1
|
Xie J, Chen S, Chen Y, Tong J, Huang H, Liao J, Sun J, Cong L, Zeng Y. FFA intervention on LO2 cells mediates SNX-10 synthesis and regulates MMP9 secretion in LX2 cells via TGF-β1. Arch Biochem Biophys 2025; 764:110255. [PMID: 39662717 DOI: 10.1016/j.abb.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is a public health concern. Transforming growth factor-β1(TGF-β1) plays an important regulatory role in multiple MAFLD stages, as it can promote the expression of matrix metalloproteinase-9 (MMP9) and promote liver fibrosis. Sorting nexin protein-10 (SNX-10) may be involved in the occurrence and development of fatty liver disease. METHODS Free fatty acids (FFA) treatment was used to simulate the cellular lipid deposition stage of MAFLD and the interactions between cells were simulated via LX2 and LO2 coculture. The molecular interaction between the two cell types was studied via ELISA, immunoprecipitation, qPCR, and western blotting. RESULTS In FFA-treated LO2 cells, intracellular TGF-β1 expression increased as lipid deposition increased. FFA-treated LO2 cells promoted the expression and secretion of MMP9 by LX2 cells through paracrine pathways. MMP9 secretion decreased with decreasing SNX-10 expression in LX2 cells. The interaction between MMP9 and SNX-10 was confirmed by coimmunoprecipitation. TGF-β1 promoted the synthesis of SNX-10 through the p38 MAPK pathway, and SNX-10 affected the secretion of MMP9 through protein interactions, thereby affecting the development of liver fibrosis. CONCLUSIONS FFA induced lipid deposition in LO2 cells, and TGF-β1 mediated the p38 MAPK pathway to promote SNX-10 synthesis and stimulate MMP9 secretion, thereby regulating the involvement of LX2 in the process of liver fibrosis.
Collapse
Affiliation(s)
- Jianhui Xie
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shiyan Chen
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yangli Chen
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Junlu Tong
- Department of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Huijie Huang
- Department of Endocrinology and Metabolic Diseases, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, Guangdong, China
| | - Jingwen Liao
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jixin Sun
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Li Cong
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| | - Yingjuan Zeng
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
2
|
Chen J, Yang Y, Su S, Zhang S, Huang J, Chen H, Yang X, Sang A. ANGPTL4 promotes choroidal neovascularization and subretinal fibrosis through the endothelial‒mesenchymal transition. Int Ophthalmol 2024; 44:441. [PMID: 39586852 DOI: 10.1007/s10792-024-03348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE This study aimed to investigate the possible mechanisms by which ANGPTL4 is involved in the pathogenesis of choroidal neovascularization (CNV) and subretinal fibrosis. METHODS Differentially expressed genes in retinal pigmented epithelium (RPE)-choroid-sclera complex tissues from nAMD patients and control individuals were identified via the GEO database, followed by GO and KEGG analyses. A Venn diagram was used to identify EndMT-related DEGs. A logistic regression model was constructed to screen for prognostic genes. Laser-induced CNV mouse models were established and validated with FFA and OCTA. The expression of ANGPTL4 and EndMT-related markers in the RPE-choroid-sclera complex was measured via RT‒qPCR and Western blotting. TGF-β2-induced HUVECs were used as EndMT cell models, and specific siRNAs targeting ANGPTL4 (si-ANGPTL4) were designed and screened. The effects of ANGPTL4 knockdown on the migration and invasion of HUVECs were also examined. Laser-induced CNV mouse models were constructed, and an intravitreal injection of cholesterol-modified si-ANGPTL4 was used to knock down ANGPTL4. FFA, OCTA and immunofluorescence staining were used to observe CNV formation and subretinal fibrosis, and the expression of ANGPTL4 and EndMT-related markers was determined. RESULTS ANGPTL4 expression was significantly increased in mice with CNV and colocalized with IB4. In TGF-β2-induced EndMT, ANGPTL4 was also upregulated, and its knockdown led to the inhibition of EndMT and cell migration and invasion, while its overexpression promoted the EndMT process. ANGPTL4 knockdown reduced the formation of CNV and subretinal fibrosis in mice with CNV by suppressing EndMT. CONCLUSIONS ANGPTL4 may promote CNV and subretinal fibrosis through EndMT, suggesting that ANGPTL4 may be a novel potential target for nAMD therapy.
Collapse
Affiliation(s)
- Jia Chen
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ying Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong University, Nantong, 226001, China
| | - Shu Su
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shenglai Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong University, Nantong, 226001, China
| | - Ju Huang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Dalian Medical University, Dalian, 116044, China
| | - Hong Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Dalian Medical University, Dalian, 116044, China
| | - Xiaowei Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Nantong University, Nantong, 226001, China.
| | - Aimin Sang
- Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Xu Z, Jiang G. ANGPTL4-A protein involved in glucose metabolism, lipid metabolism, and tumor development. J Gene Med 2024; 26:e3740. [PMID: 39467822 DOI: 10.1002/jgm.3740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 10/30/2024] Open
Abstract
Since ANGPTL4 was discovered to be involved in lipid metabolism in 2000 for the first time, Angptl4 has attracted the attention of researchers. With the further research, it was found that angptl4 was also involved in many biological activities (glucose metabolism, angiogenesis, wound healing, tumor growth, etc.) in vivo. In this review, we provide an overview of the fundamental role of ANGPTL4 in metabolic regulation and its impact on tumor growth. These insights may provide a way for exploring ANGPTL4 as a potential therapeutic target for future disease treatments.
Collapse
Affiliation(s)
- Zhilong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Bayram SŞ, Kızıltan G. The Role of Omega- 3 Polyunsaturated Fatty Acids in Diabetes Mellitus Management: A Narrative Review. Curr Nutr Rep 2024; 13:527-551. [PMID: 39031306 PMCID: PMC11327211 DOI: 10.1007/s13668-024-00561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE OF REVIEW Diabetes mellitus (DM) is a group of metabolic illnesses characterized by elevated levels of glucose in the bloodstream as a result of abnormalities in the generation or function of insulin. Medical Nutrition Therapy (MNT) is an essential component of diabetes management. Dietary fats are essential in both the prevention and progression of chronic diseases. Omega-3 polyunsaturated fatty acids are recognized for their advantageous impact on health. They assist in controlling blood sugar levels and lipid profile in patients with all types of diabetes. Furthermore, they reduce the occurrence of cardiovascular events and death linked to DM. RECENT FINDINGS After evaluating the antioxidant, anti-inflammatory, antilipidemic, and antidiabetic mechanisms of omega-3 fatty acid supplements, as well as the results from randomized controlled studies, it is clear that these supplements have positive effects in both preventing and treating diabetes, as well as preventing and treating complications related to diabetes, specifically cardiovascular diseases. However, current evidence does not support the use of omega-3 supplementation in people with diabetes for the purpose of preventing or treating cardiovascular events. People with all types of diabetes are suggested to include fatty fish and foods high in omega-3 fatty acids in their diet twice a week, as is prescribed for the general population.
Collapse
Affiliation(s)
- Sümeyra Şahin Bayram
- Faculty of Health Sciences, Nutrition and Dietetics Department, Selcuk University, Konya, Turkey.
| | - Gül Kızıltan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Baskent University, Ankara, Turkey
| |
Collapse
|
5
|
Zhao J, Ge X, Li T, Yang M, Zhao R, Yan S, Wu H, Liu Y, Wang K, Xu Z, Jia J, Liu L, Dou T. Integrating metabolomics and transcriptomics to analyze the differences of breast muscle quality and flavor formation between Daweishan mini chicken and broiler. Poult Sci 2024; 103:103920. [PMID: 38909504 PMCID: PMC11253666 DOI: 10.1016/j.psj.2024.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
The quality and flavor of chicken are affected by muscle metabolites and related regulatory genes, and the molecular regulation mechanism of meat quality is different among different breeds of chicken. In this study, 40 one-day-old Daweishan mini chicken (DM) and Cobb broiler (CB) were selected from each group, with 4 replicates and 10 chickens in each replicate. The chickens were reared until 90 d of age under the same management conditions. Then, metabolomics and transcriptomics data of 90-day-old DM (n = 4) and CB (n = 4) were integrated to analyze metabolites affecting breast muscle quality and flavor, and to explore the important genes regulating meat quality and flavor related metabolites. The results showed that a total of 38 significantly different metabolites (SDMs) and 420 differentially expressed genes (DEGs) were detected in the breast muscle of the 2 breeds. Amino acid and lipid metabolism may be the cause of meat quality and flavor difference between DM and CB chickens, involving metabolites such as L-methionine, betaine, N6, N6, N6-Trimethyl-L-lysine, L-anserine, glutathione, glutathione disulfide, L-threonine, N-Acetyl-L-aspartic acid, succinate, choline, DOPC, SOPC, alpha-linolenic acid, L-palmitoylcarnitine, etc. Important regulatory genes with high correlation with flavor amino acids (GATM, GSTO1) and lipids (PPARG, LPL, PLIN1, SCD, ANGPTL4, FABP7, GK, B4GALT6, UGT8, PLPP4) were identified by correlation analysis, and the gene-metabolite interaction network of breast muscle mass and flavor formation in DM chicken was constructed. This study showed that there were significant differences in breast metabolites between DM and CB chickens, mainly in amino acid and lipid metabolites. These 2 kinds of substances may be the main reasons for the difference in breast muscle quality and flavor between the 2 breeds. In general, this study could provide a theoretical basis for further research on the molecular regulatory mechanism of the formation of breast muscle quality and flavor differences between DM and CB chickens, and provide a reference for the development, utilization and genetic breeding of high-quality meat chicken breeds.
Collapse
Affiliation(s)
- Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xuehai Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tao Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ruohan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Yunnan Rural Revitalization Education Institute, Yunnan Open University, Kunming 650101, China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Institute of Science and Technology, Chuxiong Normal University, Chuxiong 675099, China
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
6
|
Fan Y, He J, Shi L, Zhang M, Chen Y, Xu L, Han N, Jiang Y. Identification of potential key lipid metabolism-related genes involved in tubular injury in diabetic kidney disease by bioinformatics analysis. Acta Diabetol 2024; 61:1053-1068. [PMID: 38691241 DOI: 10.1007/s00592-024-02278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
AIMS Accumulating evidences indicate that abnormalities in tubular lipid metabolism play a crucial role in the development of diabetic kidney disease (DKD). We aim to identify novel lipid metabolism-related genes associated with tubular injury in DKD by utilizing bioinformatics approaches. METHODS Differentially expressed genes (DEGs) between control and DKD tubular tissue samples were screened from the Gene Expression Omnibus (GEO) database, and then were intersected with lipid metabolism-related genes. Hub genes were further determined by combined weighted gene correlation network analysis (WGCNA) and protein-protein interaction (PPI) network. We performed enrichment analysis, immune analysis, clustering analysis, and constructed networks between hub genes and miRNAs, transcription factors and small molecule drugs. Receiver operating characteristic (ROC) curves were employed to evaluate the diagnostic efficacy of hub genes. We validated the relationships between hub genes and DKD with external datasets and our own clinical samples. RESULTS There were 5 of 37 lipid metabolism-related DEGs identified as hub genes. Enrichment analysis demonstrated that lipid metabolism-related DEGs were enriched in pathways such as peroxisome proliferator-activated receptors (PPAR) signaling and pyruvate metabolism. Hub genes had potential regulatory relationships with a variety of miRNAs, transcription factors and small molecule drugs, and had high diagnostic efficacy. Immune infiltration analysis revealed that 13 immune cells were altered in DKD, and hub genes exhibited significant correlations with a variety of immune cells. Through clustering analysis, DKD patients could be classified into 3 immune subtypes and 2 lipid metabolism subtypes, respectively. The tubular expression of hub genes in DKD was further verified by other external datasets, and immunohistochemistry (IHC) staining showed that except ACACB, the other 4 hub genes (LPL, AHR, ME1 and ALOX5) exhibited the same results as the bioinformatics analysis. CONCLUSION Our study identified several key lipid metabolism-related genes (LPL, AHR, ME1 and ALOX5) that might be involved in tubular injury in DKD, which provide new insights and perspectives for exploring the pathogenesis and potential therapeutic targets of DKD.
Collapse
Affiliation(s)
- Yuanshuo Fan
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Juan He
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Lixin Shi
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Miao Zhang
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ye Chen
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Na Han
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yuecheng Jiang
- Guizhou Provincial People's Hospital, Guiyang, 550002, China
| |
Collapse
|
7
|
Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol (Lausanne) 2024; 14:1322869. [PMID: 38303975 PMCID: PMC10830840 DOI: 10.3389/fendo.2023.1322869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Since statins have had such tremendous therapeutic success over the last three decades, the field of atherosclerosis has become somewhat LDL-centric, dismissing the relevance of triglycerides (TG), particularly chylomicrons, in atherogenesis. Nonetheless, 50% of patients who take statins are at risk of developing atherosclerotic cardiovascular disease (ASCVD) and are unable to achieve their goal LDL-C levels. This residual risk is mediated, in part by triglyceride rich lipoproteins (TRL) and their remnants. Following his seminal investigation on the subject, Zilversmit proposed that atherosclerosis is a postprandial event in 1979 (1-4). In essence, the concept suggests that remnant cholesterol-rich chylomicron (CM) and very-low density lipoprotein (VLDL) particles play a role in atherogenesis. Given the foregoing, this narrative review addresses the most recent improvements in our understanding of postprandial dyslipidemia. The primary metabolic pathways of chylomicrons are discussed, emphasizing the critical physiological role of lipoprotein lipase and apoCIII, the importance of these particles' fluxes in the postprandial period, their catabolic rate, the complexities of testing postprandial metabolism, and the role of angiopoietin-like proteins in the partition of CM during the fed cycle. The narrative is rounded out by the dysregulation of postprandial lipid metabolism in insulin resistance states and consequent CVD risk, the clinical evaluation of postprandial dyslipidemia, current research limits, and potential future study directions.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, Touro University California, Vallejo, CA, United States
| |
Collapse
|
8
|
Zheng Z, Lyu W, Hong Q, Yang H, Li Y, Zhao S, Ren Y, Xiao Y. Phylogenetic and expression analysis of the angiopoietin-like gene family and their role in lipid metabolism in pigs. Anim Biosci 2023; 36:1517-1529. [PMID: 37170504 PMCID: PMC10475376 DOI: 10.5713/ab.23.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/12/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE The objective of this study was to investigate the phylogenetic and expression analysis of the angiopoietin-like (ANGPTL) gene family and their role in lipid metabolism in pigs. METHODS In this study, the amino acid sequence analysis, phylogenetic analysis, and chromosome adjacent gene analysis were performed to identify the ANGPTL gene family in pigs. According to the body weight data from 60 Jinhua pigs, different tissues of 6 pigs with average body weight were used to determine the expression profile of ANGPTL1-8. The ileum, subcutaneous fat, and liver of 8 pigs with distinct fatness were selected to analyze the gene expression of ANGPTL3, ANGPTL4, and ANGPTL8. RESULTS The sequence length of ANGPTLs in pigs was between 1,186 and 1,991 bp, and the pig ANGPTL family members shared common features with human homologous genes, including the high similarity of the amino acid sequence and chromosome flanking genes. Amino acid sequence analysis showed that ANGPTL1-7 had a highly conserved domain except for ANGPTL8. Phylogenetic analysis showed that each ANGPTL homologous gene shared a common origin. Quantitative reverse-transcription polymerase chain reaction analysis showed that ANGPTL family members had different expression patterns in different tissues. ANGPTL3 and ANGPTL8 were mainly expressed in the liver, while ANGPTL4 was expressed in many other tissues, such as the intestine and subcutaneous fat. The expression levels of ANGPTL3 in the liver and ANGPTL4 in the liver, intestine and subcutaneous fat of Jinhua pigs with low propensity for adipogenesis were significantly higher than those of high propensity for adipogenesis. CONCLUSION These results increase our knowledge about the biological role of the ANGPTL family in this important economic species, it will also help to better understand the role of ANGPTL3, ANGPTL4, and ANGPTL8 in lipid metabolism of pigs, and provide innovative ideas for developing strategies to improve meat quality of pigs.
Collapse
Affiliation(s)
- Zibin Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
| | - Qihua Hong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528000,
China
| | - Shengjun Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023,
China
| | - Ying Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023,
China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
| |
Collapse
|
9
|
Ding S, Lin Z, Zhang X, Jia X, Li H, Fu Y, Wang X, Zhu G, Lu G, Xiao W, Gong W. Deficiency of angiopoietin-like 4 enhances CD8 + T cell bioactivity via metabolic reprogramming for impairing tumour progression. Immunology 2023; 170:28-46. [PMID: 37094816 DOI: 10.1111/imm.13650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Angiopoietin-like 4 (ANGPTL4) is a secreted metabolism-modulating glycoprotein involved in the progression of tumours, cardiovascular diseases, metabolic syndrome and infectious diseases. In this study, more CD8+ T cells were activated to be effector T cells in ANGPTL4-/- mice. Impaired growth of tumours implanted in 3LL, B16BL6 or MC38 cells and reduced metastasis by B16F10 cells were observed in ANGPTL4-/- mice. Bone marrow (BM) transplantation experiments displayed that deficiency of ANGPTL4 in either host or BM cells promoted CD8+ T cell activation. However, ANGPTL4 deficiency in CD8+ T cells themselves showed more efficient anti-tumour activities. Recombinant ANGPTL4 protein promoted tumour growth in vivo with the less CD8+ T cell infiltration and it directly downregulated CD8+ T cell activation ex vivo. Transcriptome sequencing and metabolism analysis identified that ANGPTL4-/- CD8+ T cells increased glycolysis and decreased oxidative phosphorylation, which was dependent on the PKCζ-LKB1-AMPK-mTOR signalling axis. Reverse correlation of elevated ANGPTL4 levels in sera and tumour tissues with activated CD8+ T cells in the peripheral blood was displayed in patients with colorectal cancer. These results demonstrated that ANGPTL4 decreased immune surveillance in tumour progression by playing an immune-modulatory role on CD8+ T cells via metabolic reprogramming. Efficient blockade of ANGPTL4 expression in tumour patients would generate an effective anti-tumour effect mediated by CD8+ T cells.
Collapse
Affiliation(s)
- Shizhen Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhijie Lin
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Xiaoyuan Zhang
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoqing Jia
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hualing Li
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Fu
- Department of Basic Medicine, School of Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Xuefeng Wang
- Department of Basic Medicine, School of Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Guoqiang Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weijuan Gong
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Gugliucci A. Sugar and Dyslipidemia: A Double-Hit, Perfect Storm. J Clin Med 2023; 12:5660. [PMID: 37685728 PMCID: PMC10488931 DOI: 10.3390/jcm12175660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The availability of sugar has expanded over the past 50 years, due to improved industrial processes and corn subsidies, particularly in the form of sweetened beverages. This correlates with a surge in the prevalence of cardiometabolic disorders, which has brought this issue back into the spotlight for public health. In this narrative review, we focus on the role of fructose in the genesis of cardiometabolic dyslipidemia (an increase in serum triglyceride-rich lipoproteins (TRL): VLDL, chylomicrons (CM), and their remnants) bringing together the most recent data on humans, which demonstrates the crucial interaction between glucose and fructose, increasing the synthesis while decreasing the catabolism of these particles in a synergistic downward spiral. After reviewing TRL metabolism, we discuss the fundamental principles governing the metabolism of fructose in the intestine and liver and the effects of dysregulated fructolysis, in conjunction with the activation of carbohydrate-responsive element-binding protein (ChREBP) by glucose and the resulting crosstalk. The first byproduct of fructose catabolism, fructose-1-P, is highlighted for its function as a signaling molecule that promotes fat synthesis. We emphasize the role of fructose/glucose interaction in the liver, which enhances de novo lipogenesis, triglyceride (TG) synthesis, and VLDL production. In addition, we draw attention to current research that demonstrates how fructose affects the activity of lipoprotein lipase by increasing the concentration of inhibitors such as apolipoprotein CIII (apoCIII) and angiopoietin-like protein 3 (ANGPTL3), which reduce the catabolism of VLDL and chylomicrons and cause the building up of their atherogenic remnants. The end outcome is a dual, synergistic, and harmful action that encourages atherogenesis. Thus, considering the growing concerns regarding the connection between sugar consumption and cardiometabolic disease, current research strongly supports the actions of public health organizations aimed at reducing sugar intake, including dietary guidance addressing "safe" limits for sugar consumption.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
11
|
Leentjens M, Bosschieter PFN, Al-Terki A, de Raaff CAL, de Vries CEE, Hammad M, Thanaraj TA, Al-Khairi I, Cherian P, Channanath A, Abu-Farha M, de Vries N, Abubaker J. The association between biomarker angiopoietin-like protein five and obstructive sleep apnea in patients undergoing bariatric surgery. Sleep Breath 2023; 27:1443-1454. [PMID: 36449218 DOI: 10.1007/s11325-022-02736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Obstructive sleep apnea (OSA) is prevalent in the bariatric population. OSA should be recognized in patients undergoing bariatric surgery preoperatively to prevent peri- and post-operative complications. Lipid metabolism-related biomarkers are associated with OSA. Triglyceride metabolism is, among others, regulated by angiopoietin-like protein five (ANGPTL5). We aimed to evaluate the level of ANGPTL5 in patients with OSA of different severity levels before and after bariatric surgery. METHODS We performed a single-center prospective cohort study including a consecutive series of patients who underwent bariatric surgery. We collected the clinical data, polysomnography (PSG) or polygraphy (PG) parameters, and plasma derived via venipuncture before and 6 to 12 months after surgery. Lipid profile, glucose levels, and ANGPTL5 levels were assessed. ANGPTL5 levels were measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS The study included 88 patients for analysis. The patients were divided into two subgroups: no or mild OSA (apnea-hypopnea index (AHI) < 15 events/hour, n = 57) and moderate-to-severe OSA (AHI ≥ 15 events/hour, n = 31). The ANGPTL5 level was higher in the moderate-to-severe OSA group (20.5 [15.6, 26.5] ng/mL) compared to the no or mild OSA group (16.3 [12.5, 19.4] ng/mL) (p = 0.008). A significant positive correlation was observed between ANGPTL5 and AHI (ρ = 0.256, p = 0.017), apnea index (AI) (ρ = 0.318, p = 0.003), and triglyceride levels (ρ = 0.240, p = 0.025). ANGPTL5 levels were reduced significantly after bariatric surgery in both moderate-to-severe OSA (15.6 [10.3, 18.7] ng/mL) and no or mild OSA (13.4 [9.2, 15.8] ng/mL) groups, though to a lower level in the group without or mild OSA. Post-surgery, the significant positive correlation between ANGPTL5 and AHI (ρ = 0.210, p = 0.047), AI (ρ = 0.230, p = 0.034), and triglyceride (ρ = 0.397, p < 0.001) remained. CONCLUSION The data showed increased levels of ANGPTL5 in patients with moderate-to-severe OSA. Both AHI and ANGPTL5 levels decreased significantly after bariatric surgery. We also report an association between ANGPTL5 levels and OSA severity.
Collapse
Affiliation(s)
- M Leentjens
- Department of Otorhinolaryngology - Head and Neck Surgery, OLVG, Amsterdam, the Netherlands
| | - P F N Bosschieter
- Department of Otorhinolaryngology - Head and Neck Surgery, OLVG, Amsterdam, the Netherlands
| | - Abdulmohsen Al-Terki
- Department of Otolaryngology - Head & Neck Surgery, Medical Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - C A L de Raaff
- Department of Surgery, Amsterdam UMC, Amsterdam, the Netherlands
| | - C E E de Vries
- Department of Surgery, Reinier de Graaf Gasthuis, Delft, the Netherlands
| | - Maha Hammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait
| | | | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait.
| | - N de Vries
- Department of Otorhinolaryngology - Head and Neck Surgery, OLVG, Amsterdam, the Netherlands
- Department of Oral Kinesiology, ACTA, MOVE Research Institute Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
- Faculty of Medicine and Health Sciences, Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait
| |
Collapse
|
12
|
Gugliucci A. Triglyceride-Rich Lipoprotein Metabolism: Key Regulators of Their Flux. J Clin Med 2023; 12:4399. [PMID: 37445434 DOI: 10.3390/jcm12134399] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The residual risk for arteriosclerotic cardiovascular disease after optimal statin treatment may amount to 50% and is the consequence of both immunological and lipid disturbances. Regarding the lipid disturbances, the role of triglyceride-rich lipoproteins (TRLs) and their remnants has come to the forefront in the past decade. Triglycerides (TGs) stand as markers of the remnants of the catabolism of TRLs that tend to contain twice as much cholesterol as compared to LDL. The accumulation of circulating TRLs and their partially lipolyzed derivatives, known as "remnants", is caused mainly by ineffective triglyceride catabolism. These cholesterol-enriched remnant particles are hypothesized to contribute to atherogenesis. The aim of the present narrative review is to briefly summarize the main pathways of TRL metabolism, bringing to the forefront the newly discovered role of apolipoproteins, the key physiological function of lipoprotein lipase and its main regulators, the importance of the fluxes of these particles in the post-prandial period, their catabolic rates and the role of apo CIII and angiopoietin-like proteins in the partition of TRLs during the fast-fed cycle. Finally, we provide a succinct summary of the new and old therapeutic armamentarium and the outcomes of key current trials with a final outlook on the different methodological approaches to measuring TRL remnants, still in search of the gold standard.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
13
|
Circulating ANGPTL8 as a Potential Protector of Metabolic Complications in Patients with Psoriasis. J Clin Med 2023; 12:jcm12062346. [PMID: 36983346 PMCID: PMC10058172 DOI: 10.3390/jcm12062346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Angiopoietin-like protein 8 (ANGPTL8) exerts pleiotropic effects, taking part in lipid and carbohydrate metabolism, inflammation, hematopoiesis and oncogenesis. So far, the exact molecular targets of ANGPTL8 remain poorly defined. We aimed to evaluate the serum concentration of ANGPTL8 in individuals with psoriasis and examine how systemic therapy affects the concentration of ANGPTL8. The study enrolled 35 patients with plaque-type psoriasis that were followed for 3 months of treatment with methotrexate or acitretin, and 18 healthy volunteers without psoriasis as controls. Serum ANGPTL8 concentrations were analyzed by ELISA and differences between groups were determined using Student’s t-test or the Mann–Whitney test, while correlations were assessed using Spearman’s rank test. The average concentration of ANGPTL8 differed significantly between the psoriasis group (before and after therapy) and the control group (p < 0.05). Significant negative correlations between ANGPTL8 and total cholesterol and LDL levels were noted (both p < 0.05). A significant increase in ANGPTL8 concentration was observed after acitretin (p < 0.05), whereas in patients treated with methotrexate the ANGPTL8 did not change significantly (p > 0.05). Additionally, a negative, statistically significant correlation with PASI was found after treatment (p < 0.05). Based on our study, it appears that elevated levels of ANGPTL8 may reduce the likelihood of atherogenic dyslipidemia in individuals with psoriasis, and treatment for psoriasis may impact the protective effects of ANGPTL8.
Collapse
|
14
|
Evinacumab, an ANGPTL3 Inhibitor, in the Treatment of Dyslipidemia. J Clin Med 2022; 12:jcm12010168. [PMID: 36614969 PMCID: PMC9821629 DOI: 10.3390/jcm12010168] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an inherited disorder. The level of low-density lipoprotein cholesterol (LDL-C) in patients with homozygous FH can be twice as high as that in patients with heterozygous FH. The inhibition of ANGPTL3 shows an important therapeutic approach in reducing LDL-C and triglycerides (TG) levels and, thus, is a potentially effective strategy in the treatment of FH. Evinacumab is a monoclonal antibody inhibiting circulating ANGPTL3, available under the trade name Evkeeza® for the treatment of homozygous FH. It was reported that evinacumab is effective and safe in patients with homozygous and heterozygous FH, as well as resistant hypercholesterolemia and hypertriglyceridemia. This paper summarizes existing knowledge on the role of ANGPTL3, 4, and 8 proteins in lipoprotein metabolism, the findings from clinical trials with evinacumab, a fully human ANGPTL3 mAb, and the place for this new agent in lipid-lowering therapy.
Collapse
|
15
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Yang L, Zhu Y. Developmental changes in lipid and fatty acid metabolism and the inhibition by in ovo feeding oleic acid in Muscovy duck embryogenesis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:321-333. [PMID: 36733781 PMCID: PMC9873582 DOI: 10.1016/j.aninu.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| |
Collapse
|
16
|
Chen S, Luo S, Zou B, Xie J, Li J, Zeng Y. Magnesium Supplementation Stimulates Autophagy to Reduce Lipid Accumulation in Hepatocytes via the AMPK/mTOR Pathway. Biol Trace Elem Res 2022; 201:3311-3322. [PMID: 36224316 DOI: 10.1007/s12011-022-03438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Metabolic-associated fatty liver disease (MAFLD) (previously known as nonalcoholic fatty liver disease (NAFLD)) is a disease with high worldwide prevalence, but with limited available therapeutic interventions. Autophagy is a cell survival mechanism for clearing excess lipids in hepatocytes and affects the occurrence and development of MAFLD. In addition, some studies have shown that magnesium deficiency is common in patients with obesity and metabolic syndrome. Magnesium supplementation can effectively improve metabolism-related diseases such as obesity and fatty liver. Our study successfully constructed a cellular model of MAFLD by 1 mM free fatty acid (FFA) intervention in LO2 cells for 24 h, and there was an increase in lipid accumulation in hepatocytes after FFA intervention. Magnesium supplementation was shown to reduce lipid deposition in hepatocytes induced by FFA, and Western blotting (WB) analysis showed that magnesium supplementation could downregulate the expression of Fasn and SREBP1 and increase the expression of LPL, suggesting that magnesium can reduce lipid accumulation by reducing lipid synthesis and increasing lipid oxidation. Magnesium supplementation could affect cellular lipid metabolism by activating the AMPK/mTOR pathway to stimulate autophagy. Our results identified a relationship between magnesium and lipid accumulation in hepatocytes and showed that magnesium supplementation reduced lipid deposition in hepatocytes by activating autophagy by activating the AMPK-mTOR pathway.
Collapse
Affiliation(s)
- Shiyan Chen
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Shunkui Luo
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jianhui Xie
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Yingjuan Zeng
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
17
|
Ding L, Ren S, Song Y, Zang C, Liu Y, Guo H, Yang W, Guan H, Liu J. Modulation of gut microbiota and fecal metabolites by corn silk among high-fat diet-induced hypercholesterolemia mice. Front Nutr 2022; 9:935612. [PMID: 35978956 PMCID: PMC9376456 DOI: 10.3389/fnut.2022.935612] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Corn silk (CS) is known to reduce cholesterol levels, but its underlying mechanisms remain elusive concerning the gut microbiota and metabolites. The aim of our work was to explore how altered gut microbiota composition and metabolite profile are influenced by CS intervention in mice using integrated 16S ribosomal RNA (rRNA) sequencing and an untargeted metabolomics methodology. The C57BL/6J mice were fed a normal control diet, a high-fat diet (HFD), and HFD supplemented with the aqueous extract of CS (80 mg/mL) for 8 weeks. HFD-induced chronic inflammation damage is alleviated by CS extract intervention and also resulted in a reduction in body weight, daily energy intake as well as serum and hepatic total cholesterol (TC) levels. In addition, CS extract altered gut microbial composition and regulated specific genera viz. Allobaculum, Turicibacter, Romboutsia, Streptococcus, Sporobacter, Christensenella, ClostridiumXVIII, and Rikenella. Using Spearman’s correlation analysis, we determined that Turicibacter and Rikenella were negatively correlated with hypercholesterolemia-related parameters. Fecal metabolomics analysis revealed that CS extract influences multiple metabolic pathways like histidine metabolism-related metabolites (urocanic acid, methylimidazole acetaldehyde, and methiodimethylimidazoleacetic acid), sphingolipid metabolism-related metabolites (sphinganine, 3-dehydrosphinganine, sphingosine), and some bile acids biosynthesis-related metabolites including chenodeoxycholic acid (CDCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), and glycoursodeoxycholic acid (GUDCA). As a whole, the present study indicates that the modifications in the gut microbiota and subsequent host bile acid metabolism may be a potential mechanism for the antihypercholesterolemic effects of CS extract.
Collapse
Affiliation(s)
- Lin Ding
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Shan Ren
- College of Basic Medical, Qiqihar Medical University, Qiqihar, China
| | - Yaoxin Song
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Chuangang Zang
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Yuchao Liu
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Hao Guo
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Wenqing Yang
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Hong Guan
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China.,Qiqihar Academy of Medical Sciences, Qiqihar, China
| |
Collapse
|
18
|
Moon JH, Kim K, Choi SH. Lipoprotein Lipase: Is It a Magic Target for the Treatment of Hypertriglyceridemia. Endocrinol Metab (Seoul) 2022; 37:575-586. [PMID: 36065644 PMCID: PMC9449100 DOI: 10.3803/enm.2022.402] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/11/2022] Open
Abstract
High levels of triglycerides (TG) and triglyceride-rich lipoproteins (TGRLs) confer a residual risk of cardiovascular disease after optimal low-density lipoprotein cholesterol (LDL-C)-lowering therapy. Consensus has been made that LDL-C is a non-arguable primary target for lipid lowering treatment, but the optimization of TGRL for reducing the remnant risk of cardiovascular diseases is urged. Omega-3 fatty acids and fibrates are used to reduce TG levels, but many patients still have high TG and TGRL levels combined with low high-density lipoprotein concentration that need to be ideally treated. Lipoprotein lipase (LPL) is a key regulator for TGs that hydrolyzes TGs to glycerol and free fatty acids in lipoprotein particles for lipid storage and consumption in peripheral organs. A deeper understanding of human genetics has enabled the identification of proteins regulating the LPL activity, which include the apolipoproteins and angiopoietin-like families. Novel therapeutic approach such as antisense oligonucleotides and monoclonal antibodies that regulate TGs have been developed in recent decades. In this article, we focus on the biology of LPL and its modulators and review recent clinical application, including genetic studies and clinical trials of novel therapeutics. Optimization of LPL activity to lower TG levels could eventually reduce incident atherosclerotic cardiovascular disease in conjunction with successful LDL-C reduction.
Collapse
Affiliation(s)
- Joon Ho Moon
- Divison of Endocrinology & Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyuho Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hee Choi
- Divison of Endocrinology & Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Divison of Endocrinology & Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Corresponding author: Sung Hee Choi. Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea Tel: +82-31-787-7033, Fax: +82-31-787-4070, E-mail:
| |
Collapse
|
19
|
Jia W, Wu X, Zhang R, Wang X, Shi L. Novel insight into the resilient drivers of bioaccumulation perchlorate on lipid nutrients alterations in goat milk by spatial multi-omics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Serum ANGPTL8 and ANGPTL3 as Predictors of Triglyceride Elevation in Adult Women. Metabolites 2022; 12:metabo12060539. [PMID: 35736472 PMCID: PMC9228451 DOI: 10.3390/metabo12060539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Angiopoietin-like proteins ANGPTL3 and ANGPTL8 have been shown to inhibit lipoprotein lipase, and thus regulate triglyceride level in the circulation. Whether the regulation of lipid metabolism by ANGPTLs is affected by the menopausal status remains unclear. We aimed to assess the relationships between serum ANGPTL3 and ANGPTL8 and atherogenic biomarkers in presumably healthy women during ageing. The study group included 94 women of whom 31 were premenopausal (PRE ≤ 40 years) and 37 were postmenopausal (POST ≥ 52 years). Atherogenic lipid and non-lipid biomarkers and ANGPTLs (ANGPTL3, ANGPTL8) were assayed in serum samples. TG/HDL-C index, non-HDL-cholesterol, remnant cholesterol concentrations, and BMI were calculated. Median levels of ANGPTL3 and concentrations of lipid biomarkers were significantly higher in POST comparing to PRE but ANGPTL8 levels were not different. In PRE, ANGPTL8 levels correlated significantly with TG and TG/HDL-C index while there were no correlations between ANGPTL3 and these biomarkers. In POST both ANGPTLs correlated with TG, sdLDL-C, and TG/HDL-C. ANGPTL8 and sd-LDL-C were the most significant predictors of early triglyceride elevation > 100 mg/dL (1.13 mmol/L) in the whole group and POST whereas the prediction power of ANGPTL3 was negligible in the whole group and non-significant in the subgroups. We demonstrated a significant positive correlation of ANGPTL3 with age category which predisposes to postmenopause. Despite the increase in ANGPTL3 level with ageing the ANGPTL3/ANGPL8 ratio was maintained. In conclusion, ANGPTL8 predicts the early triglyceride elevation better than ANGPTL3, especially in postmenopausal women. The association of ANGPTL3 with triglyceride levels is weaker than ANGPTL8 and depends on menopausal status. We suggest that the choice for the best efficient treatment of dyslipidemia with new inhibitors of angiopoietin-like proteins may depend on the menopausal status.
Collapse
|
21
|
Zhang BH, Yin F, Qiao YN, Guo SD. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front Mol Biosci 2022; 9:909151. [PMID: 35693558 PMCID: PMC9174947 DOI: 10.3389/fmolb.2022.909151] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death globally, and atherosclerosis is the main pathological basis of CVDs. Low-density lipoprotein cholesterol (LDL-C) is a strong causal factor of atherosclerosis. However, the first-line lipid-lowering drugs, statins, only reduce approximately 30% of the CVD risk. Of note, atherosclerotic CVD (ASCVD) cannot be eliminated in a great number of patients even their LDL-C levels meet the recommended clinical goals. Previously, whether the elevated plasma level of triglyceride is causally associated with ASCVD has been controversial. Recent genetic and epidemiological studies have demonstrated that triglyceride and triglyceride-rich lipoprotein (TGRL) are the main causal risk factors of the residual ASCVD. TGRLs and their metabolites can promote atherosclerosis via modulating inflammation, oxidative stress, and formation of foam cells. In this article, we will make a short review of TG and TGRL metabolism, display evidence of association between TG and ASCVD, summarize the atherogenic factors of TGRLs and their metabolites, and discuss the current findings and advances in TG-lowering therapies. This review provides information useful for the researchers in the field of CVD as well as for pharmacologists and clinicians.
Collapse
Affiliation(s)
| | | | - Ya-Nan Qiao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
22
|
Leentjens M, Alterki A, Abu-Farha M, Bosschieter PFN, de Raaff CAL, de Vries CEE, Al Shawaf E, Thanaraj TA, Al-Khairi I, Cherian P, Channanath A, Kavalakatt S, van Wagensveld BA, de Vries N, Abubaker J. Increased plasma ANGPTL7 levels with increased obstructive sleep apnea severity. Front Endocrinol (Lausanne) 2022; 13:922425. [PMID: 36017324 PMCID: PMC9396619 DOI: 10.3389/fendo.2022.922425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Weight-loss surgery is one of the recommended methods for treating obstructive sleep apnea (OSA) in obese patients. While weight reduction is critical to relieve symptoms of OSA, the biochemical factors involved in post-surgery improvement are still unknown. We aimed to explore the link between ANGPTL7 and OSA in patients with different OSA severity. Furthermore, we examined the effect of treating OSA with bariatric surgery on ANGPTL7 level. METHODS We quantified levels of circulating ANGPTL7 in fasting plasma and adipose tissue samples of 88 participants before and after bariatric surgery. Confocal microscopy analyses were also performed to assess the ANGPTL7 expression in subcutaneous white adipose tissue biopsies obtained from people with moderate-to-severe OSA compared to those with none or mild OSA. The study involved 57 individuals with none or mild OSA and 31 patients with moderate-to-severe OSA. RESULTS Levels of circulating ANGPTL7 were significantly higher in people with moderate-to-severe OSA (1440 ± 1310 pg/ml) compared to the none or mild OSA group (734 ± 904 pg/ml, p = 0.01). The increase in ANGPTL7 correlated significantly and positively with the apnea-hypopnea index (AHI, r = .226, p = .037), and AHI-supine (r = .266, p = .019) in participants with moderate-to-severe OSA. Multivariate logistic regression analysis demonstrated an association between ANGPTL7 and OSA severity (log2 ANGPTL7; OR =1.24, p = 0.024). ANGPTL7 levels exhibited significant positive correlations with the levels of TG and oxLDL (p-value = 0.002 and 0.01 respectively). Bariatric surgery reduced the levels of both ANGPTL7 and AHI significantly. CONCLUSION Here we report significantly increased levels of ANGPTL7 both in the circulation and in adipose tissue of patients with OSA, which concurred with increased inflammation and OSA severity. Levels of ANGPTL7 decreased significantly as OSA showed a significant improvement post-surgery supporting a potential role for ANGPTL7 in either OSA progression or a role in an OSA-related mechanism.
Collapse
Affiliation(s)
- M. Leentjens
- Department of Otorhinolaryngology - Head and Neck Surgery, Onze Lieve Vrouwe Gasthuis (OLVG) Hospital, Amsterdam, Netherlands
- *Correspondence: M. Leentjens, ; Jehad Abubaker,
| | - Abdulmohsen Alterki
- Department of Otolaryngology - Head and Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - P. F. N. Bosschieter
- Department of Otorhinolaryngology - Head and Neck Surgery, Onze Lieve Vrouwe Gasthuis (OLVG) Hospital, Amsterdam, Netherlands
| | - CAL. de Raaff
- Department of Surgery, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - CEE. de Vries
- Department of Surgery, Reinier de Graaf Gasthuis, Delft, Netherlands
| | - Eman Al Shawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Department of Otolaryngology - Head and Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sina Kavalakatt
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - B. A. van Wagensveld
- Obesity Department, New Medical Centre (NMC) Royal Hospital Khalifa City, Abu Dhabi, United Arab Emirates
| | - N. de Vries
- Department of Otorhinolaryngology - Head and Neck Surgery, Onze Lieve Vrouwe Gasthuis (OLVG) Hospital, Amsterdam, Netherlands
- Department of Oral Kinesiology, Academic Centre for Dentistry in Amsterdam (ACTA), Move Research Institute Amsterdam, University of Amsterdam and Vrije University (VU) University Amsterdam, Amsterdam, Netherlands
- Department of Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, Antwerp, Belgium
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: M. Leentjens, ; Jehad Abubaker,
| |
Collapse
|
23
|
Valenzuela-Vallejo L, Meléndrez-Vásquez D, Durán-Ventura P, Rivera-Nieto C, Lema A, Fernandez M. Severe hypertriglyceridemia as a cause of necrotizing pancreatitis in a pediatric patient with familial hyperchylomicronemia syndrome: A case report. SAGE Open Med Case Rep 2022; 10:2050313X221109972. [PMID: 35837325 PMCID: PMC9274426 DOI: 10.1177/2050313x221109972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023] Open
Abstract
Familial hyperchylomicronemia syndrome is a monogenic autosomal recessive disorder that causes severe and refractory hypertriglyceridemia. This uncommon condition is challenging to diagnose and treat and can lead to comorbidities such as acute pancreatitis. Although treatment options are limited in the pediatric population, strict diets and treatments approved for other dyslipidemias may be implemented in familial hyperchylomicronemia syndrome, given the lack of pharmacological interventions available. We report a 14-year-old female presented to the emergency room with abdominal pain suggestive of acute pancreatitis. Biochemical analysis revealed a triglyceride value of 4260 mg/dL. Treatment for triglyceride reduction with a strict CHILD-2 triglyceride-lowering diet, insulin infusion, fibrates, and multiple plasmapheresis were initially insufficient. Primary hypertriglyceridemia was suspected, and genetic testing identified a homozygous pathogenic variant in the lipoprotein lipase gene, diagnosing familial hyperchylomicronemia syndrome. She was discharged with a maximum dose of fibrate, statin, omega-3 fatty acids, and a restrictive diet. At her 1-month and 9-month follow-ups, her triglyceride values were 756 and 495 mg/dL, respectively, without incident complications. Familial hyperchylomicronemia syndrome is an uncommon condition with limited available literature and treatment options, especially in the pediatric population. Acute pancreatitis secondary to severe hypertriglyceridemia is a condition with a high risk of mortality which requires prompt clinical suspicion and treatment.
Collapse
Affiliation(s)
- Laura Valenzuela-Vallejo
- School of Medicine and Health Sciences—Universidad del Rosario, Bogotá, Colombia
- Endocrinology Department, Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, Colombia
| | - Daniela Meléndrez-Vásquez
- School of Medicine and Health Sciences—Universidad del Rosario, Bogotá, Colombia
- Endocrinology Department, Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, Colombia
| | - Paola Durán-Ventura
- Pediatric Endocrinologist, Pediatrics Endocrinology Department, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
- School of Medicine and Health Sciences—Universidad del Rosario, Bogotá, Colombia
| | - Carolina Rivera-Nieto
- School of Medicine and Health Sciences—Universidad del Rosario, Bogotá, Colombia
- Genetics Department, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Adriana Lema
- Pediatric Endocrinologist, Pediatrics Endocrinology Department, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
- School of Medicine and Health Sciences—Universidad del Rosario, Bogotá, Colombia
| | - Monica Fernandez
- Pediatric Endocrinologist, Pediatrics Endocrinology Department, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
- School of Medicine and Health Sciences—Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
24
|
Paola Gutiérrez Castro K, Patricia González A, Caccavello R, Garay-Sevilla ME, Gugliucci A. Lean adolescents with insulin resistance display higher angiopoietin like protein 3, ApoC-III and chylomicron remnant dyslipidemia. Clin Chim Acta 2021; 526:43-48. [PMID: 34971570 DOI: 10.1016/j.cca.2021.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Triglyceride-rich lipoproteins (TRL: chylomicrons and VLDL) are a key component of diabetes dyslipoproteinemia and cardiovascular risk. We have shown that it is already prevalent in obese adolescents in association with lipoprotein lipase (LPL) dysregulation. Insulin resistance (IR) suffices to produce TRL dyslipoproteinemia and LPL dysfunction even in the absence of obesity. METHODS This cross-sectional study included euglycemic adolescents between 15 and 19 y, classified in 4 groups according to BMI, HOMA-IR and fasting lipid as: metabolically healthy lean (MHL, n = 30), metabolically unhealthy lean (MUL, n = 25), metabolically healthy obese (MHO, = 30), and metabolically unhealthy obese (MUO, n = 42). RESULTS As compared to MHL, MUL participants showed 73% higher concentrations of ApoB-48; 84% of ApoC-III; 24% ANGPTL-3; 200% of TG; 218% of VLDL-C and 238% of TG/HDL-C c, No changes were found in LPL mass. Interestingly, the differences in these parameters between MUL and MHO were not significant. CONCLUSION Euglycemic lean adolescents with IR display TRL dyslipoproteinemia with increased inhibition of LPL as highlighted by higher concentrations of ANGPTL-3, ApoC-III and fasting chylomicron remnants (ApoB-48).
Collapse
Affiliation(s)
| | - Alma Patricia González
- Department of Medical Science. Division of Health Science. University of Guanajuato. Campus León, Mexico; High Specialty Medical Unit. Hospital of Gynecology and Pediatrics # 48. Mexican Institute of Social Security, Mexico
| | - Russell Caccavello
- Glycation, Oxidation and Disease Laboratory, Dept. of Research, College of Osteopathic Medicine, Touro University California, United States
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Science. Division of Health Science. University of Guanajuato. Campus León, Mexico
| | - Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Dept. of Research, College of Osteopathic Medicine, Touro University California, United States.
| |
Collapse
|
25
|
Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021; 9:biomedicines9121903. [PMID: 34944728 PMCID: PMC8698516 DOI: 10.3390/biomedicines9121903] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6909
| |
Collapse
|
26
|
Ashrafian F, Keshavarz Azizi Raftar S, Lari A, Shahryari A, Abdollahiyan S, Moradi HR, Masoumi M, Davari M, Khatami S, Omrani MD, Vaziri F, Masotti A, Siadat SD. Extracellular vesicles and pasteurized cells derived from Akkermansia muciniphila protect against high-fat induced obesity in mice. Microb Cell Fact 2021; 20:219. [PMID: 34863163 PMCID: PMC8645101 DOI: 10.1186/s12934-021-01709-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background Several studies have shown that probiotics have beneficial effects on weight control and metabolic health. In addition to probiotics, recent studies have investigated the effects of paraprobiotics and postbiotics. Therefore, we evaluated the preventive effects of live and pasteurized Akkermansia muciniphila MucT (A. muciniphila) and its extracellular vesicles (EVs) on HFD-induced obesity. Results The results showed that body weight, metabolic tissues weight, food consumption, and plasma metabolic parameters were increased in the HFD group, whereas A. muciniphila preventive treatments inhibited these HFD. The effects of pasteurized A. muciniphila and its extracellular vesicles were more noticeable than its active form. The HFD led to an increase in the colonic, adipose tissue, and liver inflammations and increased the expression of genes involved in lipid metabolism and homeostasis. Nevertheless, these effects were inhibited in mice that were administered A. muciniphila and its EVs. The assessment of the gut microbiota revealed significant differences in the microbiota composition after feeding with HFD. However, all treatments restored the alterations in some bacterial genera and closely resemble the control group. Also, the correlation analysis indicated that some gut microbiota might be associated with obesity-related indices. Conclusions Pasteurized A. muciniphila and its EVs, as paraprobiotic and postbiotic agents, were found to play a key role in the regulation of metabolic functions to prevent obesity, probably by affecting the gut-adipose-liver axis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01709-w.
Collapse
Affiliation(s)
- Fatemeh Ashrafian
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Arefeh Shahryari
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sara Abdollahiyan
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Morteza Masoumi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Davari
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzam Vaziri
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Children's Hospital Bambino Gesù-IRCCS, Rome, Italy
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran. .,Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
27
|
Relationship between Serum Angiopoietin-like Proteins 3 and 8 and Atherogenic Lipid Biomarkers in Non-Diabetic Adults Depends on Gender and Obesity. Nutrients 2021; 13:nu13124339. [PMID: 34959891 PMCID: PMC8709017 DOI: 10.3390/nu13124339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hypertriglyceridemia is an independent risk factor for coronary artery disease. Lipoprotein lipase (LPL) plays an essential role in the metabolism of triglyceride-rich lipoproteins (TRLs). Angiopoietin-like proteins ANGPTL3 and ANGPTL8 are shown to be important regulators of LPL activity. Increased concentrations of these proteins may reflect cardiovascular risk, and the treatment of patients with dyslipidemia with ANGPTLs inhibitors may decrease this risk. We assessed the gender-specific relationships of serum ANGPTL3 and ANGPTL8 with atherogenic lipid biomarkers and obesity in non-diabetic adults. The study comprised 238 participants aged 25-74 [122 with triglycerides (TG) <150 mg/dL (<1.7 mmol/L) and 116 with hypertriglyceridemia]. Total cholesterol, HDL-cholesterol, LDL-cholesterol, TG, C-reactive protein (CRP), glycated hemoglobin, apolipoprotein B, small dense LDL-C (sd-LDL-C), ANGPTL3, and ANGPTL8 were measured. Non-HDL-cholesterol, remnant cholesterol (remnant-C) concentrations, and body mass index (BMI) were calculated. Results: Women and men did not differ in terms of age, CRP levels, the percentage of obese subjects, and concentrations of atherogenic lipid biomarkers, except higher TG in males and higher ANGPTL3 concentrations in females. Positive correlations of both ANGPTLs with TG, remnant-C, and sdLDL-C levels were found in females. In males, only ANGPTL3 correlated positively with atherogenic biomarkers, but there were no correlations with ANGPTL8. Concentrations of ANGPTL3 were higher in obese men, whereas ANGPTL8 levels were higher in obese women. In women alone, ANGPTL8 showed very good discrimination power to identify subjects with hypertriglyceridemia (AUC = 0.83). Contrary to this, ANGPTL3 was a better discriminator of hypertriglyceridemia (AUC = 0.78) in male subjects. Regression models, adjusted for age, sex, and BMI showed a weak but significant effect of ANGPTL8 to increase the risk of hypertriglyceridemia. Conclusions: In females, ANGPTL8 is more strongly associated with TRLs metabolism, whereas in males, ANGPTL3 plays a more important role. We suggest sex differences be taken into consideration when applying new therapies with angiopoietin-like proteins inhibitors in the treatment of dyslipidemia.
Collapse
|
28
|
Cang S, Liu R, Jin W, Tang Q, Li W, Mu K, Jin P, Bi K, Li Q. Integrated DIA proteomics and lipidomics analysis on non-small cell lung cancer patients with TCM syndromes. Chin Med 2021; 16:126. [PMID: 34838074 PMCID: PMC8627049 DOI: 10.1186/s13020-021-00535-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Lung cancer remains the leading cause of mortality from malignant tumors, non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer cases, and individualized diagnosis and treatment is an effective trend. The individual characteristics of different traditional Chinese medicine (TCM) syndromes of NSCLC patients may be revealed by highly specific molecular profiles. Methods In this study, 10 NSCLC patients with Qi deficiency and Yin deficiency (QDYD) syndrome and 10 patients with Qi deficiency of lung-spleen (QDLS) syndrome in TNM stage III-IV as well as 10 healthy volunteers were enrolled. Aiming at the varied syndromes of NSCLC patients with “Yin deficiency” as the main difference, a proteomics research based on data-independent acquisition (DIA) was developed. Of the dysregulated proteins in NSCLC patients, lipid metabolism was significantly enriched. Thereafter, nontargeted lipidomics research based on UPLC-Q-TOF/MS was performed in 16 patients, with 8 individuals randomly selected from each syndrome group. Furthermore, the considerably different characteristics between the syndromes and pathological mechanisms of NSCLC were screened by statistical and biological integrations of proteomics and lipidomics and the differential metabolic pathways of the two similar syndromes were further explored. Besides, lipids biomarkers were verified by a clinically used anticancer Chinese medicine, and the level of key differential proteins in the two syndromes was also validated using ELISA. Results The results showed that glycerophospholipid metabolism, sphingolipid metabolism, glycolipid metabolism, and primary bile acid biosynthesis were altered in NSCLC patients and that glycerophospholipid metabolism was significantly changed between the two syndromes in lipidomics analysis. Among the proteins and lipids, ALDOC and lysophosphatidylcholine (LPCs) were revealed to have a strong relationship by statistical and biological integration analysis, and could effectively distinguish QDLS and QDYD syndromes. Notably, the patients with different syndromes had the most typical metabolic patterns in glycerophospholipid metabolism and glycolysis, reflecting the differences in the syndromes dominated by “Yin deficiency”. Conclusions ALDOC and LPCs could be employed for the differentiation of NSCLC patients with QDLS and QDYD syndromes, and “Yin deficiency” might be associated with glycerophospholipid metabolism and glycolysis pathway. The results provided a theoretical basis for “Syndrome differentiation” in TCM diagnosis. Moreover, the developed integrated strategy could also provide a reference for individualized diagnosis and treatment of other diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00535-x.
Collapse
Affiliation(s)
- Song Cang
- School of Pharmacy, National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Ran Liu
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, 7098 Lau sin Avenue, Shenzhen, 518000, China
| | - Wei Jin
- Department of Chinese Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang, Beijing, 100021, China
| | - Qi Tang
- School of Pharmacy, National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Wanjun Li
- School of Pharmacy, National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Kunqian Mu
- School of Pharmacy, National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Pengfei Jin
- Department of Pharmaceutical Science, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China
| | - Kaishun Bi
- School of Pharmacy, National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Qing Li
- School of Pharmacy, National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
29
|
Abstract
Triglycerides are critical lipids as they provide an energy source that is both compact and efficient. Due to its hydrophobic nature triglyceride molecules can pack together densely and so be stored in adipose tissue. To be transported in the aqueous medium of plasma, triglycerides have to be incorporated into lipoprotein particles along with other components such as cholesterol, phospholipid and associated structural and regulatory apolipoproteins. Here we discuss the physiology of normal triglyceride metabolism, and how impaired metabolism induces hypertriglyceridemia and its pathogenic consequences including atherosclerosis. We also discuss established and novel therapies to reduce triglyceride-rich lipoproteins.
Collapse
|
30
|
Yang C, Xia H, Wan M, Lu Y, Xu D, Yang X, Yang L, Sun G. Comparisons of the effects of different flaxseed products consumption on lipid profiles, inflammatory cytokines and anthropometric indices in patients with dyslipidemia related diseases: systematic review and a dose-response meta-analysis of randomized controlled trials. Nutr Metab (Lond) 2021; 18:91. [PMID: 34635132 PMCID: PMC8504108 DOI: 10.1186/s12986-021-00619-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Flaxseed is widely used as a functional food for its rich sources of linolenic acid, lignans and dietary fibers in the world. This systematic review and dose-response meta-analysis on randomized controlled trials (RCTs) is first to evaluate effects of different flaxseed products (whole flaxseed, oil and lignans) on lipid profiles, inflammatory and anthropometric parameters in patients with dyslipidemia related diseases. METHODS Literature search was performed in PubMed, Embase, Cochrane Central, Scopus, and Web of Science from the inception dates to January, 2020. Weighted mean differences with the 95% confidence interval (CI) were pooled using fix or random-effects models. RESULTS Thirty-one RCTs involving 1,698 participants were included. The present meta-analysis revealed that flaxseed consumption had an overall beneficial effect on serum TC, LDL-C, TG, apo B and IL-6 in patients with dyslipidemia related diseases, but not on apo A, HDL-C, hs-CRP, CRP and anthropometric indices. However, different flaxseed products showed obviously different effects. Whole flaxseed supplementation significantly reduced TC (- 11.85 mg/dl, 95% CI - 20.12 to - 3.57, P = 0.005), LDL-C (- 10.51 mg/dl, 95% CI - 14.96 to - 6.06, P < 0.001), TG (- 19.77 mg/dl, 95% CI - 33.61 to - 5.94, P = 0.005), apolipoprotein B (- 5.73 mg/dl, 95% CI - 7.53 to - 3.93, P < 0.001), TC/HDL-C (- 0.10, 95% CI - 0.19 to - 0.003, P = 0.044) and weight (- 0.40 kg, 95% CI - 0.76 to - 0.05, P = 0.027); Lignans supplementation significantly reduced TC (- 17.86 mg/dl, P = 0.004), LDL-C (- 15.47 mg/dl, P < 0.001) and TC/HDL-C (- 0.45, P = 0.04). Although flaxseed oil supplementation had no such lowering-effect on lipid, meta-analysis revealed its lowering-effect on IL-6 (- 0.35 pg/ml, P = 0.033) and hs-CRP (- 1.54 mg/l, P = 0.004). Subgroup analysis revealed that whole flaxseed decreased TC, LDL-C and TG levels irrespective of country and the intervention time prescribed, but was more pronounced when the dose of whole flaxseed was ≤ 30 g/day (TC: WMD - 13.61 mg/mL; LDL-C: WMD - 10.52 mg/mL; TG: WMD - 23.52 mg/mL), rather not a dose > 30 g/day. Moreover, a linear relationship between dose of whole flaxseed and absolute changes in C-reactive protein (P = 0.036) and a nonlinear relationship between with IL-6 (P < 0.001) were detected. CONCLUSIONS Flaxseed intervention suggested the positive effects on lipid profiles, inflammatory cytokines and anthropometric indices in patients with dyslipidemia related diseases. Of these, whole flaxseed and lignans play an important role in reducing blood lipid, while flaxseed oil mainly plays in anti-inflammatory. Lipid- and weight-lowering was significant when whole flaxseed was consumed at doses < 30 mg/d, for lipid status with mixed dyslipidemia and patients with BMI > 25.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing, 210009, People's Republic of China.,Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing, 210009, People's Republic of China.,Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Min Wan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing, 210009, People's Republic of China.,Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing, 210009, People's Republic of China.,Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing, 210009, People's Republic of China.,Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing, 210009, People's Republic of China.,Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing, 210009, People's Republic of China.,Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing, 210009, People's Republic of China. .,Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
31
|
Olia Bagheri F, Alizadeh A, Sadighi Gilani MA, Shahhoseini M. Role of peroxisome proliferator-activated receptor gamma (PPARγ) in the regulation of fatty acid metabolism related gene expressions in testis of men with impaired spermatogenesis. Reprod Biol 2021; 21:100543. [PMID: 34492575 DOI: 10.1016/j.repbio.2021.100543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
Although male infertility is a multifactorial syndrome in which genetic factors are responsible for up to 15 % of cases, there are few studies of genes involved in lipid metabolism and male infertility. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor in testis tissue. PPARγ binds to DNA and regulates the genes for fatty acid (FA) metabolism. Thus, it has a key role in male reproduction. The current study assessed the expressions of fatty acid desaturase 2 (FADS2), elongation of very-long-chain fatty acids-like 2 (ELOVL2), stearoyl-CoA desaturase-1 (SCD), and lipoprotein lipase (LPL) and incorporation of PPARγ in the promoter regions of these genes in testicular tissue biopsies from 30 infertile males who underwent testicular sperm extraction. The samples were classified into three groups: obstructive azoospermia (OA), which was the positive control (n = 10); round spermatid maturation arrest (SMA, n = 10); and Sertoli cell-only syndrome (SCOS, n = 10). There were significantly lower relative mRNA expression levels of the FADS2, ELOVL2, SCD, and LPL genes in the SCOS (P < 0.01) and SMA (P < 0.01) groups compared to the OA control group. We observed a significant decrease in chromatin incorporation of PPARγ on the promoter regions of the candidate FA metabolism genes (P < 0.05). For the first time, the present study results show that PPARγ is a strong mediator for regulation of FA metabolism in human testis tissue and we confirmed its critical role in normal spermatogenesis.
Collapse
Affiliation(s)
- Fateme Olia Bagheri
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Urology, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
32
|
Angiopoietin-Like Protein 3 (ANGPTL3) Modulates Lipoprotein Metabolism and Dyslipidemia. Int J Mol Sci 2021; 22:ijms22147310. [PMID: 34298929 PMCID: PMC8304944 DOI: 10.3390/ijms22147310] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Dyslipidemia is characterized by increasing plasma levels of low-density lipoprotein-cholesterol (LDL-C), triglycerides (TGs) and TG-rich lipoproteins (TGRLs) and is a major risk factor for the development of atherosclerotic cardiovascular disorders (ASCVDs). It is important to understand the metabolic mechanisms underlying dyslipidemia to develop effective strategies against ASCVDs. Angiopoietin-like 3 (ANGPTL3), a member of the angiopoietin-like protein family exclusively synthesized in the liver, has been demonstrated to be a critical regulator of lipoprotein metabolism to inhibit lipoprotein lipase (LPL) activity. Genetic, biochemical, and clinical studies in animals and humans have shown that loss of function, inactivation, or downregulated expression of ANGPTL3 is associated with an obvious reduction in plasma levels of TGs, LDL-C, and high-density lipoprotein-cholesterol (HDL-C), atherosclerotic lesions, and the risk of cardiovascular events. Therefore, ANGPTL3 is considered an alternative target for lipid-lowering therapy. Emerging studies have focused on ANGPTL3 inhibition via antisense oligonucleotides (ASOs) and monoclonal antibody-based therapies, which have been carried out in mouse or monkey models and in human clinical studies for the management of dyslipidemia and ASCVDs. This review will summarize the current literature on the important role of ANGPTL3 in controlling lipoprotein metabolism and dyslipidemia, with an emphasis on anti-ANGPTL3 therapies as a potential strategy for the treatment of dyslipidemia and ASCVDs.
Collapse
|
33
|
Ke Y, Liu S, Zhang Z, Hu J. Circulating angiopoietin-like proteins in metabolic-associated fatty liver disease: a systematic review and meta-analysis. Lipids Health Dis 2021; 20:55. [PMID: 34034750 PMCID: PMC8152125 DOI: 10.1186/s12944-021-01481-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Background Angiopoietin-like proteins (ANGPTLs) are closely related to insulin resistance and lipid metabolism, and may be a key in metabolic syndrome. Non-alcoholic fatty liver disease (NAFLD) (newly named metabolic-associated fatty liver disease (MAFLD)) is based on metabolic dysfunction. There may be some correlation between ANGPTLs and MAFLD, but the specific correlation is unclear. This study aims to explore the predictive role of ANGPTLs in MAFLD and its progression. Methods Seven databases (PubMed, EMBASE, Cochrane Library, CNKI, WANFANG, CBM and Clinicaltrials.gov) were searched with free terms and MeSH terms. The random-effects model was used to pool the data, and Standardized Mean Difference (SMD) and 95% confidence intervals (CI) were taken as the overall outcome. No language restrictions existed in the article selection. RevMan 5.3, Stata 16 and MetaXL software were applied to analyse the data and the GRADE system was utilized to assess the certainty of evidence. Results After reviewing 823 related articles, 13 studies (854 cases and 610 controls) met the inclusion criteria, and contributed to this meta-analysis. The results showed that circulating ANGPTL8 level was significantly elevated in the MAFLD group than in the healthy control group (SMD = 0.97 pg/mL, 95%CI: 0.77, 1.18). Conversely, there was no significant difference in the ANGPTL4 (SMD = 0.11 ng/mL, 95%CI: − 0.32, 0.54) and ANGPTL3 (SMD = − 0.95 ng/mL, 95%CI: − 4.38, 2.48) between the two groups. Subgroup analysis showed that: 1) the MAFLD group had significantly higher ANGPTL8 levels than the healthy control group in Asian and other races; 2) the ANGPTL8 levels in Body Mass Index (BMI) > 25 kg/m2 patients with MAFLD were higher than those in the healthy control group; 3) the higher ANGPTL8 levels were observed in moderate to severe MAFLD group than the healthy control group. Meta-regression demonstrated that BMI might effectively explain the high heterogeneity. No significant publication bias existed (P > 0.05). The certainty of evidence was assessed as very low by the GRADE system. Conclusions The ANGPTLs may be related to MAFLD. The increased ANGPTL8 level may be positively correlated with different situations of MAFLD, which may act as a potential indicator to monitor the development trends. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01481-1.
Collapse
Affiliation(s)
- Yani Ke
- The Second Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Shan Liu
- Department of Clinical Evaluation Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang Province, China
| | - Zheyuan Zhang
- The First Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Jie Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
34
|
ANGPTL8 in cardio-metabolic diseases. Clin Chim Acta 2021; 519:260-266. [PMID: 34023284 DOI: 10.1016/j.cca.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Dyslipidemia has been identified as an important factor in obesity, diabetes mellitus, and cardiovascular diseases (CVD), grouped as cardio-metabolic disorder diseases. Accordingly, dyslipidemia has become a major determinant in health worldwide. Both genome-wide association studies (GWAS) and research studies have focused on the elucidation of potential genetic mechanisms of dyslipidemia and the identification of new gene loci which contribute to the development of cardio-metabolic disorder diseases. Recent results indicate that both the ANGPTL8 gene and ANGPTL8 protein perform vital roles in modulating serum glucose and lipid metabolism. In this review, we examine the modulatory effects of ANGPTL8 and explore the potential mechanisms whereby ANGPTL8 affects serum glucose and lipid metabolism in cardio-metabolic disorder diseases.
Collapse
|
35
|
Zheng Z, Lyu W, Ren Y, Li X, Zhao S, Yang H, Xiao Y. Allobaculum Involves in the Modulation of Intestinal ANGPTLT4 Expression in Mice Treated by High-Fat Diet. Front Nutr 2021; 8:690138. [PMID: 34095196 PMCID: PMC8171929 DOI: 10.3389/fnut.2021.690138] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Increasing studies have shown that obesity is the primary cause of cardiovascular diseases, non-alcoholic fatty liver diseases, type 2 diabetes, and a variety of cancers. The dysfunction of gut microbiota was proved to result in obesity. Recent research indicated ANGPTL4 was a key regulator in lipid metabolism and a circulating medium for gut microbiota and fat deposition. The present study was conducted to investigate the alteration of gut microbiota and ANGPTL4 expression in the gastrointestinal tract of mice treated by the high-fat diet. Ten C57BL/6J mice were randomly allocated to two groups and fed with a high-fat diet (HFD) containing 60% fat or a normal-fat diet (Control) containing 10% fat. The segments of ileum and colon were collected for the determination of ANGPTL4 expression by RT-qPCR and immunohistochemical analysis while the ileal and colonic contents were collected for 16S rRNA gene sequencing. The results showed HFD significantly increased mice body weight, epididymal fat weight, perirenal fat weight, liver weight, and the lipid content in the liver (P < 0.05). The relative expression of ANGPTL4 and the ANGPTL4-positive cells in the ileum and colon of mice was significantly increased by HFD treatment. Furthermore, 16S rRNA gene sequencing of the ileal and colonic microbiota suggested that HFD treatment changed the composition of the gut microbiota. The ratio of Firmicutes to Bacteroidetes and the abundance of Allobaculum was significantly higher in the HFD group than in the Control group while the abundance of Adlercreutzia, Bifidobacterium, Prevotellaceae UCG-001, and Ruminococcus was significantly decreased. Interestingly, the abundance of Allobaculum was positively correlated with the expression of ANGPTL4. These findings provide a theoretical foundation for the development of strategies to control the obesity and related diseases by the regulation of ANGPTL4 and gut microbiota.
Collapse
Affiliation(s)
- Zibin Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ying Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shenjun Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
36
|
Su X, Zhang G, Cheng Y, Wang B. New insights into ANGPTL8 in modulating the development of cardio-metabolic disorder diseases. Mol Biol Rep 2021; 48:3761-3771. [PMID: 33864591 DOI: 10.1007/s11033-021-06335-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022]
Abstract
Dyslipidemia is being identified as the most important factors of several health problems, such as obesity, diabetes mellitus, and cardiovascular diseases (CVD), which are always grouped together as cardio-metabolic disorder diseases. Consistently, dyslipidemia has become one of the most rising crisis of general health. Recently, it is worth noting that both genome-wide association studies (GWAS) and experimental research are being taken advantage to elucidate the potential genetic mechanisms of dyslipidemia and to identify new gene loci which contribute to the development of cardio-metabolic disorder diseases. According to the results, both ANGPTL8 gene and ANGPTL8 protein has been shown to embrace vital functions in modulating serum glucose and lipid metabolism. In the current review, the modulatory effects of ANGPTL8 in cardio-metabolic disorder diseases were summarized. In addition, novel insights which elucidate the potential mechanisms whereby ANGPTL8 affects glucose and lipid metabolism were also provided.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
37
|
Colozza G, Koo BK. Wnt/β-catenin signaling: Structure, assembly and endocytosis of the signalosome. Dev Growth Differ 2021; 63:199-218. [PMID: 33619734 PMCID: PMC8251975 DOI: 10.1111/dgd.12718] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Wnt/β‐catenin signaling is an ancient pathway that regulates key aspects of embryonic development, cell differentiation, proliferation, and adult stem cell homeostasis. Work from different laboratories has shed light on the molecular mechanisms underlying the Wnt pathway, including structural details of ligand–receptor interactions. One key aspect that has emerged from multiple studies is that endocytosis of the receptor complex plays a crucial role in fine‐tuning Wnt/β‐catenin signaling. Endocytosis is a key process involved in both activation as well as attenuation of Wnt signaling, but how this is regulated is still poorly understood. Importantly, recent findings show that Wnt also regulates central metabolic pathways such as the acquisition of nutrients through actin‐driven endocytic mechanisms. In this review, we propose that the Wnt pathway displays diverse characteristics that go beyond the regulation of gene expression, through a connection with the endocytic machinery.
Collapse
Affiliation(s)
- Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
38
|
Wathes DC, Cheng Z, Salavati M, Buggiotti L, Takeda H, Tang L, Becker F, Ingvartsen KI, Ferris C, Hostens M, Crowe MA. Relationships between metabolic profiles and gene expression in liver and leukocytes of dairy cows in early lactation. J Dairy Sci 2021; 104:3596-3616. [PMID: 33455774 DOI: 10.3168/jds.2020-19165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Homeorhetic mechanisms assist dairy cows in the transition from pregnancy to lactation. Less successful cows develop severe negative energy balance (NEB), placing them at risk of metabolic and infectious diseases and reduced fertility. We have previously placed multiparous Holstein Friesian cows from 4 herds into metabolic clusters, using as biomarkers measurements of plasma nonesterified fatty acids, β-hydroxybutyrate, glucose and IGF-1 collected at 14 and 35 d in milk (DIM). This study characterized the global transcriptomic profiles of liver and circulating leukocytes from the same animals to determine underlying mechanisms associated with their metabolic and immune function. Liver biopsy and whole-blood samples were collected around 14 DIM for RNA sequencing. All cows with available RNA sequencing data were placed into balanced (BAL, n = 44), intermediate (n = 44), or imbalanced (IMBAL, n = 19) metabolic cluster groups. Differential gene expression was compared between the 3 groups using ANOVA, but only the comparison between BAL and IMBAL cows is reported. Pathway analysis was undertaken using DAVID Bioinformatic Resources (https://david.ncifcrf.gov/). Milk yields did not differ between BAL and IMBAL cows but dry matter intake was less in IMBAL cows and they were in greater energy deficit at 14 DIM (-4.48 v -11.70 MJ/d for BAL and IMBAL cows). Significantly differentially expressed pathways in hepatic tissue included AMPK signaling, glucagon signaling, adipocytokine signaling, and insulin resistance. Genes involved in lipid metabolism and cholesterol transport were more highly expressed in IMBAL cows but IGF1 and IGFALS were downregulated. Leukocytes from BAL cows had greater expression of histones and genes involved in nucleosomes and cell division. Leukocyte expression of heat shock proteins increased in IMBAL cows, suggesting an unfolded protein response, and several key genes involved in immune responses to pathogens were upregulated (e.g., DEFB13, HP, OAS1Z, PTX3, and TLR4). Differentially expressed genes upregulated in IMBAL cows in both tissues included CD36, CPT1, KFL11, and PDK4, all central regulators of energy metabolism. The IMBAL cows therefore had greater difficulty maintaining glucose homeostasis and had dysregulated hepatic lipid metabolism. Their energy deficit was associated with a reduced capacity for cell division and greater evidence of stress responses in the leukocyte population, likely contributing to an increased risk of infectious disease.
Collapse
Affiliation(s)
- D C Wathes
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom.
| | - Z Cheng
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - M Salavati
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - L Buggiotti
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - H Takeda
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - L Tang
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - F Becker
- Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - K I Ingvartsen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - C Ferris
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, United Kingdom
| | - M Hostens
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, B-9820 Merelbeke, Belgium
| | - M A Crowe
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
39
|
Abu-Farha M, Ghosh A, Al-Khairi I, Madiraju SRM, Abubaker J, Prentki M. The multi-faces of Angptl8 in health and disease: Novel functions beyond lipoprotein lipase modulation. Prog Lipid Res 2020; 80:101067. [PMID: 33011191 DOI: 10.1016/j.plipres.2020.101067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Angiopoietin-like protein (ANGPTL) family members, mainly ANGPTL3, ANGPTL4 and ANGPTL8, are physiological inhibitors of lipoprotein lipase (LPL), and play a critical role in lipoprotein and triglyceride metabolism in response to nutritional cues. ANGPTL8 has been described by different names in various studies and has been ascribed various functions at the systemic and cellular levels. Circulating ANGPTL8 originates mainly from the liver and to a smaller extent from adipose tissues. In the blood, ANGPTL8 forms a complex with ANGPTL3 or ANGPTL4 to inhibit LPL in fed or fasted conditions, respectively. Evidence is emerging for additional intracellular and receptor-mediated functions of ANGPTL8, with implications in NFκB mediated inflammation, autophagy, adipogenesis, intra-cellular lipolysis and regulation of circadian clock. Elevated levels of plasma ANGPTL8 are associated with metabolic syndrome, type 2 diabetes, atherosclerosis, hypertension and NAFLD/NASH, even though the precise relationship is not known. Whether ANGPTL8 has direct pathogenic role in these diseases, remains to be explored. In this review, we develop a balanced view on the proposed association of this protein in the regulation of several pathophysiological processes. We also discuss the well-established functions of ANGPTL8 in lipoprotein metabolism in conjunction with the emerging novel extracellular and intracellular roles of ANGPTL8 and the implicated metabolic and signalling pathways. Understanding the diverse functions of ANGPTL8 in various tissues and metabolic states should unveil new opportunities of therapeutic intervention for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait..
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
40
|
Gallo A, Béliard S, D'Erasmo L, Bruckert E. Familial Chylomicronemia Syndrome (FCS): Recent Data on Diagnosis and Treatment. Curr Atheroscler Rep 2020; 22:63. [PMID: 32852651 DOI: 10.1007/s11883-020-00885-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Familial chylomicronemia syndrome (FCS) is a rare recessive genetic disorder often underdiagnosed with potentially severe clinical consequences. In this review, we describe the clinical and biological characteristics of the disease together with its main complication, i.e., acute pancreatitis. We focused the paper on new diagnostic tools, progress in understanding the role of two key proteins (apolipoprotein CIII (apo CIII) and angiopoietin-like3 (ANGPTL-3)), and new therapeutic options. RECENT FINDINGS Recently, a new diagnostic tool has been proposed by European experts to help identify these patients. This tool with two recently identified parameters (low LDL and low body mass index) can help identify patients who should be genetically tested or who may have the disease when genetic testing is not available. FCS is caused by homozygous or compound heterozygous mutations of lipoprotein lipase, apolipoprotein C-II, apolipoprotein A-V, glycosylphosphatidylinositol anchored high-density lipoprotein-binding protein 1, and lipase maturation factor. Two proteins have been identified as important player in the metabolism of triglyceride-rich lipoprotein and its regulation. These two proteins are therapeutic target. Antisense oligonucleotide targeting apo CIII has been shown to significantly decrease triglyceride levels even in FCS and is the first available treatment for these patients. Further development might identify new compounds with reduced risk to develop severe thrombocytopenia. ANGPTL-3 inhibitors have not yet been tested in FCS patients but exert significant hypotriglyceridemic effect in the more frequent and less severe polygenic forms. Beyond these two new targets, microsomal triglyceride transfer protein (MTTP) inhibitors could also be part of the armamentarium, if on-going trials confirm their efficacy. New clinical tools and simple criteria can help select patients with possible FCS and identify patients who should have a genetic testing. Identifying patients with FCS is a major issue since these patients have a high risk to suffer severe episodes of acute pancreatitis and may now benefit from new therapeutic options including antisense oligonucleotide targeting apo CIII.
Collapse
Affiliation(s)
- Antonio Gallo
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Sophie Béliard
- Department of Nutrition, Maladies Métaboliques et Endocrinologie, Hôpital Conception, Marseille, France
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eric Bruckert
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.
| |
Collapse
|
41
|
Ruhanen H, Haridas PAN, Jauhiainen M, Olkkonen VM. Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158791. [PMID: 32777482 DOI: 10.1016/j.bbalip.2020.158791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Angiopoietin like protein 3 (ANGPTL3) is best known for its function as an inhibitor of lipoprotein and endothelial lipases. Due to the capacity of genetic or pharmacologic ANGPTL3 suppression to markedly reduce circulating lipoproteins, and the documented cardioprotection upon such suppression, ANGPTL3 has become an emerging therapy target for which both antibody and antisense oligonucleotide (ASO) therapeutics are being clinically tested. While the antibody is relatively selective for circulating ANGPTL3, the ASO also depletes the intra-hepatocellular protein, and there is emerging evidence for cell-autonomous functions of ANGPTL3 in the liver. These include regulation of hepatocyte glucose and fatty acid uptake, insulin sensitivity, LDL/VLDL remnant uptake, VLDL assembly/secretion, polyunsaturated fatty acid (PUFA) and PUFA-derived lipid mediator content, and gene expression. In this review we elaborate on (i) why ANGPTL3 is considered one of the most promising new cardiometabolic therapy targets, and (ii) the present evidences for its intra-hepatocellular or cell-autonomous functions.
Collapse
Affiliation(s)
- Hanna Ruhanen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Molecular and Integrative Biosciences, University of Helsinki, Finland
| | | | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
42
|
Hu L, Zhou Z, Deng L, Ren Q, Cai Z, Wang B, Li Z, Wang G. HWL-088, a new and highly effective FFA1/PPARδ dual agonist, attenuates nonalcoholic steatohepatitis by regulating lipid metabolism, inflammation and fibrosis. J Pharm Pharmacol 2020; 72:1564-1573. [PMID: 32734608 DOI: 10.1111/jphp.13342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/28/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Nonalcoholic fatty liver (NAFLD), a chronic progressive liver disease, is highly correlated with pathoglycemia, dyslipidemia and oxidative stress. The free fatty acid receptor 1 (FFA1) agonists have been reported to improve liver steatosis and fibrosis, and the peroxisome proliferator-activated receptor δ (PPARδ) plays a synergistic role with FFA1 in energy metabolism and fibrosis. HWL-088, a PPARδ/FFA1 dual agonist, exerts better glucose-lowering effects than the representative FFA1 agonist TAK-875. However, the ability of HWL-088 to protect NAFLD was unknown. This study aimed to discover a new strategy for the treatment of NAFLD. METHODS The methionine- and choline-deficient diet (MCD)-induced Nonalcoholic steatohepatitis (NASH) model was constructed to evaluate the effects of HWL-088. KEY FINDINGS Administration of HWL-088 exerted multiple benefits on glucose control, lipid metabolism and fatty liver. Further mechanism research indicated that HWL-088 promotes lipid metabolism by decreasing lipogenesis and increasing lipolysis. Moreover, HWL-088 attenuates NASH by regulating the expression levels of genes related to inflammation, fibrosis and oxidative stress. CONCLUSIONS These positive results indicated that PPARδ/FFA1 dual agonist HWL-088 might be a potential candidate to improve multiple pathogenesis of NASH.
Collapse
Affiliation(s)
- Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guangji Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
43
|
Higher ANGPTL3, apoC-III, and apoB48 dyslipidemia, and lower lipoprotein lipase concentrations are associated with dysfunctional visceral fat in adolescents with obesity. Clin Chim Acta 2020; 508:61-68. [PMID: 32407781 DOI: 10.1016/j.cca.2020.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND We hypothesized that adolescents with obesity have higher remnant B48 concentrations associated with lipoprotein lipase dysregulation. METHODS Cross-sectional study of 32 adolescents with obesity and 27 control subjects. RESULTS As compared to lean controls, obese participants showed 35% higher concentrations of apoB48: 3.60 (2.93-4.30) vs 2.65 (1.64-3.68) ng/ml; 28% of apoC-III: (72.7 (58.6-89.7) vs 56.9 (44.8-79.8 ug/ml and 17% ANGPTL 3: (72.2 ± 20.2 vs 61.2 ± 19.2 ng/ml). This was accompanied by a 33% reduction in LPL: 13.1 ± 5.1 vs 18.9 ± 4.7 ng/ml. Obese participants had 25% lower adiponectin 2.9 (1.9-3.8) vs 4.4 (3.2.-5.2) μg/ml; 260% higher leptin 25.7 (11.2-44.8) vs 9.3 (2.8-20.7) ng/ml c and 83% higher Il-6: 2.2 (1.3-5.4) vs 1.2 (0.8-1.4) pg/ml. ApoC-III and ANGPTL3 correlated positively with VAI; ANGPTL3 negatively with HDL-C; LDL size and VLDL-C. ApoB48 correlated negatively with LDL-C. CONCLUSIONS Adolescents with obesity show higher ANGPTL3 compounded with increased apoC-III associated with increased CR and lower LPL mass. This is associated with inflammation and visceral fat. The significance of these findings resides in that they shed light on a mechanism for TRL dyslipidemia in adolescents: increased LPL inhibition impairs VLDL and chylomicron catabolism leading to atherogenic remnants.
Collapse
|
44
|
Li H, Zhang S, Zhang W, Chen S, Rabearivony A, Shi Y, Liu J, Corton CJ, Liu C. Endogenous circadian time genes expressions in the liver of mice under constant darkness. BMC Genomics 2020; 21:224. [PMID: 32160860 PMCID: PMC7066782 DOI: 10.1186/s12864-020-6639-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The circadian rhythms regulate physiological functions and metabolism. Circadian Time (CT) is a unit to quantify the rhythm of endogenous circadian clock, independent of light influence. To understand the gene expression changes throughout CT, C57BL/6 J mice were maintained under constant darkness (DD) for 6 weeks, and the liver samples were collected starting at 9:00 AM (CT1), and every 4 h in a 24-h cycle (CT5, CT9, CT13, CT17 and CT21). Total RNA was extracted and subjected to RNA-Seq data (deposited as GSE 133342, L-DD). To compare gene oscillation pattern under normal light-dark condition (LD, GSE114400) and short time (2 days) dark-dark condition (S-DD, GSE70497), these data were retried from GEO database, and the trimmed mean of M-values normalization was used to normalize the three RNA-seq data followed by MetaCycle analysis. RESULTS Approximate 12.1% of the genes under L-DD exhibited significant rhythmically expression. The top 5 biological processes enriched in L-DD oscillation genes were mRNA processing, aromatic compound catabolic process, mitochondrion organization, heterocycle catabolic process and cellular nitrogen compound mitotic catabolic process. The endogenous circadian rhythms of clock genes, P450 genes and lipid metabolism genes under L-DD were further compared with LD and S-DD. The oscillation patterns were similar but the period and amplitude of those oscillation genes were slightly altered. RT-qPCR confirmed the selected RNA sequence findings. CONCLUSIONS This is the first study to profile oscillation gene expressions under L-DD. Our data indicate that clock genes, P450 genes and lipid metabolism genes expressed rhythmically under L-DD. Light was not the necessary factor for persisting circadian rhythm but influenced the period and amplitude of oscillation genes.
Collapse
Affiliation(s)
- Huan Li
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Shiyao Zhang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenxiang Zhang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Siyu Chen
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Anjara Rabearivony
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Yujie Shi
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Computational Toxicology Division, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christopher J Corton
- Computational Toxicology Division, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Chang Liu
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|