1
|
DeVore SB, Schuetz M, Alvey L, Lujan H, Ochayon DE, Williams L, Chang WC, Filuta A, Ruff B, Kothari A, Hahn JM, Brandt E, Satish L, Roskin K, Herr AB, Biagini JM, Martin LJ, Cagdas D, Keles S, Milner JD, Supp DM, Khurana Hershey GK. Regulation of MYC by CARD14 in human epithelium is a determinant of epidermal homeostasis and disease. Cell Rep 2024; 43:114589. [PMID: 39110589 PMCID: PMC11469028 DOI: 10.1016/j.celrep.2024.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Caspase recruitment domain family member 14 (CARD14) and its variants are associated with both atopic dermatitis (AD) and psoriasis, but their mechanistic impact on skin barrier homeostasis is largely unknown. CARD14 is known to signal via NF-κB; however, CARD14-NF-κB signaling does not fully explain the heterogeneity of CARD14-driven disease. Here, we describe a direct interaction between CARD14 and MYC and show that CARD14 signals through MYC in keratinocytes to coordinate skin barrier homeostasis. CARD14 directly binds MYC and influences barrier formation in an MYC-dependent fashion, and this mechanism is undermined by disease-associated CARD14 variants. These studies establish a paradigm that CARD14 activation regulates skin barrier function by two distinct mechanisms, including activating NF-κB to bolster the antimicrobial (chemical) barrier and stimulating MYC to bolster the physical barrier. Finally, we show that CARD14-dependent MYC signaling occurs in other epithelia, expanding the impact of our findings beyond the skin.
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew Schuetz
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lauren Alvey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Henry Lujan
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - David E Ochayon
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lindsey Williams
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wan Chi Chang
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alyssa Filuta
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Brandy Ruff
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Arjun Kothari
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Eric Brandt
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Latha Satish
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Krishna Roskin
- Division of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew B Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Immunobiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jocelyn M Biagini
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa J Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ihsan Dogramaci Children's Hospital, Institutes of Child Health, Ankara 06230, Turkey
| | - Sevgi Keles
- Division of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya 42090, Turkey
| | - Joshua D Milner
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Scientific Staff, Shriners Children's Ohio, Dayton, OH 45404, USA
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
Vidal R, Leen E, Herold S, Müller M, Fleischhauer D, Schülein-Völk C, Papadopoulos D, Röschert I, Uhl L, Ade CP, Gallant P, Bayliss R, Eilers M, Büchel G. Association with TFIIIC limits MYCN localisation in hubs of active promoters and chromatin accumulation of non-phosphorylated RNA polymerase II. eLife 2024; 13:RP94407. [PMID: 39177021 PMCID: PMC11343564 DOI: 10.7554/elife.94407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
MYC family oncoproteins regulate the expression of a large number of genes and broadly stimulate elongation by RNA polymerase II (RNAPII). While the factors that control the chromatin association of MYC proteins are well understood, much less is known about how interacting proteins mediate MYC's effects on transcription. Here, we show that TFIIIC, an architectural protein complex that controls the three-dimensional chromatin organisation at its target sites, binds directly to the amino-terminal transcriptional regulatory domain of MYCN. Surprisingly, TFIIIC has no discernible role in MYCN-dependent gene expression and transcription elongation. Instead, MYCN and TFIIIC preferentially bind to promoters with paused RNAPII and globally limit the accumulation of non-phosphorylated RNAPII at promoters. Consistent with its ubiquitous role in transcription, MYCN broadly participates in hubs of active promoters. Depletion of TFIIIC further increases MYCN localisation to these hubs. This increase correlates with a failure of the nuclear exosome and BRCA1, both of which are involved in nascent RNA degradation, to localise to active promoters. Our data suggest that MYCN and TFIIIC exert an censoring function in early transcription that limits promoter accumulation of inactive RNAPII and facilitates promoter-proximal degradation of nascent RNA.
Collapse
Affiliation(s)
- Raphael Vidal
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mareike Müller
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of WürzburgWürzburgGermany
| | - Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Isabelle Röschert
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Carsten P Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| |
Collapse
|
3
|
Nowak N, Sas-Nowosielska H, Szymański J. Nuclear Rac1 controls nuclear architecture and cell migration of glioma cells. Biochim Biophys Acta Gen Subj 2024; 1868:130632. [PMID: 38677529 DOI: 10.1016/j.bbagen.2024.130632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Rac1 (Ras-related C3 botulinum toxin substrate 1) protein has been found in the cell nucleus many years ago, however, its nuclear functions are still poorly characterized but some data suggest its nuclear accumulation in cancers. We investigated nuclear Rac1 in glioma cancer cells nuclei and compared its levels and activity to normal astrocytes, and also characterized the studied cells on various nuclear properties and cell migration patterns. Nuclear Rac1 indeed was found accumulated in glioma cells, but only a small percentage of the protein was in active, GTP-bound state in comparison to healthy control. Altering the nuclear activity of Rac1 influenced chromatin architecture and cell motility in GTP-dependent and independent manner. This suggests that the landscape of Rac1 nuclear interactions might be as complicated and wide as its well-known, non-nuclear signaling.
Collapse
Affiliation(s)
- Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| | - Hanna Sas-Nowosielska
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland; Institute of Epigenetics, Department of Cell Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jędrzej Szymański
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| |
Collapse
|
4
|
Rodriguez-Blanco J, Salvador AD, Suter RK, Swiderska-Syn M, Palomo-Caturla I, Kliebe V, Shahani P, Peterson K, Turos-Cabal M, Vieira ME, Wynn DT, Howell AJ, Yang F, Ban Y, McCrea HJ, Zindy F, Danis E, Vibhakar R, Jermakowicz A, Martin V, Coss CC, Harris BT, de Cubas A, Chen XS, Barnoud T, Roussel MF, Ayad NG, Robbins DJ. Triptolide and its prodrug Minnelide target high-risk MYC-amplified medulloblastoma in preclinical models. J Clin Invest 2024; 134:e171136. [PMID: 38885332 PMCID: PMC11290968 DOI: 10.1172/jci171136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Most children with medulloblastoma (MB) achieve remission, but some face very aggressive metastatic tumors. Their dismal outcome highlights the critical need to advance therapeutic approaches that benefit such high-risk patients. Minnelide, a clinically relevant analog of the natural product triptolide, has oncostatic activity in both preclinical and early clinical settings. Despite its efficacy and tolerable toxicity, this compound has not been evaluated in MB. Utilizing a bioinformatic data set that integrates cellular drug response data with gene expression, we predicted that Group 3 (G3) MB, which has a poor 5-year survival, would be sensitive to triptolide/Minnelide. We subsequently showed that both triptolide and Minnelide attenuate the viability of G3 MB cells ex vivo. Transcriptomic analyses identified MYC signaling, a pathologically relevant driver of G3 MB, as a downstream target of this class of drugs. We validated this MYC dependency in G3 MB cells and showed that triptolide exerts its efficacy by reducing both MYC transcription and MYC protein stability. Importantly, Minnelide acted on MYC to reduce tumor growth and leptomeningeal spread, which resulted in improved survival of G3 MB animal models. Moreover, Minnelide improved the efficacy of adjuvant chemotherapy, further highlighting its potential for the treatment of MYC-driven G3 MB.
Collapse
Affiliation(s)
- Jezabel Rodriguez-Blanco
- Darby Children’s Research Institute, Department of Pediatrics, and
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Robert K. Suter
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | | | | | - Valentin Kliebe
- Darby Children’s Research Institute, Department of Pediatrics, and
| | - Pritika Shahani
- Darby Children’s Research Institute, Department of Pediatrics, and
| | - Kendell Peterson
- Darby Children’s Research Institute, Department of Pediatrics, and
| | | | - Megan E. Vieira
- Darby Children’s Research Institute, Department of Pediatrics, and
| | - Daniel T. Wynn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | - Ashley J. Howell
- Darby Children’s Research Institute, Department of Pediatrics, and
| | - Fan Yang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | - Yuguang Ban
- Department of Public Health Sciences, and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Heather J. McCrea
- Departments of Neurological Surgery and Pediatrics, University of Miami, Jackson Health System, Miller School of Medicine, Miami, Florida, USA
| | - Frederique Zindy
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Etienne Danis
- University of Colorado Cancer Center
- Department of Biomedical Informatics, and
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Jermakowicz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | - Vanesa Martin
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Asturias, Spain
| | | | - Brent T. Harris
- Departments of Neurology and Pathology, Georgetown University Medical Center, Washington DC, USA
| | - Aguirre de Cubas
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Microbiology and Immunology, and
| | - X. Steven Chen
- Department of Public Health Sciences, and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Thibaut Barnoud
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Martine F. Roussel
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Nagi G. Ayad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | - David J. Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| |
Collapse
|
5
|
Miranda A, Pattnaik S, Hamilton PT, Fuss MA, Kalaria S, Laumont CM, Smazynski J, Mesa M, Banville A, Jiang X, Jenkins R, Cañadas I, Nelson BH. N-MYC impairs innate immune signaling in high-grade serous ovarian carcinoma. SCIENCE ADVANCES 2024; 10:eadj5428. [PMID: 38748789 PMCID: PMC11095474 DOI: 10.1126/sciadv.adj5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.
Collapse
Affiliation(s)
- Alex Miranda
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Swetansu Pattnaik
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, NSW, Australia
| | - Phineas T. Hamilton
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Shreena Kalaria
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | - Céline M. Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Monica Mesa
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
| | - Allyson Banville
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xinpei Jiang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Russell Jenkins
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Brad H. Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
| |
Collapse
|
6
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
7
|
Peramangalam PS, Surapally S, Veltri AJ, Zheng S, Burns R, Zhu N, Rao S, Muller-Tidow C, Bushweller JH, Pulikkan JA. N-MYC regulates cell survival via eIF4G1 in inv(16) acute myeloid leukemia. SCIENCE ADVANCES 2024; 10:eadh8493. [PMID: 38416825 PMCID: PMC10901375 DOI: 10.1126/sciadv.adh8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
N-MYC (encoded by MYCN) is a critical regulator of hematopoietic stem cell function. While the role of N-MYC deregulation is well established in neuroblastoma, the importance of N-MYC deregulation in leukemogenesis remains elusive. Here, we demonstrate that N-MYC is overexpressed in acute myeloid leukemia (AML) cells with chromosome inversion inv(16) and contributes to the survival and maintenance of inv(16) leukemia. We identified a previously unknown MYCN enhancer, active in multiple AML subtypes, essential for MYCN mRNA levels and survival in inv(16) AML cells. We also identified eukaryotic translation initiation factor 4 gamma 1 (eIF4G1) as a key N-MYC target that sustains leukemic survival in inv(16) AML cells. The oncogenic role of eIF4G1 in AML has not been reported before. Our results reveal a mechanism whereby N-MYC drives a leukemic transcriptional program and provides a rationale for the therapeutic targeting of the N-MYC/eIF4G1 axis in myeloid leukemia.
Collapse
Affiliation(s)
| | - Sridevi Surapally
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Anthony J. Veltri
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Shikan Zheng
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Robert Burns
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Nan Zhu
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Hematology, Oncology, and Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carsten Muller-Tidow
- Department of Medicine, Hematology, Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - John A. Pulikkan
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
8
|
Hofstetter J, Ogunleye A, Kutschke A, Buchholz LM, Wolf E, Raabe T, Gallant P. Spt5 interacts genetically with Myc and is limiting for brain tumor growth in Drosophila. Life Sci Alliance 2024; 7:e202302130. [PMID: 37935464 PMCID: PMC10629571 DOI: 10.26508/lsa.202302130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
The transcription factor SPT5 physically interacts with MYC oncoproteins and is essential for efficient transcriptional activation of MYC targets in cultured cells. Here, we use Drosophila to address the relevance of this interaction in a living organism. Spt5 displays moderate synergy with Myc in fast proliferating young imaginal disc cells. During later development, Spt5-knockdown has no detectable consequences on its own, but strongly enhances eye defects caused by Myc overexpression. Similarly, Spt5-knockdown in larval type 2 neuroblasts has only mild effects on brain development and survival of control flies, but dramatically shrinks the volumes of experimentally induced neuroblast tumors and significantly extends the lifespan of tumor-bearing animals. This beneficial effect is still observed when Spt5 is knocked down systemically and after tumor initiation, highlighting SPT5 as a potential drug target in human oncology.
Collapse
Affiliation(s)
- Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayoola Ogunleye
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - André Kutschke
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lisa Marie Buchholz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Raabe
- Molecular Genetics, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Yuan Y, Alzrigat M, Rodriguez-Garcia A, Wang X, Bexelius TS, Johnsen JI, Arsenian-Henriksson M, Liaño-Pons J, Bedoya-Reina OC. Target Genes of c-MYC and MYCN with Prognostic Power in Neuroblastoma Exhibit Different Expressions during Sympathoadrenal Development. Cancers (Basel) 2023; 15:4599. [PMID: 37760568 PMCID: PMC10527308 DOI: 10.3390/cancers15184599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Deregulation of the MYC family of transcription factors c-MYC (encoded by MYC), MYCN, and MYCL is prevalent in most human cancers, with an impact on tumor initiation and progression, as well as response to therapy. In neuroblastoma (NB), amplification of the MYCN oncogene and over-expression of MYC characterize approximately 40% and 10% of all high-risk NB cases, respectively. However, the mechanism and stage of neural crest development in which MYCN and c-MYC contribute to the onset and/or progression of NB are not yet fully understood. Here, we hypothesized that subtle differences in the expression of MYCN and/or c-MYC targets could more accurately stratify NB patients in different risk groups rather than using the expression of either MYC gene alone. We employed an integrative approach using the transcriptome of 498 NB patients from the SEQC cohort and previously defined c-MYC and MYCN target genes to model a multigene transcriptional risk score. Our findings demonstrate that defined sets of c-MYC and MYCN targets with significant prognostic value, effectively stratify NB patients into different groups with varying overall survival probabilities. In particular, patients exhibiting a high-risk signature score present unfavorable clinical parameters, including increased clinical risk, higher INSS stage, MYCN amplification, and disease progression. Notably, target genes with prognostic value differ between c-MYC and MYCN, exhibiting distinct expression patterns in the developing sympathoadrenal system. Genes associated with poor outcomes are mainly found in sympathoblasts rather than in chromaffin cells during the sympathoadrenal development.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Aida Rodriguez-Garcia
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Xueyao Wang
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Tomas Sjöberg Bexelius
- Paediatric Oncology Unit, Astrid Lindgren’s Children Hospital, SE-171 64 Solna, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - John Inge Johnsen
- Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Oscar C. Bedoya-Reina
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| |
Collapse
|
10
|
Fuchs S, Danßmann C, Klironomos F, Winkler A, Fallmann J, Kruetzfeldt LM, Szymansky A, Naderi J, Bernhart SH, Grunewald L, Helmsauer K, Rodriguez-Fos E, Kirchner M, Mertins P, Astrahantseff K, Suenkel C, Toedling J, Meggetto F, Remke M, Stadler PF, Hundsdoerfer P, Deubzer HE, Künkele A, Lang P, Fuchs J, Henssen AG, Eggert A, Rajewsky N, Hertwig F, Schulte JH. Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN. Nat Commun 2023; 14:3936. [PMID: 37402719 DOI: 10.1038/s41467-023-38747-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/12/2023] [Indexed: 07/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Steffen Fuchs
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany.
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany.
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, 31037, Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31037, Toulouse, France.
| | - Clara Danßmann
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Filippos Klironomos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Louisa-Marie Kruetzfeldt
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Julian Naderi
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Stephan H Bernhart
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Konstantin Helmsauer
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Elias Rodriguez-Fos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Christin Suenkel
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Straße 28, 10115, Berlin, Germany
- Lonza Drug Product Services, 4057, Basel, Switzerland
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Fabienne Meggetto
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, 31037, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31037, Toulouse, France
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf, 40225, Düsseldorf, Germany
- The German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology, Helios Klinikum Berlin-Buch, 13125, Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Peter Lang
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Nikolaus Rajewsky
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Straße 28, 10115, Berlin, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany.
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany.
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
| |
Collapse
|
11
|
Agarwal P, Glowacka A, Mahmoud L, Bazzar W, Larsson LG, Alzrigat M. MYCN Amplification Is Associated with Reduced Expression of Genes Encoding γ-Secretase Complex and NOTCH Signaling Components in Neuroblastoma. Int J Mol Sci 2023; 24:8141. [PMID: 37175848 PMCID: PMC10179553 DOI: 10.3390/ijms24098141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Amplification of the MYCN oncogene is found in ~20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN's contribution to high-risk disease are not completely understood. Herein, we implemented an integrative approach combining publicly available RNA-Seq and MYCN ChIP-Seq datasets derived from human NB cell lines to define biological processes directly regulated by MYCN in NB. Our approach revealed that MYCN-amplified NB cell lines, when compared to non-MYCN-amplified cell lines, are characterized by reduced expression of genes involved in NOTCH receptor processing, axoneme assembly, and membrane protein proteolysis. More specifically, we found genes encoding members of the γ-secretase complex, which is known for its ability to liberate several intracellular signaling molecules from membrane-bound proteins such as NOTCH receptors, to be down-regulated in MYCN-amplified NB cell lines. Analysis of MYCN ChIP-Seq data revealed an enrichment of MYCN binding at the transcription start sites of genes encoding γ-secretase complex subunits. Notably, using publicly available gene expression data from NB primary tumors, we revealed that the expression of γ-secretase subunits encoding genes and other components of the NOTCH signaling pathway was also reduced in MYCN-amplified tumors and correlated with worse overall survival in NB patients. Genetic or pharmacological depletion of MYCN in NB cell lines induced the expression of γ-secretase genes and NOTCH-target genes. Chemical inhibition of γ-secretase activity dampened the expression of NOTCH-target genes upon MYCN depletion in NB cells. In conclusion, this study defines a set of MYCN-regulated pathways that are specific to MYCN-amplified NB tumors, and it suggests a novel role for MYCN in the suppression of genes of the γ-secretase complex, with an impact on the NOTCH-target gene expression in MYCN-amplified NB.
Collapse
Affiliation(s)
- Prasoon Agarwal
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 22362 Lund, Sweden
| | - Aleksandra Glowacka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Loay Mahmoud
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Wesam Bazzar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, 75124 Uppsala, Sweden
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, 75124 Uppsala, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
12
|
Choi S, Hong SP, Bae JH, Suh SH, Bae H, Kang KP, Lee HJ, Koh GY. Hyperactivation of YAP/TAZ Drives Alterations in Mesangial Cells through Stabilization of N-Myc in Diabetic Nephropathy. J Am Soc Nephrol 2023; 34:809-828. [PMID: 36724799 PMCID: PMC10125647 DOI: 10.1681/asn.0000000000000075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/18/2022] [Indexed: 01/26/2023] Open
Abstract
SIGNIFICANCE STATEMENT Mesangial cells (MCs) in the kidney are essential to maintaining glomerular integrity, and their impairment leads to major glomerular diseases including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying mechanism is poorly understood. We show that YAP/TAZ are increased in MCs of patients with DN and two animal models of DN. High glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse MCs recapitulates the hallmarks of DN. Activated YAP/TAZ bind and stabilize N-Myc, one of the Myc family. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and to MC impairments. Our findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis. BACKGROUND Mesangial cells (MCs) in the kidney are central to maintaining glomerular integrity, and their impairment leads to major glomerular diseases, including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying molecular mechanism is poorly understood. METHODS Immunolocalization of YAP/TAZ and pathological features of PDGFRβ + MCs were analyzed in the glomeruli of patients with DN, in Zucker diabetic fatty rats, and in Lats1/2i ΔPβ mice. RiboTag bulk-RNA sequencing and transcriptomic analysis of gene expression profiles of the isolated MCs from control and Lats1/2iΔPβ mice were performed. Immunoprecipitation analysis and protein stability of N-Myc were performed by the standard protocols. RESULTS YAP and TAZ, the final effectors of the Hippo pathway, are highly increased in MCs of patients with DN and in Zucker diabetic fatty rats. Moreover, high glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse model MCs recapitulates the hallmarks of DN, including excessive proliferation of MCs and extracellular matrix deposition, endothelial cell impairment, glomerular sclerosis, albuminuria, and reduced glomerular filtration rate. Mechanistically, activated YAP/TAZ bind and stabilize N-Myc protein, one of the Myc family of oncogenes. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and eventually to MC impairments and DN pathogenesis. CONCLUSIONS Our findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis.
Collapse
Affiliation(s)
- Seunghyeok Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jung Hyun Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sang Heon Suh
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hosung Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Mainwaring OJ, Weishaupt H, Zhao M, Rosén G, Borgenvik A, Breinschmid L, Verbaan AD, Richardson S, Thompson D, Clifford SC, Hill RM, Annusver K, Sundström A, Holmberg KO, Kasper M, Hutter S, Swartling FJ. ARF suppression by MYC but not MYCN confers increased malignancy of aggressive pediatric brain tumors. Nat Commun 2023; 14:1221. [PMID: 36869047 PMCID: PMC9984535 DOI: 10.1038/s41467-023-36847-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Medulloblastoma, the most common malignant pediatric brain tumor, often harbors MYC amplifications. Compared to high-grade gliomas, MYC-amplified medulloblastomas often show increased photoreceptor activity and arise in the presence of a functional ARF/p53 suppressor pathway. Here, we generate an immunocompetent transgenic mouse model with regulatable MYC that develop clonal tumors that molecularly resemble photoreceptor-positive Group 3 medulloblastoma. Compared to MYCN-expressing brain tumors driven from the same promoter, pronounced ARF silencing is present in our MYC-expressing model and in human medulloblastoma. While partial Arf suppression causes increased malignancy in MYCN-expressing tumors, complete Arf depletion promotes photoreceptor-negative high-grade glioma formation. Computational models and clinical data further identify drugs targeting MYC-driven tumors with a suppressed but functional ARF pathway. We show that the HSP90 inhibitor, Onalespib, significantly targets MYC-driven but not MYCN-driven tumors in an ARF-dependent manner. The treatment increases cell death in synergy with cisplatin and demonstrates potential for targeting MYC-driven medulloblastoma.
Collapse
Affiliation(s)
- Oliver J Mainwaring
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Borgenvik
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laura Breinschmid
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Annemieke D Verbaan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Stacey Richardson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Dean Thompson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sonja Hutter
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Chang WH, Liu Y, Hammes EA, Bryant KL, Cerione RA, Antonyak MA. Oncogenic RAS promotes MYC protein stability by upregulating the expression of the inhibitor of apoptosis protein family member Survivin. J Biol Chem 2023; 299:102842. [PMID: 36581205 PMCID: PMC9860443 DOI: 10.1016/j.jbc.2022.102842] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.
Collapse
Affiliation(s)
- Wen-Hsuan Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinzhe Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Emma A Hammes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
15
|
Increased slow dynamics defines ligandability of BTB domains. Nat Commun 2022; 13:6989. [PMID: 36384931 PMCID: PMC9668832 DOI: 10.1038/s41467-022-34599-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Efficient determination of protein ligandability, or the propensity to bind small-molecules, would greatly facilitate drug development for novel targets. Ligandability is currently assessed using computational methods that typically consider the static structural properties of putative binding sites or by experimental fragment screening. Here, we evaluate ligandability of conserved BTB domains from the cancer-relevant proteins LRF, KAISO, and MIZ1. Using fragment screening, we discover that MIZ1 binds multiple ligands. However, no ligands are uncovered for the structurally related KAISO or LRF. To understand the principles governing ligand-binding by BTB domains, we perform comprehensive NMR-based dynamics studies and find that only the MIZ1 BTB domain exhibits backbone µs-ms time scale motions. Interestingly, residues with elevated dynamics correspond to the binding site of fragment hits and recently defined HUWE1 interaction site. Our data argue that examining protein dynamics using NMR can contribute to identification of cryptic binding sites, and may support prediction of the ligandability of novel challenging targets.
Collapse
|
16
|
Hao L, Chen Q, Chen X, Zhou Q. Integrated analysis of bulk and single-cell RNA-seq reveals the role of MYC signaling in lung adenocarcinoma. Front Genet 2022; 13:1021978. [PMID: 36299592 PMCID: PMC9589149 DOI: 10.3389/fgene.2022.1021978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
MYC is one of the well-known oncogenes, and its important role in cancer still remains largely unknown. We obtained lung adenocarcinoma (LUAD) multi-omics data including genome, transcriptome, and single-cell sequencing data from multiple cohorts. We calculated the GSVA score of the MYC target v1 using the ssGSEA method, and obtained the genes highly correlated with this score by Spearman correlation analysis. Subsequent hierarchical clustering divided these genes into two gene sets highly associated with MYC signaling (S1 and S2). Unsupervised clustering based on these genes divided the LUAD samples into two distinct subgroups, namely, the MYC signaling inhibition group (C1) and activation group (C2). The MCP counter package in R was used to assess tumor immune cell infiltration abundance and ssGSEA was used to calculate gene set scores. The scRNA-seq was used to verify the association of MYC signaling to cell differentiation. We observed significant differences in prognosis, clinical characteristics, immune microenvironment, and genomic alterations between MYC signaling inhibition and MYC signaling activation groups. MYC-signaling is associated with genomic instability and can mediate the immunosuppressive microenvironment and promote cell proliferation, tumor stemness. Moreover, MYC-signaling activation is also subject to complex post-transcriptional regulation and is highly associated with cell differentiation. In conclusion, MYC signaling is closely related to the genomic instability, genetic alteration and regulation, the immune microenvironment landscape, cell differentiation, and disease survival in LUAD. The findings of this study provide a valuable reference to revealing the mechanism of cancer-promoting action of MYC in LUAD.
Collapse
Affiliation(s)
- Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qing Zhou
- Central Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Qing Zhou,
| |
Collapse
|
17
|
Mohapatra P, Mohanty S, Ansari SA, Shriwas O, Ghosh A, Rath R, Majumdar SKD, Swain RK, Raghav SK, Dash R. CMTM6 attenuates cisplatin-induced cell death in OSCC by regulating AKT/c-Myc-driven ribosome biogenesis. FASEB J 2022; 36:e22566. [PMID: 36165231 DOI: 10.1096/fj.202200808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
Abstract
CMTM6, a type 3 transmembrane protein, is known to stabilize the expression of programmed cell death ligand 1 (PD-L1) and hence facilitates the immune evasion of tumor cells. Recently, we demonstrated that CMTM6 is a major driver of cisplatin resistance in oral squamous cell carcinomas (OSCC). However, the detailed mechanism of how CMTM6 rewires cisplatin resistance in OSCC is yet to be explored. RNA sequencing analysis of cisplatin-resistant OSCC lines stably expressing Nt shRNA and CMTM6 shRNA revealed that CMTM6 might be a potential regulator of the ribosome biogenesis network. Knocking down CMTM6 significantly inhibited transcription of 47S precursor rRNA and hindered the nucleolar structure, indicating reduced ribosome biogenesis. When CMTM6 was ectopically over-expressed in CMTM6KD cells, almost all ribosomal machinery components were rescued. Mechanistically, CMTM6 induced the expression of C-Myc, which promotes RNA polymerase I mediated rDNA transcription. In addition to this, CMTM6 was also found to regulate the AKT-mTORC1-dependent ribosome biogenesis and protein synthesis in cisplatin-resistant lines. The nude mice and zebrafish xenograft experiments indicate that blocking ribosome synthesis either by genetic inhibitor (CMTM6KD) or pharmacological inhibitor (CX-5461) significantly restores cisplatin-mediated cell death in chemoresistant OSCC. Overall, our study suggests that CMTM6 is a major regulator of the ribosome biogenesis network and targeting the ribosome biogenesis network is a viable target to overcome chemoresistance in OSCC. The novel combination of CX-5461 and cisplatin deserves further clinical investigation in advanced OSCC.
Collapse
Affiliation(s)
- Pallavi Mohapatra
- Cancer biology Unit, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Sibasish Mohanty
- Cancer biology Unit, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Shamima Azma Ansari
- Cancer biology Unit, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | | | - Arup Ghosh
- Cancer biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Rachna Rath
- Sriram Chandra Bhanj Dental College and Hospital, Cuttack, India
| | | | - Rajeeb K Swain
- Cancer biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Sunil K Raghav
- Cancer biology Unit, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rupesh Dash
- Cancer biology Unit, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
18
|
Liang KH, Chang CC, Wu KS, Yu AL, Sung SY, Lee YY, Liang ML, Chen HH, Fen JJ, Chao ME, Liao YT, Wong TT. Notch signaling and natural killer cell infiltration in tumor tissues underlie medulloblastoma prognosis. Sci Rep 2021; 11:23282. [PMID: 34857809 PMCID: PMC8639846 DOI: 10.1038/s41598-021-02651-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma is the most common embryonic brain tumor in children. We investigated a cohort of 52 Asian medulloblastoma patients aged between 0 and 19 years old, who received surgical resections and post-resection treatments in the Taipei Medical University Hospital and the Taipei Veterans General Hospital. Genome-wide RNA sequencing was performed on fresh-frozen surgical tissues. These data were analyzed using the CIBERSORTx immune deconvolution software. Two external clinical and molecular datasets from United States (n = 62) and Canada (n = 763) were used to evaluate the transferability of the gene-signature scores across ethnic populations. The abundance of 13 genes, including DLL1, are significantly associated with overall survival (All Cox regression P < 0.001). A gene-signature score was derived from the deep transcriptome, capable of indicating patients’ subsequent tumor recurrence (Hazard Ratio [HR] 1.645, confidence interval [CI] 1.337–2.025, P < 0.001) and mortality (HR 2.720, CI 1.798–4.112, P < 0.001). After the adjustment of baseline clinical factors, the score remains indicative of recurrence-free survival (HR 1.604, CI 1.292–1.992, P < 0.001) and overall survival (HR 2.781, CI 1.762–4.390, P < 0.001). Patients stratified by this score manifest not only distinct prognosis but also different molecular characteristics: Notch signaling ligands and receptors are comparatively overexpressed in patients with poorer prognosis, while tumor infiltrating natural killer cells are more abundant in patients with better prognosis. Additionally, immunohistochemical staining showed the DLL1 protein, a major ligand in the Notch signaling pathway, and the NCAM1 protein, a representative biomarker of natural killer cells, are present in the surgical tissues of patients of four molecular subgroups, WNT, SHH, Group 3 and Group 4. NCAM1 RNA level is also positively associated with the mutation burden in tumor (P = 0.023). The gene-signature score is validated successfully in the Canadian cohort (P = 0.009) as well as its three molecular subgroups (SHH, Group 3 and Group 4; P = 0.047, 0.018 and 0.040 respectively). In conclusion, pediatric medullablastoma patients can be stratified by gene-signature scores with distinct prognosis and molecular characteristics. Ligands and receptors of the Notch signaling pathway are overexpressed in the patient stratum with poorer prognosis. Tumor infiltrating natural killer cells are more abundant in the patient stratum with better prognosis.
Collapse
Affiliation(s)
- Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao-Tung University, Taipei, Taiwan. .,Institute of Biomedical Informatics, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| | - Che-Chang Chang
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 333, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shian-Ying Sung
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yi-Yen Lee
- Division of Paediatric Neurosurgery, the Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Muh-Lii Liang
- Division of Paediatric Neurosurgery, the Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Hung Chen
- Division of Paediatric Neurosurgery, the Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Jun-Jeng Fen
- Department of Informatics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Meng-En Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yi-Ting Liao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tai-Tong Wong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan. .,Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110, Taiwan. .,Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
19
|
Braoudaki M, Hatziagapiou K, Zaravinos A, Lambrou GI. MYCN in Neuroblastoma: "Old Wine into New Wineskins". Diseases 2021; 9:78. [PMID: 34842635 PMCID: PMC8628738 DOI: 10.3390/diseases9040078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
MYCN Proto-Oncogene, BHLH Transcription Factor (MYCN) has been one of the most studied genes in neuroblastoma. It is known for its oncogenetic mechanisms, as well as its role in the prognosis of the disease and it is considered one of the prominent targets for neuroblastoma therapy. In the present work, we attempted to review the literature, on the relation between MYCN and neuroblastoma from all possible mechanistic sites. We have searched the literature for the role of MYCN in neuroblastoma based on the following topics: the references of MYCN in the literature, the gene's anatomy, along with its transcripts, the protein's anatomy, the epigenetic mechanisms regulating MYCN expression and function, as well as MYCN amplification. MYCN plays a significant role in neuroblastoma biology. Its functions and properties range from the forming of G-quadraplexes, to the interaction with miRNAs, as well as the regulation of gene methylation and histone acetylation and deacetylation. Although MYCN is one of the most primary genes studied in neuroblastoma, there is still a lot to be learned. Our knowledge on the exact mechanisms of MYCN amplification, etiology and potential interventions is still limited. The knowledge on the molecular mechanisms of MYCN in neuroblastoma, could have potential prognostic and therapeutic advantages.
Collapse
Affiliation(s)
- Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordshire, UK;
| | - Kyriaki Hatziagapiou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center, European University Cyprus, Nicosia 1516, Cyprus
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| |
Collapse
|
20
|
Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathol 2021; 142:537-564. [PMID: 34302498 PMCID: PMC8357694 DOI: 10.1007/s00401-021-02347-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.
Collapse
|
21
|
Lhermitte B, Blandin AF, Coca A, Guerin E, Durand A, Entz-Werlé N. Signaling pathway deregulation and molecular alterations across pediatric medulloblastomas. Neurochirurgie 2021; 67:39-45. [PMID: 29776650 DOI: 10.1016/j.neuchi.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/06/2018] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
Medulloblastomas (MBs) account for 15% of brain tumors in children under the age of 15. To date, the overall 5-year survival rate for all children is only around 60%. Recent advances in cancer genomics have led to a fundamental change in medulloblastoma classification and is evolving along with the genomic discoveries, allowing to regularly reclassify this disease. The previous molecular classification defined 4 groups (WNT-activated MB, SHH-activated MB and the groups 3 and 4 characterized partially by NMYC and MYC driven MBs). This stratification moved forward recently to better define these groups and their correlation to outcome. This new stratification into 7 novel subgroups was helpful to lay foundations and complementary data on the understanding regarding molecular pathways and gene mutations underlying medulloblastoma biology. This review was aimed at answering the recent key questions on MB genomics and go further in the relevance of those genes in MB development as well as in their targeted therapies.
Collapse
Affiliation(s)
- B Lhermitte
- Laboratoire de Pathologie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - A F Blandin
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France
| | - A Coca
- Service de Neurochirurgie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - E Guerin
- Laboratoire de biologie moléculaire et plateforme régionale d'oncobiologie d'Alsace, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - A Durand
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France
| | - N Entz-Werlé
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France; Service de pédiatrie onco-hématologie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France.
| |
Collapse
|
22
|
Pan C, Zhu Y, Yu M, Zhao Y, Zhang C, Zhang X, Yao Y. Control Analysis of Protein-Protein Interaction Network Reveals Potential Regulatory Targets for MYCN. Front Oncol 2021; 11:633579. [PMID: 33968733 PMCID: PMC8096904 DOI: 10.3389/fonc.2021.633579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/04/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND MYCN is an oncogenic transcription factor of the MYC family and plays an important role in the formation of tissues and organs during development before birth. Due to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory networks will help to identify effective therapeutic targets. METHODS We utilized network controllability theory, a recent developed powerful tool, to identify the potential drug target around MYCN based on Protein-Protein interaction network of MYCN. First, we constructed a Protein-Protein interaction network of MYCN based on public databases. Second, network control analysis was applied on network to identify driver genes and indispensable genes of the MYCN regulatory network. Finally, we developed a novel integrated approach to identify potential drug targets for regulating the function of the MYCN regulatory network. RESULTS We constructed an MYCN regulatory network that has 79 genes and 129 interactions. Based on network controllability theory, we analyzed driver genes which capable to fully control the network. We found 10 indispensable genes whose alternation will significantly change the regulatory pathways of the MYCN network. We evaluated the stability and correlation analysis of these genes and found EGFR may be the potential drug target which closely associated with MYCN. CONCLUSION Together, our findings indicate that EGFR plays an important role in the regulatory network and pathways of MYCN and therefore may represent an attractive therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Chunyu Pan
- Northeastern University, Shenyang, China
- Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and Northeastern University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yuyan Zhu
- Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and Northeastern University, Shenyang, China
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Meng Yu
- Department of Reproductive Biology and Transgenic Animal, China Medical University, Shenyang, China
| | - Yongkang Zhao
- National Institute of Health and Medical Big Data, China Medical University, Shenyang, China
| | | | - Xizhe Zhang
- Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and Northeastern University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yang Yao
- Department of Physiology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
23
|
Wolpaw AJ, Bayliss R, Büchel G, Dang CV, Eilers M, Gustafson WC, Hansen GH, Jura N, Knapp S, Lemmon MA, Levens D, Maris JM, Marmorstein R, Metallo SJ, Park JR, Penn LZ, Rape M, Roussel MF, Shokat KM, Tansey WP, Verba KA, Vos SM, Weiss WA, Wolf E, Mossé YP. Drugging the "Undruggable" MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Res 2021; 81:1627-1632. [PMID: 33509943 PMCID: PMC8392692 DOI: 10.1158/0008-5472.can-20-3108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
Effective treatment of pediatric solid tumors has been hampered by the predominance of currently "undruggable" driver transcription factors. Improving outcomes while decreasing the toxicity of treatment necessitates the development of novel agents that can directly inhibit or degrade these elusive targets. MYCN in pediatric neural-derived tumors, including neuroblastoma and medulloblastoma, is a paradigmatic example of this problem. Attempts to directly and specifically target MYCN have failed due to its similarity to MYC, the unstructured nature of MYC family proteins in their monomeric form, the lack of an understanding of MYCN-interacting proteins and ability to test their relevance in vivo, the inability to obtain structural information on MYCN protein complexes, and the challenges of using traditional small molecules to inhibit protein-protein or protein-DNA interactions. However, there is now promise for directly targeting MYCN based on scientific and technological advances on all of these fronts. Here, we discuss prior challenges and the reasons for renewed optimism in directly targeting this "undruggable" transcription factor, which we hope will lead to improved outcomes for patients with pediatric cancer and create a framework for targeting driver oncoproteins regulating gene transcription.
Collapse
MESH Headings
- Age of Onset
- Antineoplastic Agents/history
- Antineoplastic Agents/isolation & purification
- Antineoplastic Agents/therapeutic use
- Child
- Drug Discovery/history
- Drug Discovery/methods
- Drug Discovery/trends
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Screening Assays, Antitumor/history
- Drug Screening Assays, Antitumor/methods
- Drug Screening Assays, Antitumor/trends
- Gene Expression Regulation, Neoplastic/drug effects
- History, 20th Century
- History, 21st Century
- Humans
- N-Myc Proto-Oncogene Protein/antagonists & inhibitors
- N-Myc Proto-Oncogene Protein/genetics
- N-Myc Proto-Oncogene Protein/physiology
- Neoplasms/drug therapy
- Neoplasms/epidemiology
- Neoplasms/genetics
- Therapies, Investigational/history
- Therapies, Investigational/methods
- Therapies, Investigational/trends
Collapse
Affiliation(s)
- Adam J Wolpaw
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Wistar Institute, Philadelphia, Pennsylvania
| | - Richard Bayliss
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Gabriele Büchel
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Wuürzburg, Wuürzburg, Germany
- Mildred Scheel Early Career Center, University Hospital Wuürzburg, Wuürzburg, Germany
| | - Chi V Dang
- Wistar Institute, Philadelphia, Pennsylvania
- Ludwig Institute for Cancer Research, New York, New York
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Wuürzburg, Wuürzburg, Germany
| | - W Clay Gustafson
- University of California San Francisco, UCSF Benioff Children's Hospital, San Francisco, California
| | | | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mark A Lemmon
- Department of Pharmacology and Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronen Marmorstein
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Julie R Park
- Department of Pediatrics, University of Washington School of Medicine and Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, Washington
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | | | - Kliment A Verba
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - William A Weiss
- Departments of Neurology and Pediatrics, Neurological Surgery and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Yaël P Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Liu R, Shi P, Wang Z, Yuan C, Cui H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front Oncol 2021; 10:625332. [PMID: 33614505 PMCID: PMC7886978 DOI: 10.3389/fonc.2020.625332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
MYCN, a member of MYC proto-oncogene family, encodes a basic helix-loop-helix transcription factor N-MYC. Abnormal expression of N-MYC is correlated with high-risk cancers and poor prognosis. Initially identified as an amplified oncogene in neuroblastoma in 1983, the oncogenic effect of N-MYC is expanded to multiple neuronal and nonneuronal tumors. Direct targeting N-MYC remains challenge due to its "undruggable" features. Therefore, alternative therapeutic approaches for targeting MYCN-driven tumors have been focused on the disruption of transcription, translation, protein stability as well as synthetic lethality of MYCN. In this review, we summarize the latest advances in understanding the molecular mechanisms of MYCN dysregulation in cancers.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaoyu Yuan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
25
|
Borgenvik A, Čančer M, Hutter S, Swartling FJ. Targeting MYCN in Molecularly Defined Malignant Brain Tumors. Front Oncol 2021; 10:626751. [PMID: 33585252 PMCID: PMC7877538 DOI: 10.3389/fonc.2020.626751] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Misregulation of MYC genes, causing MYC overexpression or protein stabilization, is frequently found in malignant brain tumors highlighting their important roles as oncogenes. Brain tumors in children are the most lethal of all pediatric malignancies and the most common malignant primary adult brain tumor, glioblastoma, is still practically incurable. MYCN is one of three MYC family members and is crucial for normal brain development. It is associated with poor prognosis in many malignant pediatric brain tumor types and is focally amplified in specific adult brain tumors. Targeting MYCN has proved to be challenging due to its undruggable nature as a transcription factor and for its importance in regulating developmental programs also in healthy cells. In this review, we will discuss efforts made to circumvent the difficulty of targeting MYCN specifically by using direct or indirect measures to treat MYCN-driven brain tumors. We will further consider the mechanism of action of these measures and suggest which molecularly defined brain tumor patients that might benefit from MYCN-directed precision therapies.
Collapse
Affiliation(s)
- Anna Borgenvik
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Matko Čančer
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sonja Hutter
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Popay TM, Wang J, Adams CM, Howard GC, Codreanu SG, Sherrod SD, McLean JA, Thomas LR, Lorey SL, Machida YJ, Weissmiller AM, Eischen CM, Liu Q, Tansey WP. MYC regulates ribosome biogenesis and mitochondrial gene expression programs through its interaction with host cell factor-1. eLife 2021; 10:e60191. [PMID: 33416496 PMCID: PMC7793627 DOI: 10.7554/elife.60191] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oncoprotein transcription factor MYC is a major driver of malignancy and a highly validated but challenging target for the development of anticancer therapies. Novel strategies to inhibit MYC may come from understanding the co-factors it uses to drive pro-tumorigenic gene expression programs, providing their role in MYC activity is understood. Here we interrogate how one MYC co-factor, host cell factor (HCF)-1, contributes to MYC activity in a human Burkitt lymphoma setting. We identify genes connected to mitochondrial function and ribosome biogenesis as direct MYC/HCF-1 targets and demonstrate how modulation of the MYC-HCF-1 interaction influences cell growth, metabolite profiles, global gene expression patterns, and tumor growth in vivo. This work defines HCF-1 as a critical MYC co-factor, places the MYC-HCF-1 interaction in biological context, and highlights HCF-1 as a focal point for development of novel anti-MYC therapies.
Collapse
Affiliation(s)
- Tessa M Popay
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Clare M Adams
- Department of Cancer Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Simona G Codreanu
- Center for Innovative Technology (CIT), Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Stacy D Sherrod
- Center for Innovative Technology (CIT), Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - John A McLean
- Center for Innovative Technology (CIT), Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Lance R Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | | | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Christine M Eischen
- Department of Cancer Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
27
|
Thng DKH, Toh TB, Chow EKH. Capitalizing on Synthetic Lethality of MYC to Treat Cancer in the Digital Age. Trends Pharmacol Sci 2021; 42:166-182. [PMID: 33422376 DOI: 10.1016/j.tips.2020.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Deregulation of MYC is among the most frequent oncogenic drivers of cancer. Developing targeted therapies against MYC is, therefore, one of the most critical unmet needs of cancer therapy. Unfortunately, MYC has been labelled as undruggable due to the lack of success in developing clinically relevant MYC-targeted therapies. Synthetic lethality is a promising approach that targets MYC-dependent vulnerabilities in cancer. However, translating the synthetic lethality targets to the clinics is still challenging due to the complex nature of cancers. This review highlights the most promising mechanisms of MYC synthetic lethality and how these discoveries are currently translated into the clinic. Finally, we discuss how in silico computational platforms can improve clinical success of synthetic lethality-based therapy.
Collapse
Affiliation(s)
- Dexter Kai Hao Thng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
28
|
MYC in Brain Development and Cancer. Int J Mol Sci 2020; 21:ijms21207742. [PMID: 33092025 PMCID: PMC7588885 DOI: 10.3390/ijms21207742] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
The MYC family of transcriptional regulators play significant roles in animal development, including the renewal and maintenance of stem cells. Not surprisingly, given MYC's capacity to promote programs of proliferative cell growth, MYC is frequently upregulated in cancer. Although members of the MYC family are upregulated in nervous system tumours, the mechanisms of how elevated MYC promotes stem cell-driven brain cancers is unknown. If we are to determine how increased MYC might contribute to brain cancer progression, we will require a more complete understanding of MYC's roles during normal brain development. Here, we evaluate evidence for MYC family functions in neural stem cell fate and brain development, with a view to better understand mechanisms of MYC-driven neural malignancies.
Collapse
|
29
|
Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ, Spainhower KB, Conley CC, Chen OS, Guthrie MR, Soltero D, Qiao Y, Huang X, Tarapcsák S, Devarakonda S, Chalishazar MD, Gertz J, Moser JC, Marth G, Puri S, Witt BL, Spike BT, Oliver TG. MYC Drives Temporal Evolution of Small Cell Lung Cancer Subtypes by Reprogramming Neuroendocrine Fate. Cancer Cell 2020; 38:60-78.e12. [PMID: 32473656 PMCID: PMC7393942 DOI: 10.1016/j.ccell.2020.05.001] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/23/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Small cell lung cancer (SCLC) is a neuroendocrine tumor treated clinically as a single disease with poor outcomes. Distinct SCLC molecular subtypes have been defined based on expression of ASCL1, NEUROD1, POU2F3, or YAP1. Here, we use mouse and human models with a time-series single-cell transcriptome analysis to reveal that MYC drives dynamic evolution of SCLC subtypes. In neuroendocrine cells, MYC activates Notch to dedifferentiate tumor cells, promoting a temporal shift in SCLC from ASCL1+ to NEUROD1+ to YAP1+ states. MYC alternatively promotes POU2F3+ tumors from a distinct cell type. Human SCLC exhibits intratumoral subtype heterogeneity, suggesting that this dynamic evolution occurs in patient tumors. These findings suggest that genetics, cell of origin, and tumor cell plasticity determine SCLC subtype.
Collapse
Affiliation(s)
- Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexi M Micinski
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - David W Kastner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Bingqian Guo
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarah J Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher C Conley
- Huntsman Cancer Institute Bioinformatic Analysis Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Opal S Chen
- Huntsman Cancer Institute High-Throughput Genomics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Danny Soltero
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Qiao
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiaomeng Huang
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Szabolcs Tarapcsák
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Siddhartha Devarakonda
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Milind D Chalishazar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Justin C Moser
- HonorHealth Research Institute, Scottsdale, AZ 85254, USA
| | - Gabor Marth
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sonam Puri
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin L Witt
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; ARUP Laboratories at University of Utah, Salt Lake City, UT 84108, USA
| | - Benjamin T Spike
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
30
|
Wijaya J, Gose T, Schuetz JD. Using Pharmacology to Squeeze the Life Out of Childhood Leukemia, and Potential Strategies to Achieve Breakthroughs in Medulloblastoma Treatment. Pharmacol Rev 2020; 72:668-691. [PMID: 32571983 PMCID: PMC7312347 DOI: 10.1124/pr.118.016824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eliminating cancer was once thought of as a war. This analogy is still apt today; however, we now realize that cancer is a much more formidable enemy than scientists originally perceived, and in some cases, it harbors a profound ability to thwart our best efforts to defeat it. However, before we were aware of the complexity of cancer, chemotherapy against childhood acute lymphoblastic leukemia (ALL) was successful because it applied the principles of pharmacology. Herein, we provide a historic perspective of the experience at St. Jude Children's Research Hospital. In 1962, when the hospital opened, fewer than 3% of patients experienced durable cure. Through judicious application of pharmacologic principles (e.g., combination therapy with agents using different mechanisms of action) plus appropriate drug scheduling, dosing, and pharmacodynamics, the survival of patients with ALL now exceeds 90%. We contrast this approach to treating ALL with the contemporary approach to treating medulloblastoma, in which genetics and molecular signatures are being used to guide the development of more-efficacious treatment strategies with minimal toxicity. Finally, we highlight the emerging technologies that can sustain and propel the collaborative efforts to squeeze the life out of these cancers. SIGNIFICANCE STATEMENT: Up until the early 1960s, chemotherapy for childhood acute lymphoblastic leukemia was mostly ineffective. This changed with the knowledge and implementation of rational approaches to combination therapy. Although the therapeutics of brain cancers such as medulloblastoma are not as refined (in part because of the blood-brain barrier obstacle), recent extraordinary advances in knowledge of medulloblastoma pathobiology has led to innovations in disease classification accompanied with strategies to improve therapeutic outcomes. Undoubtedly, additional novel approaches, such as immunological therapeutics, will open new avenues to further the goal of taming cancer.
Collapse
Affiliation(s)
- Juwina Wijaya
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tomoka Gose
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
31
|
Morel M, Shah KN, Long W. The F-box protein FBXL16 up-regulates the stability of C-MYC oncoprotein by antagonizing the activity of the F-box protein FBW7. J Biol Chem 2020; 295:7970-7980. [PMID: 32345600 DOI: 10.1074/jbc.ra120.012658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
F-box proteins, such as F-box/WD repeat-containing protein 7 (FBW7), are essential components of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. They bind to S-phase kinase-associated protein 1 (SKP1) through the F-box motif and deliver their protein substrate to the E3 ligase complex for ubiquitination and subsequent degradation. F-box and leucine-rich repeat protein 16 (FBXL16) is a poorly studied F-box protein. Because it does not interact with the scaffold protein cullin 1 (CUL1), we hypothesized that FBXL16 might not form a functional SCF-E3 ligase complex. In the present study, we found that FBXL16 up-regulates the levels of proteins targeted by SCF-E3 ligases, such as C-MYC, β-catenin, and steroid receptor coactivator 3 (SRC-3). Focusing on C-MYC, a well-known oncoprotein overexpressed in most human cancers, we show that FBXL16 stabilizes C-MYC by antagonizing FBW7-mediated C-MYC ubiquitination and degradation. Further, we found that, although FBXL16 does not interact with CUL1, it interacts with SKP1 via its N-terminal F-box domain and with its substrate C-MYC via its C-terminal leucine-rich repeats (LRRs) domain. We found that both the F-box domain and the LRR domain are important for FBXL16-mediated C-MYC stabilization. In line with its role in up-regulating the levels of the C-MYC and SRC-3 oncoproteins, FBXL16 promoted cancer cell growth and migration and colony formation in soft agar. Our findings reveal that FBXL16 is an F-box protein that antagonizes the activity of another F-box protein, FBW7, and thereby increases C-MYC stability, resulting in increased cancer cell growth and invasiveness.
Collapse
Affiliation(s)
- Marion Morel
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio
| | - Krushangi N Shah
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio
| |
Collapse
|
32
|
Mondal B, Jin H, Kallappagoudar S, Sedkov Y, Martinez T, Sentmanat MF, Poet GJ, Li C, Fan Y, Pruett-Miller SM, Herz HM. The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. eLife 2020; 9:57519. [PMID: 32297854 PMCID: PMC7192582 DOI: 10.7554/elife.57519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The mitotic deacetylase complex (MiDAC) is a recently identified histone deacetylase (HDAC) complex. While other HDAC complexes have been implicated in neurogenesis, the physiological role of MiDAC remains unknown. Here, we show that MiDAC constitutes an important regulator of neural differentiation. We demonstrate that MiDAC functions as a modulator of a neurodevelopmental gene expression program and binds to important regulators of neurite outgrowth. MiDAC upregulates gene expression of pro-neural genes such as those encoding the secreted ligands SLIT3 and NETRIN1 (NTN1) by a mechanism suggestive of H4K20ac removal on promoters and enhancers. Conversely, MiDAC inhibits gene expression by reducing H3K27ac on promoter-proximal and -distal elements of negative regulators of neurogenesis. Furthermore, loss of MiDAC results in neurite outgrowth defects that can be rescued by supplementation with SLIT3 and/or NTN1. These findings indicate a crucial role for MiDAC in regulating the ligands of the SLIT3 and NTN1 signaling axes to ensure the proper integrity of neurite development.
Collapse
Affiliation(s)
- Baisakhi Mondal
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Hongjian Jin
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Satish Kallappagoudar
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Yurii Sedkov
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Tanner Martinez
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Monica F Sentmanat
- Genome Engineering & iPS Center, Department of Genetics, Washington University, St. Louis, United States
| | - Greg J Poet
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Hans-Martin Herz
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
33
|
Abstract
Targeting the function of MYC oncoproteins holds the promise of achieving conceptually new and effective anticancer therapies that can be applied to a broad range of tumors. The nature of the target however—a broadly, possibly universally acting transcription factor that has no enzymatic activity and is largely unstructured unless complexed with partner proteins—has so far defied the development of clinically applicable MYC-directed therapies. At the same time, lingering questions about exactly which functions of MYC proteins account for their pervasive oncogenic role in human tumors and need to be targeted have prevented the development of effective therapies using surrogate targets that act in critical MYC-dependent pathways. In this review, we therefore argue that rigorous testing of critical oncogenic functions and protein/protein interactions and new chemical approaches to target them are necessary to successfully eradicate MYC-driven tumors.
Collapse
Affiliation(s)
- Elmar Wolf
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, 97074 Würzburg, Germany;,
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, 97074 Würzburg, Germany;,
| |
Collapse
|
34
|
Baluapuri A, Wolf E, Eilers M. Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol 2020; 21:255-267. [PMID: 32071436 DOI: 10.1038/s41580-020-0215-2] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Oncoproteins of the MYC family are major drivers of human tumorigenesis. Since a large body of evidence indicates that MYC proteins are transcription factors, studying their function has focused on the biology of their target genes. Detailed studies of MYC-dependent changes in RNA levels have provided contrasting models of the oncogenic activity of MYC proteins through either enhancing or repressing the expression of specific target genes, or as global amplifiers of transcription. In this Review, we first summarize the biochemistry of MYC proteins and what is known (or is unclear) about the MYC target genes. We then discuss recent progress in defining the interactomes of MYC and MYCN and how this information affects central concepts of MYC biology, focusing on mechanisms by which MYC proteins modulate transcription. MYC proteins promote transcription termination upon stalling of RNA polymerase II, and we propose that this mechanism enhances the stress resilience of basal transcription. Furthermore, MYC proteins coordinate transcription elongation with DNA replication and cell cycle progression. Finally, we argue that the mechanism by which MYC proteins regulate the transcription machinery is likely to promote tumorigenesis independently of global or relative changes in the expression of their target genes.
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Elmar Wolf
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
| |
Collapse
|
35
|
Annunziata I, van de Vlekkert D, Wolf E, Finkelstein D, Neale G, Machado E, Mosca R, Campos Y, Tillman H, Roussel MF, Andrew Weesner J, Ellen Fremuth L, Qiu X, Han MJ, Grosveld GC, d'Azzo A. MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat. Nat Commun 2019; 10:3623. [PMID: 31399583 PMCID: PMC6689058 DOI: 10.1038/s41467-019-11568-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically. Genes related to lysosomal and autophagic systems are transcriptionally regulated by the Mit/TFE family of transcription factors. Here the authors show that MYC, in association with HDACs, suppresses the expression of lysosomal and autophagy genes by competing with the Mit/TFE transcription factors for occupancy of their target gene promoters.
Collapse
Affiliation(s)
- Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, 97074, Germany
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Geoffrey Neale
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Eda Machado
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rosario Mosca
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yvan Campos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason Andrew Weesner
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Leigh Ellen Fremuth
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xiaohui Qiu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Min-Joon Han
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gerard C Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
36
|
Dammert MA, Brägelmann J, Olsen RR, Böhm S, Monhasery N, Whitney CP, Chalishazar MD, Tumbrink HL, Guthrie MR, Klein S, Ireland AS, Ryan J, Schmitt A, Marx A, Ozretić L, Castiglione R, Lorenz C, Jachimowicz RD, Wolf E, Thomas RK, Poirier JT, Büttner R, Sen T, Byers LA, Reinhardt HC, Letai A, Oliver TG, Sos ML. MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat Commun 2019; 10:3485. [PMID: 31375684 PMCID: PMC6677768 DOI: 10.1038/s41467-019-11371-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/10/2019] [Indexed: 01/06/2023] Open
Abstract
MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.
Collapse
Affiliation(s)
- Marcel A Dammert
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, 50931, Cologne, Germany
| | - Rachelle R Olsen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Stefanie Böhm
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Niloufar Monhasery
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Christopher P Whitney
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Milind D Chalishazar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hannah L Tumbrink
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sebastian Klein
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, 50931, Cologne, Germany
- Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeremy Ryan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Anna Schmitt
- Department I of Internal Medicine, University Hospital of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, 50931, Cologne, Germany
| | - Annika Marx
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Luka Ozretić
- Department of Cellular Pathology, Royal Free Hospital, London, NW3 2QG, UK
| | - Roberta Castiglione
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, 50931, Cologne, Germany
- Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
| | - Carina Lorenz
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Ron D Jachimowicz
- Department I of Internal Medicine, University Hospital of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, 50931, Cologne, Germany
| | - Elmar Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - John T Poirier
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany
| | - Triparna Sen
- Department of Thoracic and Head & Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lauren A Byers
- Department of Thoracic and Head & Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - H Christian Reinhardt
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, University Hospital of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, 50931, Cologne, Germany
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Martin L Sos
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany.
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
37
|
Ross J, Rashkovan M, Fraszczak J, Joly-Beauparlant C, Vadnais C, Winkler R, Droit A, Kosan C, Möröy T. Deletion of the Miz-1 POZ Domain Increases Efficacy of Cytarabine Treatment in T- and B-ALL/Lymphoma Mouse Models. Cancer Res 2019; 79:4184-4195. [DOI: 10.1158/0008-5472.can-18-3038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/03/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022]
|
38
|
Baluapuri A, Hofstetter J, Dudvarski Stankovic N, Endres T, Bhandare P, Vos SM, Adhikari B, Schwarz JD, Narain A, Vogt M, Wang SY, Düster R, Jung LA, Vanselow JT, Wiegering A, Geyer M, Maric HM, Gallant P, Walz S, Schlosser A, Cramer P, Eilers M, Wolf E. MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation. Mol Cell 2019; 74:674-687.e11. [PMID: 30928206 PMCID: PMC6527870 DOI: 10.1016/j.molcel.2019.02.031] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/27/2018] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
Abstract
The MYC oncoprotein binds to promoter-proximal regions of virtually all transcribed genes and enhances RNA polymerase II (Pol II) function, but its precise mode of action is poorly understood. Using mass spectrometry of both MYC and Pol II complexes, we show here that MYC controls the assembly of Pol II with a small set of transcription elongation factors that includes SPT5, a subunit of the elongation factor DSIF. MYC directly binds SPT5, recruits SPT5 to promoters, and enables the CDK7-dependent transfer of SPT5 onto Pol II. Consistent with known functions of SPT5, MYC is required for fast and processive transcription elongation. Intriguingly, the high levels of MYC that are expressed in tumors sequester SPT5 into non-functional complexes, thereby decreasing the expression of growth-suppressive genes. Altogether, these results argue that MYC controls the productive assembly of processive Pol II elongation complexes and provide insight into how oncogenic levels of MYC permit uncontrolled cellular growth. MYC enhances productive transcription by defining the protein composition of Pol II MYC directly binds SPT5 and hands it over to Pol II in a CDK7-dependent manner Transfer of SPT5 increases speed and processivity of Pol II MYC’s effects on Pol II function shape its tumor-specific gene expression profile
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nevenka Dudvarski Stankovic
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Endres
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Seychelle Monique Vos
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bikash Adhikari
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jessica Denise Schwarz
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Vogt
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Shuang-Yan Wang
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Robert Düster
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Lisa Anna Jung
- Karolinska Institutet, Department of Biosciences and Nutrition, Hälsovägen 7C, 14157 Huddinge, Sweden
| | - Jens Thorsten Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Susanne Walz
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Karolinska Institutet, Department of Biosciences and Nutrition, Hälsovägen 7C, 14157 Huddinge, Sweden
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
39
|
Herold S, Kalb J, Büchel G, Ade CP, Baluapuri A, Xu J, Koster J, Solvie D, Carstensen A, Klotz C, Rodewald S, Schülein-Völk C, Dobbelstein M, Wolf E, Molenaar J, Versteeg R, Walz S, Eilers M. Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA polymerase. Nature 2019; 567:545-549. [PMID: 30894746 DOI: 10.1038/s41586-019-1030-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/18/2019] [Indexed: 01/17/2023]
Abstract
MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.
Collapse
Affiliation(s)
- Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Jacqueline Kalb
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Carsten P Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jiajia Xu
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel Solvie
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Anne Carstensen
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christina Klotz
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sabrina Rodewald
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Molenaar
- Department of Translational Research, Prinses Máxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
40
|
Abstract
MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.
Collapse
|
41
|
Menyhárt O, Giangaspero F, Győrffy B. Molecular markers and potential therapeutic targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas. J Hematol Oncol 2019; 12:29. [PMID: 30876441 PMCID: PMC6420757 DOI: 10.1186/s13045-019-0712-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/26/2019] [Indexed: 12/31/2022] Open
Abstract
Childhood medulloblastomas (MB) are heterogeneous and are divided into four molecular subgroups. The provisional non-wingless-activated (WNT)/non-sonic hedgehog-activated (SHH) category combining group 3 and group 4 represents over two thirds of all MBs, coupled with the highest rates of metastases and least understood pathology. The molecular era expanded our knowledge about molecular aberrations involved in MB tumorigenesis, and here, we review processes leading to non-WNT/non-SHH MB formations. The heterogeneous group 3 and group 4 MBs frequently harbor rare individual genetic alterations, yet the emerging profiles suggest that infrequent events converge on common, potentially targetable signaling pathways. A mutual theme is the altered epigenetic regulation, and in vitro approaches targeting epigenetic machinery are promising. Growing evidence indicates the presence of an intermediate, mixed signature group along group 3 and group 4, and future clarifications are imperative for concordant classification, as misidentifying patient samples has serious implications for therapy and clinical trials. To subdue the high MB mortality, we need to discern mechanisms of disease spread and recurrence. Current preclinical models do not represent the full scale of group 3 and group 4 heterogeneity: all of existing group 3 cell lines are MYC-amplified and most mouse models resemble MYC-activated MBs. Clinical samples provide a wealth of information about the genetic divergence between primary tumors and metastatic clones, but recurrent MBs are rarely resected. Molecularly stratified treatment options are limited, and targeted therapies are still in preclinical development. Attacking these aggressive tumors at multiple frontiers will be needed to improve stagnant survival rates.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, Budapest, H-1094, Hungary.,MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
| | - Felice Giangaspero
- Department of Radiological, Oncological, and Anatomo-Pathological Sciences, University Sapienza of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (Is), Italy
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, Budapest, H-1094, Hungary. .,MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary.
| |
Collapse
|
42
|
Sheng X, Nenseth HZ, Qu S, Kuzu OF, Frahnow T, Simon L, Greene S, Zeng Q, Fazli L, Rennie PS, Mills IG, Danielsen H, Theis F, Patterson JB, Jin Y, Saatcioglu F. IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat Commun 2019; 10:323. [PMID: 30679434 PMCID: PMC6345973 DOI: 10.1038/s41467-018-08152-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
Abstract
Activation of endoplasmic reticulum (ER) stress/the unfolded protein response (UPR) has been linked to cancer, but the molecular mechanisms are poorly understood and there is a paucity of reagents to translate this for cancer therapy. Here, we report that an IRE1α RNase-specific inhibitor, MKC8866, strongly inhibits prostate cancer (PCa) tumor growth as monotherapy in multiple preclinical models in mice and shows synergistic antitumor effects with current PCa drugs. Interestingly, global transcriptomic analysis reveal that IRE1α-XBP1s pathway activity is required for c-MYC signaling, one of the most highly activated oncogenic pathways in PCa. XBP1s is necessary for optimal c-MYC mRNA and protein expression, establishing, for the first time, a direct link between UPR and oncogene activation. In addition, an XBP1-specific gene expression signature is strongly associated with PCa prognosis. Our data establish IRE1α-XBP1s signaling as a central pathway in PCa and indicate that its targeting may offer novel treatment strategies.
Collapse
Affiliation(s)
- Xia Sheng
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | | | - Su Qu
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Omer F Kuzu
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Turid Frahnow
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Faculty of Business Administration and Economics, Chair DataScience, University Bielefeld, 33615, Bielefeld, Germany
| | - Lukas Simon
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Stephanie Greene
- Fosun Orinove, Inc., Unit 211, Building A4, 218 Xinhu Street, 215000, SuZhou, China
| | - Qingping Zeng
- Fosun Orinove, Inc., Unit 211, Building A4, 218 Xinhu Street, 215000, SuZhou, China
| | - Ladan Fazli
- The Vancouver Prostate Centre, Vancouver, BC, V6H3Z6, Canada
| | - Paul S Rennie
- The Vancouver Prostate Centre, Vancouver, BC, V6H3Z6, Canada
| | - Ian G Mills
- Movember/PCUK Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University of Belfast, Belfast, BT7 1NN, UK
| | - Håvard Danielsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0379, Oslo, Norway
- Center for Cancer Biomedicine, University of Oslo, 0316, Oslo, Norway
- Department of Informatics, University of Oslo, 0316, Oslo, Norway
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, OX3 7LF, UK
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - John B Patterson
- Fosun Orinove, Inc., Unit 211, Building A4, 218 Xinhu Street, 215000, SuZhou, China
| | - Yang Jin
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0379, Oslo, Norway.
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0379, Oslo, Norway.
| |
Collapse
|
43
|
The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. J Neurosci 2018; 39:44-62. [PMID: 30425119 DOI: 10.1523/jneurosci.0688-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023] Open
Abstract
Control of neuronal precursor cell proliferation is essential for normal brain development, and deregulation of this fundamental developmental event contributes to brain diseases. Typically, neuronal precursor cell proliferation extends over long periods of time during brain development. However, how neuronal precursor proliferation is regulated in a temporally specific manner remains to be elucidated. Here, we report that conditional KO of the transcriptional regulator SnoN in cerebellar granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cell cycle exit at later stages of cerebellar development in the postnatal male and female mouse brain. In laser capture microdissection followed by RNA-Seq, designed to profile gene expression specifically in the external granule layer of the cerebellum, we find that SnoN promotes the expression of cell proliferation genes and concomitantly represses differentiation genes in granule neuron precursors in vivo Remarkably, bioinformatics analyses reveal that SnoN-regulated genes contain binding sites for the transcription factors N-myc and Pax6, which promote the proliferation and differentiation of granule neuron precursors, respectively. Accordingly, we uncover novel physical interactions of SnoN with N-myc and Pax6 in cells. In behavior analyses, conditional KO of SnoN impairs cerebellar-dependent learning in a delayed eye-blink conditioning paradigm, suggesting that SnoN-regulation of granule neuron precursor proliferation bears functional consequences at the organismal level. Our findings define a novel function and mechanism for the major transcriptional regulator SnoN in the control of granule neuron precursor proliferation in the mammalian brain.SIGNIFICANCE STATEMENT This study reports the discovery that the transcriptional regulator SnoN plays a crucial role in the proliferation of cerebellar granule neuron precursors in the postnatal mouse brain. Conditional KO of SnoN in granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cycle exit specifically at later stages of cerebellar development, with biological consequences of impaired cerebellar-dependent learning. Genomics and bioinformatics analyses reveal that SnoN promotes the expression of cell proliferation genes and concomitantly represses cell differentiation genes in vivo Although SnoN has been implicated in distinct aspects of the development of postmitotic neurons, this study identifies a novel function for SnoN in neuronal precursors in the mammalian brain.
Collapse
|
44
|
Testa U, Castelli G, Pelosi E. Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Med Sci (Basel) 2018; 6:E85. [PMID: 30279357 PMCID: PMC6313628 DOI: 10.3390/medsci6040085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Brain tumors are highly heterogeneous and have been classified by the World Health Organization in various histological and molecular subtypes. Gliomas have been classified as ranging from low-grade astrocytomas and oligodendrogliomas to high-grade astrocytomas or glioblastomas. These tumors are characterized by a peculiar pattern of genetic alterations. Pediatric high-grade gliomas are histologically indistinguishable from adult glioblastomas, but they are considered distinct from adult glioblastomas because they possess a different spectrum of driver mutations (genes encoding histones H3.3 and H3.1). Medulloblastomas, the most frequent pediatric brain tumors, are considered to be of embryonic derivation and are currently subdivided into distinct subgroups depending on histological features and genetic profiling. There is emerging evidence that brain tumors are maintained by a special neural or glial stem cell-like population that self-renews and gives rise to differentiated progeny. In many instances, the prognosis of the majority of brain tumors remains negative and there is hope that the new acquisition of information on the molecular and cellular bases of these tumors will be translated in the development of new, more active treatments.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
45
|
Caforio M, Sorino C, Iacovelli S, Fanciulli M, Locatelli F, Folgiero V. Recent advances in searching c-Myc transcriptional cofactors during tumorigenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:239. [PMID: 30261904 PMCID: PMC6161371 DOI: 10.1186/s13046-018-0912-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 01/28/2023]
Abstract
Background The mechanism by which c-Myc exerts its oncogenic functions is not completely clear and different hypotheses are still under investigation. The knowledge of the capacity of c-Myc to bind exclusively E-box sequences determined the discrepancy between, on the one hand, genomic studies showing the binding of c-Myc to all active promoters and, on the other hand, the evidence that only 60% or less of the binding sites have E-box sequences. Main body In this review, we provide support to the hypothesis that the cooperation of c-Myc with transcriptional cofactors mediates c-Myc-induced cellular functions. We produce evidence that recently identified cofactors are involved in c-Myc control of survival mechanisms of cancer cells. Conclusion The identification of new c-Myc cofactors could favor the development of therapeutic strategies able to compensate the difficulty of targeting c-Myc.
Collapse
Affiliation(s)
- Matteo Caforio
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy
| | - Cristina Sorino
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Stefano Iacovelli
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy.,Department of Pediatric Science, University of Pavia, 27100, Pavia, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy.
| |
Collapse
|
46
|
The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med 2018; 12:412-425. [PMID: 30054853 PMCID: PMC7358075 DOI: 10.1007/s11684-018-0650-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/21/2018] [Indexed: 12/28/2022]
Abstract
Transcription factor networks have evolved in order to control, coordinate, and separate, the functions of distinct network modules spatially and temporally. In this review we focus on the MYC network (also known as the MAX-MLX Network), a highly conserved super-family of related basic-helix-loop-helix-zipper (bHLHZ) proteins that functions to integrate extracellular and intracellular signals and modulate global gene expression. Importantly the MYC network has been shown to be deeply involved in a broad spectrum of human and other animal cancers. Here we summarize molecular and biological properties of the network modules with emphasis on functional interactions among network members. We suggest that these network interactions serve to modulate growth and metabolism at the transcriptional level in order to balance nutrient demand with supply, to maintain growth homeostasis, and to influence cell fate. Moreover, oncogenic activation of MYC and/or loss of a MYC antagonist, results in an imbalance in the activity of the network as a whole, leading to tumor initiation, progression and maintenance.
Collapse
|
47
|
Noguchi K, Dincman TA, Dalton AC, Howley BV, McCall BJ, Mohanty BK, Howe PH. Interleukin-like EMT inducer (ILEI) promotes melanoma invasiveness and is transcriptionally up-regulated by upstream stimulatory factor-1 (USF-1). J Biol Chem 2018; 293:11401-11414. [PMID: 29871931 PMCID: PMC6065179 DOI: 10.1074/jbc.ra118.003616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-like EMT inducer (ILEI, FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell-biological process that confers metastatic properties to a tumor cell. However, very little is known about how ILEI is regulated. Here we demonstrate that ILEI is an in vivo regulator of melanoma invasiveness and is transcriptionally up-regulated by the upstream stimulatory factor-1 (USF-1), an E-box-binding, basic-helix-loop-helix family transcription factor. shRNA-mediated knockdown of ILEI in melanoma cell lines attenuated lung colonization but not primary tumor formation. We also identified the mechanism underlying ILEI transcriptional regulation, which was through a direct interaction of USF-1 with the ILEI promoter. Of note, stimulation of endogenous USF-1 by UV-mediated activation increased ILEI expression, whereas shRNA-mediated USF-1 knockdown decreased ILEI gene transcription. Finally, we report that knocking down USF-1 decreases tumor cell migration. In summary, our work reveals that ILEI contributes to melanoma cell invasiveness in vivo without affecting primary tumor growth and is transcriptionally up-regulated by USF-1.
Collapse
Affiliation(s)
- Ken Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Division of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Buckley J McCall
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Hollings Cancer Center, Charleston, South Carolina 29425.
| |
Collapse
|
48
|
Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB, Shaw R, Zhao W, Zhang X, Ventura A, Liu Y, Ayer DE, Hurlin PJ, Cherniack AD, Eisenman RN, Bernard B, Grandori C. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Syst 2018; 6:282-300.e2. [PMID: 29596783 PMCID: PMC5892207 DOI: 10.1016/j.cels.2018.03.003] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic features associated with MYC and the PMN across the 33 cancers of The Cancer Genome Atlas. Pan-cancer, 28% of all samples had at least one of the MYC paralogs amplified. In contrast, the MYC antagonists MGA and MNT were the most frequently mutated or deleted members, proposing a role as tumor suppressors. MYC alterations were mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations, suggesting that MYC is a distinct oncogenic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such as immune response and growth factor signaling; chromatin, translation, and DNA replication/repair were conserved pan-cancer. This analysis reveals insights into MYC biology and is a reference for biomarkers and therapeutics for cancers with alterations of MYC or the PMN.
Collapse
Affiliation(s)
- Franz X Schaub
- Cure First, Seattle, WA, USA; SEngine Precision Medicine, Seattle, WA, USA
| | | | - Ashton C Berger
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | | | - Reid Shaw
- SEngine Precision Medicine, Seattle, WA, USA
| | - Wei Zhao
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoyang Zhang
- Dana-Farber Cancer Institute, the Broad Institute of Harvard and MIT, and Harvard Medical School, Boston, MA, USA
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuexin Liu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Peter J Hurlin
- Shriners Hospitals for Children Research Center, Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Andrew D Cherniack
- Dana-Farber Cancer Institute, the Broad Institute of Harvard and MIT, and Harvard Medical School, Boston, MA, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brady Bernard
- Institute for Systems Biology, Seattle, WA, USA; Providence Health and Services, Portland, OR, USA.
| | - Carla Grandori
- Cure First, Seattle, WA, USA; SEngine Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
49
|
Yang Y, Xue K, Li Z, Zheng W, Dong W, Song J, Sun S, Ma T, Li W. c-Myc regulates the CDK1/cyclin B1 dependent‑G2/M cell cycle progression by histone H4 acetylation in Raji cells. Int J Mol Med 2018; 41:3366-3378. [PMID: 29512702 PMCID: PMC5881754 DOI: 10.3892/ijmm.2018.3519] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 02/08/2018] [Indexed: 01/11/2023] Open
Abstract
Overexpression of c-Myc is involved in the tumorigenesis of B-lineage acute lymphoblastic leukemia (B‑ALL), but the mechanism is not well understood. In the present study, a c‑Myc‑knockdown model (Raji‑KD) was established using Raji cells, and it was indicated that c‑Myc regulates the expression of genes associated with cell cycle progression in G2/M‑phase, cyclin D kinase (CDK)1 and cyclin B1, by modulating 60 kDa Tat‑interactive protein (TIP60)/males absent on the first (MOF)‑mediated histone H4 acetylation (AcH4), which was then completely restored by re‑introduction of the c‑Myc gene into the Raji‑KD cells. The expression of CDK1 and cyclin B1 was markedly suppressed in Raji‑KD cells, resulting in G2/M arrest. In comparison to Raji cells, the proliferation of Raji‑KD cells was significantly reduced, and it was recovered via re‑introduction of the c‑Myc gene. In the tumorigenesis assays, the loss of c‑Myc expression significantly suppressed Raji cell‑derived lymphoblastic tumor formation. Although c‑Myc also promotes Raji cell apoptosis via the caspase‑3‑associated pathway, CDK1/cyclin B1‑dependent‑G2/M cell cycle progression remains the major driving force of c‑Myc‑controlled tumorigenesis. The present results suggested that c‑Myc regulates cyclin B1‑ and CDK1‑dependent G2/M cell cycle progression by TIP60/MOF-mediated AcH4 in Raji cells.
Collapse
Affiliation(s)
- Yan Yang
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Kai Xue
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhi Li
- Department of Clinical Laboratory, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Wei Zheng
- Department of Clinical Laboratory, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Weijie Dong
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jiazhe Song
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shijie Sun
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Tonghui Ma
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Wenzhe Li
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
50
|
Abstract
Recent genome-wide studies of malignancies of the central nervous system (CNS) have revolutionized our understanding of the biology of these tumors. This newly gained knowledge provides a wealth of opportunity for biomarker driven clinical research. To date, however, only few of the available molecular markers truly influence clinical decision-making and treatment. The most widely validated markers in neuro-oncology presently are: 1) MGMT promoter methylation as a prognostic and predictive marker in glioblastoma, 2) co-deletion of 1p and 19q differentiating oligodendrogliomas from astrocytomas, 3) IDH1/2 mutations, and 4) select pathway-associated mutations. This article focuses on currently impactful biomarkers in adult and pediatric brain cancers and it provides a perspective on the direction of research in this field.
Collapse
|