1
|
Blidner AG, Bach CA, García PA, Merlo JP, Cagnoni AJ, Bannoud N, Manselle Cocco MN, Pérez Sáez JM, Pinto NA, Torres NI, Sarrias L, Dalotto-Moreno T, Gatto SG, Morales RM, Giribaldi ML, Stupirski JC, Cerliani JP, Bellis SL, Salatino M, Troncoso MF, Mariño KV, Abba MC, Croci DO, Rabinovich GA. Glycosylation-driven programs coordinate immunoregulatory and pro-angiogenic functions of myeloid-derived suppressor cells. Immunity 2025:S1074-7613(25)00190-6. [PMID: 40381622 DOI: 10.1016/j.immuni.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2024] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumor progression by suppressing antitumor immunity and inducing angiogenesis; however, the mechanisms linking these processes remain uncertain. Here, we identified a glycosylation-dependent program driven by galectin-1 (GAL1) that imparted both immunoregulatory and pro-angiogenic functions to MDSCs through shared receptor signaling pathways. GAL1 expression was associated with enhanced MDSC phenotypes and poor prognosis in diverse human cancers. Analysis of monocytic and polymorphonuclear MDSCs from tumor-bearing mice revealed niche-specific glycan signatures that selectively regulated GAL1 binding. Through glycosylation-dependent interactions with the CD18-CD11b-CD177 receptor complex and STAT3 signaling, GAL1 simultaneously orchestrated immunosuppressive and pro-angiogenic programs in MDSCs, driving tumor growth in vivo. Myeloid-specific deletion of β-galactoside α(2,6)-sialyltransferase 1, which prevented α(2,6)-linked sialic acid incorporation, enhanced GAL1-driven regulatory circuits and accelerated tumor progression, effects that were mitigated by GAL1-neutralizing antibodies. Thus, targeting GAL1-glycan interactions may offer opportunities to reprogram MDSCs and enhance the efficacy of immunotherapeutic and anti-angiogenic strategies.
Collapse
Affiliation(s)
- Ada G Blidner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina.
| | - Camila A Bach
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Pablo A García
- Laboratorio de Glicobiología y Biología Vascular, Instituto de Histología y Embriología de Mendoza (IHEM), CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina
| | - Joaquín P Merlo
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), 1073 Ciudad de Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina
| | - Nadia Bannoud
- Laboratorio de Glicobiología y Biología Vascular, Instituto de Histología y Embriología de Mendoza (IHEM), CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Montana N Manselle Cocco
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Nicolás A Pinto
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Nicolás I Torres
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Luciana Sarrias
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, CONICET, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Ciudad de Buenos Aires, Argentina
| | - Tomás Dalotto-Moreno
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Sabrina G Gatto
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Rosa M Morales
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - M Laura Giribaldi
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Juan C Stupirski
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Juan P Cerliani
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Mariana Salatino
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - María F Troncoso
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, CONICET, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Ciudad de Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), 1073 Ciudad de Buenos Aires, Argentina
| | - Martín C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Diego O Croci
- Laboratorio de Glicobiología y Biología Vascular, Instituto de Histología y Embriología de Mendoza (IHEM), CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina; Universidad de San Andrés, Victoria, Provincia de Buenos Aires 1644, Argentina.
| |
Collapse
|
2
|
McGinty MT, Putelo AM, Kolli SH, Feng TY, Dietl MR, Hatzinger CN, Bajgai S, Poblete MK, Azar FN, Mohammad A, Kumar P, Rutkowski MR. TLR5 Signaling Causes Dendritic Cell Dysfunction and Orchestrates Failure of Immune Checkpoint Therapy against Ovarian Cancer. Cancer Immunol Res 2025; 13:696-711. [PMID: 39932226 PMCID: PMC12048257 DOI: 10.1158/2326-6066.cir-24-0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/05/2024] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
Ovarian cancer accounts for more deaths than any other cancer of the female reproductive system. Patients who have ovarian tumors infiltrated with high frequencies of T cells are associated with a greater survival probability. However, therapies to revitalize tumor-associated T cells, such as PD-L1/PD-1 or CTLA4 blockade, are ineffective for the treatment of ovarian cancer. In this study, we demonstrate that for ovarian cancer, Toll-like receptor 5 (TLR5) signaling, for which the only known ligand is bacterial flagellin, governed failure of PD-L1 and CTLA4 blockade. Mechanistically, chronic TLR5 signaling on CD11c+ cells in vivo and in vitro impaired the differentiation of functional IL-12-producing XCR1+CD103+ conventional type 1 dendritic cells, biasing CD11c+ precursor cells toward myeloid subsets expressing high levels of PD-L1. This culminated in impaired activation of CD8+ T cells, reducing CD8+ T-cell function and ability to persist within the ovarian tumor microenvironment. Expansion of XCR1+CD103+ conventional type 1 dendritic cells in situ using Flt3L-Ig in combination with PD-L1 blockade achieved significant survival benefit in TLR5 knockout mice bearing ovarian tumors, whereas no benefit was observed in the presence of TLR5 signaling. Thus, we have identified a host-intrinsic mechanism leading to the failure of PD-L1 blockade for ovarian cancer, demonstrating that chronic TLR5 signaling on CD11c+ cells is a barrier limiting the efficacy of checkpoint therapy.
Collapse
Affiliation(s)
- Mitchell T. McGinty
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Audrey M. Putelo
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Sree H. Kolli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Madison R. Dietl
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Cara N. Hatzinger
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Simona Bajgai
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Mika K. Poblete
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Francesca N. Azar
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Anwaruddin Mohammad
- Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA
| | - Pankaj Kumar
- Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA
| | - Melanie R. Rutkowski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| |
Collapse
|
3
|
Liu Y, Ning H, Li Y, Li Y, Ma J. The microbiota in breast cancer: dysbiosis, microbial metabolites, and therapeutic implications. Am J Cancer Res 2025; 15:1384-1409. [PMID: 40371158 PMCID: PMC12070087 DOI: 10.62347/zjcf2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/29/2025] [Indexed: 05/16/2025] Open
Abstract
The human microbiome plays a pivotal role in host health and disease, with emerging evidence underscoring its significant influence on the development and progression of breast cancer. Studies have revealed that dysbiosis in both the gut and breast tissue microbiota is strongly associated with an elevated risk of breast cancer. Distinct microbial profiles have been identified among healthy individuals, patients with benign breast conditions, and those with malignant tumors, with further variations observed across different ethnic groups and breast cancer subtypes. The complex interplay between breast cancer risk factors and microbial populations, coupled with the direct impact of microbial communities and their metabolites on inflammatory pathways and immune responses, underscores the importance of this field. Additionally, the interaction between gut microbiota and therapeutic modalities such as chemotherapy and radiotherapy is of particular interest, as these interactions can significantly influence treatment outcomes, either enhancing or diminishing efficacy. This review explores the effects of the Mediterranean diet, probiotics, prebiotics, and natural medicinal products on gut microbiota, emphasizing their potential as innovative therapeutic strategies. Notably, the use of engineered probiotics within the tumor microenvironment represents a promising frontier in breast cancer treatment. In conclusion, research on the human microbiome not only deepens our understanding of breast cancer pathogenesis but also lays the groundwork for the development of novel and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yan Liu
- Shanxi Province Cancer Hospital, Shanxi Medical UniversityTaiyuan 030006, Shanxi, China
| | - Haiyang Ning
- Shanxi Province Cancer Hospital, Shanxi Medical UniversityTaiyuan 030006, Shanxi, China
| | - Yifei Li
- Shanxi Province Cancer Hospital, Shanxi Medical UniversityTaiyuan 030006, Shanxi, China
| | - Yifan Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Jinfeng Ma
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| |
Collapse
|
4
|
Novák J, Takács T, Tilajka Á, László L, Oravecz O, Farkas E, Than NG, Buday L, Balogh A, Vas V. The sweet and the bitter sides of galectin-1 in immunity: its role in immune cell functions, apoptosis, and immunotherapies for cancer with a focus on T cells. Semin Immunopathol 2025; 47:24. [PMID: 40178639 PMCID: PMC11968517 DOI: 10.1007/s00281-025-01047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/07/2025] [Indexed: 04/05/2025]
Abstract
Galectin-1 (Gal-1), a member of the β-galactoside-binding soluble lectin family, is a double-edged sword in immunity. On one hand, it plays a crucial role in regulating diverse immune cell functions, including the apoptosis of activated T cells. These processes are key in resolving inflammation and preventing autoimmune diseases. On the other hand, Gal-1 has significant implications in cancer, where tumor cells and the tumor microenvironment (TME) (e.g., tumor-associated fibroblasts, myeloid-derived suppressor cells) secrete Gal-1 to evade immune surveillance and promote cancer cell growth. Within the TME, Gal-1 enhances the differentiation of tolerogenic dendritic cells, induces the apoptosis of effector T cells, and enhances the proliferation of regulatory T cells, collectively facilitating tumor immune escape. Therefore, targeting Gal-1 holds the potential to boost anti-tumor immunity and improve the efficacy of cancer immunotherapy. This review provides insights into the intricate role of Gal-1 in immune cell regulation, with an emphasis on T cells, and elucidates how tumors exploit Gal-1 for immune evasion and growth. Furthermore, we discuss the potential of Gal-1 as a therapeutic target to augment current immunotherapies across various cancer types.
Collapse
Affiliation(s)
- Julianna Novák
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Tamás Takács
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Álmos Tilajka
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Loretta László
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Orsolya Oravecz
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Emese Farkas
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Károly Rácz Conservative Medicine Division, Doctoral College, Semmelweis University, Budapest, 1091, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, 1088, Hungary
| | - László Buday
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| | - Virág Vas
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
5
|
Cieslak SG, Shahbazi R. Gamma delta T cells and their immunotherapeutic potential in cancer. Biomark Res 2025; 13:51. [PMID: 40148988 PMCID: PMC11951843 DOI: 10.1186/s40364-025-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Gamma-delta (γδ) T cells are a unique subset of T lymphocytes that play diverse roles in immune responses, bridging innate and adaptive immunity. With growing interest in their potential for cancer immunotherapy, a comprehensive and inclusive exploration of γδ T cell families, their development, activation mechanisms, functions, therapeutic implications, and current treatments is essential. This review aims to provide an inclusive and thorough discussion of these topics. Through our discussion, we seek to uncover insights that may harbinger innovative immunotherapeutic strategies. Beginning with an overview of γδ T cell families including Vδ1, Vδ2, and Vδ3, this review highlights their distinct functional properties and contributions to anti-tumor immunity. Despite γδ T cells exhibiting both anti-tumor and pro-tumor activities, our review elucidates strategies to harness the anti-tumor potential of γδ T cells for therapeutic benefit. Moreover, our paper discusses the structural intricacies of the γδ T cell receptor and its significance in tumor recognition. Additionally, this review examines conventional and emerging γδ T cell therapies, encompassing both non-engineered and engineered approaches, with a focus on their efficacy and safety profiles in clinical trials. From multifunctional capabilities to diverse tissue distribution, γδ T cells play a pivotal role in immune regulation and surveillance. By analyzing current research findings, this paper offers insights into the dynamic landscape of γδ T cell-based immunotherapies, underscoring their promise as a potent armamentarium against cancer. Furthermore, by dissecting the complex biology of γδ T cells, we learn valuable information about the anti-cancer contributions of γδ T cells, as well as potential targets for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Stephen G Cieslak
- Division of Hematology/Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Reza Shahbazi
- Division of Hematology/Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA.
- Tumor Microenvironment & Metastasis, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Brown Center for Immunotherapy, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Nishida A, Andoh A. The Role of Inflammation in Cancer: Mechanisms of Tumor Initiation, Progression, and Metastasis. Cells 2025; 14:488. [PMID: 40214442 PMCID: PMC11987742 DOI: 10.3390/cells14070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Inflammation is an essential component of the immune response that protects the host against pathogens and facilitates tissue repair. Chronic inflammation is a critical factor in cancer development and progression. It affects every stage of tumor development, from initiation and promotion to invasion and metastasis. Tumors often create an inflammatory microenvironment that induces angiogenesis, immune suppression, and malignant growth. Immune cells within the tumor microenvironment interact actively with cancer cells, which drives progression through complex molecular mechanisms. Chronic inflammation is triggered by factors such as infections, obesity, and environmental toxins and is strongly linked to increased cancer risk. However, acute inflammatory responses can sometimes boost antitumor immunity; thus, inflammation presents both challenges and opportunities for therapeutic intervention. This review examines how inflammation contributes to tumor biology, emphasizing its dual role as a critical factor in tumorigenesis and as a potential therapeutic target.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Shiga, Japan;
| | | |
Collapse
|
7
|
L'Orphelin J, Dompmartin A, Dréno B. The Skin Microbiome: A New Key Player in Melanoma, From Onset to Metastatic Stage. Pigment Cell Melanoma Res 2025; 38:e13224. [PMID: 40016867 PMCID: PMC11868406 DOI: 10.1111/pcmr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
The skin microbiome plays a crucial role in maintaining skin health, defending the body against harmful pathogens, and interacting with melanoma. The composition of the skin microbiome can be affected by factors like age, gender, ethnicity, lifestyle, diet, and UV exposure. Certain bacteria like Staphylococcus and Veillonella are important for wound healing, while Cutibacterium acnes can play a role in dermatoses. UV radiation alters the skin microbiome, originates a "UV-resistome" and can lead to skin cancer initiation. Specifically, Staphylococcus epidermidis has shown protective effects against skin cancer, whereas Cutibacterium acnes can induce apoptosis in melanocytes postirradiation. The microbiome also interacts with melanoma treatment, affecting responses to immune checkpoint inhibitors. Strategies like bacteriotherapy, involving the manipulation of the gut microbiome but also the skin microbiome (with the gut-skin axis or through topical treatment) could improve treatment outcomes and show promise in melanoma therapy. Understanding the complex interplay between the skin microbiome, UV exposure, and melanoma development is crucial for developing personalized therapeutic approaches. Investigation into the skin microbiome and its potential role in melanoma progression continues to be an exciting area of research with implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Jean‐Matthieu L'Orphelin
- Unicaen, Inserm U1086 AnticipeNormandie UnivCaenFrance
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Anne Dompmartin
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Brigitte Dréno
- Inserm, Cnrs, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001Nantes UniversitéNantesFrance
| |
Collapse
|
8
|
Conte M, Tomaciello M, De Feo MS, Frantellizzi V, Marampon F, De Cristofaro F, De Vincentis G, Filippi L. The Tight Relationship Between the Tumoral Microenvironment and Radium-223. Biomedicines 2025; 13:456. [PMID: 40002869 PMCID: PMC11853176 DOI: 10.3390/biomedicines13020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Radium-223 (223Ra) was the first radioactive isotope approved for treating castration-resistant prostate cancer (CRPC) with symptomatic bone metastases without visceral metastatic disease. To better understand the action of 223Ra, its role in the tumor microenvironment represents a crucial aspect. A literature search was conducted using the PubMed/MEDLINE database and studies regarding the relationship between 223Ra and the tumoral microenvironment were considered. The tumoral microenvironment is a complex setting in which complex interactions between cells and molecules occur. Radium-223, as an alpha-emitter, induces double-stranded DNA breaks; to potentiate this effect, it could be used in patients with genetic instability but also in combination with therapies which inhibit DNA repair, modulate the immune response, or control tumor growth. In conclusion, a few studies have taken into consideration the tumoral microenvironment in association with 223Ra. However, its understanding is a priority to better comprehend how to effectively exploit 223Ra and its action mechanism.
Collapse
Affiliation(s)
- Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Flaminia De Cristofaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Luca Filippi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
9
|
Guo H. Interactions between the tumor microbiota and breast cancer. Front Cell Infect Microbiol 2025; 14:1499203. [PMID: 39926112 PMCID: PMC11802574 DOI: 10.3389/fcimb.2024.1499203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/11/2024] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Changes in the microbiota and their metabolites affect the occurrence and development of breast cancer; however, the specific mechanisms are not clear. Gut microbes and their metabolites influence the development of breast cancer by regulating the tumor immune response, estrogen metabolism, chemotherapy, and immunotherapy effects. It was previously thought that there were no microorganisms in breast tissue, but it is now thought that there are microorganisms in breast cancer that can affect the outcome of the disease. This review builds on existing research to comprehensively analyze the role of gut and intratumoral microbiota and their metabolites in the development and metastasis of breast cancer. We also explore the potential function of the microbiota as biomarkers for prognosis and therapeutic response, highlighting the need for further research to clarify the causal relationship between the microbiota and breast cancer. We hope to provide new ideas and directions for the development of new methods for breast cancer treatment.
Collapse
Affiliation(s)
- Hua Guo
- The Nursing Department, Shaanxi Provincial People’s Hospital,
Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Zhang Q, Wang D, Zhuo G, Wang S, Yuan Y, Wang L, Ji L, Wan Y, Liu G, Pan Y. Intratumoral Stenotrophomonas Maltophilia in Breast Cancer: Unraveling the Interplay with Hormone Receptors and Impact on Tumor Immunity. Int J Biol Sci 2025; 21:974-988. [PMID: 39897027 PMCID: PMC11781185 DOI: 10.7150/ijbs.98260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/24/2024] [Indexed: 02/03/2025] Open
Abstract
This study aimed to explore the impact of intratumoral microorganisms in conjunction with hormone receptors on the tumor microenvironment and their potential role in predicting patient prognosis. Significant bacterial variations were identified within ER, PR, HER2, and triple-negative breast cancer subtypes. Kaplan-Meier survival analysis was employed to identify bacteria associated with patient survival. Further, a humanized immune system mouse model bearing breast cancer xenografts was used to evaluate the effects of Stenotrophomonas maltophilia (SMA) on tumor growth and CD8+ T cell infiltration. Additional validation experiments included fluorescence in situ hybridization for SMA, CD8+ T cell chemotaxis, and intracellular cytokine detection. Lawsonella clevelandensis-A, Diaphorobacter nitroreducens, and SMA were identified as significant prognostic species. Notably, tumor-infiltrating immune cells, particularly CD8+ T cells, exhibited a positive association with the presence of SMA. Experimental validation with clinically isolated SMA further confirmed its positive correlation with CD8+ T cell activation. In vivo findings demonstrated that SMA inhibited tumor growth and promoted CD8+ T cell infiltration, highlighting the complex interactions between intratumoral microbiota and tumor immunity in breast cancer. These insights contribute to the understanding of microbial influences on the tumor microenvironment and suggest potential pathways for improving patient prognosis through microbiota modulation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Dujuan Wang
- Department of Clinical Pathology, Houjie Hospital of Dongguan, The Affiliated Houjie Hospital of Guangdong Medical University, Dongguan, China
| | - Guangzheng Zhuo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Shilin Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yufen Yuan
- Department of Pathology, Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Anyang, China
| | - Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Lili Ji
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yuhang Wan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Hubei Molecular Diagnostic Clinical Medical Research Center, Wuhan, Hubei, China
| |
Collapse
|
11
|
Kim N, Yang C. Butyrate as a Potential Modulator in Gynecological Disease Progression. Nutrients 2024; 16:4196. [PMID: 39683590 DOI: 10.3390/nu16234196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review investigates the therapeutic potential of butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, in the prevention and treatment of various gynecological diseases, including polycystic ovary syndrome (PCOS), endometriosis, and gynecologic cancers like cervical and ovarian cancer. These conditions often pose treatment challenges, with conventional therapies offering limited and temporary relief, significant side effects, and a risk of recurrence. Emerging evidence highlights butyrate's unique biological activities, particularly its role as a histone deacetylase (HDAC) inhibitor, which allows it to modulate gene expression, immune responses, and inflammation. In PCOS, butyrate aids in restoring hormonal balance, enhancing insulin sensitivity, and reducing chronic inflammation. For endometriosis, butyrate appears to suppress immune dysregulation and minimize lesion proliferation. Additionally, in cervical and ovarian cancers, butyrate demonstrates anticancer effects through mechanisms such as cell cycle arrest, apoptosis induction, and suppression of tumor progression. Dietary interventions, particularly high-fiber and Mediterranean diets, that increase butyrate production are proposed as complementary approaches, supporting natural microbiota modulation to enhance therapeutic outcomes. However, butyrate's short half-life limits its clinical application, spurring interest in butyrate analogs and probiotics to maintain stable levels and extend its benefits. This review consolidates current findings on butyrate's multifaceted impact across gynecological health, highlighting the potential for microbiota-centered therapies in advancing treatment strategies and improving women's reproductive health.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Changwon Yang
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
12
|
Hu J, Ran S, Huang Z, Liu Y, Hu H, Zhou Y, Ding X, Yin J, Zhang Y. Antibacterial tellurium-containing polycarbonate drug carriers to eliminate intratumor bacteria for synergetic chemotherapy against colorectal cancer. Acta Biomater 2024; 185:323-335. [PMID: 38964527 DOI: 10.1016/j.actbio.2024.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Intratumor microbes have attracted great attention in cancer research due to its influence on the tumorigenesis, progression and metastasis of cancer. However, the therapeutic strategies targeting intratumoral microbes are still in their infancy. Specific microorganisms, such as Fusobacterium nucleatum (F. nucleatum), are abundant in various cancer and always result in the CRC progression and chemotherapy resistance. Here, a combined anticancer and antibacterial therapeutic strategy is proposed to deliver antitumor drug to the tumors containing intratumor microbiota by the antibacerial polymeric drug carriers. We construct oral tellurium-containing drug carriers using a complex of tellurium-containing polycarbonate with cisplatin (PTE@CDDP). The results show that the particle size of the prepared nanoparticles could be maintained at about 105 nm in the digestive system environment, which is in line with the optimal particle size of oral nanomedicine. In vitro mechanism study indicates that the tellurium-containing polymers are highly effective in killing F.nucleatum through a membrane disruption mechanism. The pharmacokinetic experiments confirmed that PTE@CDDP has the potential function of enhancing the oral bioavailability of cisplatin. Both in vitro and in vivo studies show that PTE@CDDP could inhibit intratumor F.nucleatum and lead to a reduction in cell proliferation and inflammation in the tumor site. Together, the study identifies that the CDDP-loaded tellurium-containing nanoparticles have great potential for treating the F.nucleatum-promoted colorectal cancer (CRC) by combining intratumor microbiota modulation and chemotherapy. The synergistic therapeutic strategy provide new insight into treating various cancers combined with bacterial infection. STATEMENT OF SIGNIFICANCE: The synthesized antibacterial polymer was first employed to remodel the intratumor microbes in tumor microenvironment (TME). Moreover, it was the first report of tellurium-containing polymers against F.nucleatum and employed for treatment of the CRC. A convenient oral dosage form of cisplatin (CDDP)-loaded tellurium-containing nanoparticles (PTE@CDDP) was adopted here, and the synergistic antibacterial/chemotherapy effect occurred. The PTE@CDDP could quickly and completely eliminate F.nucleatum in a safe dose. In the CRC model, PTE@CDDP effectively reversed the inflammation level and even restored the intestinal barrier damaged by F.nucleatum. The ultrasensitive ROS-responsiveness of PTE@CDDP triggered the fast oxidation and efficient drug release of CDDP and thus a highly efficient apoptosis of the tumors. Therefore, the tellurium-containing polymers are expected to serve as novel antibacterial agents in vivo and have great potential in the F.nucleatum-associated cancers. The achievements provided new insight into treating CRC and other cancers combined with bacterial infection.
Collapse
Affiliation(s)
- Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Zhengwei Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanyuan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haiyan Hu
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China.
| | - Yan Zhou
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Xiaomin Ding
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Junyi Yin
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Xin Z, Qin L, Tang Y, Guo S, Li F, Fang Y, Li G, Yao Y, Zheng B, Zhang B, Wu D, Xiao J, Ni C, Wei Q, Zhang T. Immune mediated support of metastasis: Implication for bone invasion. Cancer Commun (Lond) 2024; 44:967-991. [PMID: 39003618 PMCID: PMC11492328 DOI: 10.1002/cac2.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Bone is a common organ affected by metastasis in various advanced cancers, including lung, breast, prostate, colorectal, and melanoma. Once a patient is diagnosed with bone metastasis, the patient's quality of life and overall survival are significantly reduced owing to a wide range of morbidities and the increasing difficulty of treatment. Many studies have shown that bone metastasis is closely related to bone microenvironment, especially bone immune microenvironment. However, the effects of various immune cells in the bone microenvironment on bone metastasis remain unclear. Here, we described the changes in various immune cells during bone metastasis and discussed their related mechanisms. Osteoblasts, adipocytes, and other non-immune cells closely related to bone metastasis were also included. This review also summarized the existing treatment methods and potential therapeutic targets, and provided insights for future studies of cancer bone metastasis.
Collapse
Affiliation(s)
- Zengfeng Xin
- Department of Orthopedic SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Luying Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yang Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Siyu Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Fangfang Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yuan Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Gege Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yihan Yao
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Binbin Zheng
- Department of Respiratory MedicineNingbo Hangzhou Bay HospitalNingboZhejiangP. R. China
| | - Bicheng Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jie Xiao
- Department of Orthopedic SurgerySecond Affiliated Hospital (Jiande Branch)Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Breast SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qichun Wei
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Ting Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
14
|
Li X, Chen Y, Liang Y, Shi W. 5-Fluorouracil resistance due to sphingosine kinase 2 overexpression in colorectal cancer is associated with myeloid-derived suppressor cell-mediated immunosuppressive effects. BMC Cancer 2024; 24:983. [PMID: 39118083 PMCID: PMC11313101 DOI: 10.1186/s12885-024-12742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
PURPOSE Colorectal cancer (CRC) is one of the top five cancer-related causes of mortality globally. Acquired resistance has hindered the effectiveness of 5-fluorouracil (5-FU), the main chemotherapeutic drug used to treat CRC. Sphingosine kinase 2 (SphK2) may be a cancer treatment target and involved in 5-FU resistance. METHODS Cell growth was examined using MTT and clone formation assays for SphK2 expression. To identify immune cells in mice, flow cytometry was performed. West blotting demonstrated alterations in cell division and inflammation-related proteins. SphK2 levels and inflammation-related variables were studied using Elisa. RESULTS Due to SphK2 overexpression, immunosuppression, and 5-FU resistance are caused by the development of myeloid-derived suppressor cells (MDSCs) subsequent to IL-6/STAT3 activation and alterations in the arginase (ARG-1) protein. After therapy, the combination of SphK2 inhibitors and 5-FU can effectively suppress MDSCs while increasing CD4+ and CD8+ T cell infiltration into the tumor microenvironment, lowering tumor burden, and exhibiting a therapeutic impact on CRC. CONCLUSIONS Our findings suggest that 5-FU treatment combined with simultaneous Spkh2 inhibition by ABC294640 has anti-tumor synergistic effects by influencing multiple effects on tumor cells, T cells, and MDSCs, potentially improving the poor prognosis of colorectal cancer patients.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yungao Chen
- Human Resources Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yulin Liang
- School of Nursing, Peking Union Medical College, Beijing, China
| | - Wenna Shi
- Department of Pharmacy and Shandong Provincial key Traditional Chinese Medical Discipline of Clinical Chinese pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
15
|
Fiala GJ, Lücke J, Huber S. Pro- and antitumorigenic functions of γδ T cells. Eur J Immunol 2024; 54:e2451070. [PMID: 38803018 DOI: 10.1002/eji.202451070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
γδ T cells are a subset of T cells that are characterized by the expression of a TCR-γδ instead of a TCR-αβ. Despite being outnumbered by their αβ T cell counterpart in many tissues, studies from the last 20 years underline their important and non-redundant roles in tumor and metastasis development. However, whether a γδ T cell exerts pro- or antitumorigenic effects seems to depend on a variety of factors, many of them still incompletely understood today. In this review, we summarize mechanisms by which γδ T cells exert these seemingly contradictory effector functions in mice and humans. Furthermore, we discuss the current view on inducing and inhibiting factors of γδ T cells during cancer development.
Collapse
Affiliation(s)
- Gina J Fiala
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Liu W, Li Y, Wu P, Guo X, Xu Y, Jin L, Zhao D. The intratumoral microbiota: a new horizon in cancer immunology. Front Cell Infect Microbiol 2024; 14:1409464. [PMID: 39135638 PMCID: PMC11317474 DOI: 10.3389/fcimb.2024.1409464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Over the past decade, advancements in high-throughput sequencing technologies have led to a qualitative leap in our understanding of the role of the microbiota in human diseases, particularly in oncology. Despite the low biomass of the intratumoral microbiota, it remains a crucial component of the tumor immune microenvironment, displaying significant heterogeneity across different tumor tissues and individual patients. Although immunotherapy has emerged a major strategy for treating tumors, patient responses to these treatments vary widely. Increasing evidence suggests that interactions between the intratumoral microbiota and the immune system can modulate host tumor immune responses, thereby influencing the effectiveness of immunotherapy. Therefore, it is critical to gain a deep understanding of how the intratumoral microbiota shapes and regulates the tumor immune microenvironment. Here, we summarize the latest advancements on the role of the intratumoral microbiota in cancer immunity, exploring the potential mechanisms through which immune functions are influenced by intratumoral microbiota within and outside the gut barrier. We also discuss the impact of the intratumoral microbiota on the response to cancer immunotherapy and its clinical applications, highlighting future research directions and challenges in this field. We anticipate that the valuable insights into the interactions between cancer immunity and the intratumoral microbiota provided in this review will foster the development of microbiota-based tumor therapies.
Collapse
Affiliation(s)
- Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yuming Li
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Ping Wu
- General Surgery Department of Liaoyuan Central Hospital, Jilin, China
| | - Xinyue Guo
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yifei Xu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lianhai Jin
- Low Pressure and Low Oxygen Environment and Health Intervention Innovation Center, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- College of Basic Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
17
|
Díaz del Arco C, Estrada Muñoz L, Cerón Nieto MDLÁ, Molina Roldán E, Fernández Aceñero MJ, García Gómez de las Heras S. Prognostic Influence of Galectin-1 in Gastric Adenocarcinoma. Biomedicines 2024; 12:1508. [PMID: 39062081 PMCID: PMC11275144 DOI: 10.3390/biomedicines12071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Galectin-1 (Gal-1), a member of the human lectin family, has garnered attention for its association with aggressive behavior in human tumors, prompting research into the development of targeted drugs. This study aims to assess the staining pattern and prognostic significance of Gal-1 immunohistochemical expression in a homogeneous cohort of Western patients with gastric cancer (GC). A total of 149 cases were included and tissue microarrays were constructed. Stromal Gal-1 expression was observed to some extent in most tumors, displaying a cytoplasmic pattern. Cases with stromal Gal-1 overexpression showed significantly more necrosis, lymphovascular invasion, advanced pTNM stages, recurrences, and cancer-related deaths. Epithelial Gal-1 expression was present in 63.8% of the cases, primarily exhibiting a cytoplasmic pattern, and its overexpression was significantly associated with lymphovascular invasion, peritumoral lymphocytic infiltration, and tumor-related death. Kaplan/Meier curves for cancer-specific survival (CSS) revealed a significantly worse prognosis for patients with tumors exhibiting stromal or epithelial Gal-1 overexpression. Furthermore, stromal Gal-1 expression stratified stage III patients into distinct prognostic subgroups. In a multivariable analysis, increased stromal Gal-1 expression emerged as an independent prognostic factor for CSS. These findings underscore the prognostic relevance of Gal-1 and suggest its potential as a target for drug development in Western patients with GC.
Collapse
Affiliation(s)
- Cristina Díaz del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lourdes Estrada Muñoz
- Department of Pathology, Rey Juan Carlos Hospital, 28933 Móstoles, Spain;
- Department of Basic Medical Sciences, School of Medicine, Rey Juan Carlos University, 28933 Móstoles, Spain;
| | - María de los Ángeles Cerón Nieto
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | | - María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | |
Collapse
|
18
|
Li S, Liu R, Hao X, Liu X. The role of gut microbiota in prostate cancer progression: A Mendelian randomization study of immune mediation. Medicine (Baltimore) 2024; 103:e38825. [PMID: 38968485 PMCID: PMC11224845 DOI: 10.1097/md.0000000000038825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024] Open
Abstract
The potential relationship between the gut microbiota and prostate cancer, possibly influenced by immune cells, remains unclear. This study employed the mediation Mendelian randomization (MR) technique to investigate the causal link between the gut microbiota, immune cells, and prostate cancer. Data on immune cell activity were sourced from Valeria Orrù's research, whereas the genome-wide association study outcome dataset was obtained from the Integrative Epidemiology Unit database. The bidirectional MR analysis utilized 5 different methods: inverse variance weighted (IVW), weighted median, MR-Egger regression, weighted mode, and simple mode. In addition, the mediating effect of immune cells on the gut microbiota and prostate cancer was explored using mediation analysis. Eighty-three single nucleotide polymorphisms associated with prostate cancer were screened as instrumental variables. In a positive MR analysis with gut microbiota as the exposure factor, IVW showed an association between 8 gut microbiota and prostate cancer. Additionally, 9 types of immune cells have been found to be associated with prostate cancer using methods such as IVW. MR analysis of the gut microbiota on immune cells (beta1) revealed a negative correlation between Bifidobacterium and CD39+ T regulatory cells (Tregs; odds ratio [OR] = 0.785, 95% confidence interval [CI] = 0.627-0.983, P = .03). Furthermore, MR analysis of immune cells in prostate cancer disease (beta2) showed that CD39+Tregs are a risk factor for prostate cancer (OR = 1.215, 95% CI = 1.027-1.354, P = .04). Moreover, MR analysis of gut microbiota in prostate cancer (total effect) indicated that Bifidobacterium is a protective factor for prostate cancer (OR = 0.905, 95% CI = 0.822-0.977, P = .04). The sensitivity analysis verified the robustness of the above results. Mediation analysis demonstrated that CD39+Tregs partially mediate the causal relationship between Bifidobacterium and prostate cancer. This study demonstrates that Bifidobacterium inhibits prostate cancer progression through CD39+Tregs as mediators, providing new ideas and approaches for the treatment and prevention of prostate cancer.
Collapse
Affiliation(s)
- Song Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, China
- Plastic Surgery Department, Henan International Joint Laboratory of Cellular Medical Engineering, Henan, China
| | - Ruoxuan Liu
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, China
- Plastic Surgery Department, Henan International Joint Laboratory of Cellular Medical Engineering, Henan, China
| | - Xuexue Hao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Tamuli B, Sharma S, Patkar M, Biswas S. Key players of immunosuppression in epithelial malignancies: Tumor-infiltrating myeloid cells and γδ T cells. Cancer Rep (Hoboken) 2024; 7:e2066. [PMID: 38703051 PMCID: PMC11069128 DOI: 10.1002/cnr2.2066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.
Collapse
Affiliation(s)
- Baishali Tamuli
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Sakshi Sharma
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Meena Patkar
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Subir Biswas
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
- Homi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
20
|
Gumina ME, Hooper MJ, Zhou XA, Koralov SB. Role of Antigenic Stimulation in Cutaneous T-Cell Lymphomas. J Invest Dermatol 2024; 144:755-763. [PMID: 38149950 PMCID: PMC10960716 DOI: 10.1016/j.jid.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Cutaneous T-cell lymphoma (CTCL) involves a clonal expansion of malignant cells accumulating in the skin, a primary barrier site. CTCL has long been hypothesized to be caused or perpetuated by chronic antigen stimulation due to unknown exposures. These antigenic triggers, defined as any element that may cause activation of malignant T cells through TCR signaling, have been hypothesized to range from chemicals to microbes. This review covers current evidence supporting chemical and microbial stimuli that may act as antigenic triggers of CTCL and summarizes novel areas of investigation, in which the potential antigenicity of the exposure is still unknown.
Collapse
Affiliation(s)
- Megan E Gumina
- Department of Pathology, Grossman School of Medicine, New York University, New York, New York, USA
| | - Madeline J Hooper
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiaolong A Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Sergei B Koralov
- Department of Pathology, Grossman School of Medicine, New York University, New York, New York, USA.
| |
Collapse
|
21
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
22
|
Liu Q, Yang Y, Pan M, Yang F, Yu Y, Qian Z. Role of the gut microbiota in tumorigenesis and treatment. Theranostics 2024; 14:2304-2328. [PMID: 38646653 PMCID: PMC11024857 DOI: 10.7150/thno.91700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/01/2024] [Indexed: 04/23/2024] Open
Abstract
The gut microbiota is a crucial component of the intricate microecosystem within the human body that engages in interactions with the host and influences various physiological processes and pathological conditions. In recent years, the association between dysbiosis of the gut microbiota and tumorigenesis has garnered increasing attention, as it is recognized as a hallmark of cancer within the scientific community. However, only a few microorganisms have been identified as potential drivers of tumorigenesis, and enhancing the molecular understanding of this process has substantial scientific importance and clinical relevance for cancer treatment. In this review, we delineate the impact of the gut microbiota on tumorigenesis and treatment in multiple types of cancer while also analyzing the associated molecular mechanisms. Moreover, we discuss the utility of gut microbiota data in cancer diagnosis and patient stratification. We further outline current research on harnessing microorganisms for cancer treatment while also analyzing the prospects and challenges associated with this approach.
Collapse
Affiliation(s)
- Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
23
|
Zhang Y, Tang N, Zhou H, Zhu Y. The role of microbial metabolites in endocrine tumorigenesis: From the mechanistic insights to potential therapeutic biomarkers. Biomed Pharmacother 2024; 172:116218. [PMID: 38308969 DOI: 10.1016/j.biopha.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Microbial metabolites have been indicated to communicate with the host's endocrine system, regulating hormone production, immune-endocrine communications, and interactions along the gut-brain axis, eventually affecting the occurrence of endocrine cancer. Furthermore, microbiota metabolites such as short-chain fatty acids (SCFAs) have been found to affect the tumor microenvironment and boost immunity against tumors. SCFAs, including butyrate and acetate, have been demonstrated to exert anti-proliferative and anti-protective activity on pancreatic cancer cells. The employing of microbial metabolic products in conjunction with radiation and chemotherapy has shown promising outcomes in terms of reducing treatment side effects and boosting effectiveness. Certain metabolites, such as valerate and butyrate, have been made known to improve the efficiency of CAR T-cell treatment, whilst others, such as indole-derived tryptophan metabolites, have been shown to inhibit tumor immunity. This review explores the intricate interplay between microbial metabolites and endocrine tumorigenesis, spanning mechanistic insights to the discovery of potential therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
24
|
Chen YF, Li SC, Huang EY. Role of microbiota in radiation-induced small-bowel damage. JOURNAL OF RADIATION RESEARCH 2024; 65:55-62. [PMID: 37996087 PMCID: PMC10803162 DOI: 10.1093/jrr/rrad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Radiation-induced gastrointestinal damage is a common acute radiation syndrome. Previous studies have highlighted that Galectin-1 and Interleukin-6 (IL-6) are associated with flaking of small intestinal villi and intestinal radioresistance. Therefore, our goal is to study whether gut bacteria regulated by galectin-1 or IL-6 can mitigate radiation-induced small intestine damage. In this study, differences between galectin-1, sgp130-regulated and wild-type (WT) mice were analyzed by microbiome array. The effects of the Firmicutes/Bacteroidetes (F/B) ratio and the proportion of bacterial distribution at the phylum level were observed after 18 Gy whole abdomen radiation. Fecal microbiota transplantation was used to implant radioresistant gut flora into WT mice, and the number of viable small intestinal crypt foci was observed by immunohistochemistry. Fecal transplantation from galectin-1 knockout and sgp130 transgenic mice, with higher radiation resistance, into WT mice significantly increased the number of surviving small intestinal crypts. This radiation resistance, generated through gene regulation, was not affected by the F/B ratio. We initially found that the small intestinal villi of WT mice receiving radioresistant mouse fecal bacteria demonstrated better repair outcomes after radiation exposure. These results indicate the need for a focus on the identification and application of superior radioresistant bacterial strains. In our laboratory, we will further investigate specific radioresistant bacterial strains to alleviate acute side effects of radiation therapy to improve the patients' immune ability and postoperative quality of life.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 129, Da-Pi Road, Niao-Sung District, Kaohsiung 833401, Taiwan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, 142, Haizhuan Road, Nanzi District, Kaohsiung 811213, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 129, Da-Pi Road, Niao-Sung District, Kaohsiung 833401, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 129, Da-Pi Road, Niao-Sung District, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, 70, Lienhai Road, Gushan District, Kaohsiung 80424, Taiwan
| |
Collapse
|
25
|
Filippou C, Themistocleous SC, Marangos G, Panayiotou Y, Fyrilla M, Kousparou CA, Pana ZD, Tsioutis C, Johnson EO, Yiallouris A. Microbial Therapy and Breast Cancer Management: Exploring Mechanisms, Clinical Efficacy, and Integration within the One Health Approach. Int J Mol Sci 2024; 25:1110. [PMID: 38256183 PMCID: PMC10816061 DOI: 10.3390/ijms25021110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review elucidates the profound relationship between the human microbiome and breast cancer management. Recent findings highlight the significance of microbial alterations in tissue, such as the gut and the breast, and their role in influencing the breast cancer risk, development, progression, and treatment outcomes. We delve into how the gut microbiome can modulate systemic inflammatory responses and estrogen levels, thereby impacting cancer initiation and therapeutic drug efficacy. Furthermore, we explore the unique microbial diversity within breast tissue, indicating potential imbalances brought about by cancer and highlighting specific microbes as promising therapeutic targets. Emphasizing a holistic One Health approach, this review underscores the importance of integrating insights from human, animal, and environmental health to gain a deeper understanding of the complex microbe-cancer interplay. As the field advances, the strategic manipulation of the microbiome and its metabolites presents innovative prospects for the enhancement of cancer diagnostics and therapeutics. However, rigorous clinical trials remain essential to confirm the potential of microbiota-based interventions in breast cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Yiallouris
- School of Medicine, European University Cyprus, 6 Diogenis Str., 2404 Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
| |
Collapse
|
26
|
Routy B, Jackson T, Mählmann L, Baumgartner CK, Blaser M, Byrd A, Corvaia N, Couts K, Davar D, Derosa L, Hang HC, Hospers G, Isaksen M, Kroemer G, Malard F, McCoy KD, Meisel M, Pal S, Ronai Z, Segal E, Sepich-Poore GD, Shaikh F, Sweis RF, Trinchieri G, van den Brink M, Weersma RK, Whiteson K, Zhao L, McQuade J, Zarour H, Zitvogel L. Melanoma and microbiota: Current understanding and future directions. Cancer Cell 2024; 42:16-34. [PMID: 38157864 PMCID: PMC11096984 DOI: 10.1016/j.ccell.2023.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.
Collapse
Affiliation(s)
- Bertrand Routy
- University of Montreal Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada; Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X 3E4, Canada
| | - Tanisha Jackson
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Laura Mählmann
- Seerave Foundation, The Seerave Foundation, 35-37 New Street, St Helier, JE2 3RA Jersey, UK
| | | | - Martin Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Allyson Byrd
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Kasey Couts
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lisa Derosa
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France
| | - Howard C Hang
- Departments of Immunology & Microbiology and Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geke Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94905 Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Kathy D McCoy
- Department of Physiology & Pharmacology, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA USA
| | - Sumanta Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ze'ev Ronai
- Sanford Burnham Prebys Discovery Medical Research Institute, La Jolla, CA 92037, USA
| | - Eran Segal
- Weizmann Institute of Science, Computer Science and Applied Mathematics Department, 234th Herzel st., Rehovot 7610001, Israel
| | - Gregory D Sepich-Poore
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Micronoma Inc., San Diego, CA 92121, USA
| | - Fyza Shaikh
- Johns Hopkins School of Medicine, Department of Oncology, Baltimore, MD 21287, USA
| | - Randy F Sweis
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Giorgio Trinchieri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcel van den Brink
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology, Sloan Kettering Institute, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, New Jersey Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NY 08901, USA
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Hassane Zarour
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA.
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
27
|
Zhou Q, Meng Q. Insights into the Microbial Composition of Intratumoral, Reproductive Tract, and Gut Microbiota in Ovarian Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:107-118. [PMID: 38805127 DOI: 10.1007/978-3-031-58311-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
According to the latest global cancer data, ovarian cancer is the deadliest among all gynecological malignant tumors and ranks fifth in terms of mortality. Its etiology and pathogenesis are unknown, and the 5-year survival rate of patients with advanced ovarian cancer is only 40% (Sung et al. CA Cancer J Clin 71:209-49, 2021). Recent research has shown that the human microbiota plays a crucial role in the development and progression of tumors, including ovarian cancer. Numerous studies have highlighted the complex connections between the reproductive tract microbiota, intestinal microbiota, and ovarian cancer (Jacobson et al. PeerJ 9:e11574, 2021). Therefore, this chapter will delve into composition, function, and the correlation between microbiota and immunity in the field of ovarian cancer microbiota, as well as the potential of bacteria in therapeutics and diagnostics of ovarian cancer.
Collapse
Affiliation(s)
- Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China.
| | - Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
28
|
Mahoney D. The Role of the Human Microbiome in Epithelial Ovarian Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:97-105. [PMID: 38805126 DOI: 10.1007/978-3-031-58311-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ovarian cancer is the fifth-leading cause of cancer deaths among women due to the absence of available screening methods to identify early disease. Thus, prevention and early disease detection investigations are of high priority, surrounding a critical window of opportunity to better understand important pathogenic mechanisms of disease progression. Microorganisms modulate molecular interactions in humans that can influence states of health and disease, including ovarian cancer. While the mechanisms of infectious microbial invasion that trigger the immune-inflammatory axis are well studied in cancer research, the complex interactions that promote the transition of noninfectious healthy microbes to pathobiont expansion are less understood. As traditional research has focused on the influences of infectious pathogens on ovarian cancer development and progression, the impact of noninfectious microbes has gained scientific attention. The objective of this chapter is to summarize current evidence on the role of microbiota in epithelial ovarian cancer throughout disease.
Collapse
Affiliation(s)
- Diane Mahoney
- Franklin D. Gaines & Beverly J. Gaines Tipton Endowed Professor of Oncology Nursing, University of Kansas School of Nursing, Kansas City, KS, USA.
| |
Collapse
|
29
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
30
|
Yang Y, Jin C, Yeo A, Jin B. Multiple Factors Determine the Oncolytic or Carcinogenic Effects of TLRs Activation in Cancer. J Immunol Res 2024; 2024. [DOI: 10.1155/2024/1111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2025] Open
Abstract
Toll‐like receptors (TLRs) belong to a germline‐encoded protein family. These are pattern recognition receptors. They sense pathogen‐associated molecular patterns (PAMPs). When this occurs, activation of the NF‐ĸB pathway follows. This triggers the innate immune response of the host. The consequent inflammatory cytokine response usually contributes to the elimination of the pathogen. Activation of TLRs also induces an adaptive immune response by a cross‐prime mechanism. This mechanism is employed in cancer immunotherapy. Using TLR ligands as adjuvants induces upregulation of costimulatory signals which in turn activates a cytotoxic leukocyte response against cancer cells. However, TLRs are also overexpressed in human cancer cells resulting in increased cell proliferation, migration, invasion, and angiogenesis. An intracellular adaptor, myeloid differentiation factor 88 (MyD88) probably mediates this process. MyD88 is intimately involved with all TLRs except TLR3. One consequence of the interaction between a TLR and MyD88 is activation of NF‐ĸB. In this context of a variety of proinflammtory cytokines being produced, chronic inflammation may result. Inflammation is an important protective mechanism. However, chronic inflammation is also involved in carcinogenesis. Activation of NF‐ĸB inhibits apoptosis and under certain circumstances, tumor cell survival. In this review, the potential therapeutic value of TLRs in immunotherapy and its role in oncogenesis are explored. The emerging use of artificial intelligence is mentioned.
Collapse
|
31
|
Actis S, Cazzaniga M, Bounous VE, D'Alonzo M, Rosso R, Accomasso F, Minella C, Biglia N. Emerging evidence on the role of breast microbiota on the development of breast cancer in high-risk patients. Carcinogenesis 2023; 44:718-725. [PMID: 37793149 DOI: 10.1093/carcin/bgad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
Cancer is a multi-factorial disease, and the etiology of breast cancer (BC) is due to a combination of both genetic and environmental factors. Breast tissue shows a unique microbiota, Proteobacteria and Firmicutes are the most abundant bacteria in breast tissue, and several studies have shown that the microbiota of healthy breast differs from that of BC. Breast microbiota appears to be correlated with different characteristics of the tumor, and prognostic clinicopathologic features. It also appears that there are subtle differences between the microbial profiles of the healthy control and high-risk patients. Genetic predisposition is an extremely important risk factor for BC. BRCA1/2 germline mutations and Li-Fraumeni syndrome are DNA repair deficiency syndromes inherited as autosomal dominant characters that substantially increase the risk of BC. These syndromes exhibit incomplete penetrance of BC expression in carrier subjects. The action of breast microbiota on carcinogenesis might explain why women with a mutation develop cancer and others do not. Among the potential biological pathways through which the breast microbiota may affect tumorigenesis, the most relevant appear to be DNA damage caused by colibactin and other bacterial-derived genotoxins, β-glucuronidase-mediated estrogen deconjugation and reactivation, and HPV-mediated cancer susceptibility. In conclusion, in patients with a genetic predisposition, an unfavorable breast microbiota may be co-responsible for the onset of BC. Prospectively, the ability to modulate the microbiota may have an impact on disease onset and progression in patients at high risk for BC.
Collapse
Affiliation(s)
- Silvia Actis
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | | | - Valentina Elisabetta Bounous
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Marta D'Alonzo
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Roberta Rosso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Francesca Accomasso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Carola Minella
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Nicoletta Biglia
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| |
Collapse
|
32
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
33
|
Mehra Y, Chalif J, Mensah-Bonsu C, Spakowicz D, O’Malley DM, Chambers L. The microbiome and ovarian cancer: insights, implications, and therapeutic opportunities. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023. [DOI: 10.20517/2394-4722.2023.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Ovarian cancer is the leading cause of gynecologic cancer death in the United States. Most ovarian cancer patients are diagnosed with advanced-stage disease, which poses a challenge for early detection and effective treatment. At present, cytoreductive surgery and platinum-based chemotherapy are foundational for patients with newly diagnosed ovarian cancer, but unfortunately, most patients will recur and die of their disease. Therefore, there is a significant need to seek innovative, novel approaches for early detection and to overcome chemoresistance for ovarian cancer patients. The microbiome, comprising diverse microbial communities inhabiting various body sites, is vital in maintaining human health. Changes to the diversity and composition of the microbial communities impact the microbiota-host relationship and are linked to diseases, including cancer. The microbiome contributes to carcinogenesis through various mechanisms, including altered host immune response, modulation of DNA repair, upregulation of pro-inflammatory pathways, altered gene expression, and dysregulated estrogen metabolism. Translational and clinical studies have demonstrated that specific microbes contribute to ovarian cancer development and impact chemotherapy’s efficacy. The microbiome is malleable and can be altered through different approaches, including diet, exercise, medications, and fecal microbiota transplantation. This review provides an overview of the current literature regarding ovarian cancer and the microbiome of female reproductive and gastrointestinal tracts, focusing on mechanisms of carcinogenesis and options for modulating the microbiota for cancer prevention and treatment. Advancing our understanding of the complex relationship between the microbiome and ovarian cancer may provide a novel approach for prevention and therapeutic modulation in the future.
Collapse
|
34
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
35
|
Benešová I, Křížová Ľ, Kverka M. Microbiota as the unifying factor behind the hallmarks of cancer. J Cancer Res Clin Oncol 2023; 149:14429-14450. [PMID: 37555952 PMCID: PMC10590318 DOI: 10.1007/s00432-023-05244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The human microbiota is a complex ecosystem that colonizes body surfaces and interacts with host organ systems, especially the immune system. Since the composition of this ecosystem depends on a variety of internal and external factors, each individual harbors a unique set of microbes. These differences in microbiota composition make individuals either more or less susceptible to various diseases, including cancer. Specific microbes are associated with cancer etiology and pathogenesis and several mechanisms of how they drive the typical hallmarks of cancer were recently identified. Although most microbes reside in the distal gut, they can influence cancer initiation and progression in distant tissues, as well as modulate the outcomes of established cancer therapies. Here, we describe the mechanisms by which microbes influence carcinogenesis and discuss their current and potential future applications in cancer diagnostics and management.
Collapse
Affiliation(s)
- Iva Benešová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Ľudmila Křížová
- Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| |
Collapse
|
36
|
Miller KD, O'Connor S, Pniewski KA, Kannan T, Acosta R, Mirji G, Papp S, Hulse M, Mukha D, Hlavaty SI, Salcido KN, Bertolazzi F, Srikanth YVV, Zhao S, Wellen KE, Shinde RS, Claiborne DT, Kossenkov A, Salvino JM, Schug ZT. Acetate acts as a metabolic immunomodulator by bolstering T-cell effector function and potentiating antitumor immunity in breast cancer. NATURE CANCER 2023; 4:1491-1507. [PMID: 37723305 PMCID: PMC10615731 DOI: 10.1038/s43018-023-00636-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Acetate metabolism is an important metabolic pathway in many cancers and is controlled by acetyl-CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl-CoA. While the metabolic role of ACSS2 in cancer is well described, the consequences of blocking tumor acetate metabolism on the tumor microenvironment and antitumor immunity are unknown. We demonstrate that blocking ACSS2, switches cancer cells from acetate consumers to producers of acetate thereby freeing acetate for tumor-infiltrating lymphocytes to use as a fuel source. We show that acetate supplementation metabolically bolsters T-cell effector functions and proliferation. Targeting ACSS2 with CRISPR-Cas9 guides or a small-molecule inhibitor promotes an antitumor immune response and enhances the efficacy of chemotherapy in preclinical breast cancer models. We propose a paradigm for targeting acetate metabolism in cancer in which inhibition of ACSS2 dually acts to impair tumor cell metabolism and potentiate antitumor immunity.
Collapse
Affiliation(s)
- Katelyn D Miller
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Seamus O'Connor
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Katherine A Pniewski
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Toshitha Kannan
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Reyes Acosta
- The Wistar Institute of Anatomy and Biology, Vaccine and Immunotherapy Center, Philadelphia, PA, USA
| | - Gauri Mirji
- The Wistar Institute of Anatomy and Biology, Immunology, Microenvironment & Metastasis Program, Philadelphia, PA, USA
| | - Sara Papp
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Michael Hulse
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Dzmitry Mukha
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Sabina I Hlavaty
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Kelsey N Salcido
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Fabrizio Bertolazzi
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
- Cellular and Molecular Biology Program, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Yellamelli V V Srikanth
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Steven Zhao
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul S Shinde
- The Wistar Institute of Anatomy and Biology, Immunology, Microenvironment & Metastasis Program, Philadelphia, PA, USA
| | - Daniel T Claiborne
- The Wistar Institute of Anatomy and Biology, Vaccine and Immunotherapy Center, Philadelphia, PA, USA
| | - Andrew Kossenkov
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Joseph M Salvino
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Zachary T Schug
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Thomas AM, Fidelle M, Routy B, Kroemer G, Wargo JA, Segata N, Zitvogel L. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat Rev Clin Oncol 2023; 20:583-603. [PMID: 37365438 PMCID: PMC11258874 DOI: 10.1038/s41571-023-00785-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
Oncogenesis is associated with intestinal dysbiosis, and stool shotgun metagenomic sequencing in individuals with this condition might constitute a non-invasive approach for the early diagnosis of several cancer types. The prognostic relevance of antibiotic intake and gut microbiota composition urged investigators to develop tools for the detection of intestinal dysbiosis to enable patient stratification and microbiota-centred clinical interventions. Moreover, since the advent of immune-checkpoint inhibitors (ICIs) in oncology, the identification of biomarkers for predicting their efficacy before starting treatment has been an unmet medical need. Many previous studies addressing this question, including a meta-analysis described herein, have led to the description of Gut OncoMicrobiome Signatures (GOMS). In this Review, we discuss how patients with cancer across various subtypes share several GOMS with individuals with seemingly unrelated chronic inflammatory disorders who, in turn, tend to have GOMS different from those of healthy individuals. We discuss findings from the aforementioned meta-analysis of GOMS patterns associated with clinical benefit from or resistance to ICIs across different cancer types (in 808 patients), with a focus on metabolic and immunological surrogate markers of intestinal dysbiosis, and propose practical guidelines to incorporate GOMS in decision-making for prospective clinical trials in immuno-oncology.
Collapse
Affiliation(s)
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Pharmacology Department, Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Equipe labellisée - Ligue Nationale contre le cancer, Université de Paris, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Platform for Innovative Microbiome and Translational Research (PRIME-TR), MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France.
- Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
38
|
Li D, Zhu L, Wang Y, Zhou X, Li Y. Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application. Biomed Pharmacother 2023; 165:115120. [PMID: 37442066 DOI: 10.1016/j.biopha.2023.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, nano-sized particles of bilayer lipid structure secreted by Gram-negative bacteria. They contain a series of cargos from bacteria and are important messengers for communication between bacteria and their environment. OMVs play multiple roles in bacterial survival and adaptation and can affect host physiological functions and disease development by acting on host cell membranes and altering host cell signaling pathways. This paper summarizes the mechanisms of OMV genesis and the multiple roles of OMVs in the tumor microenvironment. Also, this paper discusses the prospects of OMVs for a wide range of applications in drug delivery, tumor diagnosis, and therapy.
Collapse
Affiliation(s)
- Deming Li
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Lisi Zhu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Xiangyu Zhou
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
39
|
Wang X, Zheng Y, Chen X, Peng C, Zhou S, Shen S, Zhao S, Wang T. 2bRAD-M reveals the difference in microbial distribution between cancerous and benign ovarian tissues. Front Microbiol 2023; 14:1231354. [PMID: 37692387 PMCID: PMC10484612 DOI: 10.3389/fmicb.2023.1231354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
The development of ovarian cancer is closely related to various factors, such as environmental, genetic and microbiological factors. In previous research, bacteria were identified in human tumors by 16S rRNA sequencing. However, the microbial biomass in tumor tissue is too low and cannot be accurately identified by 16S rRNA sequencing. In our study, we employ 2bRAD sequencing for Microbiome (2bRAD-M), a new sequencing technology capable of accurately characterizing the low biomass microbiome (bacteria, fungi and archaea) at species resolution. Here we surveyed 20 ovarian samples, including 10 ovarian cancer samples and 10 benign ovarian samples. The sequencing results showed that a total of 373 microbial species were identified in both two groups, of which 90 species shared in the two groups. The Meta statistic indicated that Chlamydophila_abortus and CAG-873_sp900550395 were increased in the ovarian cancer tissues, while Lawsonella_clevelandensis_A, Ralstonia_sp001078575, Brevundimonas_aurantiaca, Ralstonia_sp900115545, Ralstonia_pickettii, Corynebacterium_kefirresidentii, Corynebacterium_sp000478175, Brevibacillus_D_fluminis, Ralstonia_sp000620465, and Ralstonia_mannitolilytica were more abundant in the benign ovarian tissues. This is the first use of 2bRAD-M technique to provide an important hint for better understanding of the ovarian cancer microbiome.
Collapse
Affiliation(s)
- Xiaogang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yaojun Zheng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xiang Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Chen Peng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Shizhen Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Wang J, Pu J, Zhang Z, Feng Z, Han J, Su X, Shi L. Triterpenoids of Ganoderma lucidum inhibited S180 sarcoma and H22 hepatoma in mice by regulating gut microbiota. Heliyon 2023; 9:e16682. [PMID: 37484292 PMCID: PMC10360580 DOI: 10.1016/j.heliyon.2023.e16682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
In order to explore effect of natural plant extracts on anti-tumor and prevent tumor development. The study assessed the antitumor effect of triterpenoids of Ganoderma lucidum (TGL) on S180 and H22 tumor bearing mice. A triterpene compound, 2α, 3α, 23-trihydroxy-urs-12-en-28-oic acid, was successfully isolated and purified from G. lucidum. S180 and H22 cells were subcutaneously inoculated in the left axilla of mice to establish a transplantable tumor model. After, the mice were orally treated with TGL and evaluated by tumor inhibition rate, organ index, and the serum index. The Bax and Bcl-2 proteins and gut microbiota was analyzed using western blot and 16S rDNA sequencing respectively. The results showed the tumor inhibition rates of TGL were higher than 40% in H22 and S180 tumor bearing mice. TGL had a protective effect on the spleen and thymus, and improved lipid peroxidation caused by the increased free radicals. TGL downregulated Bcl-2 and upregulated Bax. In particular, TGL treatment improved the reduction of gut microbiota richness and structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Shi
- Corresponding author. Department of Pharmacy, Gansu Provincial Hospital, Donggang West Road No. 204, Lanzhou, Gansu 730000, China.
| |
Collapse
|
41
|
Wang J, Zhang J, Wang J, Hu X, Ouyang L, Wang Y. Small-Molecule Modulators Targeting Toll-like Receptors for Potential Anticancer Therapeutics. J Med Chem 2023; 66:6437-6462. [PMID: 37163340 DOI: 10.1021/acs.jmedchem.2c01655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Toll-like receptors (TLRs) are key components of the innate immune system and serve as a crucial link between innate and acquired immunity. In addition to immune function, TLRs are involved in other important pathological processes, including tumorigenesis. TLRs have dual regulatory effects on tumor immunity by activating nuclear factor κ-B signaling pathways, which induce tumor immune evasion or enhance the antitumor immune response. Therefore, TLRs have become a popular target for cancer prevention and treatment, and TLR agonists and antagonists offer considerable potential for drug development. The TLR7 agonist imiquimod (1) has been approved by the U.S. Food and Drug Administration as a treatment for malignant skin cancer. Herein, the structure, signaling pathways, and function of the TLR family are summarized, and the structure-activity relationships associated with TLR selective and multitarget modulators and their potential application in tumor therapy are systematically discussed.
Collapse
Affiliation(s)
- Jiayu Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Xinyue Hu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
42
|
Pinto NA, Abba MC, Laporte L, Pérez Sáez JM, Blidner AG, Torres NI, Morales RM, Gatto SG, Bach CA, Veigas F, García Rivello HJ, Song P, Frederiksen JH, Rasmussen LJ, Poirier F, Croci DO, Sundblad V, Rabinovich GA, Cerliani JP. Galectin-7 reprograms skin carcinogenesis by fostering innate immune evasive programs. Cell Death Differ 2023; 30:906-921. [PMID: 36693903 PMCID: PMC10070502 DOI: 10.1038/s41418-022-01108-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/25/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) has risen dramatically as a result of chronic exposure to sunlight ultraviolet (UV) radiation, climatic changes and clinical conditions associated with immunosuppression. In spite of considerable progress, our understanding of the mechanisms that control NMSC development and their associated molecular and immunological landscapes is still limited. Here we demonstrated a critical role for galectin-7 (Gal-7), a β-galactoside-binding protein preferentially expressed in skin tissue, during NMSC development. Transgenic mice (Tg46) overexpressing Gal-7 in keratinocytes showed higher number of papillomas compared to WT mice or mice lacking Gal-7 (Lgals7-/-) when subjected to a skin carcinogenesis protocol, in which tumor initiator 7,12-dimethylbenz[a]anthracene (DMBA) and tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) were sequentially administered. RNAseq analysis of Tg46 tumor lesions revealed a unique profile compatible with cells of the myelomonocytic lineage infiltrating these tumors, an effect that was substantiated by a higher number of CD11b+Gr1+ cells in tumor-draining lymph nodes. Heightened c-Met activation and Cxcl-1 expression in Tg46 lesions suggested a contribution of this pathway to the recruitment of these cells. Remarkably, Gal-7 bound to the surface of CD11b+Ly6ChiLy6Glo monocytic myeloid cells and enhanced their immunosuppressive activity, as evidenced by increased IL-10 and TGF-β1 secretion, and higher T-cell inhibitory activity. In vivo, carcinogen-treated Lgals7-/- animals adoptively transferred with Gal-7-conditioned monocytic myeloid cells developed higher number of papillomas, whereas depletion of these cells in Tg46-treated mice led to reduction in the number of tumors. Finally, human NMSC biopsies showed increased LGALS7 mRNA and Gal-7 protein expression and displayed transcriptional profiles associated with myeloid programs, accompanied by elevated CXCL1 expression and c-Met activation. Thus, Gal-7 emerges as a critical mediator of skin carcinogenesis and a potential therapeutic target in human NMSC.
Collapse
Affiliation(s)
- Nicolás A Pinto
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Martín C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, C1900, La Plata, Argentina
| | - Lorena Laporte
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Ada G Blidner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Nicolás I Torres
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Rosa M Morales
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Sabrina G Gatto
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Camila A Bach
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Florencia Veigas
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
- Universidad Argentina de la Empresa (UADE). Instituto de Tecnología (INTEC), C1073, Buenos Aires, Argentina
| | | | - Peng Song
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-, 2200, Copenhagen, Denmark
| | - Jane H Frederiksen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-, 2200, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-, 2200, Copenhagen, Denmark
| | - Francoise Poirier
- Institut Jacques Monod, UMR CNRS 7592, Paris-Diderot University, Paris, France
| | - Diego O Croci
- Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos (IHEM-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, C5500, Mendoza, Argentina
| | - Victoria Sundblad
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428, Buenos Aires, Argentina.
| | - Juan P Cerliani
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| |
Collapse
|
43
|
Abstract
Current cancer immunotherapies are primarily predicated on αβ T cells, with a stringent dependence on MHC-mediated presentation of tumour-enriched peptides or unique neoantigens that can limit their efficacy and applicability in various contexts. After two decades of preclinical research and preliminary clinical studies involving very small numbers of patients, γδ T cells are now being explored as a viable and promising approach for cancer immunotherapy. The unique features of γδ T cells, including their tissue tropisms, antitumour activity that is independent of neoantigen burden and conventional MHC-dependent antigen presentation, and combination of typical properties of T cells and natural killer cells, make them very appealing effectors in multiple cancer settings. Herein, we review the main functions of γδ T cells in antitumour immunity, focusing on human γδ T cell subsets, with a particular emphasis on the differences between Vδ1+ and Vδ2+ γδ T cells, to discuss their prognostic value in patients with cancer and the key therapeutic strategies that are being developed in an attempt to improve the outcomes of these patients.
Collapse
|
44
|
Mattiola I, Diefenbach A. Regulation of innate immune system function by the microbiome: Consequences for tumor immunity and cancer immunotherapy. Semin Immunol 2023; 66:101724. [PMID: 36758379 DOI: 10.1016/j.smim.2023.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Innate effector cells are immune cells endowed with host protective features and cytotoxic functions. By sensing the tissue environment, innate cells have an important role in regulating the transition from homeostasis to inflammation and the establishment of pathological states, including the onset and development of cancer. The tumor microenvironment induces molecular and functional modifications in innate cells, dampening their capability to initiate and sustain anti-tumor immune responses. Emerging studies clearly showed a contribution of the microbiota in modulating the functions of innate cells in cancer. Commensal microorganisms can not only directly interact with innate cells in the tumor microenvironment but can also exert immunomodulatory features from non-tumor sites through the release of microbial products. The microbiota can mediate the priming of innate cells at mucosal tissues and determine the strength of immune responses mediated by such cells when they migrate to non-mucosal tissues, having an impact on cancer. Finally, several evidences reported a strong contribution of the microbiota in promoting innate immune responses during anti-cancer therapies leading to enhanced therapeutic efficacy. In this review, we considered the current knowledge on the role of the microbiota in shaping host innate immune responses in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany; Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
45
|
Mohseni AH, Taghinezhad-S S, Casolaro V, Lv Z, Li D. Potential links between the microbiota and T cell immunity determine the tumor cell fate. Cell Death Dis 2023; 14:154. [PMID: 36828830 PMCID: PMC9958015 DOI: 10.1038/s41419-023-05560-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 02/26/2023]
Abstract
The central role of the microbiota as a pivotal factor regulating anti-tumor immune responses has recently been appreciated. Increasing evidence has put a spotlight on the connection of microbiota to T cells, by showing impaired effector and/or memory responses in germ-free (GF) mice or in the presence of dysbiotic communities, and association with tumor growth and overall survival (OS). These observations also have significant implications for anti-tumor therapy and vaccination, suggesting that the communication between T cells and the microbiota involves soluble mediators (microbiota-derived metabolites) that influence various functions of T cells. In addition, there is growing appreciation of the role of bacterial translocation into the peritumoral milieu from the intestinal tract, as well as of locally developed tumor microbial communities, spatially separated from the gut microbiota, in shaping the tumor microbiome. Collectively, these findings have added new support to the idea that tonic inputs mirroring the existence of tumor microbiome could regulate the function of tumor-infiltrating T cells and tissue-resident memory T (TRM) cells. In this review, we focus on recent advances and aspects of these active areas of investigation and provide a comprehensive overview of the unique mechanisms that play a pivotal role in the regulation of anti-tumor immunity by the microbiota, some of which could be of particular relevance for addressing problems caused by tumor heterogeneity. It is our hope that this review will provide a theoretical foundation for future investigations in this area.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sedigheh Taghinezhad-S
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Clinical Nuclear Medicine Center, Tongji University School of Medicine, Shanghai, China.
- Imaging Clinical Medical Center, Tongji University School of Medicine, Shanghai, China.
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
46
|
The Female Reproductive Tract Microbiome and Cancerogenesis: A Review Story of Bacteria, Hormones, and Disease. Diagnostics (Basel) 2023; 13:diagnostics13050877. [PMID: 36900020 PMCID: PMC10000484 DOI: 10.3390/diagnostics13050877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
The microbiota is the complex community of microorganisms that populate a particular environment in the human body, whereas the microbiome is defined by the entire habitat-microorganisms and their environment. The most abundant and, therefore, the most studied microbiome is that of the gastrointestinal tract. However, the microbiome of the female reproductive tract is an interesting research avenue, and this article explores its role in disease development. The vagina is the reproductive organ that hosts the largest number of bacteria, with a healthy profile represented mainly by Lactobacillus spp. On the other hand, the female upper reproductive tract (uterus, Fallopian tubes, ovaries) contains only a very small number of bacteria. Previously considered sterile, recent studies have shown the presence of a small microbiota here, but there are still debates on whether this is a physiologic or pathologic occurrence. Of particular note is that estrogen levels significantly influence the composition of the microbiota of the female reproductive tract. More and more studies show a link between the microbiome of the female reproductive tract and the development of gynecological cancers. This article reviews some of these findings.
Collapse
|
47
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
48
|
Edwards SC, Hedley A, Hoevenaar WH, Wiesheu R, Glauner T, Kilbey A, Shaw R, Boufea K, Batada N, Hatano S, Yoshikai Y, Blyth K, Miller C, Kirschner K, Coffelt SB. PD-1 and TIM-3 differentially regulate subsets of mouse IL-17A-producing γδ T cells. J Exp Med 2023; 220:e20211431. [PMID: 36480166 PMCID: PMC9732671 DOI: 10.1084/jem.20211431] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
IL-17A-producing γδ T cells in mice consist primarily of Vγ6+ tissue-resident cells and Vγ4+ circulating cells. How these γδ T cell subsets are regulated during homeostasis and cancer remains poorly understood. Using single-cell RNA sequencing and flow cytommetry, we show that lung Vγ4+ and Vγ6+ cells from tumor-free and tumor-bearing mice express contrasting cell surface molecules as well as distinct co-inhibitory molecules, which function to suppress their expansion. Vγ6+ cells express constitutively high levels of PD-1, whereas Vγ4+ cells upregulate TIM-3 in response to tumor-derived IL-1β and IL-23. Inhibition of either PD-1 or TIM-3 in mammary tumor-bearing mice increased Vγ6+ and Vγ4+ cell numbers, respectively. We found that genetic deletion of γδ T cells elicits responsiveness to anti-PD-1 and anti-TIM-3 immunotherapy in a mammary tumor model that is refractory to T cell checkpoint inhibitors, indicating that IL-17A-producing γδ T cells instigate resistance to immunotherapy. Together, these data demonstrate how lung IL-17A-producing γδ T cell subsets are differentially controlled by PD-1 and TIM-3 in steady-state and cancer.
Collapse
Affiliation(s)
- Sarah C. Edwards
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Wilma H.M. Hoevenaar
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Robert Wiesheu
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Teresa Glauner
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Anna Kilbey
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Katerina Boufea
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Nizar Batada
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Shinya Hatano
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Crispin Miller
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Kristina Kirschner
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Seth B. Coffelt
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| |
Collapse
|
49
|
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, Pinho SS. Glycans as shapers of tumour microenvironment: A sweet driver of T-cell-mediated anti-tumour immune response. Immunology 2023; 168:217-232. [PMID: 35574724 DOI: 10.1111/imm.13494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.
Collapse
Affiliation(s)
- Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Guilherme Faria
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina S Dantas
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuel M Vicente
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
50
|
Shi L, Xu Y, Feng M. Role of Gut Microbiome in Immune Regulation and Immune Checkpoint Therapy of Colorectal Cancer. Dig Dis Sci 2023; 68:370-379. [PMID: 36575326 DOI: 10.1007/s10620-022-07689-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/01/2022] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal malignant tumors worldwide. Immune checkpoint therapies (ICTs) have been proven to be a reliable treatment for some subtypes of CRC. Gut microbiome is closely involved in intestinal carcinogenesis through the regulation of local immune and inflammation of colonic mucosa. Numerous studies have demonstrated that the immunotherapeutic efficacy of CRC and other kinds of cancer is influenced by the immunosuppressive microenvironment constituted by intestinal microbiome and their metabolites. This Review will discuss the recent advances in how gut microbiome can modify the immune microenvironment and its potential role in ICTs of CRC.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yumei Xu
- Department of Radiation Oncology Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Min Feng
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of NanJing Medical University, 321 Zhongshan Road, Nanjing, 210002, People's Republic of China.
| |
Collapse
|