1
|
Gupta A, Gazzo A, Selenica P, Safonov A, Pareja F, da Silva EM, Brown DN, Shao H, Zhu Y, Patel J, Blanco-Heredia J, Stefanovska B, Carpenter MA, Chen Y, Vegas I, Pei X, Frosina D, Jungbluth AA, Ladanyi M, Curigliano G, Weigelt B, Riaz N, Powell SN, Razavi P, Harris RS, Reis-Filho JS, Marra A, Chandarlapaty S. APOBEC3 mutagenesis drives therapy resistance in breast cancer. Nat Genet 2025:10.1038/s41588-025-02187-1. [PMID: 40379787 DOI: 10.1038/s41588-025-02187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/01/2025] [Indexed: 05/19/2025]
Abstract
Acquired genetic alterations drive resistance to endocrine and targeted therapies in metastatic breast cancer; however, the underlying processes engendering these alterations are largely uncharacterized. To identify the underlying mutational processes, we utilized a clinically annotated cohort of 3,880 patient samples with tumor-normal sequencing. Mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) enzymes were prevalent and enriched in post-treatment hormone receptor-positive cancers. These signatures correlated with shorter progression-free survival on antiestrogen plus CDK4/6 inhibitor therapy in hormone receptor-positive metastatic breast cancer. Whole-genome sequencing of breast cancer models and paired primary-metastatic samples demonstrated that active APOBEC3 mutagenesis promoted therapy resistance through characteristic alterations such as RB1 loss. Evidence of APOBEC3 activity in pretreatment samples illustrated its pervasive role in breast cancer evolution. These studies reveal APOBEC3 mutagenesis to be a frequent mediator of therapy resistance in breast cancer and highlight its potential as a biomarker and target for overcoming resistance.
Collapse
Affiliation(s)
- Avantika Gupta
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anton Safonov
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David N Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Shao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juber Patel
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Blanco-Heredia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bojana Stefanovska
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yanjun Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Isabella Vegas
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin Pei
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Denise Frosina
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Achim A Jungbluth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giuseppe Curigliano
- Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCSS, Milan, Italy
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill-Cornell Medical College, New York, NY, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCSS, Milan, Italy.
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill-Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Guo Z, Dong RW, Wu Y, Dong S, Alahari SK. Cyclin-dependent kinase 4 and 6 inhibitors in breast cancer treatment. Oncogene 2025; 44:1135-1152. [PMID: 40200094 DOI: 10.1038/s41388-025-03378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Breast cancer is the second largest cancer in the world, and it has highest mortality rate in women worldwide. The aberrant activation of the cyclin-dependent kinase 4 and 6 (CDK4/6) pathway plays an important role in uncontrolled breast cancer cell proliferation. Therefore, targeting CDK4/6 to improve overall survival rates has been a strong interest in breast cancer therapeutics. Till date, four CDK4/6 inhibitors have been developed and approved for hormone receptor-positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer therapies with great success. However, acquired resistance to CDK4/6 inhibitors has emerged and limits their effectiveness in breast cancer. In this review, we systematically discussed the mechanisms of resistance to CDK4/6 inhibitors including the cell cycle-specific and cell cycle-nonspecific mechanisms. Also, we analyzed combination strategies with other signaling inhibitors in clinical and preclinical settings that further expand the clinical application of CDK4/6 inhibitors in future breast cancer therapies.
Collapse
Affiliation(s)
- Zhengfei Guo
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China
| | - Richard W Dong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yusheng Wu
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China
| | - Shengli Dong
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Ferrari P, Schiavone ML, Scatena C, Nicolini A. Molecular Mechanisms and Therapeutic Strategies to Overcome Resistance to Endocrine Therapy and CDK4/6 Inhibitors in Advanced ER+/HER2- Breast Cancer. Int J Mol Sci 2025; 26:3438. [PMID: 40244377 PMCID: PMC11989623 DOI: 10.3390/ijms26073438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Approximately 70-80% of breast cancers are estrogen receptor-positive (ER+), with 65% of these cases also being progesterone receptor-positive (ER+PR+). In most cases of ER+ advanced breast cancer, endocrine therapy (ET) serves as the first-line treatment, utilizing various drugs that inhibit ER signaling. These include tamoxifen, a selective estrogen receptor modulator (SERM); fulvestrant, a selective estrogen receptor degrader (SERD); and aromatase inhibitors (AIs), which block estrogen synthesis. However, intrinsic or acquired hormone resistance eventually develops, leading to disease progression. The combination of ET with cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6is) has been shown to significantly increase progression-free survival (PFS) and, in some cases, overall survival (OS). CDK4/6is works by arresting the cell cycle in the G1 phase, preventing DNA synthesis, and enhancing the efficacy of ET. This review highlights the key mechanisms of resistance to ET, whether used alone or in combination with biological agents, as well as emerging therapeutic strategies aimed at overcoming resistance. Addressing ET resistance remains a work in progress, and in the near future, better patient selection for different therapeutic approaches is expected through the identification of more precise biological and genetic markers. In particular, liquid biopsy may provide a real-time portrait of the disease, offering insights into mechanisms driving ET resistance and cancer progression.
Collapse
Affiliation(s)
- Paola Ferrari
- Department of Oncology, Pisa University Hospital, Via Roma 57, 56126 Pisa, Italy; (C.S.); (A.N.)
| | - Maria Luisa Schiavone
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Cristian Scatena
- Department of Oncology, Pisa University Hospital, Via Roma 57, 56126 Pisa, Italy; (C.S.); (A.N.)
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Andrea Nicolini
- Department of Oncology, Pisa University Hospital, Via Roma 57, 56126 Pisa, Italy; (C.S.); (A.N.)
| |
Collapse
|
4
|
González-Conde M, Yáñez C, Abuín C, Keup C, Lago-Lestón R, Aybar M, Pedrouzo L, Palacios P, Curiel T, Cueva J, Rodríguez C, Carmona M, Cortegoso A, García-Caballero T, Muinelo-Romay L, Kasimir-Bauer S, López-López R, Costa C. Gene expression analysis in circulating tumour cells to determine resistance to CDK4/6 inhibitors plus endocrine therapy in HR + /HER2- metastatic breast cancer patients. J Transl Med 2025; 23:400. [PMID: 40186268 PMCID: PMC11971781 DOI: 10.1186/s12967-025-06374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/08/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Metastatic breast cancer (BC) is the main cause of cancer-related mortality in women worldwide. HR + /HER2- BC patients are treated with endocrine therapy (ET), but therapeutic resistance is common. The combination of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) with ET was approved for metastatic BC patients and extended the median progression-free survival to 24 months. This therapy is not always effective, and in every patient, resistance ultimately occurs, but the underlying resistance mechanisms remain unclear. To address this gap, we explored circulating tumour cells (CTCs) as biomarkers to assess treatment response and resistance in metastatic HR + /HER2- BC patients receiving CDK4/6i plus ET. METHODS In total, 53 HR + /HER2- metastatic BC patients who received a CDK4/6i plus ET as first-line treatment were analysed, including samples from internal and external validation cohorts. CTCs were isolated using the negative enrichment approach RosetteSep (STEMCELL Technologies) or positive immunomagnetic selection targeting EpCAM, EGFR, and HER2 (AdnaTest EMT-2/StemCell Select™, QIAGEN). RNA was extracted from CTCs and PBMCs for nCounter analysis (Pancancer pathways panel) in a discovery phase. Subsequent validation was performed by RT-qPCR. RESULTS CTC gene expression analysis revealed that non responder patients (those who experienced disease progression before 180 days) exhibited elevated PRKCB (p-value: 0.011), MAPK3 (p-value: 0.006) and STAT3 (p-value: 0.008) expression, while responders showed increased CDK6 (p-value: 0.011) and CCND1 (p-value: 0.035) expression at baseline. CTC transcriptional characterization revealed a gene expression signature (STAT3highPRKCBhighCDK6low) that accurately classified HR + /HER2- metastatic BC patients who responded to CDK4/6i plus ET, regardless of the CTC isolation method (AUC > 0.8). CTC characterization at progression also identified biomarkers linked to therapy resistance, including the epigenetic regulators EZH2 and HDAC6 and the cell cycle regulator CDC7, which could guide the selection of subsequent therapy lines. The expression of the CDK4 and STAT3 genes in CTCs was associated with progression-free survival and overall survival, respectively. Likewise, the presence of ≥ one CTC after one cycle of therapy predicts a worse prognosis. CONCLUSIONS CTC gene expression provides information about treatment outcomes in HR + /HER2- metastatic BC patients receiving CDK4/6i plus ET and could guide personalized strategies and improve prognosis.
Collapse
MESH Headings
- Humans
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Neoplastic Cells, Circulating/drug effects
- Breast Neoplasms/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/blood
- Female
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/metabolism
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 4/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Receptor, ErbB-2/metabolism
- Neoplasm Metastasis
- Middle Aged
- Gene Expression Regulation, Neoplastic/drug effects
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Aged
- Gene Expression Profiling
- Adult
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Antineoplastic Agents, Hormonal/therapeutic use
Collapse
Affiliation(s)
- Miriam González-Conde
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Celso Yáñez
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Carmen Abuín
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Corinna Keup
- Department of Gynaecology and Obstetrics, University Hospital Essen, 45147, Essen, Germany
| | - Ramón Lago-Lestón
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Oncomet, Santiago de Compostela, Spain
| | - Maribel Aybar
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Lucía Pedrouzo
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Patricia Palacios
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Teresa Curiel
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Juan Cueva
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Carmela Rodríguez
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Marta Carmona
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Alexandra Cortegoso
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela. Health Research Institute of Santiago, Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain
- Liquid Biopsy Analysis Unit, Oncomet, Santiago de Compostela, Spain
| | - Sabine Kasimir-Bauer
- Department of Gynaecology and Obstetrics, University Hospital Essen, 45147, Essen, Germany
| | - Rafael López-López
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.
| | - Clotilde Costa
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.
| |
Collapse
|
5
|
Van Alsten SC, Love MI, Calhoun BC, Butler EN, Perou CM, Hoadley KA, Troester MA. Genomic Analysis Reveals Racial and Age-Related Differences in the Somatic Landscape of Breast Cancer and the Association with Socioeconomic Factors. Cancer Res 2025; 85:1327-1340. [PMID: 39879109 PMCID: PMC12034101 DOI: 10.1158/0008-5472.can-24-1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/27/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Cancer genomics consortia have identified somatic drivers of breast cancer subtypes. However, these studies have predominantly included older, non-Black women, and the related socioeconomic status (SES) data are limited. Increased representation and depth of social data are crucial for understanding how health inequity is intertwined with somatic landscapes. Here, we conducted targeted sequencing on primary tumors from the Carolina Breast Cancer Study (N = 357; 52% Black; 47% <50) and compared the results with The Cancer Genome Atlas (N = 948; 18% Black; 27% <50). Race (Black vs. non-Black), age, and SES were evaluated in association with mutations, copy number alterations, and aneuploidy using generalized linear models. Pathway dysfunction was also assessed by aggregating mutation and copy number alterations. Adjusting for age, Black participants (N = 350) were significantly more likely to have TP53 and FAT1 mutations and less likely to have PIK3CA, CDH1, DDR2, and GATA3 mutations than non-Black participants. Younger participants had more GATA3 alterations and fewer KMT2C, PTEN, MAP3K1, and CDH1 alterations. Black participants had significant enrichment for MYC (8q) and PIK3CA (3q26) amplifications and higher total aneuploidy, but age was not associated with copy number variation. SES was associated with different patterns of alteration in Black versus non-Black women. Overall, Black participants showed modest differences in TP53, PIK3CA, and other alterations that further varied by SES. Race is a social construct, and varying distributions of etiologic factors across social strata may predispose Black, young, and low SES women to cancer subtypes characterized by these alterations. Significance: The collection and analysis of DNA sequencing with comprehensive socioeconomic factor associations in a large Black breast cancer patient cohort could help uncover mechanisms by which social conditions contribute to tumor biology.
Collapse
Affiliation(s)
- Sarah C. Van Alsten
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael I. Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benjamin C. Calhoun
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Eboneé N. Butler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Katherine A. Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Melissa A. Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Kamdee K, Roothumnong E, Thongnoppakhun W, Korphaisarn K, Nakthong P, Dungort P, Meesamarnpong C, Wiboontanasarn S, Tansa-Nga W, Punuch K, Pongsuktavorn K, Tititumjariya W, Lertbussarakam C, Wattanarangsan J, Sritun J, Ridchuayrod N, Pithukpakorn M, Suktitipat B. Comprehensive germline and somatic profiling of high-risk Thai breast cancer via next-generation sequencing. Sci Rep 2025; 15:11427. [PMID: 40181060 PMCID: PMC11968900 DOI: 10.1038/s41598-025-95834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
Breast cancer genomic landscapes differ across ethnic groups, yet the somatic profile of Thai breast tumours has remained uncharacterised. This study analysed 1676 high-hereditary-risk Thai breast cancer patients, identified according to National Comprehensive Cancer Network (NCCN) guideline. Germline alterations were assessed in 1370 cases using a custom 36-core cancer panel. Somatic mutations were characterised in formalin-fixed, paraffin-embedded tumour tissues from 180 of the 1676 patients using the 501-gene Oncomine Comprehensive Assay Plus panel. Pathogenic or likely pathogenic (P/LP) variants were detected in 13% of the 1370 germline analyses, with BRCA1 and BRCA2 being the most frequently altered genes. The prevalence of P/LP variants in BRCA1, BRCA2, and PALB2 differed from that observed in other ethnic cohorts. In somatic profiling, TP53 emerged as the most frequently mutated gene, especially in HER2 and TNBC tumours, whereas MAP3K1 and GATA3 were the most frequently mutated genes in the HR+/HER2- tumours. Moreover, hormone-receptor-positive (HR+) tumours showed distinct mutation patterns compared with other ethnicities. Notably, germline carriers exhibited lower PIK3CA mutation rates than non-carriers. These findings advance our understanding of Thai breast cancer genomics and underscore the importance of ethnic diversity in cancer research, offering insights into tailored screening and therapeutic approaches.
Collapse
Affiliation(s)
- Kornyok Kamdee
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Ekkapong Roothumnong
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanna Thongnoppakhun
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Krittiya Korphaisarn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panee Nakthong
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peerawat Dungort
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutima Meesamarnpong
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supakit Wiboontanasarn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Warisara Tansa-Nga
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kittiporn Punuch
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Khontawan Pongsuktavorn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Warunya Tititumjariya
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Jantanee Wattanarangsan
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jiraporn Sritun
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Numpueng Ridchuayrod
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
7
|
Marcho LM, Coss CC, Xu M, Datta J, Manouchehri JM, Cherian MA. Potent estrogen receptor β agonists with inhibitory activity in vitro, fail to suppress xenografts of endocrine-resistant cyclin-dependent kinase 4/6 inhibitor-resistant breast cancer cells. Front Oncol 2025; 15:1441896. [PMID: 40206590 PMCID: PMC11979155 DOI: 10.3389/fonc.2025.1441896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Objective Seventy percent of newly diagnosed breast cancers are estrogen receptor-α positive and HER2/neu negative. First-line treatments incorporate endocrine therapy and cyclin-dependent kinase 4/6 inhibitors. However, therapy resistance occurs in most patients. Hence, there is an urgent need for effective second-line treatments. We previously showed that the potent estrogen receptor-β agonists, OSU-ERβ-12 and LY500307, synergized with the selective estrogen receptor modulator, tamoxifen, in vitro. Furthermore, we showed that these compounds inhibited endocrine-resistant and cyclin-dependent kinase 4/6-inhibitor-resistant estrogen receptor α-positive cell lines in vitro. Here, we used fulvestrant- and abemaciclib-resistant T47D-derived cell line xenografts to determine the efficacy of the combination of OSU-ERβ-12 and LY500307 with tamoxifen in vivo. Results Despite efficacy in vitro, treatments failed to reduce xenograft tumor volumes. Hence, we conclude that this treatment strategy lacks direct cancer cell-intrinsic cytotoxic efficacy in vivo.
Collapse
Affiliation(s)
- Lynn M. Marcho
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH, United States
- Drug Development Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Menglin Xu
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Jharna Datta
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Jasmine M. Manouchehri
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Mathew A. Cherian
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
8
|
Palmer CL, Boras B, Pascual B, Li N, Li D, Garza S, Huser N, Yuan JT, Cianfrogna JA, Sung T, McMillan E, Wei N, Carmody J, Kang AN, Darensburg S, Dodd T, Oakley JV, Solowiej J, Nguyen L, Orr STM, Chen P, Johnson E, Yu X, Diehl WC, Gallego GM, Jalaie M, Ferre RA, Cho-Schultz S, Shen H, Deal JG, Zhang Q, Baffi TR, Xu M, Roh W, Lapira-Miller J, Goudeau J, Yu Y, Gupta R, Kim K, Dann SG, Kan Z, Kath JC, Nair SK, Miller N, Murray BW, Nager AR, Quinlan C, Petroski MD, Zhang C, Sacaan A, VanArsdale T, Anders L. CDK4 selective inhibition improves preclinical anti-tumor efficacy and safety. Cancer Cell 2025; 43:464-481.e14. [PMID: 40068598 DOI: 10.1016/j.ccell.2025.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 02/06/2025] [Indexed: 05/13/2025]
Abstract
CDK4/6 inhibitors have revolutionized treatment of hormone receptor positive (HR+), HER2 non-amplified (HER2-) breast cancer. Yet, all "dual" CDK4/6 inhibitors show common dose-limiting hematologic toxicities, foremost neutropenia. This poses challenges to provide these agents at concentrations necessary to extinguish cell cycling in tumors. HR+ breast cancer cells are highly dependent on CDK4 but not CDK6. By contrast, CDK4 is dispensable for human bone marrow derived cells, due to the primary and compensatory role of CDK6 in hematopoiesis. This prompted us to develop atirmociclib (PF-07220060), a next-generation CDK4 selective inhibitor. Atirmociclib's impact on circulating neutrophils was reduced, in proportion with its increase in CDK4 versus CDK6 selectivity. Realized dose intensification led to greater CDK4 inhibition and deeper anti-tumor responses, pointing to CDK4 target coverage as a limiting factor of CDK4/6 inhibitor efficacy. We also highlight combinatorial agents that may counter acquired resistance to CDK4 selective inhibition and widen its clinical application.
Collapse
Affiliation(s)
- Cynthia L Palmer
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Britton Boras
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Bernadette Pascual
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Na Li
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Danan Li
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Scott Garza
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nanni Huser
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jing Tang Yuan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Julie A Cianfrogna
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Tae Sung
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Elizabeth McMillan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Na Wei
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jason Carmody
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Aubrey Nayeon Kang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Seth Darensburg
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Taran Dodd
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - James V Oakley
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - James Solowiej
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Lisa Nguyen
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Suvi T M Orr
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Ping Chen
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Eric Johnson
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Xiu Yu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Wade C Diehl
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Gary M Gallego
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Mehran Jalaie
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Rose Ann Ferre
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Sujin Cho-Schultz
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Hong Shen
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Judith G Deal
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Qin Zhang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Timothy R Baffi
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Meirong Xu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Whijae Roh
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jennifer Lapira-Miller
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Jerome Goudeau
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Yanke Yu
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Rajat Gupta
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Kimberly Kim
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Stephen G Dann
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Zhengyan Kan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - John C Kath
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Sajiv K Nair
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nichol Miller
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Brion W Murray
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Andrew R Nager
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Casey Quinlan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Matthew D Petroski
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Cathy Zhang
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Aida Sacaan
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Todd VanArsdale
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Lars Anders
- Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
9
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
10
|
Wang Y, Safi M, Hirsch FR, Lu S, Peters S, Govindan R, Rosell R, Park K, Zhang JJ. Immunotherapy for advanced-stage squamous cell lung cancer: the state of the art and outstanding questions. Nat Rev Clin Oncol 2025; 22:200-214. [PMID: 39762577 DOI: 10.1038/s41571-024-00979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 02/26/2025]
Abstract
Immune-checkpoint inhibitors (ICIs) have transformed the treatment paradigm for advanced-stage squamous non-small-cell lung cancer (LUSC), a histological subtype associated with inferior outcomes compared with lung adenocarcinoma. However, only a subset of patients derive durable clinical benefit. In the first-line setting, multiple ICI regimens are available, including anti-PD-(L)1 antibodies as monotherapy, in combination with chemotherapy, or with an anti-CTLA4 antibody with or without chemotherapy. Several important questions persist regarding the optimal regimen for individual patients, particularly how to identify patients who might benefit from adding chemotherapy and/or anti-CTLA4 antibodies to anti-PD-(L)1 antibodies. An urgent need exists for predictive biomarkers beyond PD-L1 to better guide precision oncology approaches. Deeper knowledge of the underlying molecular biology of LUSC and its implications for response to ICIs will be important in this regard. Integration of this knowledge into multi-omics methods coupled with artificial intelligence might enable the development of more robust biomarkers. Finally, several novel therapeutic strategies, including novel ICIs, bispecific antibodies and personalized cancer vaccines, are emerging. Addressing these unresolved questions through innovative clinical trials and translational research will be crucial to further improving the outcomes of patients with LUSC. In this Review, we provide a comprehensive overview of current immunotherapeutic approaches, unresolved challenges and emerging strategies for patients with LUSC.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology, Tisch Cancer Institute and Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Solange Peters
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Rafael Rosell
- Dr. Rosell Oncology Institute, Dexeus University Hospital, Barcelona, Spain
| | - Keunchil Park
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
- Division of Hematology/Oncology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Jianjun J Zhang
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Wang T, Li J, Du J, Zhou W, Lu G. Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review). Oncol Lett 2025; 29:110. [PMID: 39776648 PMCID: PMC11704873 DOI: 10.3892/ol.2024.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The FAT atypical cadherin 1 (FAT1) gene is the ortholog of the Drosophila fat gene and encodes the protocadherin FAT1. FAT1 belongs to the cadherin superfamily, a group of full-length membrane proteins that contain cadherin-like repeats. In various types of human cancer, FAT1 is one of the most commonly mutated genes, and is considered to be an emerging cancer biomarker and a potential target for novel therapies. However, the biological functions of FAT1 and the precise downstream signaling pathways that it mediates have remained to be fully elucidated. The present review discussed the current literature on FAT1, focusing on FAT1 mutations and expression levels, and their impact on signaling pathways and mechanisms in various types of cancer, including both solid tumors and hematological malignancies, such as esophageal squamous cell carcinoma, head and neck squamous cell carcinoma, lung squamous cell carcinoma, hepatocellular carcinoma, glioma, breast cancer, acute lymphoblastic leukemia, acute myeloid leukemia, lymphoma and myeloma. The present review aimed to provide further insights and research directions for future studies on FAT1 as an oncogenic factor or tumor suppressor.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Junting Li
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Wei Zhou
- Department of Ultrasonic Examination, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Guang Lu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
12
|
Tolosa P, Pascual T, Martínez-Saez O, Hernando C, Servitja S, Fernández Abad M, Brasó-Maristany F, Sanfeliu E, Benitez Fuentes JD, Lema L, Ruano Y, García-Fructuoso I, Parrilla L, Rodríguez A, Roncero AM, Cobos MÁ, Sánchez-Bayona R, Alva M, Madariaga A, Villacampa G, Canes J, Salvador F, Sánchez-Belmonte A, Malumbres M, Prat A, Ciruelos E. Efficacy outcomes of CDK4/6 inhibitors in combination with endocrine therapy treatment in hormone receptor-positive/HER2-negative advanced breast cancer according to PAM50 intrinsic subtype: Primary results of SOLTI-1801 CDK-PREDICT study. Eur J Cancer 2025; 217:115219. [PMID: 39779447 DOI: 10.1016/j.ejca.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION The prognostic value of PAM50 intrinsic subtypes (IS), cell cycle, and immune-related gene expression in HR+ /HER2- advanced breast cancer (BC) treated with CDK4/6 inhibitors (CDK4/6i) and endocrine therapy (ET) in a first-line metastatic setting is unclear. This study evaluates these biomarkers in metastatic biopsies from patients diagnosed with HR+ /HER2- advanced BC. METHODS CDK-PREDICT study is a multicentric, ambispective observational cohort study conducted in six Spanish hospitals. It included patients diagnosed with HR+ /HER2- advanced BC treated in the first-line setting with CDK4/6i and ET. Baseline biopsies were obtained prior to treatment to determine research-based PAM50 IS, cell cycle and immune-related gene expression. The primary objective was to evaluate progression-free survival (PFS) differences among PAM50 IS using uni- and multivariable Cox regression models. Secondary objectives included overall survival (OS), overall response rate (ORR), and correlating cell cycle and immune response gene expression with PFS. RESULTS A total of 185 patients were included, with a median follow-up of 38.5 months. PAM50 luminal subtypes were predominant (82.7 %). Non-luminal subtypes showed significantly shorter median PFS (10.2 vs. 25.7 months; HR, 2.50; p < 0.001) and OS (32.3 vs. 58.1 months; HR, 2.54; p < 0.001) than luminal subtypes. Higher cell cycle and immune-related genes expression, such as CCNE1 and PDCD1, as well as tumor infiltrating lymphocytes were associated with poorer outcomes. CONCLUSIONS This study confirms the independent prognostic value of PAM50 IS in HR+ /HER2- advanced BC treated with CDK4/6i and ET. Non-luminal subtypes exhibited the worst prognosis, underscoring the need for novel therapeutic strategies in this population.
Collapse
Affiliation(s)
- Pablo Tolosa
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain; SOLTI Cancer Research Group, Barcelona, Spain.
| | - Tomás Pascual
- SOLTI Cancer Research Group, Barcelona, Spain; Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Medicine Department, University of Barcelona, Barcelona, Spain
| | - Olga Martínez-Saez
- Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | | | | | - Fara Brasó-Maristany
- Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ester Sanfeliu
- Department of Pathology, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, Barcelona, Spain
| | | | - Laura Lema
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Yolanda Ruano
- Department of Pathology, Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Isabel García-Fructuoso
- Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Lucía Parrilla
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Adela Rodríguez
- Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ana María Roncero
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - María Ángeles Cobos
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Rodrigo Sánchez-Bayona
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain; SOLTI Cancer Research Group, Barcelona, Spain
| | - Manuel Alva
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Ainhoa Madariaga
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | | | - Jordi Canes
- SOLTI Cancer Research Group, Barcelona, Spain
| | | | | | - Marcos Malumbres
- Vall d ́Hebron Institute of Oncology (VHIO), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Aleix Prat
- SOLTI Cancer Research Group, Barcelona, Spain; Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Medicine Department, University of Barcelona, Barcelona, Spain
| | - Eva Ciruelos
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain; SOLTI Cancer Research Group, Barcelona, Spain.
| |
Collapse
|
13
|
Zhao P, Zhang Y, Yu Y, Zhang Q, Liu X, Zhang XD, Chen S, de Bock CE, Thorne RF, Shi Y. FAT1 functions as an oncogenic driver in triple negative breast cancer through AKT pathway-driven effects on the matrisome. Int J Biol Sci 2025; 21:2201-2222. [PMID: 40083689 PMCID: PMC11900804 DOI: 10.7150/ijbs.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/17/2025] [Indexed: 03/16/2025] Open
Abstract
FAT1 cadherin exhibits dual tumor suppressor and oncogenic roles across various cancers, but its function in breast cancer remains unclear due to conflicting reports of mutational loss and overexpression. In this study, we demonstrate that FAT1 mRNA and protein levels are reduced during mammary transformation, an effect linked to promoter methylation rather than mutational events. Subtype-specific analysis reveals that high FAT1 expression correlates with poor outcomes in basal-like/triple-negative breast cancer (TNBC), while elevated FAT1 expression in luminal A/estrogen receptor-positive breast cancers is associated with improved patient prognosis. Functional studies in TNBC models using knockdown and overexpression approaches confirm that FAT1 promotes both cell proliferation and motility. High-throughput sequencing and biochemical assessments establish strong links between FAT1 phenotypes and the activation of PI3K-AKT signaling. Additionally, FAT1 manipulation induces significant changes in matrisome-related genes, extracellular matrix components, and integrin switching. Together, these findings define an oncogenic role for FAT1 in TNBC, providing mechanistic insights into how its regulation influences AKT signaling, cell proliferation, and motility.
Collapse
Affiliation(s)
- Panpan Zhao
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Yuanyuan Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Yang Yu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, 450003, China
| | - Qing Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Xiaoying Liu
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Charles E. de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Yujie Shi
- Department of Pathology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
14
|
Paul S, Hagenbeek TJ, Tremblay J, Kameswaran V, Ong C, Liu C, Guarnaccia AD, Mondo JA, Hsu PL, Kljavin NM, Czech B, Smola J, Nguyen DAH, Lacap JA, Pham TH, Liang Y, Blake RA, Gerosa L, Grimmer M, Xie S, Daniel B, Yao X, Dey A. Cooperation between the Hippo and MAPK pathway activation drives acquired resistance to TEAD inhibition. Nat Commun 2025; 16:1743. [PMID: 39966375 PMCID: PMC11836325 DOI: 10.1038/s41467-025-56634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
TEAD (transcriptional enhanced associate domain) transcription factors (TEAD1-4) serve as the primary effectors of the Hippo signaling pathway in various cancers. Targeted therapy leads to the emergence of resistance and the underlying mechanism of resistance to TEAD inhibition in cancers is less characterized. We uncover that upregulation of the AP-1 (activator protein-1) transcription factors, along with restored YAP (yes-associated protein) and TEAD activity, drives resistance to GNE-7883, a pan-TEAD inhibitor. Acute GNE-7883 treatment abrogates YAP-TEAD binding and attenuates FOSL1 (FOS like 1) activity. TEAD inhibitor resistant cells restore YAP and TEAD chromatin occupancy, acquire additional FOSL1 binding and exhibit increased MAPK (mitogen-activated protein kinase) pathway activity. FOSL1 is required for the chromatin binding of YAP and TEAD. This study describes a clinically relevant interplay between the Hippo and MAPK pathway and highlights the key role of MAPK pathway inhibitors in mitigating resistance to TEAD inhibition in Hippo pathway dependent cancers.
Collapse
Affiliation(s)
- Sayantanee Paul
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Thijs J Hagenbeek
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Julien Tremblay
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Vasumathi Kameswaran
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Christy Ong
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Chad Liu
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Alissa D Guarnaccia
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - James A Mondo
- Roche Informatics, Hoffman-La Roche Canada, Mississauga, ON, Canada
| | - Peter L Hsu
- Department of Structural Biology, Genentech Inc, South San Francisco, CA, USA
| | - Noelyn M Kljavin
- Department of Research Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Bartosz Czech
- Roche Global IT Solution Centre, Roche, Warsaw, Poland
| | - Janina Smola
- Roche Global IT Solution Centre, Roche, Warsaw, Poland
| | - Dieu An H Nguyen
- Department of Early Discovery Biochemistry, Genentech Inc, South San Francisco, CA, USA
| | - Jennifer A Lacap
- Department of Translational Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Trang H Pham
- Department of Translational Medicine, Genentech Inc, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Robert A Blake
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, CA, USA
| | - Luca Gerosa
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Matthew Grimmer
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Shiqi Xie
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Bence Daniel
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Xiaosai Yao
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA.
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA.
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA.
| |
Collapse
|
15
|
Luo L, Yang P, Mastoraki S, Rao X, Wang Y, Kettner NM, Raghavendra AS, Tripathy D, Damodaran S, Hunt KK, Wang J, Li Z, Keyomarsi K. Single-cell RNA sequencing identifies molecular biomarkers predicting late progression to CDK4/6 inhibition in patients with HR+/HER2- metastatic breast cancer. Mol Cancer 2025; 24:48. [PMID: 39955556 PMCID: PMC11829392 DOI: 10.1186/s12943-025-02226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) in combination with endocrine therapy are the standard treatment for patients with hormone receptor-positive, HER2-negative metastatic breast cancer (mBC). Despite the efficacy of CDK4/6is, intrinsic resistance occurs in approximately one-third of patients, highlighting the need for reliable predictive biomarkers. METHODS Single-cell RNA sequencing analyzed metastatic tumors from HR+/HER2- mBC patients pre-CDK4/6i treatment at baseline (BL) and/or at disease progression. BL samples were from CDK4/6i responders (median progression-free survival [mPFS] = 25.5 months), while progressors were categorized as early-progressors (EP, mPFS = 3 months) and late-progressors (LP, mPFS = 11 months). Metastatic sites included liver, pleural effusions, ascites, and bone. InferCNV distinguished tumor cells, and functional analysis utilized the Molecular Signatures Database. RESULTS LP tumors displayed enhanced Myc, EMT, TNF-α, and inflammatory pathways compared to those EP tumors. Samples from BL and LP responders showed increased tumor-infiltrating CD8+ T cells and natural killer (NK) cells compared to EP non-responders. Notably, despite a high frequency of CD8+ T cells in responding tumors, a functional analysis revealed significant upregulation of genes associated with stress and apoptosis in proliferative CD4+ and CD8+ T cells in BL tumors compared to in EP and LP tumors. These genes, including HSP90 and HSPA8, are linked to resistance to PD1/PD-L1 immune checkpoint inhibitors. A ligand-receptor analysis showed enhanced interactions associated with inhibitory T-cell proliferation (SPP1-CD44) and suppression of immune activity (MDK-NCL) in LP tumors. Longitudinal biopsies consistently revealed dynamic NK cell expansion and enhanced cytotoxic T cell activity, alongside upregulation of immune activity inhibition, in LP tumors compared to in BL tumors. Notably, the predictive biomarker panel from BL tumor cells was validated in 2 independent cohorts, where it consistently predicted a significant improvement in mPFS duration in signature-high versus -low groups. CONCLUSION This study underscores the significance of molecular biomarkers in predicting clinical outcomes to CDK4/6i. Tumor-infiltration CD8+ T and NK cells may also serve as baseline predictors. These insights pave the way for optimizing therapeutic strategies based on microenvironment-specific changes, providing a personalized and effective approach for managing HR+/HER2- mBC and improving patient outcomes.
Collapse
Affiliation(s)
- Linjie Luo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Peng Yang
- Department of Statistics, Rice University, Houston, TX, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sofia Mastoraki
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole M Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akshara Singareeka Raghavendra
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Debasish Tripathy
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Kumarasamy V, Wang J, Roti M, Wan Y, Dommer AP, Rosenheck H, Putta S, Trub A, Bisi J, Strum J, Roberts P, Rubin SM, Frangou C, McLean K, Witkiewicz AK, Knudsen ES. Discrete vulnerability to pharmacological CDK2 inhibition is governed by heterogeneity of the cancer cell cycle. Nat Commun 2025; 16:1476. [PMID: 39924553 PMCID: PMC11808123 DOI: 10.1038/s41467-025-56674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Cyclin dependent kinase 2 (CDK2) regulates cell cycle and is an emerging target for cancer therapy. There are relatively small numbers of tumor models that exhibit strong dependence on CDK2 and undergo G1 cell cycle arrest following CDK2 inhibition. The expression of P16INK4A and cyclin E1 determines this sensitivity to CDK2 inhibition. The co-expression of these genes occurs in breast cancer patients highlighting their clinical significance as predictive biomarkers for CDK2-targeted therapies. In cancer models that are genetically independent of CDK2, pharmacological inhibitors suppress cell proliferation by inducing 4N cell cycle arrest and increasing the expressions of phospho-CDK1 (Y15) and cyclin B1. CRISPR screens identify CDK2 loss as a mediator of resistance to a CDK2 inhibitor, INX-315. Furthermore, CDK2 deletion reverses the G2/M block induced by CDK2 inhibitors and restores cell proliferation. Complementary drug screens define multiple means to cooperate with CDK2 inhibition beyond G1/S. These include the depletion of mitotic regulators as well as CDK4/6 inhibitors cooperate with CDK2 inhibition in multiple phases of the cell cycle. Overall, this study underscores two fundamentally distinct features of response to CDK2 inhibitors that are conditioned by tumor context and could serve as the basis for differential therapeutic strategies in a wide range of cancers.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianxin Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michelle Roti
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yin Wan
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Adam P Dommer
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hanna Rosenheck
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sivasankar Putta
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | | | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Costakis Frangou
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Karen McLean
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
17
|
Chen C, Chen Z, Zhao J, Wen X, Yao H, Weng Z, Xiong H, Zheng Z, Wu J. TMEM45A enhances palbociclib resistance and cellular glycolysis by activating AKT/mTOR signaling pathway in HR+ breast cancer. Cell Death Discov 2025; 11:47. [PMID: 39910045 PMCID: PMC11799145 DOI: 10.1038/s41420-025-02336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/25/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Palbociclib, a CDK4/6 inhibitor, plays a crucial role in the treatment of HR+ breast cancer. However, resistance to palbociclib is a significant concern that merits further investigation. Our investigation identifies TMEM45A as a potential driver of palbociclib resistance and its association with increased cellular glycolysis. We demonstrate that TMEM45A is highly expressed in palbociclib-resistant breast cancer (BRCA) cells, correlating with enhanced tumor progression. Silencing TMEM45A enhances sensitivity to palbociclib, promotes cell cycle arrest and apoptosis, and inhibits the proliferation of BRCA cells. Moreover, attenuation of TMEM45A expression reduces cancer aggressiveness by decreasing the expression of EMT and glycolysis-related proteins. Subsequent gene set enrichment analysis (GSEA) confirms that TMEM45A activates the AKT/mTOR signaling pathway, which is integral to cell cycle progression and glycolysis. In a cell line-derived xenograft (CDX) mouse model, TMEM45A knockdown significantly restores sensitivity to palbociclib and suppresses tumor growth. Additionally, the use of engineered exosomes loaded with siRNA targeting TMEM45A presents a promising strategy for enhancing CDK4/6 inhibitor sensitivity without observable toxic side effects in a patient-derived xenograft (PDX) model. Collectively, our findings suggest that TMEM45A may be a therapeutic target for overcoming palbociclib resistance, and exosomal siRNA delivery could be a viable strategy for precision medicine in HR+ breast cancer.
Collapse
Affiliation(s)
- Cui Chen
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jinze Zhao
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-sen University, Guangzhou, China
| | - Xinyun Wen
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-sen University, Guangzhou, China
| | - Hanming Yao
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zijin Weng
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Huiping Xiong
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-sen University, Guangzhou, China
| | - Zongheng Zheng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| | - Juekun Wu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Shanabag A, Armand J, Son E, Yang HW. Targeting CDK4/6 in breast cancer. Exp Mol Med 2025; 57:312-322. [PMID: 39930131 PMCID: PMC11873051 DOI: 10.1038/s12276-025-01395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Dysregulation of the cell cycle machinery, particularly the overactivation of cyclin-dependent kinases 4 and 6 (CDK4/6), is a hallmark of breast cancer pathogenesis. The introduction of CDK4/6 inhibitors has transformed the treatment landscape for hormone receptor-positive breast cancer by effectively targeting abnormal cell cycle progression. However, despite their initial clinical success, drug resistance remains a significant challenge, with no reliable biomarkers available to predict treatment response or guide strategies for managing resistant populations. Consequently, numerous studies have sought to investigate the mechanisms driving resistance to optimize the therapeutic use of CDK4/6 inhibitors and improve patient outcomes. Here we examine the molecular mechanisms regulating the cell cycle, current clinical applications of CDK4/6 inhibitors in breast cancer, and key mechanisms contributing to drug resistance. Furthermore, we discuss emerging predictive biomarkers and highlight potential directions for overcoming resistance and enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Anusha Shanabag
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jessica Armand
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Eugene Son
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
19
|
Mughal MJ, Zhang Y, Li Z, Zhou S, Peng C, Zhang YQ, Seto E, Shen M, Hall MD, Zhu W. TFAP2C-DDR1 axis regulates resistance to CDK4/6 inhibitor in breast cancer. Cancer Lett 2025; 610:217356. [PMID: 39603379 PMCID: PMC11783577 DOI: 10.1016/j.canlet.2024.217356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Breast cancer is the predominant malignancy with the majority of cases are characterized as HR+/HER2-subtype. Although cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) have shown remarkable efficacy in treating this subtype when combined with endocrine therapy, the development of resistance to these inhibitors remains a significant clinical obstacle. Hence, there is an urgent need to explore innovative therapies and decipher the underlying mechanisms of resistance to CDK4/6i. In this study, we employed quantitative high-throughput combination screening (qHTCS) and genomics/proteomics approaches to uncover the molecular mechanisms driving resistance to CDK4/6i (palbociclib) in breast cancer. The comprehensive analyses revealed DDR1 as a potential factor implicated in mediating resistance to CDK4/6i. Specifically, DDR1 inhibition in combination with palbociclib exhibited remarkable synergistic effects, reducing cell survival signaling and promoting apoptosis in resistant cells. In-vivo xenograft model further validated the synergistic effects, showing a significant reduction in the resistant tumor growth. Exploration into DDR1 activation uncovered TFAP2C as a key transcription factor regulating DDR1 expression in palbociclib resistant cells and inhibition of TFAP2C re-sensitized resistant cells to palbociclib. Gene set enrichment analysis (GSEA) in the NeoPalAna trial demonstrated a significant enrichment of the TFAP2C-DDR1 gene set from patitens after palbociclib treatment, suggesting the possible activation of the TFAP2C-DDR1 axis following palbociclib exposure. Overall, this study provides crucial insights into the novel molecular landscape of palbociclib resistance in breast cancer, suggesting TFAP2C-DDR1 axis inhibition as a promising strategy to overcome resistance.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Yi Zhang
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Shuyan Zhou
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Changmin Peng
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Ya-Qin Zhang
- Early Translation Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Edward Seto
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Min Shen
- Early Translation Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Matthew D Hall
- Early Translation Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA.
| |
Collapse
|
20
|
Monaghan-Benson E, Aureille J, Guilluy C. ECM stiffness regulates lung fibroblast survival through RasGRF1-dependent signaling. J Biol Chem 2025; 301:108161. [PMID: 39793891 PMCID: PMC11835592 DOI: 10.1016/j.jbc.2025.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Extracellular matrix stiffness is one of the multiple mechanical signals that alter cellular behavior. During studies exploring the effect of matrix rigidity on lung fibroblast survival, we discovered that enhanced survival on stiff substrates is dependent on elevated Ras activity, owing to the activation of the guanine nucleotide exchange factor, RasGRF1. Mechanistically, we found that the increased Ras activity lead to the activation of both the AKT and ERK pathways. Pharmacological inhibition of AKT or ERK signaling attenuates the elevated survival observed on stiff substrates. AKT signaling regulates the phosphorylation and inactivation of the transcription factor FOXO3a. RNAi experiments demonstrate that FOXO3a activity is critical for the cell death observed on soft substrates. Additionally, downregulation of FOXO3a activity on stiff substrate leads to the degradation of the proapoptotic protein Bim. Depletion of Bim increased the survival of cells on soft substrates. Together, our data show that enhanced matrix stiffness activates a RasGRF1/Ras signaling cascade that regulates the activity of AKT and ERK-dependent FOXO3a and Bim expression to alter cell survival.
Collapse
Affiliation(s)
- Elizabeth Monaghan-Benson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Julien Aureille
- Institute for Advanced Biosciences Centre de recherche UGA, INSERM U1209, CNRS UMR, Grenoble, France
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
21
|
Foffano L, Cucciniello L, Nicolò E, Migliaccio I, Noto C, Reduzzi C, Malorni L, Cristofanilli M, Gerratana L, Puglisi F. Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i): Mechanisms of resistance and where to find them. Breast 2025; 79:103863. [PMID: 39718288 PMCID: PMC11872392 DOI: 10.1016/j.breast.2024.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) have significantly impacted on the treatment of HR + HER2 negative (HER2-) metastatic breast cancer (BC) when combined with endocrine therapy. Nonetheless, despite significant research efforts, the mechanisms of de novo and acquired resistance to CDK4/6i have not yet been fully elucidated, highlighting the need for a deeper understanding of these process. Additionally, the importance of dissecting CDK4/6i resistance from endocrine resistance for personalized treatment is increasingly recognized. Liquid biopsy has emerged as a minimally invasive tool for identifying circulating biomarkers of resistance through the integration of multiparametric and dynamic assessments that encompass ctDNA, CTCs, exosomes, and epigenetic ctDNA alterations, representing a promising perspective for the clinical characterization of treatment resistance and guiding post-progression strategies to improve patient outcomes. Aim of this review is summarize potential mechanisms of CDK4/6i resistance, along with the advantages of using liquid biopsy to identify resistance biomarkers in HR+/HER2- MBC patients treated with CDK 4/6 inhibitors.
Collapse
Affiliation(s)
- L Foffano
- Department of Medical Oncology. CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - L Cucciniello
- Department of Medical Oncology. CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - E Nicolò
- Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - I Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, 59100, Prato, Italy
| | - C Noto
- Department of Medical Oncology. CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - C Reduzzi
- Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - L Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, 59100, Prato, Italy; "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, 59100, Prato, Italy
| | - M Cristofanilli
- Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - L Gerratana
- Department of Medical Oncology. CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy.
| | - F Puglisi
- Department of Medical Oncology. CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
22
|
Zhang N, Wang YT, Dai SS, Fan FY, Qiu L, Yi H, Yang YJ. Inhibiting autophagy enhances idarubicin chemosensitivity and induces immune escape in FAT1-low-expressing AML cells. Int Immunopharmacol 2025; 144:113484. [PMID: 39615108 DOI: 10.1016/j.intimp.2024.113484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE Both Autophagy and FAT atypical cadherin 1 (FAT1) regulates the chemosensitivity and immune escape of tumour cells. Our previous paper showed that FAT1 decreased acute myeloid leukemia (AML) autophagy by inhibiting the TGFβ-Smad2/3 pathway. This study builds upon our previous paper and aims to explore whether FAT1-inhibited autophagy is involved in regulating chemosensitivity and immune escape in AML. METHODS We validated the inhibitory effect of FAT1 on AML autophagy through western blot, qPCR, and luciferase reporter assays. In addition, we explored the effect of FAT1-inhibited autophagy on idarubicin (IDA) sensitivity and AML immune escape through caspase-3 activity analysis, trypan blue exclusion assays, and flow cytometry. RESULTS We demonstrated for the first time that the autophagy inhibitor chloroquine (CQ) enhances the cytotoxic effect of IDA on FAT1-low-expressing (FAT1-L) AML cells. We also found that CQ weakened CD8+ T cell infiltration in FAT1-L AML cells. Further research revealed that CQ upregulated PD-L1 protein levels by decreasing its autophagic degradation and that the PD-L1 inhibitor atezolizumab reversed the decrease in CD8+ T cell infiltration caused by CQ in FAT1-L AML cells. In addition, we found that FAT1 decreased autophagy related 10 (ATG10) transcription, leading to decreased AML autophagy. CONCLUSIONS These results revealed that in FAT1-L AML cells, inhibiting autophagy by CQ enhances the cytotoxic effect of IDA, but leads to immune escape, resulting in AML recurrence. Our study supports the use of a combination of autophagy and PD-L1 inhibitors with IDA to increase the cytotoxic effect of IDA while inhibiting AML recurrence.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, China
| | - Yu-Ting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Su-Si Dai
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, China
| | - Fang-Yi Fan
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, China
| | - Ling Qiu
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, China
| | - Hai Yi
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, China.
| | - Yong-Jian Yang
- Department of Cardiology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, China.
| |
Collapse
|
23
|
Faraji F, Ramirez SI, Clubb LM, Sato K, Burghi V, Hoang TS, Officer A, Anguiano Quiroz PY, Galloway WMG, Mikulski Z, Medetgul-Ernar K, Marangoni P, Jones KB, Cao Y, Molinolo AA, Kim K, Sakaguchi K, Califano JA, Smith Q, Goren A, Klein OD, Tamayo P, Gutkind JS. YAP-driven malignant reprogramming of oral epithelial stem cells at single cell resolution. Nat Commun 2025; 16:498. [PMID: 39779672 PMCID: PMC11711616 DOI: 10.1038/s41467-024-55660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells at single cell resolution. Tumor initiating cells displayed a distinct stem-like state, defined by aberrant proliferative, hypoxic, squamous differentiation, and partial epithelial to mesenchymal invasive gene programs. YAP-mediated tumor initiating cell programs included activation of oncogenic transcriptional networks and mTOR signaling, and recruitment of myeloid cells to the invasive front contributing to tumor infiltration. Tumor initiating cell transcriptional programs are conserved in human head and neck cancer and associated with poor patient survival. These findings illuminate processes underlying cancer initiation at single cell resolution, and identify candidate targets for early cancer detection and prevention.
Collapse
Affiliation(s)
- Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA, 92037, USA.
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA.
| | - Sydney I Ramirez
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego Health, La Jolla, CA, 92093, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Lauren M Clubb
- University of California San Diego, Biomedical Sciences Graduate Program, La Jolla, CA, 92093, USA
| | - Kuniaki Sato
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
| | - Valeria Burghi
- Department of Pharmacology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Thomas S Hoang
- University of California San Diego, Biomedical Sciences Graduate Program, La Jolla, CA, 92093, USA
| | - Adam Officer
- University of California San Diego, Bioinformatics and Systems Biology Graduate Program, La Jolla, CA, 92093, USA
| | - Paola Y Anguiano Quiroz
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
| | - William M G Galloway
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Kate Medetgul-Ernar
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
| | - Pauline Marangoni
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kyle B Jones
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Yuwei Cao
- University of California San Diego, Biomedical Sciences Graduate Program, La Jolla, CA, 92093, USA
| | - Alfredo A Molinolo
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Joseph A Califano
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA, 92037, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Alon Goren
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, 90048, USA
| | - Pablo Tamayo
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, 92037, USA
| | - J Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA.
- Department of Pharmacology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
24
|
Yang L, Yue Y, Wang Z, Jiang Y, Xue Z, Zhang Y. Elucidating the Mechanisms of Acquired Palbociclib Resistance via Comprehensive Metabolomics Profiling. Curr Issues Mol Biol 2025; 47:24. [PMID: 39852139 PMCID: PMC11763656 DOI: 10.3390/cimb47010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Palbociclib is a cyclin-dependent kinase 4/6 inhibitor and a commonly used antitumor drug. Many cancers are susceptible to palbociclib resistance, however, the underlying metabolism mechanism and extent of resistance to palbociclib are unknown. In this study, LC-MS metabolomics was used to investigate the metabolite changes of colorectal cancer SW620 cells that were resistant to palbociclib. The study indicated that there were 76 metabolite expression differences between SW620 cells with palbociclib resistance and the parental SW620 cells involving amino acids, glutathione, ABC transporters, and so on. MetaboAnalyst 6.0 metabolic pathway analysis showed that arginine synthesis, β-alanine metabolism, and purine metabolism were disrupted. These results may provide potential clues to the metabolism mechanism of drug resistance in cancer cells that are resistant to palbociclib. Our study has the potential to contribute to the study of anti-palbociclib resistance.
Collapse
Affiliation(s)
- Lulu Yang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (L.Y.); (Y.J.)
| | - Yajun Yue
- General Management Department of Laboratory Base, National Institute of Metrology, Beijing 100029, China;
| | - Zhendong Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (Z.W.); (Y.Z.)
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (L.Y.); (Y.J.)
| | - Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (L.Y.); (Y.J.)
| | - Yongzhuo Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (Z.W.); (Y.Z.)
| |
Collapse
|
25
|
Yu S, Si Y, Xu M, Wang Y, Liu C, Bi C, Sun M, Sun H. Downregulation of the splicing regulator NSRP1 confers resistance to CDK4/6 inhibitors via activation of interferon signaling in breast cancer. J Biol Chem 2025; 301:108070. [PMID: 39667501 PMCID: PMC11750474 DOI: 10.1016/j.jbc.2024.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
The combination of CDK4/6 inhibitors (CDK4/6i) and endocrine therapy is the first-line therapy for ER+/Her2-breast cancer; however, the development of drug resistance limited the efficacy of the agents. Although activation of the IFN signaling pathway has been identified as a critical driver of intrinsic and acquired CDK4/6i resistance, it remains unknown how the IFN signaling pathway was activated in resistant cells. Here, we report that NSRP1, a regulator of alternative mRNA splicing is downregulated in CDK4/6i resistant breast cancer cells and contributes to CDK4/6i resistance by mediating alternative splicing of NSD2 mRNA and activation of the IFN signaling pathway. Knockdown of NSRP1 reduces CDK4/6i (palbociclib) sensitivity of MCF7 cells while overexpression of NSRP1 sensitizes MCF7-PalR cells towards palbociclib treatment. Mechanistically, RNA sequencing suggests that NSRP1 knockdown strongly activates the IFN signaling pathway in MCF7 cells and elevates the expression of most of the "IFN-related palbociclib-resistance Signature" (IRPS) genes. NSRP1 also regulates numerous alternative splicing (AS) events in breast cancer cells, several of which are key regulators of the IFN signaling pathway. Among them, the inclusion of NSD2 exon 2 is elevated upon NSRP1 knockdown. Our data further show that the inclusion of NSD2 exon 2 is increased in breast cancer and associated with the poor prognosis of patients. In addition, including NSD2 exon 2 elevates NSD2 protein expression to activate the IFN signaling pathway. This study unveils the critical role of NSRP1 in regulating the IFN signaling pathway and the CDK4/6i resistance, which could be a promising biomarker for predicting therapy response.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Miao Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Wang
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengxu Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Maoqiu Sun
- Department of Obstetrics and Gynecology, Haian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, China.
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
26
|
Paul S, Sims J, Pham T, Dey A. Targeting the Hippo pathway in cancer: kidney toxicity as a class effect of TEAD inhibitors? Trends Cancer 2025; 11:25-36. [PMID: 39521692 DOI: 10.1016/j.trecan.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
The Hippo pathway has emerged as a critical player in both cancers and targeted therapy resistance. Recent drug discovery efforts have led to the development of TEAD inhibitors, several of which have already progressed to the clinic. To truly leverage their potential as anticancer therapeutics, safety considerations, particularly in regard to the kidney, warrant additional investigation. This review explores the Hippo pathway's role in cancers, its therapeutic potential, role in kidney development, and the need to evaluate the best strategies to translate its clinical application for long-term patient benefit.
Collapse
Affiliation(s)
- Sayantanee Paul
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Jessica Sims
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Trang Pham
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080.
| |
Collapse
|
27
|
Wang J, Chen Y, Sun Y, Liu H, Du R, Wang X, Shao Z, Liu K, Shang Z. FAT1 knockdown enhances the CSC properties of HNSCC through p-CaMKII-mediated inactivation of the IFN pathway. Int J Biol Sci 2025; 21:671-684. [PMID: 39781458 PMCID: PMC11705627 DOI: 10.7150/ijbs.95723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025] Open
Abstract
FAT atypical cadherin 1 (FAT1), which encodes an atypical cadherin-coding protein, has a high mutation rate and is commonly regarded as a tumor suppressor gene in head and neck squamous cell carcinoma (HNSCC). Nonetheless, the potential regulatory mechanisms by which FAT1 influences the progression of HNSCC remain unresolved. In this context, we reported that FAT1 was downregulated in tumor tissues/cells compared with normal tissues/cells and that it was correlated with the clinicopathological features and prognosis of HNSCC. Knockdown of FAT1 enhanced cancer stem cell (CSC) properties and decreased the percentage of apoptotic tumor cells. Mechanistically, FAT1 knockdown increased the phosphorylation levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII), subsequently resulting in diminished interaction between phosphorylated STAT1 and interferon regulatory factor 9 (IRF9), which inactivated the interferon pathway and facilitated the adoption of the malignant phenotype of HNSCC cells. The overexpression of STAT1 and IRF9 alleviated the malignant behavior caused by FAT1 inhibition. In summary, our study reveals the role of FAT1 in suppressing the CSC properties of HNSCC via the CaMKII/STAT1/IRF9 pathway, and that targeting FAT1 might be a promising treatment for HNSCC.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yunqing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Hanzhe Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Ruixue Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Xuewen Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
- Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ke Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
- Department of General and Emergency, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
28
|
Pallathadka H, Jabir M, Rasool KH, Hanumanthaiah M, Sharma N, Pramanik A, Rab SO, Jawad SF, Oghenemaro EF, Mustafa YF. siRNA-based therapy for overcoming drug resistance in human solid tumours; molecular and immunological approaches. Hum Immunol 2025; 86:111221. [PMID: 39700968 DOI: 10.1016/j.humimm.2024.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
RNA interference (RNAi) is a primordial biological process that protects against external intrusion. SiRNA has the potential to selectively silence disease-related genes in a sequence-specific way, thus offering a promising therapeutic approach. The efficacy of siRNA-based therapies in cancer treatment has gained significant recognition due to multiple studies demonstrating its ability to effectively suppress cancer cells' growth and multiplication. Moreover, siRNA-based medicines have shown considerable promise in enhancing the sensitivity of cancer cells to chemotherapy and other treatment methods by suppressing genes that play a role in the development of drug resistance. Exploring and identifying functional genes linked to cancer cell characteristics and drug resistance is crucial for developing effective siRNAs for cancer treatment and advancing targeted and personalized therapeutics. Targeting and silencing genes in charge of resistance mechanisms, such as those involved in drug efflux, cell survival, or DNA repair, is possible with siRNA therapy in the context of drug resistance, especially cancer. Through inhibiting these genes, siRNA therapy can prevent resistance and restore the efficacy of traditional medications. This review addresses the potential of siRNAs in addressing drug resistance in human tumours, opening up new possibilities in cancer therapy. This review article offers a non-systematic summary of how different siRNA types contribute to cancer cells' treatment resistance. Using pertinent keywords, sources were chosen from reliable databases, including PubMed, Scopus, and Google Scholar. The review covered essential papers in this area and those that mainly addressed the function of siRNA in drug resistance. The articles examined in connection with the title of this review were primarily published from 2020 onward and are based on in vitro studies. Furthermore, this article examines the potential barriers and prospective perspectives of siRNA therapies.
Collapse
Affiliation(s)
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | | | - Malathi Hanumanthaiah
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri - 140307, Mohali, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001 Babil, Iraq.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Delta State University, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
29
|
André F, Solovieff N, Su F, Bardia A, Neven P, Yap YS, Tripathy D, Lu YS, Slamon D, Chia S, Joshi M, Chakravartty A, Lteif A, Taran T, Arteaga CL. Acquired gene alterations in patients treated with ribociclib plus endocrine therapy or endocrine therapy alone using baseline and end-of-treatment circulating tumor DNA samples in the MONALEESA-2, -3, and -7 trials. Ann Oncol 2025; 36:54-64. [PMID: 39313156 DOI: 10.1016/j.annonc.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND A prior pooled analysis of the MONALEESA-2, -3, and -7 trials identified baseline markers predictive of sensitivity or resistance to ribociclib plus endocrine therapy (ET). We report the results of an analysis of paired baseline and end-of-treatment (EOT) circulating tumor DNA (ctDNA) samples across the MONALEESA trials. PATIENTS AND METHODS Paired baseline and EOT ctDNA samples from MONALEESA-2, -3, and -7 were sequenced using a targeted next-generation sequencing panel. Genes with an EOT alteration prevalence of >5% were included. A McNemar test was carried out on paired samples and adjusted for multiple testing to control the false discovery rate. A Bayesian mixed-effects model was used to adjust for ctDNA fraction at both time points and for study differences. RESULTS The analysis included 523 paired samples. At EOT, 21 genes had a >5% alteration prevalence. A trend for higher ctDNA fraction at EOT versus baseline (P = 0.08) was observed. Prevalence of alterations was higher at EOT versus baseline in RB1, SPEN, TPR, PCDH15, and FGFR2 in the ribociclib arm; PBRM1 in the placebo arm; and ESR1 in both arms. The mixed-effects model demonstrated that the same trends for increased prevalence of these alterations at EOT were observed after adjusting for ctDNA fraction and that the increased rate of RB1 and SPEN alterations at EOT were specific to ribociclib plus ET. Analysis of ESR1 indicated a similar increase at EOT in both arms. The most common acquired ESR1 mutations at EOT included Y537C/N/S/D, D538G, E380Q, and L536H/R/P/LC. The prevalence of PIK3CA hotspot mutations at baseline and EOT was similar. CONCLUSIONS This analysis identified acquired gene alterations in patients with hormone receptor-positive/human epidermal growth factor receptor-2 negative advanced breast cancer treated with ribociclib plus ET or placebo plus ET. These data may support further studies on acquired resistance mechanisms and inform future systemic interventions in the post-cyclin-dependent kinase 4/6 inhibitor setting.
Collapse
Affiliation(s)
- F André
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France.
| | - N Solovieff
- Novartis Pharmaceuticals Corporation, Cambridge
| | - F Su
- Novartis Pharmaceuticals Corporation, East Hanover
| | - A Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - P Neven
- Multidisciplinary Breast Centre, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Y S Yap
- National Cancer Centre Singapore, Singapore, Singapore
| | - D Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Y-S Lu
- National Taiwan University Hospital, Taipei, Taiwan
| | - D Slamon
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - S Chia
- British Columbia Cancer Agency, Vancouver, Canada
| | - M Joshi
- Novartis Pharmaceuticals Corporation, Cambridge
| | | | - A Lteif
- Novartis Pharmaceuticals Corporation, East Hanover
| | - T Taran
- Novartis Pharma AG, Basel, Switzerland
| | - C L Arteaga
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, USA.
| |
Collapse
|
30
|
Lu WT, Zalmas LP, Bailey C, Black JRM, Martinez-Ruiz C, Pich O, Gimeno-Valiente F, Usaite I, Magness A, Thol K, Webber TA, Jiang M, Saunders RE, Liu YH, Biswas D, Ige EO, Aerne B, Grönroos E, Venkatesan S, Stavrou G, Karasaki T, Al Bakir M, Renshaw M, Xu H, Schneider-Luftman D, Sharma N, Tovini L, Jamal-Hanjani M, McClelland SE, Litchfield K, Birkbak NJ, Howell M, Tapon N, Fugger K, McGranahan N, Bartek J, Kanu N, Swanton C. TRACERx analysis identifies a role for FAT1 in regulating chromosomal instability and whole-genome doubling via Hippo signalling. Nat Cell Biol 2025; 27:154-168. [PMID: 39738653 PMCID: PMC11735399 DOI: 10.1038/s41556-024-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/16/2024] [Indexed: 01/02/2025]
Abstract
Chromosomal instability (CIN) is common in solid tumours and fuels evolutionary adaptation and poor prognosis by increasing intratumour heterogeneity. Systematic characterization of driver events in the TRACERx non-small-cell lung cancer (NSCLC) cohort identified that genetic alterations in six genes, including FAT1, result in homologous recombination (HR) repair deficiencies and CIN. Using orthogonal genetic and experimental approaches, we demonstrate that FAT1 alterations are positively selected before genome doubling and associated with HR deficiency. FAT1 ablation causes persistent replication stress, an elevated mitotic failure rate, nuclear deformation and elevated structural CIN, including chromosome translocations and radial chromosomes. FAT1 loss contributes to whole-genome doubling (a form of numerical CIN) through the dysregulation of YAP1. Co-depletion of YAP1 partially rescues numerical CIN caused by FAT1 loss but does not relieve HR deficiencies, nor structural CIN. Importantly, overexpression of constitutively active YAP15SA is sufficient to induce numerical CIN. Taken together, we show that FAT1 loss in NSCLC attenuates HR and exacerbates CIN through two distinct downstream mechanisms, leading to increased tumour heterogeneity.
Collapse
Affiliation(s)
| | | | | | - James R M Black
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Carlos Martinez-Ruiz
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Francisco Gimeno-Valiente
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Ieva Usaite
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Kerstin Thol
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | | | | | - Yun-Hsin Liu
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Dhruva Biswas
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | | | | | - Subramanian Venkatesan
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Georgia Stavrou
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Takahiro Karasaki
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
- Department of Thoracic Surgery, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Maise Al Bakir
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Hang Xu
- The Francis Crick Institute, London, UK
| | | | - Natasha Sharma
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Laura Tovini
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mariam Jamal-Hanjani
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Kevin Litchfield
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Nicolai J Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Kasper Fugger
- University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Jiri Bartek
- Danish Cancer Society Research Centre, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institutet, Solna, Sweden.
| | - Nnennaya Kanu
- CRUK Lung Cancer Centre of Excellence, London, UK.
- University College London Cancer Institute, London, UK.
| | - Charles Swanton
- The Francis Crick Institute, London, UK.
- CRUK Lung Cancer Centre of Excellence, London, UK.
- University College London Cancer Institute, London, UK.
| |
Collapse
|
31
|
Asciolla JJ, Wu X, Adamopoulos C, Gavathiotis E, Poulikakos PI. Resistance mechanisms and therapeutic strategies of CDK4 and CDK6 kinase targeting in cancer. NATURE CANCER 2025; 6:24-40. [PMID: 39885369 DOI: 10.1038/s43018-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Cyclin-dependent kinases (CDKs) 4 and 6 (CDK4/6) are important regulators of the cell cycle. Selective CDK4/6 small-molecule inhibitors have shown clinical activity in hormonal receptor-positive (HR+) metastatic breast cancer, but their effectiveness remains limited in other cancer types. CDK4/6 degradation and improved selectivity across CDK paralogs are approaches that could expand the effectiveness of CDK4/6 targeting. Recent studies also suggest the use of CDK4/6-targeting agents in cancer immunotherapy. In this Review, we highlight recent advancements in the mechanistic understanding and development of pharmacological approaches targeting CDK4/6. Collectively, these developments pose new challenges and opportunities for rationally designing more effective treatments.
Collapse
Affiliation(s)
- James J Asciolla
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- China Innovation Center of Roche, Shanghai, China
| | - Christos Adamopoulos
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Migliaccio I, Guarducci C, Malorni L. CDK4/6 Inhibitor Resistance in ER+ Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:475-493. [PMID: 39821039 DOI: 10.1007/978-3-031-70875-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The cyclin-dependent kinases 4 and 6 inhibitors are the mainstay of treatment for patients with hormone receptor-positive and HER2-negative breast cancer. The ability of these drugs to improve the outcome of patients both in the metastatic and the early setting has been largely demonstrated. However, resistance, either de novo or acquired, represents a major clinical challenge. In the past years, efforts have been made to identify biomarkers that might help in a better selection of patients or to unravel the mechanisms leading to resistance in order to develop new therapeutic strategies to overcome it. Alterations of cell cycle-related genes and proteins are among the best characterized markers of resistance, and pathways impacting the cell cycle, including nuclear and growth factor receptors signaling, have been thoroughly investigated. Despite this, to date, cyclin-dependent kinases 4 and 6 inhibitors are administered based only on the hormone receptor and HER2 status of the tumor, and patients progressing on therapy are managed with currently available treatments. Here we summarize present knowledge on the cyclin-dependent kinases 4 and 6 inhibitors' mechanisms of action, efficacy data, and mechanisms of resistance.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- Translational Research Unit, Hospital of Prato, AUSL Toscana Centro, Prato, Italy
| | - Cristina Guarducci
- Translational Research Unit, Hospital of Prato, AUSL Toscana Centro, Prato, Italy
| | - Luca Malorni
- Translational Research Unit, Hospital of Prato, AUSL Toscana Centro, Prato, Italy.
| |
Collapse
|
33
|
Yang W, Zhang M, Zhang TX, Liu JH, Hao MW, Yan X, Gao H, Lei QY, Cui J, Zhou X. YAP/TAZ mediates resistance to KRAS inhibitors through inhibiting proapoptosis and activating the SLC7A5/mTOR axis. JCI Insight 2024; 9:e178535. [PMID: 39704172 DOI: 10.1172/jci.insight.178535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/31/2024] [Indexed: 12/21/2024] Open
Abstract
KRAS mutations are frequent in various human cancers. The development of selective inhibitors targeting KRAS mutations has opened a new era for targeted therapy. However, intrinsic and acquired resistance to these inhibitors remains a major challenge. Here, we found that cancer cells resistant to KRAS G12C inhibitors also display cross-resistance to other targeted therapies, such as inhibitors of RTKs or SHP2. Transcriptomic analyses revealed that the Hippo-YAP/TAZ pathway is activated in intrinsically resistant and acquired-resistance cells. Constitutive activation of YAP/TAZ conferred resistance to KRAS G12C inhibitors, while knockdown of YAP/TAZ or TEADs sensitized resistant cells to these inhibitors. This scenario was also observed in KRAS G12D-mutant cancer cells. Mechanistically, YAP/TAZ protects cells from KRAS inhibitor-induced apoptosis by downregulating the expression of proapoptotic genes such as BMF, BCL2L11, and PUMA, and YAP/TAZ reverses KRAS inhibitor-induced proliferation retardation by activating the SLC7A5/mTORC1 axis. We further demonstrated that dasatinib and MYF-03-176 notably enhance the efficacy of KRAS inhibitors by reducing SRC kinase activity and TEAD activity. Overall, targeting the Hippo-YAP/TAZ pathway has the potential to overcome resistance to KRAS inhibitors.
Collapse
Affiliation(s)
- Wang Yang
- Cancer Center, and
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, and
| | - Ming Zhang
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, and
| | - Tian-Xing Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jia-Hui Liu
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, and
| | - Man-Wei Hao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xu Yan
- Pathological Diagnostic Center, The First Hospital of Jilin University, Changchun, China
| | - Haicheng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, School of Basic Medical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | - Xin Zhou
- Cancer Center, and
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, and
| |
Collapse
|
34
|
Zhu R, Jiao Z, Yu FX. Advances towards potential cancer therapeutics targeting Hippo signaling. Biochem Soc Trans 2024; 52:2399-2413. [PMID: 39641583 DOI: 10.1042/bst20240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Decades of research into the Hippo signaling pathway have greatly advanced our understanding of its roles in organ growth, tissue regeneration, and tumorigenesis. The Hippo pathway is frequently dysregulated in human cancers and is recognized as a prominent cancer signaling pathway. Hence, the Hippo pathway represents an ideal molecular target for cancer therapies. This review will highlight recent advancements in targeting the Hippo pathway for cancer treatment and discuss the potential opportunities for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Wen F, Han Y, Zhang H, Zhao Z, Wang W, Chen F, Qin W, Ju J, An L, Meng Y, Yang J, Tang Y, Zhao Y, Zhang H, Li F, Bai W, Xu Y, Zhou Z, Jiao S. Epstein-Barr virus infection upregulates extracellular OLFM4 to activate YAP signaling during gastric cancer progression. Nat Commun 2024; 15:10543. [PMID: 39627192 PMCID: PMC11615309 DOI: 10.1038/s41467-024-54850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/24/2024] [Indexed: 12/06/2024] Open
Abstract
Extracellular vesicles (EVs) are known to mediate cell communications and shape tumor microenvironment. Compared to the well-studied small EVs, the function of large microvesicles (MVs) during tumorigenesis is poorly understood. Here we show the proteome of MVs in Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC), and identify olfactomedin 4 (OLFM4) is induced by EBV infection and secreted via MVs to promote tumor progression through Hippo signaling. Specifically, OLFM4 is a target gene of the cGAS-STING pathway, and EBV infection activates cGAS-STING pathway and increases OLFM4 expression. Moreover, MV-carried OLFM4 binds with the extracellular cadherin domain of FAT1, thereby impairing its intracellular interaction with MST1 and leading to YAP activation in recipient cells. Together, our study not only reveals a regulatory mechanism though which viral infection is coupled via MVs with intercellular control of the Hippo signaling, but also highlights the OLFM4-Hippo axis as a therapeutic target for EBV-associated cancers.
Collapse
Affiliation(s)
- Fuping Wen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhangting Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Fan Chen
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Weimin Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Meng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yang Tang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yun Zhao
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huanhu Zhang
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China
| | - Feng Li
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China
| | - Wenqi Bai
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China.
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
36
|
Wu J, Wang J, O’Connor TN, Tzetzo SL, Gurova KV, Knudsen ES, Witkiewicz AK. Separable Cell Cycle Arrest and Immune Response Elicited through Pharmacological CDK4/6 and MEK Inhibition in RASmut Disease Models. Mol Cancer Ther 2024; 23:1801-1814. [PMID: 39148328 PMCID: PMC11614708 DOI: 10.1158/1535-7163.mct-24-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The combination of CDK4/6 and MEK inhibition as a therapeutic strategy has shown promise in various cancer models, particularly in those harboring RAS mutations. An initial high-throughput drug screen identified high synergy between the CDK4/6 inhibitor palbociclib and the MEK inhibitor trametinib when used in combination in soft tissue sarcomas. In RAS mutant models, combination treatment with palbociclib and trametinib induced significant G1 cell cycle arrest, resulting in a marked reduction in cell proliferation and growth. CRISPR-mediated RB1 depletion resulted in a decreased response to CDK4/6 and MEK inhibition, which was validated in both cell culture and xenograft models. Beyond its cell cycle inhibitory effects, pathway enrichment analysis revealed the robust activation of interferon pathways upon CDK4/6 and MEK inhibition. This induction of gene expression was associated with the upregulation of retroviral elements. The TANK-binding kinase 1 inhibitor GSK8612 selectively blocked the induction of interferon-related genes induced by palbociclib and trametinib treatment and highlighted the separable epigenetic responses elicited by combined CDK4/6 and MEK inhibition. Together, these findings provide key mechanistic insights into the therapeutic potential of CDK4/6 and MEK inhibition in soft tissue sarcomas.
Collapse
Affiliation(s)
- Jin Wu
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Jianxin Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Thomas N. O’Connor
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Stephanie L. Tzetzo
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Katerina V. Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Erik S. Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Agnieszka K. Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| |
Collapse
|
37
|
Villa M, Sharma GG, Malighetti F, Mauri M, Arosio G, Cordani N, Lobello C, Larose H, Pirola A, D'Aliberti D, Massimino L, Criscuolo L, Pagani L, Chinello C, Mastini C, Fontana D, Bombelli S, Meneveri R, Lovisa F, Mussolin L, Janikova A, Pospíšilová Š, Turner SD, Inghirami G, Magni F, Urso M, Pagni F, Ramazzotti D, Piazza R, Chiarle R, Gambacorti-Passerini C, Mologni L. Recurrent somatic mutations of FAT family cadherins induce an aggressive phenotype and poor prognosis in anaplastic large cell lymphoma. Br J Cancer 2024; 131:1781-1795. [PMID: 39478125 PMCID: PMC11589140 DOI: 10.1038/s41416-024-02881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Anaplastic Large Cell Lymphoma (ALCL) is a rare and aggressive T-cell lymphoma, classified into ALK-positive and ALK-negative subtypes, based on the presence of chromosomal translocations involving the ALK gene. The current standard of treatment for ALCL is polychemotherapy, with a high overall survival rate. However, a subset of patients does not respond to or develops resistance to these therapies, posing a serious challenge for clinicians. Recent targeted treatments such as ALK kinase inhibitors and anti-CD30 antibody-drug conjugates have shown promise but, for a fraction of patients, the prognosis is still unsatisfactory. METHODS We investigated the genetic landscape of ALK + ALCL by whole-exome sequencing; recurring mutations were characterized in vitro and in vivo using transduced ALCL cellular models. RESULTS Recurrent mutations in FAT family genes and the transcription factor RUNX1T1 were found. These mutations induced changes in ALCL cells morphology, growth, and migration, shedding light on potential factors contributing to treatment resistance. In particular, FAT4 silencing in ALCL cells activated the β-catenin and YAP1 pathways, which play crucial roles in tumor growth, and conferred resistance to chemotherapy. Furthermore, STAT1 and STAT3 were hyper-activated in these cells. Gene expression profiling showed global changes in pathways related to cell adhesion, cytoskeletal organization, and oncogenic signaling. Notably, FAT mutations associated with poor outcome in patients. CONCLUSIONS These findings provide novel insights into the molecular portrait of ALCL, that could help improve treatment strategies and the prognosis for ALCL patients.
Collapse
Affiliation(s)
- Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Geeta G Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Arosio
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nicoletta Cordani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cosimo Lobello
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Hugo Larose
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Deborah D'Aliberti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luca Massimino
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lucrezia Criscuolo
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lisa Pagani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Mastini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Silvia Bombelli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Neurogenomics Research Center, Fondazione Human Technopole, Milano, Italy
| | - Raffaella Meneveri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Lovisa
- Maternal and Child Health, Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
- Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Lara Mussolin
- Maternal and Child Health, Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
- Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Andrea Janikova
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mario Urso
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Haematopathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Haematology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
38
|
Wager K, Wang Y, Liew A, Campbell D, Liu F, Martini JF, Ziaee N, Liu Y. Using bioinformatics and artificial intelligence to map the cyclin-dependent kinase 4/6 inhibitor biomarker landscape in breast cancer. Future Oncol 2024; 20:3519-3537. [PMID: 39530636 DOI: 10.1080/14796694.2024.2419352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
A cyclin-dependent kinase 4/6 (CDK4/6) inhibitor combined with endocrine therapy is the standard-of-care for patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer. However, not all patients respond to the treatment, resistance often occurs and efficacy outcomes from early breast cancer trials have been mixed. To identify biomarkers associated with CDK4/6 inhibitor response or resistance, we combined bioinformatic-database analyses, artificial intelligence-assisted literature review, and manual literature review (Embase and OVID Medline; search window: January 2012-October 2022) to compile data to comprehensively describe the CDK4/6 inhibitor biomarker landscape. Based on these results, and validation by external experts, we identified 15 biomarkers of clinical importance (AR , AURKA, ERBB2, ESR1, CCNE1, CDKN1A/B, CDK2, CDK6, CDK7, CDK9, FGFR1/2, MYC, PIK3CA/AKT, RB1 and STAT3) that could guide future breast cancer research.
Collapse
Affiliation(s)
- Kim Wager
- AI & Data Science, Oxford PharmaGenesis Ltd, Oxford, UK
| | - Yao Wang
- Oncology Pfizer Biopharma, Pfizer Inc., New York, NY 10001, USA
| | - Andrew Liew
- AI & Data Science, Oxford PharmaGenesis Ltd, Oxford, UK
| | - Dean Campbell
- Oncology Pfizer Biopharma, Pfizer Inc., New York, NY 10001, USA
| | - Feng Liu
- Pfizer Oncology Division, Pfizer Inc., San Diego, CA 92121, USA
| | | | - Niusha Ziaee
- Oncology Pfizer Biopharma, Pfizer Inc., New York, NY 10001, USA
| | - Yuan Liu
- Pfizer Oncology Division, Pfizer Inc., San Diego, CA 92121, USA
| |
Collapse
|
39
|
Armand J, Kim S, Kim K, Son E, Kim M, Yang HW. Therapeutic benefits of maintaining CDK4/6 inhibitors and incorporating CDK2 inhibitors beyond progression in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623139. [PMID: 39605351 PMCID: PMC11601343 DOI: 10.1101/2024.11.11.623139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The combination of CDK4/6 inhibitors (CDK4/6i) and endocrine therapy has revolutionized treatment for hormone receptor-positive (HR+) metastatic breast cancer. However, the emergence of resistance in most patients often leads to treatment discontinuation with no consensus on effective second-line therapies. The therapeutic benefits of maintaining CDK4/6i or incorporating CDK2 inhibitors (CDK2i) after disease progression remain unclear. Here, we demonstrate that sustained CDK4/6i therapy, either alone or combined with CDK2i, significantly suppresses the growth of drug-resistant HR+ breast cancer. Continued CDK4/6i treatment induces a non-canonical pathway for retinoblastoma protein (Rb) inactivation via post-translational degradation, resulting in diminished E2F activity and delayed G1 progression. Importantly, our data highlight that CDK2i should be combined with CDK4/6i to effectively suppress CDK2 activity and overcome resistance. We also identify cyclin E overexpression as a key driver of resistance to CDK4/6 and CDK2 inhibition. These findings provide crucial insights into overcoming resistance in HR+ breast cancer, supporting the continued use of CDK4/6i and the strategic incorporation of CDK2i to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Jessica Armand
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kibum Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eugene Son
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
40
|
Kontogiannis A, Karaviti E, Karaviti D, Lanitis S, Gomatou G, Syrigos NK, Kotteas E. Mutations Matter: Unravelling the Genetic Blueprint of Invasive Lobular Carcinoma for Progression Insights and Treatment Strategies. Cancers (Basel) 2024; 16:3826. [PMID: 39594781 PMCID: PMC11593237 DOI: 10.3390/cancers16223826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Invasive Lobular Carcinoma (ILC) presents a distinct subtype of breast cancer, representing 10-15% of cases, with unique clinical and molecular features. Characterized by a non-cohesive, single-file invasion pattern, ILC is typically estrogen receptor (ER)- and progesterone receptor (PR)-positive but human epidermal growth factor receptor 2 (HER2)-negative. Despite favorable prognostic features, its highly metastatic nature and predilection for atypical sites contribute to lower long-term survival compared to invasive breast carcinoma of no special type (NST). ILC's genetic landscape includes mutations in various genes (CDH1, BRCA2, ATM, etc.) and signaling pathways that impact treatment responses, especially in endocrine treatment. Furthermore, the diverse ILC subtypes complicate its management. Current challenges in chemotherapy, along with the targeted therapies, are also discussed. The present article aims to comprehensively review the recent literature, focusing on the pathological and molecular aspects of ILC, including associated genetic mutations influencing disease progression and drug resistance.
Collapse
Affiliation(s)
- Athanasios Kontogiannis
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Eleftheria Karaviti
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Dimitra Karaviti
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Sophocles Lanitis
- 2nd Department of Surgery, Korgiallenio Benakeio Athens General Hospital, 115 26 Athens, Greece;
| | - Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Nikolaos K. Syrigos
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| |
Collapse
|
41
|
Kudo R, Safonov A, Jones C, Moiso E, Dry JR, Shao H, Nag S, da Silva EM, Yildirim SY, Li Q, O'Connell E, Patel P, Will M, Fushimi A, Benitez M, Bradic M, Fan L, Nakshatri H, Sudhan DR, Denz CR, Huerga Sanchez I, Reis-Filho JS, Goel S, Koff A, Weigelt B, Khan QJ, Razavi P, Chandarlapaty S. Long-term breast cancer response to CDK4/6 inhibition defined by TP53-mediated geroconversion. Cancer Cell 2024; 42:1919-1935.e9. [PMID: 39393354 DOI: 10.1016/j.ccell.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Inhibition of CDK4/6 kinases has led to improved outcomes in breast cancer. Nevertheless, only a minority of patients experience long-term disease control. Using a large, clinically annotated cohort of patients with metastatic hormone receptor-positive (HR+) breast cancer, we identify TP53 loss (27.6%) and MDM2 amplification (6.4%) to be associated with lack of long-term disease control. Human breast cancer models reveal that p53 loss does not alter CDK4/6 activity or G1 blockade but instead promotes drug-insensitive p130 phosphorylation by CDK2. The persistence of phospho-p130 prevents DREAM complex assembly, enabling cell-cycle re-entry and tumor progression. Inhibitors of CDK2 can overcome p53 loss, leading to geroconversion and manifestation of senescence phenotypes. Complete inhibition of both CDK4/6 and CDK2 kinases appears to be necessary to facilitate long-term response across genomically diverse HR+ breast cancers.
Collapse
Affiliation(s)
- Rei Kudo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Department of Surgery, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Anton Safonov
- Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Catherine Jones
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Enrico Moiso
- Department of Medicine, MSK, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, MSK, New York, NY 10065, USA
| | | | - Hong Shao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Sharanya Nag
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Selma Yeni Yildirim
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Elizabeth O'Connell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Payal Patel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Marie Will
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Clinical Genetics Service, Department of Medicine, MSK, New York, NY 10065, USA
| | - Atsushi Fushimi
- Department of Surgery, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Marimar Benitez
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Martina Bradic
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Andrew Koff
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Qamar J Khan
- Division of Medical Oncology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pedram Razavi
- Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
42
|
Manjunath GK, Sharma S, Nashier D, Vasanthaiah S, Jha S, Bage S, Mitra T, Goyal P, Neerathilingam M, Kumar A. Breast cancer genomic analyses reveal genes, mutations, and signaling networks. Funct Integr Genomics 2024; 24:206. [PMID: 39496981 DOI: 10.1007/s10142-024-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the predominant cause of death in women. BC is a complex disorder, and the exploration of several types of BC omic data, highlighting genes, perturbations, signaling and cellular mechanisms, is needed. We collected mutational data from 9,555 BC samples using cBioPortal. We classified 1174 BC genes (mutated ≥ 40 samples) into five tiers (BCtier_I-V) and subjected them to pathway and protein‒protein network analyses using EnrichR and STRING 11, respectively. BCtier_I possesses 12 BC genes with mutational frequencies > 5%, with only 5 genes possessing > 10% frequencies, namely, PIK3CA (35.7%), TP53 (34.3%), GATA3 (11.5%), CDH1 (11.4%) and MUC16 (11%), and the next seven BC genes are KMT2C (8.8%), TTN (8%), MAP3K1 (8%), SYNE1 (7.2%), AHNAK2 (7%), USH2A (5.5%), and RYR2 (5.4%). Our pathway analyses revealed that the five top BC pathways were the PI3K-AKT, TP53, NOTCH, HIPPO, and RAS pathways. We found that BC panels share only seven genes. These findings show that BC arises from genetic disruptions evident in BC signaling and protein networks.
Collapse
Affiliation(s)
- Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Srihari Sharma
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Disha Nashier
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Shruthi Vasanthaiah
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Spriha Jha
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Saloni Bage
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Tamoghna Mitra
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Muniasamy Neerathilingam
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India.
| |
Collapse
|
43
|
Gao Y, Yu Y, Zhang M, Yu W, Kang L. Mechanisms of endocrine resistance in hormone receptor-positive breast cancer. Front Oncol 2024; 14:1448687. [PMID: 39544302 PMCID: PMC11560879 DOI: 10.3389/fonc.2024.1448687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
Hormone receptor-positive breast cancer may recur or metastasize years or decades after its diagnosis. Furthermore, hormone receptor expression may persist in relapsed or metastatic cancer cells. Endocrine therapy is one of the most efficacious treatments for hormone receptor-positive breast cancers. Nevertheless, a considerable proportion of patients develop resistance to endocrine therapy. Previous studies have identified numerous mechanisms underlying drug resistance, such as epigenetic abnormalities in the estrogen receptor (ER) genome, activation of ER-independent ligands, and alterations in signaling pathways including PI3K/AKT/mTOR, Notch, NF-κB, FGFR, and IRE1-XBP1. This article reviews the mechanisms of endocrine resistance in hormone receptor-positive advanced breast cancer, drawing from previous studies, and discusses the latest research advancements and prospects.
Collapse
Affiliation(s)
| | | | | | | | - Lihua Kang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
44
|
Hong T, Hogger AC, Wang D, Pan Q, Gansel J, Engleitner T, Öllinger R, Gschwend JE, Rad R, Nawroth R. CDK4/6 inhibition initiates cell cycle arrest by nuclear translocation of RB and induces a multistep molecular response. Cell Death Discov 2024; 10:453. [PMID: 39461947 PMCID: PMC11513128 DOI: 10.1038/s41420-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
CDK4/6 inhibitors are standard of care in the treatment of metastatic breast cancer. Treatment regimen consists of a combination with endocrine therapy, since their therapeutic efficacy as monotherapy in most clinical trials was rather limited. Thus, understanding the molecular mechanisms that underlie response to therapy might allow for the development of an improved therapy design. We analyzed the response to the CDK4/6 inhibitor palbociclib in bladder cancer cells over a 48-hour time course using RNA sequencing and identified a multi-step mechanism of response. We next translated these results to the molecular mechanism in bladder cancer cells upon PD treatment. The initial step is characterized by translocation of the RB protein into the nucleus by activation of importin α/β, a mechanism that requires the NLS sequence. In parallel, RB is proteolyzed in the cytoplasm, a process regulated by gankyrin and the SCF complex. Only hypophosphorylated RB accumulates in the nucleus, which is an essential step for an efficient therapy response by initiating G1 arrest. This might explain the poor response in RB negative or mutated patients. At later stages during therapy, increased expression of the MiT/TFE protein family leads to lysosomal biogenesis which is essential to maintain this response. Lastly, cancer cells either undergo senescence and apoptosis or develop mechanisms of resistance following CDK4/6 inhibition.
Collapse
Affiliation(s)
- Ting Hong
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anna C Hogger
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dongbiao Wang
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Qi Pan
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Julie Gansel
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Jürgen E Gschwend
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
45
|
Mai N, Dos Anjos CH, Razavi P, Safonov A, Patil S, Chen Y, Drago JZ, Modi S, Bromberg JF, Dang CT, Liu D, Norton L, Robson M, Chandarlapaty S, Jhaveri K. Predictors of response to CDK4/6i retrial after prior CDK4/6i failure in ER+ metastatic breast cancer. NPJ Breast Cancer 2024; 10:92. [PMID: 39424631 PMCID: PMC11489574 DOI: 10.1038/s41523-024-00699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024] Open
Abstract
After disease progression on endocrine therapy (ET) plus a CDK4/6 inhibitor, there is no standardized sequence for subsequent treatment lines for estrogen receptor positive (ER+) metastatic breast cancer (MBC). CDK4/6i retrial as a treatment strategy is commonplace in modern clinical practice; however, the available prospective data investigating this strategy have had inconclusive results. To frame this data in a real-world context, we performed a retrospective analysis assessing the efficacy of CDK4/6is in 195 patients who had previous exposure to CDK4/6i in a prior treatment line at our institution. Among patients who had stopped a CDK4/6i due to toxicity, CDK4/6i retrial either immediately after with a different CDK4/6i or in a further treatment line with the same initial CDK4/6i was both safe and effective, with a median time to treatment failure (TTF) of 10.1 months (95%CI, 4.8-16.9). For patients whose disease progressed on a prior CDK4/6i, we demonstrated comparable median TTFs for patients rechallenged with the same CDK4/6i (4.3 months, 95%CI 3.2-5.5) and with a different CDK4/6i (4.7 months, 95%CI 3.7-6.0) when compared to the recent PACE, PALMIRA, and MAINTAIN trials. Exploratory genomic analysis suggested that the presence of mutations known to confer CDK4/6i resistance, such as TP53 mutations, CDK4 amplifications, and RB1 or FAT1 loss of function mutations may be molecular biomarkers predictive of CDK4/6i retrial failure.
Collapse
Affiliation(s)
- Nicholas Mai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos H Dos Anjos
- Oncology Service, Department of Medicine, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anton Safonov
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sujata Patil
- Department of Quantitative Health Sciences, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Yuan Chen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Chau T Dang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dazhi Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Komal Jhaveri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
46
|
Yang L, Yang Y, Zhang J, Li M, Yang L, Wang X, Chen M, Zhang H, He B, Wang X, Dai W, Wang Y, Zhang Q. Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy. Signal Transduct Target Ther 2024; 9:275. [PMID: 39419977 PMCID: PMC11486899 DOI: 10.1038/s41392-024-01983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) have been considered the next blockbuster therapies. However, due to their inherent limitations, the efficacy of PROTACs is frequently impaired by limited tissue penetration and particularly insufficient cellular internalization into their action sites. Herein, based on the ultra-pH-sensitive and enzyme-sensitive nanotechnology, a type of polymer PROTAC conjugated and pH/cathepsin B sequential responsive nanoparticles (PSRNs) are deliberately designed, following the construction of the PROTAC for Cyclin-dependent kinase 4 and 6 (CDK4/6). Colorectal cancer (CRC) which hardly responds to many treatments even immune checkpoint blockades was selected as the tumor model in this study. As a result, PSRNs were found to maintain nanostructure (40 nm) in circulation and efficiently accumulated in tumors via enhanced permeation and retention effect. Then, they were dissociated into unimers (<10 nm) in response to an acidic tumor microenvironment, facilitating tumor penetration and cellular internalization. Eventually, the CDK4/6 degrading PROTACs were released intracellularly following the cleavage of cathepsin B. Importantly, PSRNs led to the enhanced degradation of target protein in vitro and in vivo. The degradation of CDK4/6 also augmented the efficacy of immune checkpoint blockades, through the upregulation of programmed cell death-ligand 1 (PD-L1) expression in cancer cells and the suppression of regulatory T cells cell proliferation in tumor microenvironment. By combination with α-PD-1, an enhanced anti-tumor outcome is well achieved in CT26 tumor model. Overall, our study verifies the significance of precise intracellular delivery of PROTACs and introduces a promising therapeutic strategy for the targeted combination treatment of CRC.
Collapse
Affiliation(s)
- Liuqing Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Ye Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Minghui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Long Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Xing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China.
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China.
| |
Collapse
|
47
|
Jovanović B, Church SE, Gorman KM, North K, Richardson ET, DiLullo M, Attaya V, Kasparian J, Mohammed-Abreu A, Kirkner G, Hughes ME, Lin NU, Mittendorf EA, Schnitt SJ, Tolaney SM, Goel S. Integrative Multiomic Profiling of Triple-Negative Breast Cancer for Identifying Suitable Therapies. Clin Cancer Res 2024; 30:4768-4779. [PMID: 39136550 PMCID: PMC11474168 DOI: 10.1158/1078-0432.ccr-23-1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 03/05/2024] [Accepted: 08/08/2024] [Indexed: 10/16/2024]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a heterogeneous disease that carries the poorest prognosis of all breast cancers. Although novel TNBC therapies in development are frequently targeted toward tumors carrying a specific genomic, transcriptomic, or protein biomarker, it is poorly understood how these biomarkers are correlated. EXPERIMENTAL DESIGN To better understand the molecular features of TNBC and their correlation with one another, we performed multimodal profiling on a cohort of 95 TNBC. Our approach involved quantifying tumor-infiltrating lymphocytes through hematoxylin and eosin staining, assessing the abundance of retinoblastoma, androgen receptor, and PDL1 proteins through IHC, and carrying out transcriptomic profiling using the NanoString BC360 platform, targeted DNA sequencing on a subset of cases, as well as evaluating associations with overall survival. RESULTS Levels of RB1 mRNA and RB proteins are better correlated with markers of retinoblastoma functionality than RB1 mutational status. Luminal androgen receptor tumors clustered into two groups with transcriptomes that cluster with either basal or mesenchymal tumors. Tumors classified as PDL1-positive by the presence of immune or tumor cells showed similar biological characteristics. HER2-low TNBC showed no distinct biological phenotype when compared with HER2-zero. The majority of TNBC were classified as basal or HER2-enriched by PAM50, the latter showing significantly improved overall survival. CONCLUSIONS Our study contributes new insights into biomarker utility for identifying suitable TNBC therapies and the intercorrelations between genomic, transcriptomic, protein, and cellular biomarkers. Additionally, our rich data resource can be used by other researchers to explore the interplay between DNA, RNA, and protein biomarkers in TNBC.
Collapse
Affiliation(s)
- Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
| | | | | | | | - Edward T. Richardson
- Harvard Medical School, Boston, Massachusetts.
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts.
| | - Molly DiLullo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Victoria Attaya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Julie Kasparian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Ayesha Mohammed-Abreu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Gregory Kirkner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Melissa E. Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
| | - Nancy U. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
| | - Elizabeth A. Mittendorf
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts.
| | - Stuart J. Schnitt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts.
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
| | - Shom Goel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.
- Peter MacCallum Cancer Centre, Victoria, Australia.
| |
Collapse
|
48
|
Lloyd MR, Jhaveri K, Kalinsky K, Bardia A, Wander SA. Precision therapeutics and emerging strategies for HR-positive metastatic breast cancer. Nat Rev Clin Oncol 2024; 21:743-761. [PMID: 39179659 DOI: 10.1038/s41571-024-00935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Anti-oestrogen-based therapies, often combined with a CDK4/6 inhibitor, are the current standard-of-care first-line therapy for patients with advanced-stage hormone receptor-positive (HR+) breast cancer. Resistance to anti-oestrogen agents inevitably occurs, mediated by oestrogen receptor (ER)-dependent or ER-independent mechanisms that drive tumour progression. Emerging endocrine therapies include, but are not limited to, next-generation oral ER degraders and proteolysis targeting chimeras, which might be particularly effective in patients with ESR1-mutant breast cancer. Furthermore, cancers harbouring driver alterations in oncogenic signalling pathways, including AKT and PI3K, might be susceptible to novel combination strategies involving targeted inhibitors. Next-generation CDK2/4 inhibitors are an area of active clinical investigation, and efforts are ongoing to evaluate the role of sequential CDK inhibition. Approved and emerging antibody-drug conjugates exploiting novel target antigens have also demonstrated promising clinical activity. These novel agents, as well as further identification and characterization of predictive biomarkers, will hopefully continue to improve clinical outcomes, reduce the incidence of toxicities, and limit the extent of overtreatment in this population. In this Review, we describe the evolving treatment paradigm for patients with metastatic HR+ breast cancer in light of the growing armamentarium of drugs and biomarkers that will help to shape the future therapeutic landscape. These strategies are expected to involve tumour molecular profiling to enable the delivery of precision medicine.
Collapse
Affiliation(s)
| | - Komal Jhaveri
- Memorial Sloan Kettering Evelyn H. Lauder Breast Center, New York, NY, USA
| | - Kevin Kalinsky
- Winship Cancer Institute at Emory University, Atlanta, GA, USA
| | - Aditya Bardia
- UCLA Health Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Seth A Wander
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
| |
Collapse
|
49
|
Wu S, Xu J, Ma Y, Liang G, Wang J, Sun T. Advances in the mechanism of CDK4/6 inhibitor resistance in HR+/HER2- breast cancer. Ther Adv Med Oncol 2024; 16:17588359241282499. [PMID: 39371618 PMCID: PMC11450575 DOI: 10.1177/17588359241282499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
Among women, breast cancer is the most prevalent form of a malignant tumour. Among the subtypes of breast cancer, hormone receptor (HR) positive and human epidermal growth factor receptor (HER2) negative kinds make up the biggest proportion. The advent of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, which are dependent on cell cycle proteins, has greatly enhanced the prognosis of patients with advanced HR+/HER2- breast cancer. This is a specific treatment that stops the growth of cancer cells by preventing them from dividing. Nevertheless, the drug resistance of the disease unavoidably impacts the effectiveness of treatment and the prognosis of patients. This report provides a thorough analysis of the current research advancements about the resistance mechanism of CDK4/6 inhibitors in HR+/HER2- breast cancer. It presents an in-depth discussion from numerous viewpoints, such as aberrant cell cycle regulation and changes in signalling pathways. In response to the drug resistance problem, subsequent treatment strategies are also being explored, including switching to other CDK4/6 inhibitor drugs, a combination of novel endocrine therapeutic agents, an optimal combination of targeted therapies and switching to chemotherapy. An in-depth study of the resistance mechanism can assist in identifying creative tactics that can overcome or postpone drug resistance, alleviate the problem of restricted treatment strategies following drug resistance and enhance the prognosis of patients.
Collapse
Affiliation(s)
- Sijia Wu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Junnan Xu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Yiwen Ma
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Guilian Liang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Jiaxing Wang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Tao Sun
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, China
| |
Collapse
|
50
|
Lee M, Lee A, Choi BO, Park WC, Lee J, Kang J. p16 Immunohistochemical Patterns in Triple-Negative Breast Cancer: Clinical and Genomic Similarities of the p16 Diffuse Pattern to pRB Deficiency. Pathobiology 2024; 92:63-76. [PMID: 39245040 PMCID: PMC11965838 DOI: 10.1159/000541299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is associated with alterations in the retinoblastoma pathway. As a consequence of retinoblastoma protein (pRB) loss, compensatory upregulation of p16 occurs due to the loss of phosphorylated pRB-mediated negative feedback on p16 expression. The aim of this study is to investigate the clinicopathological and genomic characteristics associated with the diffuse pattern of p16 immunohistochemistry (IHC) in TNBC. METHODS The study analyzed surgically resected TNBC for whole-exome sequencing in 113 cases and for cDNA microarray in 144 cases. The p16 IHC results were classified into two patterns: diffuse and negative/mosaic. RESULTS In the entire cohort (n = 257), the diffuse pattern of p16 IHC was observed in 123 (47.9%) patients and the negative/mosaic pattern in 134 (52.1%). Biallelic RB1 inactivation was observed in 14.3% of patients with the diffuse pattern. The diffuse pattern of p16 IHC showed more frequent RB1 alterations and cell cycle progression signatures, a higher Ki-67 labeling index, more frequent chromosome segment copy number changes, a higher frequency of homologous recombination deficiency high, and immune-related signatures. PIK3CA mutations were more frequent in the negative/mosaic pattern. CCND1 amplification was identified in 5 cases, all with the negative/mosaic pattern. CONCLUSION In TNBC, the diffuse p16 pattern shows clinical and genomic similarities to pRB-deficient tumors, suggesting shared characteristics. This suggests that p16 IHC testing may provide new therapeutic approaches, underscoring its potential clinical importance. INTRODUCTION Triple-negative breast cancer (TNBC) is associated with alterations in the retinoblastoma pathway. As a consequence of retinoblastoma protein (pRB) loss, compensatory upregulation of p16 occurs due to the loss of phosphorylated pRB-mediated negative feedback on p16 expression. The aim of this study is to investigate the clinicopathological and genomic characteristics associated with the diffuse pattern of p16 immunohistochemistry (IHC) in TNBC. METHODS The study analyzed surgically resected TNBC for whole-exome sequencing in 113 cases and for cDNA microarray in 144 cases. The p16 IHC results were classified into two patterns: diffuse and negative/mosaic. RESULTS In the entire cohort (n = 257), the diffuse pattern of p16 IHC was observed in 123 (47.9%) patients and the negative/mosaic pattern in 134 (52.1%). Biallelic RB1 inactivation was observed in 14.3% of patients with the diffuse pattern. The diffuse pattern of p16 IHC showed more frequent RB1 alterations and cell cycle progression signatures, a higher Ki-67 labeling index, more frequent chromosome segment copy number changes, a higher frequency of homologous recombination deficiency high, and immune-related signatures. PIK3CA mutations were more frequent in the negative/mosaic pattern. CCND1 amplification was identified in 5 cases, all with the negative/mosaic pattern. CONCLUSION In TNBC, the diffuse p16 pattern shows clinical and genomic similarities to pRB-deficient tumors, suggesting shared characteristics. This suggests that p16 IHC testing may provide new therapeutic approaches, underscoring its potential clinical importance.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Ock Choi
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo-Chan Park
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|