 gene, EcR gene, P450 gene, RNA:DNA ratio, total protein content), and were stable even when comparing field and nonexposed laboratory populations. The hsp70 gene seems to be particularly sensitive to conditions of pollutant exposure, while its constitutive counterpart hsc70 showed invariable expression, suggesting that the hsc70/hsp70 ratio may be a potential indicator of polluted environments. Although further studies are required to understand the correlation between molecular responses and the ecological effects of pollutants on natural populations, the results provide new data about the biological responses to multiple-stressor environments. This field study adds new molecular endpoints, including gene expression, as suitable tools that, complementing other ecotoxicological parameters, may help to improve the methodologies of freshwater monitoring under the increasing burden of xenobiotics.
Collapse
Affiliation(s)
- Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Park K, Lee JS, Kang JC, Kim JW, Kwak IS. Cascading effects from survival to physiological activities, and gene expression of heat shock protein 90 on the abalone Haliotis discus hannai responding to continuous thermal stress. FISH & SHELLFISH IMMUNOLOGY 2015; 42:233-240. [PMID: 25449369 DOI: 10.1016/j.fsi.2014.10.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Increasing temperatures can be a significant stressor for aquatic organisms. Abalones, a type of large marine gastropods, are the most commercially important species in aquaculture for Asia. To evaluate the potential ecological risk posed by temperature stress, we measured biological responses such as survival rate, adhesion ability (falling rate), and foot abnormalities in the abalone Haliotis discus hannai. Additionally, biochemical and molecular responses were evaluated in H. discus hannai exposed to various temperature gradients. The survival rate was reduced in abalones exposed to relative high temperatures (more than 26 °C). Increased temperature stress induced a higher falling rate and abnormal foot structure. Furthermore, increased antioxidant enzyme activities were observed in abalones exposed to relative high temperatures (26 and 28 °C). The activities of superoxide dismutase were induced in a time-dependent manner after high temperature stress. Generally, heat shock protein 90 also increased significantly in H. discus hannai exposed to temperature gradients (more than 24 °C) for 12 h. These results provide valuable information regarding stress responses to increased temperatures, in H. discus hannai: adverse biological and molecular outcomes could be utilized as risk assessments and stress monitoring of marine ecosystems under increased water temperatures.
Collapse
Affiliation(s)
- Kiyun Park
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, Republic of Korea
| | - Jae Won Kim
- Department of Marine Life Science and Aquaculture, Gangwon Provincial College, Gangneung 210-804, Republic of Korea
| | - Ihn-Sil Kwak
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, Republic of Korea.
| |
Collapse
|
31
|
Park K, Kwak IS. The effect of temperature gradients on endocrine signaling and antioxidant gene expression during Chironomus riparius development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1003-1011. [PMID: 24239821 DOI: 10.1016/j.scitotenv.2013.10.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/12/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
Temperature is one of the most important environmental factors affecting the biological processes of aquatic species. To investigate the potential effects of temperature on the developmental processes of aquatic invertebrates, we analyzed biological and molecular transcriptional responses during Chironomus riparius development, including five stages spanning from embryo to adult stages. We assessed the temperature change-induced reduction of survival rate, changes in biological development including the male:female ratio in emerged adults, the success rates of pupation and emergence, and the developmental timing of pupation and emergence. The increased temperature induced expression of endocrine signaling genes, such as the ecdysone receptor, ultraspiracle (ortholog of the RXR), and the estrogen-related receptor in the fourth-instar larval and pupal stages of C. riparius development. Altered temperature also affected the activity of antioxidant genes, including catalase, peroxidase, glutathione peroxidase, and superoxide dismutase during the fourth-instar larval to adult stages of C. riparius development, as a result of altered development. Increased temperature during the fourth-instar larval stage increased oxidative stress in pupae and adults. Responses of antioxidant genes to increased temperature occurred in a developmental stage-dependent manner. However, reduced temperature did not induce the expression of antioxidant genes in a developmental stage-dependent manner, although it did induce oxidative stress during C. riparius development. Increased temperature also caused greater toxicity of di-ethylhexyl phthalate (DEHP) in fourth-instar larvae. Our findings suggest that altered temperatures may disturb the invertebrate hormone system and developmental processes by inducing oxidative stress in aquatic environments.
Collapse
Affiliation(s)
- Kiyun Park
- Department of Fisheries and Ocean Science, Chonnam National University, San 96-1, Dundeok-dong, Yeosu, Jeonnam 550-749, Republic of Korea
| | - Ihn-Sil Kwak
- Department of Fisheries and Ocean Science, Chonnam National University, San 96-1, Dundeok-dong, Yeosu, Jeonnam 550-749, Republic of Korea.
| |
Collapse
|
32
|
Bouétard A, Besnard AL, Vassaux D, Lagadic L, Coutellec MA. Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:256-265. [PMID: 23237706 DOI: 10.1016/j.aquatox.2012.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/06/2012] [Accepted: 11/17/2012] [Indexed: 06/01/2023]
Abstract
The presence of pesticides in the environment results in potential unwanted effects on non-target species. Freshwater organisms inhabiting water bodies adjacent to agricultural areas, such as ditches, ponds and marshes, are good models to test such effects as various pesticides may reach these habitats through several ways, including aerial drift, run-off, and drainage. Diquat is a non-selective herbicide used for crop protection or for weed control in such water bodies. In this study, we investigated the effects of diquat on a widely spread aquatic invertebrate, the holarctic freshwater snail Lymnaea stagnalis. Due to the known redox-cycling properties of diquat, we studied transcript expression and enzymatic activities relative to oxidative and general stress in the haemolymph and gonado-digestive complex (GDC). As diquat is not persistent, snails were exposed for short times (5, 24, and 48 h) to ecologically relevant concentrations (22.2, 44.4, and 222.2 μg l(-1)) of diquat dibromide. RT-qPCR was used to quantify the transcription of genes encoding catalase (cat), a cytosolic superoxide dismutase (Cu/Zn-sod), a selenium-dependent glutathione peroxidase (gpx), a glutathione reductase (gred), the retinoid X receptor (rxr), two heat shock proteins (hsp40 and hsp70), cortactin (cor) and the two ribosomal genes r18S and r28s. Enzymatic activities of SOD, Gpx, Gred and glutathione S-transferase (GST) were investigated in the GDC using spectrophoto/fluorometric methods. Opposite trends were obtained in the haemolymph depending on the herbicide concentration. At the lowest concentration, effects were mainly observed after 24 h of exposure, with over-transcription of cor, hsp40, rxr, and sod, whereas higher concentrations down-regulated the expression of most of the studied transcripts, especially after 48 h of exposure. In the GDC, earlier responses were observed and the fold-change magnitude was generally much higher: transcription of all target genes increased significantly (or non-significantly for cat) after 5 h of exposure, and went back to control levels afterwards, suggesting the onset of an early response to oxidative stress associated to the unbalance of reactive oxygen species (ROS) in hepatocytes. Although increases obtained for Gred and SOD activities were globally consistent with their respective transcript expressions, up-regulation of transcription was not always correlated with increase of enzymatic activity, indicating that diquat might affect steps downstream of transcription. However, constitutive levels of enzymatic activities were at least maintained. In conclusion, diquat was shown to affect expression of the whole set of studied transcripts, reflecting their suitability as markers of early response to oxidative stress in L. stagnalis.
Collapse
Affiliation(s)
- Anthony Bouétard
- INRA, UMR INRA-Agrocampus Ouest ESE, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, Rennes, France.
| | | | | | | | | |
Collapse
|
33
|
Park K, Kwak IS. Gene expression of ribosomal protein mRNA in Chironomus riparius: effects of endocrine disruptor chemicals and antibiotics. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:113-20. [PMID: 22609975 DOI: 10.1016/j.cbpc.2012.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 12/30/2022]
Abstract
Ribosomal protein genes are essential for cellular development. To examine the effects of ribosomal protein genes under various cellular stress conditions in chironomids, ribosomal protein S3 (RpS3) and S6 (RpS6) cDNA from Chironomus riparius were characterized and their expression was analyzed during development. A comparative and phylogenetic study among different orders of insects was carried out by analysis of sequence databases. C. riparius RpS3 was highly conserved at the protein level and shared over 85% amino acid identity with homologous sequences from other insects. RpS6 also showed approximately 80% amino acid identity. The RpS3 and S6 transcripts were present during different developmental stages but were most abundant during the embryonic stage. Furthermore, expression of the previously reported ribosomal proteins RpL11, L13, and L15, as well as RpS3 and S6 was analyzed following exposure to various concentrations of three endocrine disruptor chemicals (EDCs), di(2-ethylhexyl) phthalate, bisphenol A, and 4-nonylphenol (4NP), and the veterinary antibiotics (VAs) fenbendazole, sulfathiazole, and lincomycin. Only RpS3 gene expression was up-regulated significantly in response to EDCs and fenbendazole. However, the C. riparius ribosomal proteins showed a limited response to cellular stress, following exposure to EDCs and VAs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Benzhydryl Compounds
- Chironomidae/drug effects
- Chironomidae/genetics
- Chironomidae/metabolism
- Consensus Sequence
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Diethylhexyl Phthalate/toxicity
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Endocrine Disruptors/toxicity
- Environmental Monitoring/methods
- Fenbendazole/toxicity
- Gene Expression Regulation
- Genes, rRNA
- Life Cycle Stages/drug effects
- Lincomycin/toxicity
- Phenols/toxicity
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Protein S6/genetics
- Ribosomal Protein S6/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Stress, Physiological
- Sulfathiazole
- Sulfathiazoles/toxicity
- Toxicity Tests, Acute/methods
- Transcription, Genetic
Collapse
Affiliation(s)
- Kiyun Park
- Department of Fisheries and Ocean Science, Chonnam National University, Dundeok-dong, Yeosu, Jeonnam, Republic of Korea
| | | |
Collapse
|