1
|
Saadatagah S, Larouche M, Naderian M, Nambi V, Brisson D, Kullo IJ, Duell PB, Michos ED, Shapiro MD, Watts GF, Gaudet D, Ballantyne CM. Recognition and management of persistent chylomicronemia: A joint expert clinical consensus by the National Lipid Association and the American Society for Preventive Cardiology. Am J Prev Cardiol 2025; 22:100978. [PMID: 40242365 PMCID: PMC12003024 DOI: 10.1016/j.ajpc.2025.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Extreme hypertriglyceridemia, defined as triglyceride (TG) levels ≥1000 mg/dL, is almost always indicative of chylomicronemia. The current diagnostic approach categorizes individuals with chylomicronemia into familial chylomicronemia syndrome (FCS; prevalence 1-10 per million), caused by the biallelic combination of pathogenic variants that impair the lipolytic action of lipoprotein lipase (LPL), or multifactorial chylomicronemia syndrome (MCS, 1 in 500). A pragmatic framework should emphasize the severity of the phenotype and the risk of complications. Therefore, we endorse the term "persistent chylomicronemia" defined as TG ≥1000 mg/dL in more than half of the measurements to encompass patients with the highest risk for pancreatitis, regardless of their genetic predisposition. We suggest classification of PC into four subtypes: 1) genetic FCS, 2) clinical FCS, 3) PC with "alarm" features, and 4) PC without alarm features. Although patients with FCS most likely have PC, the vast majority with PC do not have genetic FCS. Proposed alarm features are: (a) history of recurrent TG-induced acute pancreatitis, (b) recurrent hospitalizations for severe abdominal pain without another identified cause, (c) childhood pancreatitis, (d) family history of TG-induced pancreatitis, and/or (e) post-heparin LPL activity <20 % of normal value. Alarm features constitute the strongest risk factors for future acute pancreatitis risk. Patients with PC and alarm features have very high risk of pancreatitis, comparable to that in patients with FCS. Effective, innovative treatments for PC, like apoC-III inhibitors, have been developed. Combined with lifestyle modifications, these agents markedly lower TG levels and risk of pancreatitis in the very-high-risk groups, irrespective of the monogenic etiology. Pragmatic definitions, education, and focus on patients with PC specifically those with alarm features could help mitigate the risk of acute pancreatitis and other complications.
Collapse
Affiliation(s)
- Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Miriam Larouche
- Université de Montréal, Department of Medicine, Montreal, Canada
- ECOGENE-21, Chicoutimi, Canada
| | | | - Vijay Nambi
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Hospital, Houston, TX, USA
| | - Diane Brisson
- Université de Montréal, Department of Medicine, Montreal, Canada
- ECOGENE-21, Chicoutimi, Canada
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - P Barton Duell
- Knight Cardiovascular Institute and Division of Endocrinology, Diabetes, and Clinical Nutrition, Oregon Health and Science University, Portland, OR, USA
| | - Erin D. Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael D. Shapiro
- Section of Cardiovascular Medicine, Center for Prevention of Cardiovascular Disease, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gerald F. Watts
- Medical School, University of Western Australia, Perth, Australia
- Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Daniel Gaudet
- Université de Montréal, Department of Medicine, Montreal, Canada
- ECOGENE-21, Chicoutimi, Canada
| | | |
Collapse
|
2
|
Saadatagah S, Naderian M, Larouche M, Gaudet D, Kullo IJ, Ballantyne CM. Epidemiology and longitudinal course of chylomicronemia: Insights from NHANES and a large health care system. J Clin Lipidol 2025:S1933-2874(25)00031-5. [PMID: 40155283 DOI: 10.1016/j.jacl.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Chylomicronemia is characterized by fasting triglyceride (TG) ≥1000 mg/dL; its longitudinal course is not well studied. METHODS Using National Health and Nutrition Examination Survey (NHANES) data (1999-2018; n = 21,998), we determined chylomicronemia prevalence and temporal trend. Using Mayo Clinic data (4,524,506 TG measurements for 1,294,044 individuals), we studied the longitudinal course and ascertained persistent chylomicronemia (PC), defined as TG ≥1000 mg/dL in more than half the measurements for individuals with ≥3 measurements. We used logistic regression to assess factors associated with PC. RESULTS In NHANES, the prevalence of chylomicronemia was 0.20% overall, with higher prevalence in men (0.32%) and Hispanics (0.33%). Chylomicronemia prevalence declined from 0.34% in 1999-2004 to 0.11% in 2013-2018, while lipid-lowering pharmacotherapy use in chylomicronemia patients increased from 5.3% to 51.9%. In the Mayo Clinic data, 5618 individuals (0.43%) had at least 1 episode of chylomicronemia. Of these, 8.8% (390 of 4443 with ≥3 measurements) met the operational definition for PC. In individuals with TG <150 mg/dL, 1.3% had a diagnosis of acute pancreatitis, and 0.6% had chronic pancreatitis. Respective figures for individuals with nonpersistent chylomicronemia were 12.5% and 5.1%, and for individuals with PC were 26.2% and 11.5%. Younger age, Hispanic ethnicity, prior pancreatitis, and higher TG levels were associated with PC. CONCLUSION In the US, 1 in ∼500 adults has chylomicronemia and 1 in ∼5500 has PC. Individuals with PC have high occurrence of acute and chronic pancreatitis and may need more effective treatment.
Collapse
Affiliation(s)
- Seyedmohammad Saadatagah
- Sections of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA (Drs Saadatagah and Ballantyne); Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA (Dr Saadatagah)
| | - Mohammadreza Naderian
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA (Drs Naderian and Kullo)
| | - Miriam Larouche
- Department of Medicine, Université de Montréal and ECOGENE-21, Chicoutimi, Québec, Canada (Drs Larouche and Gaudet)
| | - Daniel Gaudet
- Department of Medicine, Université de Montréal and ECOGENE-21, Chicoutimi, Québec, Canada (Drs Larouche and Gaudet)
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA (Drs Naderian and Kullo); Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA (Dr Kullo)
| | - Christie M Ballantyne
- Sections of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA (Drs Saadatagah and Ballantyne).
| |
Collapse
|
3
|
Arnob A, Gairola A, Clayton H, Jayaraman A, Wu HJ. Factors Promoting Lipopolysaccharide Uptake by Synthetic Lipid Droplets. ACS OMEGA 2025; 10:5866-5873. [PMID: 39989833 PMCID: PMC11840781 DOI: 10.1021/acsomega.4c09599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Lipoproteins are essential in removing lipopolysaccharides (LPSs) from blood during bacterial inflammation. The physicochemical properties of lipoproteins and environmental factors can impact LPS uptake. This work prepared synthetic lipid droplets containing triglycerides, cholesterols, and phospholipids to mimic lipoproteins. The physicochemical properties of these lipid droplets, such as charges, sizes, and lipid compositions, were altered to understand the underlying factors affecting LPS uptake. The amphiphilic LPS could spontaneously adsorb on the surface of lipid droplets without lipopolysaccharide-binding protein (LBP); however, the presence of LBP can increase the LPS uptake. The positively charged lipid droplets also enhance the uptake of negatively charged LPS. Most interestingly, the LPS uptake highly depends on the concentrations of Ca2+ near the physiological conditions, but the impact of Mg2+ ions was insignificant. The increase in Ca2+ ions can improve LPS uptake by lipid droplets; this result suggested that Ca2+ may play an essential role in LPS clearance. Since septic shock patients typically suffer from hypocalcemia and low levels of lipoproteins, the supplementation of Ca2+ ions along with synthetic lipoproteins may be a potential treatment for severe sepsis.
Collapse
Affiliation(s)
- Assame Arnob
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Anirudh Gairola
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hannah Clayton
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arul Jayaraman
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Hung-Jen Wu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Luo H, Gong WY, Zhang YY, Liu YY, Chen Z, Feng XL, Jiao QB, Zhang XW. IRE1β evolves to be a guardian of respiratory and gastrointestinal mucosa. Heliyon 2024; 10:e39011. [PMID: 39524875 PMCID: PMC11550042 DOI: 10.1016/j.heliyon.2024.e39011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/31/2024] Open
Abstract
Inositol-requiring enzyme 1 (IRE1), a mediator of the unfolded protein response, shows the highest degree of evolutionary conservation. Vertebrates express two IRE1 paralogs: IRE1α, which is universally expressed and IRE1β, which shows specific expression within mucus secreted cells in respiratory and gastrointestinal tracts. The biological properties and regulation of the two IRE1 duplicates show evolutionary differences. As recently suggested, IRE1β-deficient mice display impairment in secreted protein expression and mucosal homeostasis. Abnormal changes in IRE1β caused by external and internal factors can disrupt mucosal homeostasis and further lead to respiratory and gastrointestinal diseases. Here, we highlight the physiological functions of IRE1β in the respiratory and gastrointestinal tracts in response to environmental microbes, viruses, toxins, and food components.
Collapse
Affiliation(s)
- Hui Luo
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wen-Yan Gong
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuan-Yuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying-Ying Liu
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhen Chen
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Lin Feng
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qi-Bin Jiao
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Wei Zhang
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
5
|
Arnob A, Gairola A, Clayton H, Jayaraman A, Wu HJ. Factors Promoting Lipopolysaccharide Uptake by Synthetic Lipid Droplets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619182. [PMID: 39464097 PMCID: PMC11507836 DOI: 10.1101/2024.10.19.619182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Lipoproteins are essential in removing lipopolysaccharide (LPS) from blood during bacterial inflammation. The physicochemical properties of lipoproteins and environmental factors can impact LPS uptake. In this work, synthetic lipid droplets containing triglycerides, cholesterols, and phospholipids, were prepared to mimic lipoproteins. The physicochemical properties of these lipid droplets, such as charges, sizes, and lipid compositions, were altered to understand the underlying factors affecting LPS uptake. The amphiphilic LPS could spontaneously adsorb on the surface of lipid droplets without lipopolysaccharide binding protein (LBP); however, the presence of LBP can increase LPS uptake. The positively charged lipid droplets also enhance the uptake of negatively charged LPS. Most interestingly, the LPS uptake highly depends on the concentrations of Ca2+ near the physiological conditions, but the impact of Mg2+ ions was not significant. The increase of Ca2+ ions can improve LPS uptake by lipid droplets; this result suggested that Ca2+ may play an essential role in LPS clearance. Since septic shock patients typically suffer from hypocalcemia and low levels of lipoproteins, the supplementation of Ca2+ ions along with synthetic lipoproteins may be a potential treatment for severe sepsis.
Collapse
Affiliation(s)
- Assame Arnob
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Anirudh Gairola
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Hannah Clayton
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Hung-Jen Wu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Zheng B, Pan F, Shi M, He C, He B, Wang R, Ren G, Yang S, Zhang S. 2-Monoacylglycerol Mimetic Liposomes to Promote Intestinal Lymphatic Transport for Improving Oral Bioavailability of Dihydroartemisinin. Int J Nanomedicine 2024; 19:5273-5295. [PMID: 38859952 PMCID: PMC11164214 DOI: 10.2147/ijn.s462374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose Reducing the first-pass hepatic effect via intestinal lymphatic transport is an effective way to increase the oral absorption of drugs. 2-Monoacylglycerol (2-MAG) as a primary digestive product of dietary lipids triglyceride, can be assembled in chylomicrons and then transported from the intestine into the lymphatic system. Herein, we propose a biomimetic strategy and report a 2-MAG mimetic nanocarrier to target the intestinal lymphatic system via the lipid absorption pathway and improve oral bioavailability. Methods The 2-MAG mimetic liposomes were designed by covalently bonding serinol (SER) on the surface of liposomes named SER-LPs to simulate the structure of 2-MAG. Dihydroartemisinin (DHA) was chosen as the model drug because of its disadvantages such as poor solubility and high first-pass effect. The endocytosis and exocytosis mechanisms were investigated in Caco-2 cells and Caco-2 cell monolayers. The capacity of intestinal lymphatic transport was evaluated by ex vivo biodistribution and in vivo pharmacokinetic experiments. Results DHA loaded SER-LPs (SER-LPs-DHA) had a particle size of 70 nm and a desirable entrapment efficiency of 93%. SER-LPs showed sustained release for DHA in the simulated gastrointestinal environment. In vitro cell studies demonstrated that the cellular uptake of SER-LPs primarily relied on the caveolae- rather than clathrin-mediated endocytosis pathway and preferred to integrate into the chylomicron assembly process through the endoplasmic reticulum/Golgi apparatus route. After oral administration, SER-LPs efficiently promoted drug accumulation in mesenteric lymphatic nodes. The oral bioavailability of DHA from SER-LPs was 10.40-fold and 1.17-fold larger than that of free DHA and unmodified liposomes at the same dose, respectively. Conclusion SER-LPs improved oral bioavailability through efficient intestinal lymphatic transport. These findings of the current study provide a good alternative strategy for oral delivery of drugs with high first-pass hepatic metabolism.
Collapse
Affiliation(s)
- Bin Zheng
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Fei Pan
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Minfei Shi
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Cuiping He
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Beibei He
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Shuang Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| |
Collapse
|
7
|
Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol (Lausanne) 2024; 14:1322869. [PMID: 38303975 PMCID: PMC10830840 DOI: 10.3389/fendo.2023.1322869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Since statins have had such tremendous therapeutic success over the last three decades, the field of atherosclerosis has become somewhat LDL-centric, dismissing the relevance of triglycerides (TG), particularly chylomicrons, in atherogenesis. Nonetheless, 50% of patients who take statins are at risk of developing atherosclerotic cardiovascular disease (ASCVD) and are unable to achieve their goal LDL-C levels. This residual risk is mediated, in part by triglyceride rich lipoproteins (TRL) and their remnants. Following his seminal investigation on the subject, Zilversmit proposed that atherosclerosis is a postprandial event in 1979 (1-4). In essence, the concept suggests that remnant cholesterol-rich chylomicron (CM) and very-low density lipoprotein (VLDL) particles play a role in atherogenesis. Given the foregoing, this narrative review addresses the most recent improvements in our understanding of postprandial dyslipidemia. The primary metabolic pathways of chylomicrons are discussed, emphasizing the critical physiological role of lipoprotein lipase and apoCIII, the importance of these particles' fluxes in the postprandial period, their catabolic rate, the complexities of testing postprandial metabolism, and the role of angiopoietin-like proteins in the partition of CM during the fed cycle. The narrative is rounded out by the dysregulation of postprandial lipid metabolism in insulin resistance states and consequent CVD risk, the clinical evaluation of postprandial dyslipidemia, current research limits, and potential future study directions.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, Touro University California, Vallejo, CA, United States
| |
Collapse
|
8
|
Chen X, Hou C, Yao L, Li J, Gui M, Wang M, Zhou X, Lu B, Fu D. Dietary inflammation index is associated with dyslipidemia: evidence from national health and nutrition examination survey, 1999-2019. Lipids Health Dis 2023; 22:149. [PMID: 37689717 PMCID: PMC10492364 DOI: 10.1186/s12944-023-01914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND AND AIMS This study aimed to investigate the association between the Dietary Inflammatory Index (DII) and dyslipidemia, as well as to evaluate the mortality risk associated with DII in participants with dyslipidemia. METHODS Data from the National Health and Nutrition Examination Survey database were divided into dyslipidemia and non-dyslipidemia groups. The association between DII and dyslipidemia was investigated using the weighted chi-square test, weighted t-test, and weighted logistic regression. Weighted Cox proportional hazards models were used to estimate the hazard ratios and 95% confidence intervals for all-cause and cardiovascular disease-related mortality within the dyslipidemia group. RESULTS A total of 17,820 participants, including 4,839 without and 12,981 with dyslipidemia were analyzed in this study. The results showed that DII was higher in the dyslipidemia group compared to the non-dyslipidemia group (1.42 ± 0.03 vs. 1.23 ± 0.04, P < 0.01). However, for energy, protein, carbohydrates, total fat, saturated fat, and iron, DII was lower in participants with dyslipidemia. Logistic regression analysis revealed a strong positive association between DII and dyslipidemia. The odds ratios for dyslipidemia from Q1 to Q4 were 1.00 (reference), 1.12 (0.96-1.31), 1.23 (1.04-1.44), and 1.33 (1.11-1.59), respectively. In participants with dyslipidemia, a high DII was associated with high all-cause and cardiovascular mortality. CONCLUSION DII was closely associated with dyslipidemia. A pro-inflammatory diet may play a role in unfavorable consequences and is linked to both all-cause mortality and cardiovascular death in patients with dyslipidemia. Participants with dyslipidemia should pay attention to their anti-inflammatory dietary patterns.
Collapse
Affiliation(s)
- Xiaozhe Chen
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Hou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingzhu Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Kim KS, Na K, Bae YH. Nanoparticle oral absorption and its clinical translational potential. J Control Release 2023; 360:149-162. [PMID: 37348679 DOI: 10.1016/j.jconrel.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Oral administration of pharmaceuticals is the most preferred route of administration for patients, but it is challenging to effectively deliver active ingredients (APIs) that i) have extremely high or low solubility in intestinal fluids, ii) are large in size, iii) are subject to digestive and/or metabolic enzymes present in the gastrointestinal tract (GIT), brush border, and liver, and iv) are P-glycoprotein substrates. Over the past decades, efforts to increase the oral bioavailability of APIs have led to the development of nanoparticles (NPs) with non-specific uptake pathways (M cells, mucosal, and tight junctions) and target-specific uptake pathways (FcRn, vitamin B12, and bile acids). However, voluminous findings from preclinical models of different species rarely meet practical standards when translated to humans, and API concentrations in NPs are not within the adequate therapeutic window. Various NP oral delivery approaches studied so far show varying bioavailability impacted by a range of factors, such as species, GIT physiology, age, and disease state. This may cause difficulty in obtaining similar oral delivery efficacy when research results in animal models are translated into humans. This review describes the selection of parameters to be considered for translational potential when designing and developing oral NPs.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - You Han Bae
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
11
|
Gianazza E, Zoanni B, Mallia A, Brioschi M, Colombo GI, Banfi C. Proteomic studies on apoB-containing lipoprotein in cardiovascular research: A comprehensive review. MASS SPECTROMETRY REVIEWS 2023; 42:1397-1423. [PMID: 34747518 DOI: 10.1002/mas.21747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 06/07/2023]
Abstract
The complexity of cardiovascular diseases (CVDs), which remains the leading cause of death worldwide, makes the current clinical pathway for cardiovascular risk assessment unsatisfactory, as there remains a substantial unexplained residual risk. Simultaneous assessment of a large number of plasma proteins may be a promising tool to further refine risk assessment, and lipoprotein-associated proteins have the potential to fill this gap. Technical advances now allow for high-throughput proteomic analysis in a reproducible and cost-effective manner. Proteomics has great potential to identify and quantify hundreds of candidate marker proteins in a sample and allows the translation from isolated lipoproteins to whole plasma, thus providing an individual multiplexed proteomic fingerprint. This narrative review describes the pathophysiological roles of atherogenic apoB-containing lipoproteins and the recent advances in their mass spectrometry-based proteomic characterization and quantitation for better refinement of CVD risk assessment.
Collapse
Affiliation(s)
| | | | - Alice Mallia
- Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | | | | | | |
Collapse
|
12
|
Novel Approach for the Approximation of Vitamin D3 Pharmacokinetics from In Vivo Absorption Studies. Pharmaceutics 2023; 15:pharmaceutics15030783. [PMID: 36986644 PMCID: PMC10052077 DOI: 10.3390/pharmaceutics15030783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
The changing environment and modified lifestyles have meant that many vitamins and minerals are deficient in a significant portion of the human population. Therefore, supplementation is a viable nutritional approach, which helps to maintain health and well-being. The supplementation efficiency of a highly hydrophobic compound such as cholecalciferol (logP > 7) depends predominantly on the formulation. To overcome difficulties associated with the evaluation of pharmacokinetics of cholecalciferol, a method based on the short time absorption data in the clinical study and physiologically based mathematical modeling is proposed. The method was used to compare pharmacokinetics of liposomal and oily formulations of vitamin D3. The liposomal formulation was more effective in elevating calcidiol concentration in serum. The determined AUC value for liposomal vitamin D3 formulation was four times bigger than that for the oily formulation.
Collapse
|
13
|
Winter KM, Webb RG, Marks DC. Red cells manufactured from lipaemic whole blood donations: Do they have higher haemolysis? Vox Sang 2022; 117:1351-1359. [PMID: 36214384 DOI: 10.1111/vox.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Lipaemia in blood donations is thought to influence haemolysis in stored red blood cell (RBC) components. Higher lipid concentrations are believed to increase red cell fragility, exacerbating haemolysis during collection and subsequent red cell storage. This study aimed to investigate associations between lipoproteins in plasma and haemolysis of red cells stored in saline-adenine-glucose-mannitol (SAGM). MATERIALS AND METHODS Fifty-four plasma and matched RBCs were obtained from lipaemic whole blood donations. Plasma was tested for coagulation factors, triglycerides and cholesterol. Haemolysis, glucose, lactate, extracellular potassium, lactate dehydrogenase and adenosine triphosphate (ATP) were measured in RBC on Days 7, 21 and 42 of storage. Additionally, 20 plasma and matched RBCs from non-lipaemic donations were tested as controls. RESULTS Lipaemic plasma had significantly higher triglyceride concentrations compared with non-lipaemic plasma. However, there was no significant difference in plasma cholesterol between the two groups. There were no significant differences in glucose, extracellular potassium or ATP concentrations in RBC from either group. There was no significant difference in haemolysis at expiry in lipaemic-derived and control RBC, with a weak correlation between haemolysis and either triglycerides or cholesterol. CONCLUSION There was no significant difference in haemolysis in RBC manufactured from lipaemic and non-lipaemic whole blood donations when stored in SAGM; however, the proportion of RBC from lipaemic donations with higher haemolysis was greater than in the controls. There was a weak correlation between red cell haemolysis and plasma triglycerides. Therefore, RBCs derived from lipaemic donations are suitable for blood bank inventories.
Collapse
Affiliation(s)
- Kelly M Winter
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Rachel G Webb
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
14
|
He Y, Liu N, Ji Y, Tso P, Wu Z. Weaning Stress in Piglets Alters the Expression of Intestinal Proteins Involved in Fat Absorption. J Nutr 2022; 152:2387-2395. [PMID: 36774105 DOI: 10.1093/jn/nxac177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/06/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In vivo data on intestinal fat absorption in weanling piglets are scarce. OBJECTIVES This study aimed to investigate the effect of weaning stress on intestinal fat absorption. METHODS Eighteen 7-d-old sow-reared piglets (Duroc-Landrace-Yorkshire) were assigned to 3 groups (n = 6/group, 3 males and 3 females per group). Piglets were nursed by sows until 24 d of age (suckling piglets, S), or weaned at 21 d of age to a corn-soybean meal-based diet until 24 d (3 d postweaning, W3) or 28 d (7 d postweaning, W7) of age, respectively. Duodenum, jejunum, and ileum were collected to determine intestinal morphology and abundance of proteins related to fat absorption. RESULTS Compared with the S group, the W3 group had lower villus height (17-34%) and villus height to crypt depth ratio (13-53%), as well as 1-1.45 times greater crypt depth; these values were 1.18-1.31, 0.69-1.15, and 1.47-1.87 times greater in the W7 group than in the W3 group, respectively. Compared with the S group, weaning stress for both W3 and W7 groups reduced intestinal alkaline phosphatase activity (26-73%), serum lipids (26-54%), and abundances of proteins related to fatty acid transport [fatty acid transport protein 4 (FATP4) and intestinal fatty acid-binding protein (I-FABP)] and chylomicron assembly [microsomal triglyceride transfer protein (MTTP), apolipoprotein A-IV (APOA4), B (APOB), and A-I (APOA1)] in the duodenum and ileum (10-55%), as well as in the jejunum (25-85%). All these indexes did not differ between W3 and W7 groups. Compared with the S group, the W3 group had lower mRNA abundances of duodenal APOA4 and APOA1 (25-50%), as well as jejunal FATP4, IFABP, MTTP, APOA4, and APOA1 (35-50%); these values were 5-15% and 10-37% lower in the W7 group than in the W3 group, respectively. CONCLUSIONS Weaning stress in piglets attenuates the expression of intestinal proteins related to fatty acid transport (FATP4 and I-FABP) and chylomicron synthesis (APOA4).
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.
| |
Collapse
|
15
|
Abstract
The exogenous lipoprotein pathway starts with the incorporation of dietary lipids into chylomicrons in the intestine. Chylomicron triglycerides are metabolized in muscle and adipose tissue and chylomicron remnants are formed, which are removed by the liver. The endogenous lipoprotein pathway begins in the liver with the formation of very low-density lipoprotein particles (VLDL). VLDL triglycerides are metabolized in muscle and adipose tissue forming intermediate-density lipoprotein (IDL), which may be taken up by the liver or further metabolized to low-density lipoprotein (LDL). Reverse cholesterol transport begins with the formation of nascent high-density lipoprotein (HDL) by the liver and intestine that acquire cholesterol from cells resulting in mature HDL. The HDL then transports the cholesterol to the liver either directly or indirectly by transferring the cholesterol to VLDL or LDL.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Department of Medicine, University of California-San Francisco, San Francisco, California, 94117, USA.
| |
Collapse
|
16
|
Adaptation to short-term extreme fat consumption alters intestinal lipid handling in male and female mice. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159208. [PMID: 35926775 DOI: 10.1016/j.bbalip.2022.159208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
Abstract
The small intestine is a highly adaptable organ serving as both a barrier to the external environment and a conduit for nutrient absorption. Enterocytes package dietary triglycerides (TG) into chylomicrons for transport into circulation; the remaining TGs are stored in cytosolic lipid droplets (CLDs). The current study aimed to characterize the impact of diet composition on intestinal lipid handling in male and female wild-type mice. Mice were continued on their grain-based diet (GBD) and switched to a high-fat, high cholesterol Western-style diet (WD) or a ketogenic diet (KD) for 3 or 5 weeks. KD-fed mice displayed significantly higher plasma TG levels in response to an olive oil gavage than WD- and GBD-fed mice; TG levels were ~2-fold higher in male KD-fed mice than female KD-fed mice. Poloxamer-407 experiments revealed enhanced intestinal-TG secretion rates in male mice fed a KD upon olive oil gavage, whereas secretion rates were unchanged in female mice. Surprisingly, jejunal CLD size and TG mass after oil gavage were similar among the groups. At fasting, TG mass was significantly higher in the jejunum of male KD-fed mice and the duodenum of female KD-fed mice, providing increased substrate for chylomicron formation. In addition to greater fasting intestinal TG stores, KD-fed male mice displayed longer small intestinal lengths, while female mice displayed markedly longer jejunal villi lengths. After 5 week of diet, 12 h fasting-2 h refeeding experiments revealed jejunal TG levels were similar between diet groups in male mice; however, in female mice, jejunal TG mass was significantly higher in KD-fed mice compared to GBD- and WD-fed mice. These experiments reveal that KD feeding promotes distinct morphological and functional changes to the small intestine compared to the WD diet. Moreover, changes to intestinal lipid handling in response to carbohydrate and protein restriction manifest differently in male and female mice.
Collapse
|
17
|
Dałek P, Drabik D, Wołczańska H, Foryś A, Jagas M, Jędruchniewicz N, Przybyło M, Witkiewicz W, Langner M. Bioavailability by design — Vitamin D3 liposomal delivery vehicles. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2022; 43:102552. [PMID: 35346834 PMCID: PMC8957331 DOI: 10.1016/j.nano.2022.102552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Vitamin D3 deficiency has serious health consequences, as demonstrated by its effect on severity and recovery after COVID-19 infection. Because of high hydrophobicity, its absorption and subsequent redistribution throughout the body are inherently dependent on the accompanying lipids and/or proteins. The effective oral vitamin D3 formulation should ensure penetration of the mucus layer followed by internalization by competent cells. Isothermal titration calorimetry and computer simulations show that vitamin D3 molecules cannot leave the hydrophobic environment, indicating that their absorption is predominantly driven by the digestion of the delivery vehicle. In the clinical experiment, liposomal vitamin D3 was compared to the oily formulation. The results obtained show that liposomal vitamin D3 causes a rapid increase in the plasma concentration of calcidiol. No such effect was observed when the oily formulation was used. The effect was especially pronounced for people with severe vitamin D3 deficiency.
Collapse
Affiliation(s)
- Paulina Dałek
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland; Lipid Systems sp. z o.o., Wrocław, Poland.
| | - Dominik Drabik
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | | | | - Magdalena Przybyło
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland; Lipid Systems sp. z o.o., Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Specialized Hospital in Wrocław, Wrocław, Poland
| | - Marek Langner
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland; Lipid Systems sp. z o.o., Wrocław, Poland
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Lymphatics are known to have active, regulated pumping by smooth muscle cells that enhance lymph flow, but whether active regulation of lymphatic pumping contributes significantly to the rate of appearance of chylomicrons (CMs) in the blood circulation (i.e., CM production rate) is not currently known. In this review, we highlight some of the potential mechanisms by which lymphatics may regulate CM production. RECENT FINDINGS Recent data from our lab and others are beginning to provide clues that suggest a more active role of lymphatics in regulating CM appearance in the circulation through various mechanisms. Potential contributors include apolipoproteins, glucose, glucagon-like peptide-2, and vascular endothelial growth factor-C, but there are likely to be many more. SUMMARY The digested products of dietary fats absorbed by the small intestine are re-esterified and packaged by enterocytes into large, triglyceride-rich CM particles or stored temporarily in intracellular cytoplasmic lipid droplets. Secreted CMs traverse the lamina propria and are transported via lymphatics and then the blood circulation to liver and extrahepatic tissues, where they are stored or metabolized as a rich energy source. Although indirect data suggest a relationship between lymphatic pumping and CM production, this concept requires more experimental evidence before we can be sure that lymphatic pumping contributes significantly to the rate of CM appearance in the blood circulation.
Collapse
Affiliation(s)
- Majid M Syed-Abdul
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Zhang BH, Yin F, Qiao YN, Guo SD. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front Mol Biosci 2022; 9:909151. [PMID: 35693558 PMCID: PMC9174947 DOI: 10.3389/fmolb.2022.909151] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death globally, and atherosclerosis is the main pathological basis of CVDs. Low-density lipoprotein cholesterol (LDL-C) is a strong causal factor of atherosclerosis. However, the first-line lipid-lowering drugs, statins, only reduce approximately 30% of the CVD risk. Of note, atherosclerotic CVD (ASCVD) cannot be eliminated in a great number of patients even their LDL-C levels meet the recommended clinical goals. Previously, whether the elevated plasma level of triglyceride is causally associated with ASCVD has been controversial. Recent genetic and epidemiological studies have demonstrated that triglyceride and triglyceride-rich lipoprotein (TGRL) are the main causal risk factors of the residual ASCVD. TGRLs and their metabolites can promote atherosclerosis via modulating inflammation, oxidative stress, and formation of foam cells. In this article, we will make a short review of TG and TGRL metabolism, display evidence of association between TG and ASCVD, summarize the atherogenic factors of TGRLs and their metabolites, and discuss the current findings and advances in TG-lowering therapies. This review provides information useful for the researchers in the field of CVD as well as for pharmacologists and clinicians.
Collapse
Affiliation(s)
| | | | - Ya-Nan Qiao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
20
|
Effect of L-Glutamine on Chylomicron Formation and Fat-Induced Activation of Intestinal Mucosal Mast Cells in Sprague-Dawley Rats. Nutrients 2022; 14:nu14091777. [PMID: 35565745 PMCID: PMC9104139 DOI: 10.3390/nu14091777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Glutamine (Gln) is required for intestinal mucosal homeostasis, and it can promote triglyceride absorption. The intestinal mucosal mast cells (MMCs) are activated during fat absorption. This study investigated the potential role of Gln on fat absorption-induced activation of MMCs in rats. Lymph fistula rats (n = 24) were studied after an overnight recovery with the infusion of saline only, saline plus 85 mM L-glutamine (L-Gln) or 85 mM D-glutamine (D-Gln), respectively. On the test day, rats (n = 8/group) were given an intraduodenal bolus of 20% Intralipid contained either saline only (vehicle group), 85 mM L-Gln (L-Gln group), or 85 mM D-Gln (D-Gln group). Lymph was collected hourly for up to 6 h for analyses. The results showed that intestinal lymph from rats given L-Gln had increased levels of apolipoprotein B (ApoB) and A-I (ApoA-I), concomitant with an increased spectrum of smaller chylomicron particles. Unexpectedly, L-Gln also increased levels of rat mucosal mast cell protease II (RMCPII), as well as histamine and prostaglandin D2 (PGD2) in response to dietary lipid. However, these effects were not observed in rats treated with 85 mM of the stereoisomer D-Gln. Our results showed that L-glutamine could specifically activate MMCs to degranulate and release MMC mediators to the lymph during fat absorption. This observation is potentially important clinically since L-glutamine is often used to promote gut health and repair leaky gut.
Collapse
|
21
|
Borén J, Taskinen MR, Björnson E, Packard CJ. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat Rev Cardiol 2022; 19:577-592. [PMID: 35318466 DOI: 10.1038/s41569-022-00676-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Accumulating evidence points to the causal role of triglyceride-rich lipoproteins and their cholesterol-enriched remnants in atherogenesis. Genetic studies in particular have not only revealed a relationship between plasma triglyceride levels and the risk of atherosclerotic cardiovascular disease, but have also identified key proteins responsible for the regulation of triglyceride transport. Kinetic studies in humans using stable isotope tracers have been especially useful in delineating the function of these proteins and revealing the hitherto unappreciated complexity of triglyceride-rich lipoprotein metabolism. Given that triglyceride is an essential energy source for mammals, triglyceride transport is regulated by numerous mechanisms that balance availability with the energy demands of the body. Ongoing investigations are focused on determining the consequences of dysregulation as a result of either dietary imprudence or genetic variation that increases the risk of atherosclerosis and pancreatitis. The identification of molecular control mechanisms involved in triglyceride metabolism has laid the groundwork for a 'precision-medicine' approach to therapy. Novel pharmacological agents under development have specific molecular targets within a regulatory framework, and their deployment heralds a new era in lipid-lowering-mediated prevention of disease. In this Review, we outline what is known about the dysregulation of triglyceride transport in human hypertriglyceridaemia.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Sot J, García-Arribas AB, Abad B, Arranz S, Portune K, Andrade F, Martín-Nieto A, Velasco O, Arana E, Tueros I, Ferreri C, Gaztambide S, Goñi FM, Castaño L, Alonso A. Erythrocyte Membrane Nanomechanical Rigidity Is Decreased in Obese Patients. Int J Mol Sci 2022; 23:ijms23031920. [PMID: 35163842 PMCID: PMC8836476 DOI: 10.3390/ijms23031920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/13/2022] Open
Abstract
This work intends to describe the physical properties of red blood cell (RBC) membranes in obese adults. The hypothesis driving this research is that obesity, in addition to increasing the amount of body fat, will also modify the lipid composition of membranes in cells other than adipocytes. Forty-nine control volunteers (16 male, 33 female, BMI 21.8 ± 5.6 and 21.5 ± 4.2 kg/m2, respectively) and 52 obese subjects (16 male and 36 female, BMI 38.2± 11.0 and 40.7 ± 8.7 kg/m2, respectively) were examined. The two physical techniques applied were atomic force microscopy (AFM) in the force spectroscopy mode, which allows the micromechanical measurement of penetration forces, and fluorescence anisotropy of trimethylammonium diphenylhexatriene (TMA-DPH), which provides information on lipid order at the membrane polar–nonpolar interface. These techniques, in combination with lipidomic studies, revealed a decreased rigidity in the interfacial region of the RBC membranes of obese as compared to control patients, related to parallel changes in lipid composition. Lipidomic data show an increase in the cholesterol/phospholipid mole ratio and a decrease in sphingomyelin contents in obese membranes. ω-3 fatty acids (e.g., docosahexaenoic acid) appear to be less prevalent in obese patient RBCs, and this is the case for both the global fatty acid distribution and for the individual major lipids in the membrane phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS). Moreover, some ω-6 fatty acids (e.g., arachidonic acid) are increased in obese patient RBCs. The switch from ω-3 to ω-6 lipids in obese subjects could be a major factor explaining the higher interfacial fluidity in obese patient RBC membranes.
Collapse
Affiliation(s)
- Jesús Sot
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
| | - Aritz B. García-Arribas
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
| | - Beatriz Abad
- SGIKER, Servicios Generales de Investigación (SGiker), Universidad del País Vasco, 48940 Leioa, Spain;
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (K.P.); (I.T.)
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (K.P.); (I.T.)
| | - Fernando Andrade
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Alicia Martín-Nieto
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Olaia Velasco
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Eunate Arana
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (K.P.); (I.T.)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy;
| | - Sonia Gaztambide
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Félix M. Goñi
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
| | - Luis Castaño
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Alicia Alonso
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
- Correspondence:
| |
Collapse
|
23
|
Morrow NM, Trzaskalski NA, Hanson AA, Fadzeyeva E, Telford DE, Chhoker SS, Sutherland BG, Edwards JY, Huff MW, Mulvihill EE. Nobiletin Prevents High-Fat Diet-Induced Dysregulation of Intestinal Lipid Metabolism and Attenuates Postprandial Lipemia. Arterioscler Thromb Vasc Biol 2022; 42:127-144. [PMID: 34911361 DOI: 10.1161/atvbaha.121.316896] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nobiletin is a dietary flavonoid that improves insulin resistance and atherosclerosis in mice with metabolic dysfunction. Dysregulation of intestinal lipoprotein metabolism contributes to atherogenesis. The objective of the study was to determine if nobiletin targets the intestine to improve metabolic dysregulation in both male and female mice. Approach and Results: Triglyceride-rich lipoprotein (TRL) secretion, intracellular triglyceride kinetics, and intestinal morphology were determined in male and female LDL (low-density lipoprotein) receptor knockout (Ldlr-/-), and male wild-type mice fed a standard laboratory diet or high-fat, high-cholesterol (HFHC) diet ± nobiletin using an olive oil gavage, radiotracers, and electron microscopy. Nobiletin attenuated postprandial TRL levels in plasma and enhanced TRL clearance. Nobiletin reduced fasting jejunal triglyceride accumulation through accelerated TRL secretion and lower jejunal fatty acid synthesis with no impact on fatty acid oxidation. Fasting-refeeding experiments revealed that nobiletin led to higher levels of phosphorylated AKT (protein kinase B) and FoxO1 (forkhead box O1) and normal Srebf1c expression indicating increased insulin sensitivity. Intestinal length and weight were diminished by HFHC feeding and restored by nobiletin. Both fasting and postprandial plasma GLP-1 (glucagon-like peptide-1; and likely GLP-2) were elevated in response to nobiletin. Treatment with a GLP-2 receptor antagonist, GLP-2(3-33), reduced villus length in HFHC-fed mice but did not impact TRL secretion in any diet group. In contrast to males, nobiletin did not improve postprandial lipid parameters in female mice. CONCLUSIONS Nobiletin opposed the effects of the HFHC diet by normalizing intestinal de novo lipogenesis through improved insulin sensitivity. Nobiletin prevents postprandial lipemia because the enhanced TRL clearance more than compensates for increased TRL secretion.
Collapse
Affiliation(s)
- Nadya M Morrow
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
- Department of Biochemistry (N.M.M., S.S.C., M.W.H.), The University of Western Ontario, London, Canada
- The University of Ottawa Heart Institute, Ontario, Canada (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, ON (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
| | - Natasha A Trzaskalski
- The University of Ottawa Heart Institute, Ontario, Canada (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, ON (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
| | - Antonio A Hanson
- The University of Ottawa Heart Institute, Ontario, Canada (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, ON (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
| | - Evgenia Fadzeyeva
- The University of Ottawa Heart Institute, Ontario, Canada (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, ON (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
| | - Dawn E Telford
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
- Department of Medicine (D.E.T., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
| | - Sanjiv S Chhoker
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
- Department of Biochemistry (N.M.M., S.S.C., M.W.H.), The University of Western Ontario, London, Canada
| | - Brian G Sutherland
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
| | - Jane Y Edwards
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
- Department of Medicine (D.E.T., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
| | - Murray W Huff
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
- Department of Biochemistry (N.M.M., S.S.C., M.W.H.), The University of Western Ontario, London, Canada
- Department of Medicine (D.E.T., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, Ontario, Canada (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
- Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada (E.E.M)
- Montreal Diabetes Research Group, Montreal, Quebec, Canada (E.E.M)
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, ON (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
| |
Collapse
|
24
|
Hamed NF, Alamri SA, Hamdi NH. Overview of the Updates in Nutrient Profiles, Types, Indications and Side Effects of Infant Formula. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/confqadrfw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Abstract
Triglycerides are critical lipids as they provide an energy source that is both compact and efficient. Due to its hydrophobic nature triglyceride molecules can pack together densely and so be stored in adipose tissue. To be transported in the aqueous medium of plasma, triglycerides have to be incorporated into lipoprotein particles along with other components such as cholesterol, phospholipid and associated structural and regulatory apolipoproteins. Here we discuss the physiology of normal triglyceride metabolism, and how impaired metabolism induces hypertriglyceridemia and its pathogenic consequences including atherosclerosis. We also discuss established and novel therapies to reduce triglyceride-rich lipoproteins.
Collapse
|
26
|
Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021; 11:2449-2468. [PMID: 34522594 PMCID: PMC8424224 DOI: 10.1016/j.apsb.2020.12.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport-the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ASRT, apical sodium-dependent bile acid transporter
- AUC, area under curve
- BCS, biopharmaceutics classification system
- CM, chylomicron
- Chylomicron
- DC, dendritic cell
- DDT, dichlorodiphenyltrichloroethane
- DTX, docetaxel
- Drug absorption
- Drug carriers
- Drug delivery
- FA, fatty acid
- FAE, follicle-associated epithelia
- FRET, Föster resonance energy transfer
- GIT, gastrointestinal tract
- HBsAg, hepatitis B surface antigen
- HIV, human immunodeficiency virus
- LDL, low-density lipoprotein
- LDV, Leu-Asp-Val
- LDVp, LDV peptidomimetic
- Lymphatic transport
- M cell, microfold cells
- MG, monoglyceride
- MPA, mycophenolic acid
- MPS, mononuclear phagocyte system
- Microfold cell
- Nanoparticles
- OA, oleate
- Oral
- PCL, polycaprolactone
- PEG-PLA, polyethylene glycol-poly(lactic acid)
- PEI, polyethyleneimine
- PLGA, poly(lactic-co-glycolic acid)
- PVA, poly(vinyl alcohol)
- RGD, Arg-Gly-Asp
- RGDp, RGD peptidomimetic
- SEDDS, self-emulsifying drug delivery system
- SLN, solid lipid nanoparticles
- SNEDDS, self-nanoemulsifying drug delivery system
- TEM, transmission electron microscopy
- TG, triglyceride
- TPGS, D-α-tocopherol polyethylene glycol 1000 succinate
- TU, testosterone undecanoate
- WGA, wheat germ agglutinin
- YCW, yeast cell wall
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
27
|
Rodríguez Gutiérrez PG, González García JR, Castillo De León YA, Zárate Guerrero JR, Magaña Torres MT. A novel p.Gly417Valfs*12 mutation in the MTTP gene causing abetalipoproteinemia: Presentation of the first patient in Mexico and analysis of the previously reported cases. J Clin Lab Anal 2021; 35:e23672. [PMID: 33258201 PMCID: PMC7957982 DOI: 10.1002/jcla.23672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Our aims were to describe the first Mexican patient with abetalipoproteinemia and to perform a comparative analysis of biochemical, clinical, and genetic characteristics of 100 cases reported in the literature. METHODS We performed biochemical and molecular screenings in a Mexican girl with extremely low lipid levels and in her family. Further, we integrated and evaluated the characteristics of the cases with abetalipoproteinemia described in the literature. RESULTS Our patient is a six-year-old girl who presented vomiting, chronic diarrhea, failure to thrive, malabsorption, acanthocytosis, anemia, transaminases elevation, and extremely low lipid levels. MTTP gene sequencing revealed homozygosity for a novel mutation p.Gly417Valfs*12 (G deletion c.1250). With the analysis of the reported cases, 60 clinical features (14 classical and 46 non-classical) were observed, being the most common acanthocytosis (57.5%), malabsorption (43.7%), and diarrhea (42.5%); 48.8% of the patients presented only classic clinical features, while the remaining 51.2% developed secondary effects due to a fat-soluble vitamin deficiency. An odds ratio analysis disclosed that patients diagnosed after 10 years of age have an increased risk for presenting clinical complications (OR = 18.0; 95% CI 6.0-54.1, p < 0.0001). A great diversity of mutations in MTTP has been observed (n = 76, being the most common p.G865X and p.N139_E140) and some of them with possible residual activity. CONCLUSION The first Mexican patient with abetalipoproteinemia presents a novel MTTP mutation p.Gly417Valfs*12. Three factors that could modulate the phenotype in abetalipoproteinemia were identified: age at diagnosis, treatment, and the causal mutation.
Collapse
Affiliation(s)
- Perla Graciela Rodríguez Gutiérrez
- División de GenéticaCentro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMéxico
- Doctorado en Genética HumanaCentro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
| | - Juan Ramón González García
- División de GenéticaCentro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMéxico
| | | | | | - María Teresa Magaña Torres
- División de GenéticaCentro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMéxico
| |
Collapse
|
28
|
Busatto S, Walker SA, Grayson W, Pham A, Tian M, Nesto N, Barklund J, Wolfram J. Lipoprotein-based drug delivery. Adv Drug Deliv Rev 2020; 159:377-390. [PMID: 32791075 PMCID: PMC7747060 DOI: 10.1016/j.addr.2020.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Lipoproteins (LPs) are circulating heterogeneous nanoparticles produced by the liver and intestines. LPs play a major role in the transport of dietary and endogenous lipids to target cells through cell membrane receptors or cell surface-bound lipoprotein lipase. The stability, biocompatibility, and selective transport of LPs make them promising delivery vehicles for various therapeutic and imaging agents. This review discusses isolation, manufacturing, and drug loading techniques used for LP-based drug delivery, as well as recent applications for diagnosis and treatment of cancer, atherosclerosis, and other life-threatening diseases.
Collapse
Affiliation(s)
- Sara Busatto
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Sierra A Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Whisper Grayson
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Anthony Pham
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ming Tian
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nicole Nesto
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Jacqueline Barklund
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Esan O, Wierzbicki AS. Volanesorsen in the Treatment of Familial Chylomicronemia Syndrome or Hypertriglyceridaemia: Design, Development and Place in Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2623-2636. [PMID: 32753844 PMCID: PMC7351689 DOI: 10.2147/dddt.s224771] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/18/2020] [Indexed: 02/04/2023]
Abstract
Severe hypertriglyceridaemia is associated with pancreatitis and chronic pancreatitis-induced diabetes. Familial chylomicronaemia syndrome (FCS) is a rare autosomal recessive disorder of lipid metabolism characterised by high levels of triglycerides (TGs) due to failure of chylomicron clearance. It causes repeated episodes of severe abdominal pain, fatigue and attacks of acute pancreatitis. There are few current options for its long-term management. The only universal long-term therapy is restriction of total dietary fat intake to <10-15% of daily calories (15 to 20g per day). Many patients have been treated with fibrates and statins with a variable response, but many remain susceptible to pancreatitis. Other genetic syndromes associated with hypertriglyceridaemia include familial partial lipodystrophy (FPLD). Targeting apolipoprotein C3 (apoC3) offers the ability to increase clearance of chylomicrons and other triglyceride-rich lipoproteins. Volanesorsen is an antisense oligonucleotide (ASO) inhibitor of apoC3, which reduces TG levels by 70–80% which has been shown also to reduce rates of pancreatitis and improve well-being in FCS and reduce TGs and improve insulin resistance in FPLD. It is now undergoing licensing and payer reviews. Further developments of antisense technology including small interfering RNA therapy to apoC3 as well as other approaches to modulating triglycerides are in development for this rare disorder.
Collapse
Affiliation(s)
- Oluwayemisi Esan
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London SE1 7EH, UK
| | - Anthony S Wierzbicki
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London SE1 7EH, UK
| |
Collapse
|
30
|
Discrepancy Between Fasting Flow-Mediated Dilation and Parameter of Lipids in Blood: A Randomized Exploratory Study of the Effect of Omega-3 Fatty Acid Ethyl Esters on Vascular Endothelial Function in Patients With Hyperlipidemia. Adv Ther 2020; 37:2169-2183. [PMID: 32200533 PMCID: PMC7467499 DOI: 10.1007/s12325-020-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 11/03/2022]
Abstract
Introduction Omega-3 fatty acid ethyl esters (omega-3), an eicosapentaenoic acid and docosahexaenoic acid preparation (Lotriga®, Takeda Pharmaceutical Company Limited), are approved in Japan to treat triglyceridemia. We investigated the effects of omega-3 on vascular endothelial function, measured by flow-mediated dilation (FMD). Methods Patients with dyslipidemia receiving 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors were randomized 1:1 to receive omega-3 at 2 g (QD) or 4 g (2 g BID) for 8 weeks. The primary end point was the change from baseline of fasting %FMD in each treatment group. Secondary end points included the 4-h postprandial %FMD and 4-h postprandial triglyceride (TG) level. Results Thirty-seven patients were randomized to receive omega-3 at 2 g (n = 18) or 4 g (n = 19). Mean fasting %FMD did not increase from baseline to week 8 in the 2-g group (− 1.2%) or 4-g group (− 1.3%). Mean 4-h postprandial %FMD did not change from baseline to week 8 in the 2-g group (0.0%), but increased in the 4-g group (1.0%). Mean 4-h postprandial TG level decreased by 34.7 mg/dl from baseline over week 8 in the 2-g group, with a significantly larger decrease in the 4-g group of 75.9 mg/dl (p < 0.001). No new safety concerns were identified. Conclusions Fasting %FMD did not improve after 8 weeks of omega-3 treatment at 2 g or 4 g. After 8 weeks, 4-h postprandial TG levels showed improvement at both doses, with a greater reduction in the 4-g group. Trial Registration ClinicalTrials.gov, ID: NCT02824432. Electronic supplementary material The online version of this article (10.1007/s12325-020-01286-1) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Maranhão RC, Pala D, Freitas FR. Lipoprotein removal mechanisms and aging: implications for the cardiovascular health of the elderly. Curr Opin Endocrinol Diabetes Obes 2020; 27:104-109. [PMID: 32011347 DOI: 10.1097/med.0000000000000529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The speed of removal from the plasma of apolipoprotein B-containing lipoproteins, for example, chylomicrons, VLDL and LDL is determinant of the plasma concentration of these lipoproteins, is influenced by genetic features and ambient factors, and has implications in atherogenesis. As aging increases the clinical complications of atherosclerosis, it is important to appraise the status of the removal mechanisms in elderly individuals. RECENT FINDINGS Removal of triglyceride-rich lipoproteins remnants is delayed but the triglyceride breakdown is unchanged in elderly individuals. The discovery of PCSK9, enzyme that degrades LDL receptors, and the recent observation that PCSK9 is elevated in the elderly raises another hypothesis to account for the increased LDL-cholesterol levels in the elderly. The removal of cholesterol from cells by HDL, the first step of cholesterol reverse transport is also less efficient in the elderly, which may compromise the body cholesterol homeostasis. SUMMARY Aging determines reduction of the efficiency of lipoprotein plasma removal mechanisms, which is implicated in increased incidence of cardia complications. Moreover, aging is frequently accompanied by physical activity reduction, weight gain, and metabolic disturbances that can further decrease the efficacy of the removal mechanisms. This knowledge is important for promoting cardiovascular health in the elderly and prolonging survival.
Collapse
Affiliation(s)
- Raul C Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
- Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniela Pala
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| | - Fatima R Freitas
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| |
Collapse
|
32
|
Farràs M, Canyelles M, Fitó M, Escolà-Gil JC. Effects of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on Lipoprotein Atherogenicity. Nutrients 2020; 12:nu12030601. [PMID: 32110861 PMCID: PMC7146215 DOI: 10.3390/nu12030601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
The atherogenicity of low-density lipoprotein (LDL) and triglyceride-rich lipoproteins (TRLs) may be more significant than LDL cholesterol levels. Clinical trials which have led to increased high-density lipoprotein (HDL) cholesterol have not always seen reductions in cardiovascular disease (CVD). Furthermore, genetic variants predisposing individuals to high HDL cholesterol are not associated with a lower risk of suffering a coronary event, and therefore HDL functionality is considered to be the most relevant aspect. Virgin olive oil (VOO) is thought to play a protective role against CVD. This review describes the effects of VOO and phenol-enriched VOOs on lipoprotein atherogenicity and HDL atheroprotective properties. The studies have demonstrated a decrease in LDL atherogenicity and an increase in the HDL-mediated macrophage cholesterol efflux capacity, HDL antioxidant activity, and HDL anti-inflammatory characteristics after various VOO interventions. Moreover, the expression of cholesterol efflux-related genes was enhanced after exposure to phenol-enriched VOOs in both post-prandial and sustained trials. Improvements in HDL antioxidant properties were also observed after VOO and phenol-enriched VOO interventions. Furthermore, some studies have demonstrated improved characteristics of TRL atherogenicity under postprandial conditions after VOO intake. Large-scale, long-term randomized clinical trials, and Mendelian analyses which assess the lipoprotein state and properties, are required to confirm these results.
Collapse
Affiliation(s)
- Marta Farràs
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-935537595
| | - Marina Canyelles
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
| | - Joan Carles Escolà-Gil
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
33
|
Sidapra M, Fuller M, Masannat YA. Diagnosis and management of chyle leak following axillary dissection. Surgeon 2020; 18:360-364. [PMID: 31932227 DOI: 10.1016/j.surge.2019.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 01/19/2023]
Abstract
Chyle leak following oncological breast and axillary surgery is a rare complication with small number of reported cases in the literature and little formal guidance regarding management. We present a review of the current literature and further related guidance from other specialties, along with suggested strategies for identification, diagnosis and management of this uncommon but potentially significant complication.
Collapse
Affiliation(s)
- Misha Sidapra
- Aberdeen Royal Infirmary, NHS Grampian, Foresterhill Campus, Aberdeen, Scotland, AB25 2ZN, United Kingdom; University of Aberdeen, School of Medicine, Medical Science and Nutrition, Polwarth Building University Medical Buildings, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Mairi Fuller
- Aberdeen Royal Infirmary, NHS Grampian, Foresterhill Campus, Aberdeen, Scotland, AB25 2ZN, United Kingdom; University of Aberdeen, School of Medicine, Medical Science and Nutrition, Polwarth Building University Medical Buildings, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Yazan A Masannat
- Aberdeen Royal Infirmary, NHS Grampian, Foresterhill Campus, Aberdeen, Scotland, AB25 2ZN, United Kingdom; University of Aberdeen, School of Medicine, Medical Science and Nutrition, Polwarth Building University Medical Buildings, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom.
| |
Collapse
|
34
|
Kelly JM, Ordovas JM, Matuszek G, Smith CE, Huggins GS, Dashti HS, Ichikawa R, Booth SL. The Contribution of Lipids to the Interindividual Response of Vitamin K Biomarkers to Vitamin K Supplementation. Mol Nutr Food Res 2019; 63:e1900399. [PMID: 31533195 PMCID: PMC8815429 DOI: 10.1002/mnfr.201900399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/16/2019] [Indexed: 12/12/2022]
Abstract
SCOPE A better understanding of factors contributing to interindividual variability in biomarkers of vitamin K can enhance the understanding of the equivocal role of vitamin K in cardiovascular disease. Based on the known biology of phylloquinone, the major form of vitamin K, it is hypothesized that plasma lipids contribute to the variable response of biomarkers of vitamin K metabolism to phylloquinone supplementation. METHODS AND RESULTS The association of plasma lipids and 27 lipid-related genetic variants with the response of biomarkers of vitamin K metabolism is examined in a secondary analysis of data from a 3-year phylloquinone supplementation trial in men (n = 66) and women (n = 85). Year 3 plasma triglycerides (TG), but not total cholesterol, LDL-cholesterol, or HDL-cholesterol, are associated with the plasma phylloquinone response (men: β = 1.01, p < 0.001, R2 = 0.34; women: β = 0.61, p = 0.008, R2 = 0.11; sex interaction p = 0.077). Four variants and the TG-weighted genetic risk score are associated with the plasma phylloquinone response in men only. Plasma lipids are not associated with changes in biomarkers of vitamin K function (undercarboxylated osteocalcin and matrix gla protein) in either sex. CONCLUSION Plasma TG are an important determinant of the interindividual response of plasma phylloquinone to phylloquinone supplementation, but changes in biomarkers of vitamin K carboxylation are not influenced by lipids.
Collapse
Affiliation(s)
- Jennifer M. Kelly
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Jose M. Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Gregory Matuszek
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Caren E. Smith
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Gordon S. Huggins
- Molecular Cardiology Research Institute Center for Translational Genomics, Tufts Medical Center and Tufts University, Boston, MA
| | - Hassan S. Dashti
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Reiko Ichikawa
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Sarah L. Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| |
Collapse
|
35
|
Hokkanen K, Tirronen A, Ylä-Herttuala S. Intestinal lymphatic vessels and their role in chylomicron absorption and lipid homeostasis. Curr Opin Lipidol 2019; 30:370-376. [PMID: 31361624 DOI: 10.1097/mol.0000000000000626] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review, we describe novel findings related to intestinal lipid transport in lymphatic vessels. RECENT FINDINGS Studies have shown that chylomicron entry to lacteals and lymph movement in intestinal lymphatic capillaries is an active process. Regulators of this intestinal chylomicron transport include among others the autonomous nervous system, transcription factors like PLAGL2, and molecular regulators, such as VEGF-A/Nrp1/VEGFR1, VEGF-C/VEGFR3, DLL4, CALCRL and GLP-2. Chylomicron transport in intestinal lymphatics is now emerging not only as an option for drug delivery but also as a new candidate for drug targeting in lipid-related disorders. SUMMARY Dysfunctions of lymphatic lipid transport can result in conditions such as dyslipidaemia. Intestinal lymphatics also provide several potential therapeutic possibilities: molecular regulation of lacteal cell-to-cell junctioning and lymph flow could provide new ways of treating conditions like hyperlipidaemia and associated diseases, such as atherosclerosis and other cardiovascular diseases, obesity, diabetes and fatty-liver disease. The intestinal lymphatic system can also be employed to deliver lipid nanoparticles as drug carriers to the venous circulation for improved treatment outcome. These findings highlight the importance and need for research on the different players of intestinal lymphatics in dietary lipid handling and therapeutic applications.
Collapse
Affiliation(s)
- Krista Hokkanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland
| | - Annakaisa Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
36
|
Abstract
An increased risk of cardiovascular disease, independent of conventional risk factors, is present even at minor levels of renal impairment and is highest in patients with end-stage renal disease (ESRD) requiring dialysis. Renal dysfunction changes the level, composition and quality of blood lipids in favour of a more atherogenic profile. Patients with advanced chronic kidney disease (CKD) or ESRD have a characteristic lipid pattern of hypertriglyceridaemia and low HDL cholesterol levels but normal LDL cholesterol levels. In the general population, a clear relationship exists between LDL cholesterol and major atherosclerotic events. However, in patients with ESRD, LDL cholesterol shows a negative association with these outcomes at below average LDL cholesterol levels and a flat or weakly positive association with mortality at higher LDL cholesterol levels. Overall, the available data suggest that lowering of LDL cholesterol is beneficial for prevention of major atherosclerotic events in patients with CKD and in kidney transplant recipients but is not beneficial in patients requiring dialysis. The 2013 Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Lipid Management in CKD provides simple recommendations for the management of dyslipidaemia in patients with CKD and ESRD. However, emerging data and novel lipid-lowering therapies warrant some reappraisal of these recommendations.
Collapse
|
37
|
Simone ML, Rabacchi C, Kuloglu Z, Kansu A, Ensari A, Demir AM, Hizal G, Di Leo E, Bertolini S, Calandra S, Tarugi P. Novel mutations of SAR1B gene in four children with chylomicron retention disease. J Clin Lipidol 2019; 13:554-562. [DOI: 10.1016/j.jacl.2019.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
38
|
Shahoei SH, Nelson ER. Nuclear receptors, cholesterol homeostasis and the immune system. J Steroid Biochem Mol Biol 2019; 191:105364. [PMID: 31002862 PMCID: PMC6589364 DOI: 10.1016/j.jsbmb.2019.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Cholesterol is essential for maintaining membrane fluidity in eukaryotes. Additionally, the synthetic cascade of cholesterol results in precursor molecules important for cellular function such as lipid raft formation and protein prenylation. As such, cholesterol homeostasis is tightly regulated. Interestingly, it is now known that some cholesterol precursors and many metabolites serve as active signaling molecules, binding to different classes of receptors including the nuclear receptors. Furthermore, many cholesterol metabolites or their nuclear receptors have been implicated in the regulation of the immune system in normal physiology and disease. Therefore, in this focused review, cholesterol homeostasis and nuclear receptors involved in this regulation will be discussed, with particular emphasis on how these cascades influence the immune system.
Collapse
Affiliation(s)
- Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana Champaign, Urbana, IL, United States.
| |
Collapse
|
39
|
Desaulniers D, Khan N, Cummings-Lorbetskie C, Leingartner K, Xiao GH, Williams A, Yauk CL. Effects of cross-fostering and developmental exposure to mixtures of environmental contaminants on hepatic gene expression in prepubertal 21 days old and adult male Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1-27. [PMID: 30744511 DOI: 10.1080/15287394.2018.1542360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
The notion that adverse health effects produced by exposure to environmental contaminants (EC) may be modulated by the presence of non-chemical stressors is gaining attention. Previously, our lab demonstrated that cross-fostering (adoption of a litter at birth) acted as a non-chemical stressor that amplified the influence of developmental exposure to EC on the glucocorticoid stress-response in adult rats. Using liver from the same rats, the aim of the current study was to investigate whether cross-fostering might also modulate EC-induced alterations in hepatic gene expression profiles. During pregnancy and nursing, Sprague-Dawley dams were fed cookies laced with corn oil (control, C) or a chemical mixture (M) composed of polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), and methylmercury (MeHg), at 1 mg/kg/day. This mixture simulated the contaminant profile reported in maternal human blood. At birth, some control and M treated litters were cross-fostered to form two additional groups with different biological/nursing mothers (CC and MM). The hepatic transcriptome was analyzed by DNA microarray in male offspring at postnatal days 21 and 78-86. Mixture exposure altered the expression of detoxification and energy metabolism genes in both age groups, but with different sets of genes affected at day 21 and 78-86. Cross-fostering modulated the effects of M on gene expression pattern (MM vs M), as well as expression of energy metabolism genes between control groups (CC vs C). In conclusion, while describing short and long-term effects of developmental exposure to EC on hepatic transcriptomes, these cross-fostering results further support the consideration of non-chemical stressors in EC risk assessments.
Collapse
Affiliation(s)
- D Desaulniers
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - N Khan
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - C Cummings-Lorbetskie
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - K Leingartner
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - G-H Xiao
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - A Williams
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - C L Yauk
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| |
Collapse
|
40
|
Update on the diagnosis, treatment and management of rare genetic lipid disorders. Pathology 2019; 51:193-201. [DOI: 10.1016/j.pathol.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023]
|
41
|
Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int J Mol Sci 2018; 19:ijms19113426. [PMID: 30388787 PMCID: PMC6275065 DOI: 10.3390/ijms19113426] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is an essential component of cell barrier formation and signaling transduction involved in many essential physiologic processes. For this reason, cholesterol metabolism must be tightly controlled. Cell cholesterol is mainly acquired from two sources: Dietary cholesterol, which is absorbed in the intestine and, intracellularly synthesized cholesterol that is mainly synthesized in the liver. Once acquired, both are delivered to peripheral tissues in a lipoprotein dependent mechanism. Malfunctioning of cholesterol metabolism is caused by multiple hereditary diseases, including Familial Hypercholesterolemia, Sitosterolemia Type C and Niemann-Pick Type C1. Of these, familial hypercholesterolemia (FH) is a common inherited autosomal co-dominant disorder characterized by high plasma cholesterol levels. Its frequency is estimated to be 1:200 and, if untreated, increases the risk of premature cardiovascular disease. This review aims to summarize the current knowledge on cholesterol metabolism and the relation of FH to cholesterol homeostasis with special focus on the genetics, diagnosis and treatment.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Kepa B Uribe
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Shifa Jebari
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Unai Galicia-Garcia
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Helena Ostolaza
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| |
Collapse
|
42
|
Dyslipidemias in clinical practice. Clin Chim Acta 2018; 487:117-125. [PMID: 30201369 DOI: 10.1016/j.cca.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023]
Abstract
Most dyslipidemic conditions have been linked to an increased risk of cardiovascular disease. Over the past few years major advances have been made regarding the genetic and metabolic basis of dyslipidemias. Detailed characterization of the genetic basis of familial lipid disorders and knowledge concerning the effects of environmental factors on the expression of dyslipidemias have increased substantially, contributing to a better diagnosis in individual patients. In addition to these developments, therapeutic options to lower cholesterol levels in clinical practice have expanded even further in patients with familial hypercholesterolemia and in subjects with cardiovascular disease. Finally, promising upcoming therapeutic lipid lowering strategies will be reviewed. All these advances will be discussed in relation to current clinical practice with special focus on common lipid disorders including familial dyslipidemias.
Collapse
|
43
|
Kopec RE, Failla ML. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.06.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Doonan LM, Fisher EA, Brodsky JL. Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:762-771. [PMID: 29627384 DOI: 10.1016/j.bbalip.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022]
Abstract
Understanding the molecular defects underlying cardiovascular disease is necessary for the development of therapeutics. The most common method to lower circulating lipids, which reduces the incidence of cardiovascular disease, is statins, but other drugs are now entering the clinic, some of which have been approved. Nevertheless, patients cannot tolerate some of these therapeutics, the drugs are costly, and/or the treatments are approved for only rare forms of disease. Efforts to find alternative treatments have focused on other factors, such as apolipoproteinB (apoB), which transports cholesterol in the blood stream. The levels of apoB are regulated by endoplasmic reticulum (ER) associated degradation as well as by a post ER degradation pathway in model systems, and we suggest that these events provide novel therapeutic targets. We discuss first how cardiovascular disease arises and how cholesterol is regulated, and then summarize the mechanisms of action of existing treatments for cardiovascular disease. We then review the apoB biosynthetic pathway, focusing on steps that might be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Lynley M Doonan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Edward A Fisher
- Departments of Medicine (Cardiology) and Cell Biology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
45
|
Remaley AT, Yang Z. Changing the Cholesterol-Centric Paradigm for the Assessment of the Proatherogenic Potential of Low-Density Lipoproteins. J Appl Lab Med 2018; 2:671-673. [DOI: 10.1373/jalm.2017.025122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/14/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alan T Remaley
- National Institutes of Health, National Heart, Lung and Blood Institute, Cardiopulmonary Branch, Lipoprotein Metabolism Laboratory, Bethesda, MD
| | - Zhihong Yang
- National Institutes of Health, National Heart, Lung and Blood Institute, Cardiopulmonary Branch, Lipoprotein Metabolism Laboratory, Bethesda, MD
| |
Collapse
|
46
|
Peng J, Luo F, Ruan G, Peng R, Li X. Hypertriglyceridemia and atherosclerosis. Lipids Health Dis 2017; 16:233. [PMID: 29212549 PMCID: PMC5719571 DOI: 10.1186/s12944-017-0625-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/27/2017] [Indexed: 11/12/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death and it has been confirmed that increased low density lipoprotein cholesterol (LDL-C) is an independent risk factor for atherosclerosis. Recently, the increasing evidence has showed that hypertriglyceridemia is associated with incremental ASCVD risk. But the proatherogenic mechanism of triglyceride (TG) remains unclear. Therefore, this article focuses on the clinical studies and proatherogenic mechanism related to hypertriglyceridemia, in order to provide reference for the prevention and treatment of ASCVD.
Collapse
Affiliation(s)
- Jia Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Guiyun Ruan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ran Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Xiangping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
47
|
Singh RK, Lui E, Wright D, Taylor A, Bakovic M. Alcohol extract of North American ginseng (Panax quinquefolius) reduces fatty liver, dyslipidemia, and other complications of metabolic syndrome in a mouse model. Can J Physiol Pharmacol 2017; 95:1046-1057. [PMID: 28666094 DOI: 10.1139/cjpp-2016-0510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigated whether North American ginseng (Panax quinquefolius) could reduce development of the metabolic syndrome phenotype in a mouse model (ETKO) of the disease. Young ETKO mice have no disease but similar to humans start to develop the fatty liver, hypertriglyceridemia, obesity, and insulin resistance at 25-30 weeks of age, and the disease continues to progress with ageing. ETKO mice were orally given an ethanol extract of ginseng roots at 4 and 32 weeks of age. Treatments with ginseng eliminated the ETKO fatty liver, reduced hepatic and intestinal lipoprotein secretion, and reduced the level of circulating lipids. Improvements by ginseng treatments were manifested as a reduction in the expression of genes involved in the regulation of fatty acid and triglyceride (fat) synthesis and secretion by the lipoproteins on one hand, and the stimulation of fatty acid oxidation and triglyceride degradation by lipolysis on the other hand. These processes altogether improved glucose, fatty acid, and triglyceride metabolism, reduced liver fat load, and reversed the progression of metabolic syndrome. These data confirm that treatments with North American ginseng could alleviate metabolic syndrome through the maintenance of a better balance between glucose and fatty acid metabolism, lipoprotein secretion, and energy homeostasis in disease-prone states.
Collapse
Affiliation(s)
- Ratnesh K Singh
- a Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Edmund Lui
- b Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - David Wright
- a Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adrian Taylor
- a Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marica Bakovic
- a Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
48
|
Yang Y, Xiao H, McClements DJ. Impact of Lipid Phase on the Bioavailability of Vitamin E in Emulsion-Based Delivery Systems: Relative Importance of Bioaccessibility, Absorption, and Transformation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3946-3955. [PMID: 28447464 DOI: 10.1021/acs.jafc.7b00955] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A simulated gastrointestinal tract/Caco-2 cell culture model was used to investigate the effects of lipid phase type on vitamin E (VE) bioavailability. Oil-in-water emulsions fortified with α-tocopherol acetate were fabricated using a natural emulsifier (quillaja saponin) and long or medium chain triglycerides (LCTs or MCTs) as lipids. The impact of lipid type on VE bioaccessibility, absorption, and transformation was determined. VE bioaccessibility was greater for LCT (46%) than MCT (19%) due to greater solubilization in mixed micelles assembled from longer fatty acids. VE absorption by Caco-2 cells was similar for LCT (28%) and MCT (30%). The transformation of α-tocopherol acetate to α-tocopherol was higher for LCT (90%) than MCT (75%) due to differences in esterase accessibility to VE. Emulsion-based delivery systems formulated using LCT are therefore more suitable for encapsulating and delivering vitamin E than those formulated using MCT.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture , Beijing, 100193, China
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Hang Xiao
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
49
|
Nicolson GL, Ash ME. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1704-1724. [PMID: 28432031 DOI: 10.1016/j.bbamem.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California 92649, USA.
| | - Michael E Ash
- Clinical Education, Newton Abbot, Devon, TQ12 4SG, UK
| |
Collapse
|
50
|
Steenson S, Umpleby AM, Lovegrove JA, Jackson KG, Fielding BA. Role of the Enterocyte in Fructose-Induced Hypertriglyceridaemia. Nutrients 2017; 9:nu9040349. [PMID: 28368310 PMCID: PMC5409688 DOI: 10.3390/nu9040349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 01/12/2023] Open
Abstract
Dietary fructose has been linked to an increased post-prandial triglyceride (TG) level; which is an established independent risk factor for cardiovascular disease. Although much research has focused on the effects of fructose consumption on liver-derived very-low density lipoprotein (VLDL); emerging evidence also suggests that fructose may raise post-prandial TG levels by affecting the metabolism of enterocytes of the small intestine. Enterocytes have become well recognised for their ability to transiently store lipids following a meal and to thus control post-prandial TG levels according to the rate of chylomicron (CM) lipoprotein synthesis and secretion. The influence of fructose consumption on several aspects of enterocyte lipid metabolism are discussed; including de novo lipogenesis; apolipoprotein B48 and CM-TG production; based on the findings of animal and human isotopic tracer studies. Methodological issues affecting the interpretation of fructose studies conducted to date are highlighted; including the accurate separation of CM and VLDL. Although the available evidence to date is limited; disruption of enterocyte lipid metabolism may make a meaningful contribution to the hypertriglyceridaemia often associated with fructose consumption.
Collapse
Affiliation(s)
- Simon Steenson
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - A Margot Umpleby
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
| | - Julie A Lovegrove
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - Kim G Jackson
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
| |
Collapse
|