1
|
Xie J, Liu XF, Zhou T, Liu L, Hou RQ, Yu XX, Fan ZY, Shang QN, Chang YJ, Zhao XS, Wang Y, Xu LP, Zhang XH, Huang XJ, Zhao XY. Overexpressing natural killer group 2 member A drives natural killer cell exhaustion in relapsed acute myeloid leukemia. Signal Transduct Target Ther 2025; 10:143. [PMID: 40320412 PMCID: PMC12050333 DOI: 10.1038/s41392-025-02228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 05/08/2025] Open
Abstract
Acute myeloid leukemia (AML) relapse is associated with poor prognosis. While natural killer (NK) cell therapy can induce leukemia remission, infused NK cells are prone to exhaustion. Elucidating the molecular mechanisms driving NK cell exhaustion in AML patients could provide critical insights for developing novel strategies to optimize NK cell-based immunotherapies. In this study, we systematically investigated NK cell exhaustion in relapsed AML patients following allogeneic hematopoietic stem cell transplantation (allo-HSCT) through phenotypic assessments, functional assays, and RNA sequencing analyses. Compared to NK cells from complete remission patients and healthy controls, NK cells from relapsed AML patients exhibited an exhausted phenotype, marked by reduced maturity, elevated expression of the inhibitory receptor NKG2A, impaired cytotoxicity, and suppression of the PI3K-AKT pathway. Notably, NKG2A expression levels on NK cells correlated with disease progression. Blockade or genetic knockout of NKG2A effectively reversed NK cell exhaustion both in vitro and in an AML mouse model. Furthermore, activation of the PI3K-AKT pathway significantly enhanced cytotoxicity in exhausted NK cells. We found that excessive activation of the NKG2A/HLA-E axis was associated with PI3K-AKT pathway inhibition, and blocking the NKG2A/HLA-E interaction or knocking out NKG2A restored AKT phosphorylation in exhausted NK cells. In summary, AML cells drive NK cell exhaustion through overactivation of the NKG2A/HLA-E axis and suppression of the PI3K-AKT pathway. Targeting the NKG2A/HLA-E axis represents a promising therapeutic approach to restore PI3K-AKT signaling and reverse NK cell exhaustion.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Humans
- Animals
- Mice
- NK Cell Lectin-Like Receptor Subfamily C/genetics
- NK Cell Lectin-Like Receptor Subfamily C/immunology
- Male
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/immunology
- Female
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/immunology
- Signal Transduction
- Hematopoietic Stem Cell Transplantation
- Middle Aged
Collapse
Grants
- This work was supported by the Noncommunicable Chronic Diseases-National Science and Technology Major Project (No. 2023ZD0501200), National Key Research and Development Program of China (grant 2022YFA1103300), National Natural Science Foundation of China (grants 82350105, 82070184 and 82270228), Science, Technology &Innovation Project of Xiongan New area (No. 2023XACX0004), Beijing Outstanding Young Scientists Project(JWZQ20240101001); Beijing Natural Science Foundation (Z240019), and Clinical Medicine Plus X-Young Scholars Project of Peking University (grant PKU2024LCXQ002).
- This work was supported by the Noncommunicable Chronic Diseases-National Science and Technology Major Project (No. 2023ZD0501200), National Key Research and Development Program of China (grant 2022YFA1103300), National Natural Science Foundation of China (grants 82350105, 82070184 and 82270228), Science, Technology & Innovation Project of Xiongan New area (No. 2023XACX0004), Beijing Outstanding Young Scientists Project(JWZQ20240101001); Beijing Natural Science Foundation (Z240019), and Clinical Medicine Plus X-Young Scholars Project of Peking University (grant PKU2024LCXQ002).
Collapse
Affiliation(s)
- Juan Xie
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Xue-Fei Liu
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Tong Zhou
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Long Liu
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Rui-Qin Hou
- Peking University People's Hospital department of blood transfusion, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Xing-Xing Yu
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Ze-Ying Fan
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Qian-Nan Shang
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Institute of Hematology, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, National Clinical Research Centre for Hematologic Disease; No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
2
|
Fisher JG, Bartlett LG, Kashyap T, Walker CJ, Khakoo SI, Blunt MD. Modulation of anti-tumour immunity by XPO1 inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002310. [PMID: 40291981 PMCID: PMC12022495 DOI: 10.37349/etat.2025.1002310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Exportin-1 (XPO1) is a nuclear export protein that, when overexpressed, can facilitate cancer cell proliferation and survival and is frequently overexpressed or mutated in cancer patients. As such, selective inhibitors of XPO1 (XPO1i) function have been developed to inhibit cancer cell proliferation and induce apoptosis. This review outlines the evidence for the immunomodulatory properties of XPO1 inhibition and discusses the potential for combining and sequencing XPO1i with immunotherapy to improve the treatment of patients with cancer. Selinexor is a first-in-class XPO1i that is FDA-approved for the treatment of patients with relapsed and refractory (RR) multiple myeloma and RR diffuse large B cell lymphoma. In addition to the cancer cell intrinsic pro-apoptotic activity, increasing evidence suggests that XPO1 inhibition has immunomodulatory properties. In this review, we describe how XPO1i can lead to a skewing of macrophage polarisation, inhibition of neutrophil extracellular traps, modulation of immune checkpoint expression, blockade of myeloid-derived suppressor cells (MDSCs) and sensitisation of cancer cells to T cell and NK (natural killer) cell immunosurveillance. As such, there is an opportunity for selinexor to enhance immunotherapy efficacy and thus a need for clinical trials assessing selinexor in combination with immunotherapies such as immune checkpoint inhibitors, direct targeting monoclonal antibodies, chimeric antigen receptor (CAR)-T cells and cereblon E3 ligase modulators (CELMoDs).
Collapse
Affiliation(s)
- Jack G. Fisher
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | - Laura G. Bartlett
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | | | | | - Salim I. Khakoo
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | - Matthew D. Blunt
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| |
Collapse
|
3
|
Wang S, Xia Y, Qian Y, Pan W, Huang P, Jin N, Li X, Xu C, Liu D, Zhao G, Fang Y, Nicot C, Gao Q. PARP inhibition elicits NK cell-associated immune evasion via potentiating HLA-G expression in tumor. Drug Resist Updat 2025; 81:101247. [PMID: 40328191 DOI: 10.1016/j.drup.2025.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025]
Abstract
Resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) poses a significant challenge to enhancing the efficacy of cancer treatments. Beyond the cellular mechanisms intrinsic to tumor cells, the modulation of the tumor immune microenvironment is crucial in dictating the responsiveness to pharmacological interventions. Thus, there is a pressing need to elucidate the intricate interplay between PARPi and antitumor immune responses and to develop an optimized combinatorial therapeutic approach. In this study, using matched tumor samples before and after neoadjuvant monotherapy with the PARPi niraparib in a prospective clinical trial (NCT04507841), we observed a significant increase in natural killer (NK) cell infiltration post-treatment. However, this was not accompanied by the expected enhancement in their cytotoxic functions. This observation underscores the necessity to optimize the antitumor potential of NK cells by enhancing their cytotoxic capabilities. Upon exposure to niraparib, tumor cells, particularly those with wild-type EGFR, exhibited a pronounced upregulation of human leukocyte antigen G (HLA-G), an immune checkpoint impeding NK cell functions. Niraparib promotes EGFR internalization, which in turn diminishes AKT/mTOR signaling, leading to the increased transcriptional activity of the transcription factor EB (TFEB) and subsequent enhancement of HLA-G expression. The combination of niraparib with HLA-G blockade not only augmented NK cell-mediated tumor lysis in vitro but also synergistically inhibited tumor growth in humanized patient-derived xenograft models. Collectively, our results shed light on a previously unrecognized immune evasion mechanism and offer a compelling argument for the integration of HLA-G blockade with PARPi in cancer therapy.
Collapse
Affiliation(s)
- Siyuan Wang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yiyu Qian
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pu Huang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangnian Zhao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Fang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Christophe Nicot
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
El Saftawy E, Aboulhoda BE, Alghamdi MA, Abd Elkhalek MA, AlHariry NS. Heterogeneity of modulatory immune microenvironment in bladder cancer. Tissue Cell 2025; 93:102679. [PMID: 39700733 DOI: 10.1016/j.tice.2024.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. The intra-tumor heterogeneity of the UBC microenvironment explains the variances in response to therapy among patients. Tumor immune microenvironment (TIME) is based on the balance between anti-tumor and pro-tumorigenic immunity that eventually determines the tumor fate. This review addresses the recent insights of the cytokines, immune checkpoints, receptors, enzymes, proteins, RNAs, cancer stem cells (CSCs), tissue-resident cells, growth factors, epithelial-mesenchymal transition, microbiological cofactor, and paracrine action of cancer cells that mutually cross-talk within the TIME. In-depth balance and alteration of these factors influence the TIME and the overall tumor progression. This, in turn, highlights the prospects of the new era of manipulating these co-factors for improving the diagnosis, prognosis, and treatment of UBC. CONCLUSION: The heterogenic architecture of the TIME orchestrates the fate of the tumor. Nevertheless, recognizing the mutual cross-talk between these key players seems useful in prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt.
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Centre for Medical and Heath Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry& Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt; Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
5
|
Liatsos GD, Mariolis I, Hadziyannis E, Bamias A, Vassilopoulos D. Review of BCG immunotherapy for bladder cancer. Clin Microbiol Rev 2025; 38:e0019423. [PMID: 39932308 PMCID: PMC11905372 DOI: 10.1128/cmr.00194-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
SUMMARYFor several decades, intravesical Bacillus Calmette-Guérin (iBCG) immunotherapy has been the gold standard adjuvant treatment for high-risk and selected intermediate-risk patients with non-muscle-invasive bladder cancer (NMIBC). In this review, the mechanisms of iBCG immune-mediated anti-cancer activity and resistance are presented. Furthermore, a literature review of short-term and systemic iBCG-related side effects was performed. A high incidence (75.5%) of iBCG-related short-term, self-limiting adverse events was observed, while more severe iBCG-related local/systemic complications (iBCG-rL/SCs) that required medical treatment or hospitalization occurred at a lower rate (2.35%). Disseminated was the most common form of iBCG-rSCs, while two-thirds of the cases were classified as infectious. The implementation of molecular-based techniques resulted in significantly higher diagnostic rates. Anti-tuberculous treatment (ATT) is the mainstay of treatment, while in patients with any iBCG-rL/SC form involving the vasculature, ATT should be combined with surgery. Local and osteoarticular forms have the lowest mortality, but their management necessitates severe and debilitating surgical procedures. The overall iBCG-attributed mortality in patients with iBCG-rL/SC was 7.4%, with disseminated, vascular, and lung involvements exhibiting the highest rates. Given the global shortage of BCG for the last two decades, as well as the paucity of effective options for iBCG-refractory or relapsing NMIBC patients, new therapeutic strategies are being tested with promising early results.
Collapse
Affiliation(s)
- George D. Liatsos
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Ilias Mariolis
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Emilia Hadziyannis
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Attikon University General Hospital, Athens, Greece
| | - Dimitrios Vassilopoulos
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| |
Collapse
|
6
|
Mestrallet G, Brown M, Vaninov N, Cho NW, Velazquez L, Ananthanarayanan A, Spitzer M, Vabret N, Cimen Bozkus C, Samstein RM, Bhardwaj N. Coordinated macrophage and T cell interactions mediate response to checkpoint blockade in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637954. [PMID: 40027748 PMCID: PMC11870396 DOI: 10.1101/2025.02.12.637954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mismatch repair deficiency (MMRd), either due to inherited or somatic mutation, is prevalent in colorectal cancer (CRC) and other cancers. While anti-PD-1 therapy is utilized in both local and advanced disease, up to 50% of MMRd CRC fail to respond. Using animal and human models of MMRd, we determined that interactions between MHC+ C1Q+ CXCL9+ macrophages and TCF+ BHLHE40+ PRF1+ T cell subsets are associated with control of MMRd tumor growth, during anti-PD-1 treatment. In contrast, resistance is associated with upregulation of TIM3, LAG3, TIGIT, and PD-1 expression on T cells, and infiltration of the tumor with immunosuppressive TREM2+ macrophages and monocytes. By combining anti-PD-1 with anti-LAG3/CTLA4/TREM2, up to 100% tumor eradication was achieved in MMRd CRC and remarkably, in >70% in MMRp CRC. This study identifies key T cell and macrophage subsets mediating the efficacy of immunotherapy in overcoming immune escape in both MMRd and MMRp CRC settings. Abstract Figure Highlights Anti-PD-1 therapy leads to the accumulation and colocalization of MHCI/II+ C1Q+ CXCL9+ macrophages and DCs with TCF+ CCL5+ T cells that have high TCR diversity.Resistance to anti-PD-1 therapy involves multiple T cell checkpoints, TREM2+ macrophages, IL1B+ TREM1+ monocytes and neutrophils, and IFITM+ tumor cells.Simultaneous blockade of PD-1, LAG3, CTLA-4 and TREM2 dramatically prevents progression of both MMRd and MMRp tumors.Combination therapy completely eliminates tumors by leveraging MHC+ macrophage, CD4+ and CD8+ T cell interactions, facilitating durable anti-tumor effects.
Collapse
|
7
|
Sætersmoen M, Kotchetkov IS, Torralba-Raga L, Mansilla-Soto J, Sohlberg E, Krokeide SZ, Hammer Q, Sadelain M, Malmberg KJ. Targeting HLA-E-overexpressing cancers with a NKG2A/C switch receptor. MED 2025; 6:100521. [PMID: 39423821 DOI: 10.1016/j.medj.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/06/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Human leukocyte antigen (HLA)-E is overexpressed by a large proportion of solid tumors, including malignant glioblastoma, and acts as a major checkpoint for NKG2A+ CD8+ T cells and natural killer (NK) cells in the tumor microenvironment and circulation. This axis operates alongside PD-L1 to inhibit effector responses by T and NK cells. METHODS We engineered a chimeric A/C switch receptor, combining the high HLA-E binding affinity of the NKG2A receptor ectodomain with the activating signaling of the NKG2C receptor endodomain. The cytotoxic function of A/C switch-transduced NK and T cells was evaluated against tumor cells with varying levels of HLA-E expression. In vivo efficacy was assessed using a xenograft model of glioblastoma. FINDINGS A/C switch-transduced NK and T cells exhibited superior and specific cytotoxicity against tumor cells with medium to high HLA-E expression. A/C switch-expressing human T cells demonstrated enhanced anti-tumor function in a glioblastoma xenograft model. The activity of the modified T cells was governed by an equilibrium between A/C switch levels and HLA-E expression, creating a therapeutic window to minimize on-target, off-tumor toxicities. Normal cells remained insensitive to A/C switch T cells, even after interferon (IFN)-γ pretreatment to induce HLA-E expression. CONCLUSIONS The A/C switch receptor effectively targets tumor cells expressing high levels of HLA-E, either alone or in combination with other engineered specificities, to overcome the suppressive NKG2A/HLA-E checkpoint. This approach offers a promising therapeutic strategy with a favorable safety profile for targeting HLA-E-overexpressing tumors. FUNDING This work was funded by The Research Council of Norway, the Norwegian Cancer Society, and the National Cancer Institute.
Collapse
Affiliation(s)
- Michelle Sætersmoen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ivan S Kotchetkov
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lamberto Torralba-Raga
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jorge Mansilla-Soto
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Silje Zandstra Krokeide
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
8
|
Ruiz-Lorente I, Gimeno L, López-Abad A, López Cubillana P, Fernández Aparicio T, Asensio Egea LJ, Moreno Avilés J, Doñate Iñiguez G, Guzmán Martínez-Valls PL, Server G, Ferri B, Campillo JA, Martínez-Sánchez MV, Minguela A. Differential Role of NKG2A/HLA-E Interaction in the Outcomes of Bladder Cancer Patients Treated with M. bovis BCG or Other Therapies. Biomedicines 2025; 13:156. [PMID: 39857739 PMCID: PMC11760850 DOI: 10.3390/biomedicines13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Immunotherapy is gaining great relevance in both non-muscle-invasive bladder cancer (NMIBC), with the use of bacille Calmette-Guerin (BCG), and in muscle-invasive BC (MIBC) with anti-checkpoint therapies blocking PD-1/PD-L1, CTLA-4/CD80-CD86, and, more recently, NKG2A/HLA-E interactions. Biomarkers are necessary to optimize the use of these therapies. Methods: We evaluated killer-cell immunoglobulin-like receptors (KIRs) and HLA-I genotyping and the expression of NK cell receptors in circulating T and NK lymphocytes at diagnosis in 325 consecutive BC patients (151 treated with BCG and 174 treated with other therapies), as well as in 648 patients with other cancers and 973 healthy donors as controls. The proliferation and production of cytokines and cytotoxicity were evaluated in peripheral blood mononuclear cells, stimulated in vitro with anti-CD3/CD28 or BCG, from selected patients based on HLA-B -21M/T dimorphism (NKG2A ligands). Results: The HLA-B -21M/T genotype showed opposing results in BC patients treated with BCG or other therapies. The MM genotype, compared to MT and TT, was associated with a longer 75th-percentile overall survival (not reached vs. 68.0 ± 13.7 and 52.0 ± 8.3 months, p = 0.034) in BCG, but a shorter (8.0 ± 2.4 vs. 21.0 ± 3.4 and 19.0 ± 4.9 months, p = 0.131) survival in other treatments. The HLA-B -21M/T genotype was an independent predictive parameter of the progression-free survival (HR = 2.08, p = 0.01) and the OS (HR = 2.059, p = 0.039) of BC patients treated with BCG, together with age and tumor histopathologic characteristics. The MM genotype was associated with higher counts of circulating CD56bright, fewer KIR2DL1/L2+ NK cells, and lower NKG2A expression, but not with differential in vitro NK cell functionality. Conclusions: The HLA-B -21M/T is independently associated with BC patient outcomes and can help to optimize the use of new immunotherapies in these patients.
Collapse
Affiliation(s)
- Inmaculada Ruiz-Lorente
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| | - Lourdes Gimeno
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain
| | - Alicia López-Abad
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.)
| | - Pedro López Cubillana
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.)
| | | | | | | | | | | | - Gerardo Server
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.)
| | - Belén Ferri
- Pathology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - José Antonio Campillo
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| | - María Victoria Martínez-Sánchez
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| | - Alfredo Minguela
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| |
Collapse
|
9
|
Xu SJ, Luo YF, Huang J, Tu JH, Chen C, Shen YM, Sun ZM, Chen SC. Prognostic value of immunosuppression scores in patients with esophageal squamous cell carcinoma: a multicenter study. Front Immunol 2025; 15:1517968. [PMID: 39845968 PMCID: PMC11752912 DOI: 10.3389/fimmu.2024.1517968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction The prognostic impact of human leukocyte antigen-E (HLA-E) expression and the proportion of natural killer (NK) cells in esophageal squamous cell carcinoma (ESCC) was investigated. Methods This study retrospectively evaluated 397 ESCC patients across two centers. The cumulative incidence of recurrence (CIR) and the incidence of tumor-related death (CID) were analyzed in various groups. An immunosuppression score (ISS) was developed based on HLA-E expression and NK cell proportion. Differences between groups were adjusted using inverse probability treatment weighting (IPTW). The factors influencing cancer-specific survival (CSS) and recurrence-free survival (RFS) were also examined. Results Patients with low HLA-E expression had significantly higher five-year CIR and CID compared to those with high expression (CIR: 20.7% vs. 45.1%, CID: 19.3% vs. 40.1%; p< 0.001). Similarly, NK cell-positive patients had significantly better five-year CIR and CID than NK cell-negative patients (CIR: 16.3% vs. 59.6%, CID: 13.9% vs. 53.7%; p < 0.001). The Sankey diagram indicated that the low ISS group had a lower recurrence and tumor-related mortality rate (p < 0.05). After IPTW adjustment, the low ISS group showed improved five-year RFS (80.1% vs. 35.4%, p < 0.001) and five-year CSS (82.3% vs. 42.5%, p < 0.001) compared to the high ISS group. Conclusions ESCC with different ISS statuses represents two distinct biological subtypes, underscoring the need for personalized treatment strategies tailored to varying tumor behaviors.
Collapse
Affiliation(s)
- Shao-jun Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Yun-fan Luo
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Jin Huang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Jia-hua Tu
- Department of Thoracic Surgery, The First Hospital of Putian, Putian, Fujian, China
| | - Chao Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Yan-ming Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Zhao-min Sun
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Shu-chen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Chen Y, Lu X, Peng G, Liu S, Wang M, Hou H. A bibliometric analysis of research on PD-1/PD-L1 in urinary tract tumors. Hum Vaccin Immunother 2024; 20:2390727. [PMID: 39385743 PMCID: PMC11469446 DOI: 10.1080/21645515.2024.2390727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024] Open
Abstract
Programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are key components in immune checkpoint studies across various tumors, including those in the urinary tract. The utilization of PD-1/PD-L1 inhibitors in urinary tract tumors is on the rise. This study provides a comprehensive overview of PD-1/PD-L1 research in urinary tract tumors through bibliometric analysis. A search was conducted in the Web of Science Core Collection (WoSCC) database for academic papers on PD-1/PD-L1 in urinary tract tumors published between January 1, 1999, and September 3, 2022. Tools such as VOSviewer, CiteSpace, and an online bibliometric platform, were used for an in-depth analysis covering countries, institutions, authors, journals, references, and keywords. A total of 1,711 articles on PD-1/PD-L1 in urinary tract tumors were analyzed. The United States led in article contributions, followed by China and Japan. Harvard University was the top institution in this research area. With notable conctributions from Choueiri TK, who authored 48 related articles. The Journal for Immunotherapy of Cancer was the top publisher, and Topalian SL's 2012 publication in The New England Journal of Medicine was the most cited article. Key author keywords included "immunotherapy," "PD-L1," "renal cell carcinoma," "bladder cancer," and "immune checkpoint inhibitors." Notably, research on the role of PD-1/PD-L1 in kidney and bladder cancer has garnered significant attention.
Collapse
Affiliation(s)
- Yongming Chen
- Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Genyuan Peng
- Department of Gastrointestinal Surgery, Shenshan Central Hospital of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shengjie Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Shams SGE, Dawud D, Michalak K, Makhlouf MM, Moustafa A, Jazwinski SM, Kang L, Zerfaoui M, El Sayed KA, Abd Elmageed ZY. Blockade of neutral sphingomyelinase 2 exerts antitumor effect on metastatic castration resistant prostate cancer cells and promotes tumor regression when combined with Enzalutamide. Am J Cancer Res 2024; 14:5697-5716. [PMID: 39803655 PMCID: PMC11711525 DOI: 10.62347/xxxa3182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths among American men. The development of metastatic castration resistant PCa (mCRPC) is the current clinical challenge. Antiandrogens such as Enzalutamide (ENZ) are commonly used for CRPC treatment. However, patients with androgen receptor (AR)-negative tumors do not respond to ENZ, while AR-positive tumors frequently develop resistance, limiting the long-term efficacy of this therapy. This study investigates the efficacy of neutral sphingomyelinase 2 (n-SMase2) inhibition by DPTIP, both alone and in combination with ENZ, as a therapeutic strategy for mCRPC. In vitro assays were conducted to determine the half-maximal inhibitory concentration (IC50) of DPTIP and ENZ in mCRPC cells. The effect of these treatments on cell proliferation, migration, and colony formation was assessed. The antitumor effect of DPTIP was also evaluated in a preclinical PCa mouse model. Elevated n-SMase2 expression was observed in PCa patients compared to normal subjects at both mRNA and protein levels. In CWR-R1ca and PC-3 cells, DPTIP had IC50 values of 10.31 and 14.57 µM, while ENZ had IC50 values of 33.7 and 81 µM, respectively. Combined treatment significantly suppressed cell proliferation, colony formation, and migration of mCRPC cells. Mechanistically, the ERK1/2 activity and the expression of nSMase2 and NF-kB p65 were inhibited by DPTIP. The in vivo combination of DPTIP and ENZ reduced tumor size and weight more effectively than either drug alone, without significant changes in body weight. This study highlights the therapeutic potential of targeting n-SMase2 for mCRPC. Inhibition of n-SMase2 using DPTIP, both as a standalone treatment and in combination with ENZ, effectively suppressed the growth and migration of mCRPC cells. These findings suggest a promising novel approach to treating mCRPC and warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Shams GE Shams
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Dalal Dawud
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Kasia Michalak
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Maysoon M Makhlouf
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Ahmed Moustafa
- Tulane Center for Aging, School of Medicine, Tulane UniversityNew Orleans, LA 70112, USA
| | - S Michal Jazwinski
- Tulane Center for Aging, School of Medicine, Tulane UniversityNew Orleans, LA 70112, USA
| | - Lin Kang
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71201, USA
- Center for One Health Research, VA-MD College of Veterinary MedicineBlacksburg, VA 24060, USA
| | - Mourad Zerfaoui
- Department of Pediatrics, Center for ViroScience and Cure (CVC), School of Medicine, Emory UniversityAtlanta, GA 30322, USA
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71201, USA
| | - Zakaria Y Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71201, USA
| |
Collapse
|
12
|
Tsao HW, Anderson S, Finn KJ, Perera JJ, Pass LF, Schneider EM, Jiang A, Fetterman R, Chuong CL, Kozuma K, Stickler MM, Creixell M, Klaeger S, Phulphagar KM, Rachimi S, Verzani EK, Olsson N, Dubrot J, Pech MF, Silkworth W, Lane-Reticker SK, Allen PM, Ibrahim K, Knudsen NH, Cheng AY, Long AH, Ebrahimi-Nik H, Kim SY, Du PP, Iracheta-Vellve A, Robitschek EJ, Suermondt JSMT, Davis TGR, Wolfe CH, Atluri T, Olander KE, Rush JS, Sundberg TB, McAllister FE, Abelin JG, Firestone A, Stokoe D, Carr SA, Harding FA, Yates KB, Manguso RT. Targeting the aminopeptidase ERAP enhances antitumor immunity by disrupting the NKG2A-HLA-E inhibitory checkpoint. Immunity 2024; 57:2863-2878.e12. [PMID: 39561763 DOI: 10.1016/j.immuni.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/12/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
The aminopeptidase, endoplasmic reticulum aminopeptidase 1 (ERAP1), trims peptides for loading into major histocompatibility complex class I (MHC class I), and loss of this activity has broad effects on the MHC class I peptidome. Here, we investigated the impact of targeting ERAP1 in immune checkpoint blockade (ICB), as MHC class I interactions mediate both activating and inhibitory functions in antitumor immunity. Loss of ERAP sensitized mouse tumor models to ICB, and this sensitivity depended on CD8+ T cells and natural killer (NK) cells. In vivo suppression screens revealed that Erap1 deletion inactivated the inhibitory NKG2A-HLA-E checkpoint, which requires presentation of a restricted set of invariant epitopes (VL9) on HLA-E. Loss of ERAP altered the HLA-E peptidome, preventing NKG2A engagement. In humans, ERAP1 and ERAP2 showed functional redundancy for the processing and presentation of VL9, and loss of both inactivated the NKG2A checkpoint in cancer cells. Thus, loss of ERAP phenocopies the inhibition of the NKG2A-HLA-E pathway and represents an attractive approach to inhibit this critical checkpoint.
Collapse
Affiliation(s)
- Hsiao-Wei Tsao
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Seth Anderson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jonathan J Perera
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Lomax F Pass
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Schneider
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Aiping Jiang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Fetterman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Cun Lan Chuong
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kaiya Kozuma
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Juan Dubrot
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Sarah Kate Lane-Reticker
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Peter M Allen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kyrellos Ibrahim
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Nelson H Knudsen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew Y Cheng
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Adrienne H Long
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hakimeh Ebrahimi-Nik
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah Y Kim
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Peter P Du
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Arvin Iracheta-Vellve
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Emily J Robitschek
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Juliette S M T Suermondt
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas G R Davis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Clara H Wolfe
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Trisha Atluri
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kira E Olander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Jason S Rush
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Thomas B Sundberg
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - David Stokoe
- Calico Life Sciences, South San Francisco, CA, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Kathleen B Yates
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Robert T Manguso
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
13
|
Minowa T, Murata K, Mizue Y, Murai A, Nakatsugawa M, Sasaki K, Tokita S, Kubo T, Kanaseki T, Tsukahara T, Handa T, Sato S, Horimoto K, Kato J, Hida T, Hirohashi Y, Uhara H, Torigoe T. Single-cell profiling of acral melanoma infiltrating lymphocytes reveals a suppressive tumor microenvironment. Sci Transl Med 2024; 16:eadk8832. [PMID: 39630887 DOI: 10.1126/scitranslmed.adk8832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/12/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Acral lentiginous melanoma (ALM) is the most common melanoma subtype in non-Caucasians. Despite advances in cancer immunotherapy, current immune checkpoint inhibitors remain unsatisfactory for ALM. Hence, we conducted comprehensive immune profiling using single-cell phenotyping with reactivity screening of the T cell receptors of tumor-infiltrating T lymphocytes (TILs) in ALM. Compared with cutaneous melanoma, ALM showed a lower frequency of tumor-reactive CD8 clusters and an enrichment of regulatory T cells with direct tumor recognition ability, suggesting a suppressive immune microenvironment in ALM. Tumor-reactive CD8 TILs showed heterogeneous expression of coinhibitory molecules, including KLRC1 (NKG2A), in subpopulations with therapeutic implications. Overall, our study provides a foundation for enhancing the efficacy of immunotherapy in ALM.
Collapse
Affiliation(s)
- Tomoyuki Minowa
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
- Department of Dermatology, Sapporo Medical University School of Medicine, 060-8543 Sapporo, Hokkaido, Japan
| | - Kenji Murata
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
- Joint Research Center for Immunoproteogenomics, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
| | - Yuka Mizue
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
| | - Munehide Nakatsugawa
- Department of Pathology, Tokyo Medical University Hachioji Medical Center, 193-0998 Hachioji, Tokyo, Japan
| | - Kenta Sasaki
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
| | - Serina Tokita
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
- Joint Research Center for Immunoproteogenomics, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
- Joint Research Center for Immunoproteogenomics, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
| | - Toshiya Handa
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
- Department of Dermatology, Sapporo Medical University School of Medicine, 060-8543 Sapporo, Hokkaido, Japan
| | - Sayuri Sato
- Department of Dermatology, Sapporo Medical University School of Medicine, 060-8543 Sapporo, Hokkaido, Japan
| | - Kohei Horimoto
- Department of Dermatology, Sapporo Medical University School of Medicine, 060-8543 Sapporo, Hokkaido, Japan
| | - Junji Kato
- Department of Dermatology, Sapporo Medical University School of Medicine, 060-8543 Sapporo, Hokkaido, Japan
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, 060-8543 Sapporo, Hokkaido, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, 060-8543 Sapporo, Hokkaido, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Greppi M, De Franco F, Obino V, Rebaudi F, Goda R, Frumento D, Vita G, Baronti C, Melaiu O, Bozzo M, Candiani S, Vellone VG, Papaccio F, Pesce S, Marcenaro E. NK cell receptors in anti-tumor and healthy tissue protection: Mechanisms and therapeutic advances. Immunol Lett 2024; 270:106932. [PMID: 39303993 DOI: 10.1016/j.imlet.2024.106932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Natural Killer (NK) cells are integral to the innate immune system, renowned for their ability to target and eliminate cancer cells without the need for antigen presentation, sparing normal tissues. These cells are crucial in cancer immunosurveillance due to their diverse array of activating and inhibitory receptors that modulate their cytotoxic activity. However, the tumor microenvironment can suppress NK cell function through various mechanisms. Over recent decades, research has focused on overcoming these tumor escape mechanisms. Initially, efforts concentrated on enhancing T cell activity, leading to impressive results with immunotherapeutic approaches aimed at boosting T cell responses. Nevertheless, a substantial number of patients do not benefit from these treatments and continue to seek effective alternatives. In this context, NK cells present a promising avenue for developing new treatments, given their potent cytotoxic capabilities, safety profile, and activity against T cell-resistant tumors, such as those lacking HLA-I expression. Recent advancements in immunotherapy include strategies to restore and amplify NK cell activity through immune checkpoint inhibitors, cytokines, adoptive NK cell therapy, and CAR-NK cell technology. This review provides a comprehensive overview of NK cell receptors, the tumor escape mechanisms that hinder NK cell function, and the evolving field of NK cell-based cancer immunotherapy, highlighting ongoing efforts to develop more effective and targeted cancer treatment strategies.
Collapse
Affiliation(s)
- Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Fabiana De Franco
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Federico Rebaudi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Davide Frumento
- Department of Education Sciences, University of Rome Tre, Rome, Italy
| | - Giorgio Vita
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Camilla Baronti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Valerio G Vellone
- Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy; Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
15
|
Rebaudi F, Rebaudi A, De Rosa A, Rebaudi AL, Pesce S, Greppi M, Roghi M, Boggio M, Candiani S, Marcenaro E. Case report: Non-invasive cyto-salivary sampling and biomarker detection via ELISA versus histopathology for diagnosing oral potentially malignant disorders - Insights from a case-control study. Front Immunol 2024; 15:1477477. [PMID: 39676869 PMCID: PMC11638211 DOI: 10.3389/fimmu.2024.1477477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Oral leukoplakia is classified among oral potentially malignant disorders (OPMDs) by the World Health Organization (WHO). The visual oral examination (VOE) is the most used method for identifying lesions in their early stages. Given that the diagnosis of oral cancer is often late, there is an urgent need for early detection and examination of oral lesions. Surgical biopsy represents the gold standard as a diagnostic method, but because it is invasive, it cannot be repeated for periodic checks. We report the case of a lesion on the buccal mucosa of a 65-year-old male patient with a malignant appearance. The patient underwent a novel non-invasive cyto-salivary sampling and ELISA immunoassay for tumor biomarker detection and biopsy with histopathological analysis. The rapid ELISA test results excluded signs of malignancy, providing valuable insights into the lesion's immunophenotypic profile, which were consistent with the histopathological examination findings. This case report highlights the clinical and histopathological characteristics of a lesion with the aspect of Proliferative Verrucous Leukoplakia (PVL), emphasizing its challenging diagnosis and management. The integration of non-invasive cytobrush sampling with biomarker analysis proved valuable in detecting specific tumor biomarkers, potentially indicating ongoing tumor transformation. Monitoring these markers over time could enhance early detection and management strategies, thereby improving patient outcomes. This approach underscores the utility of non-invasive techniques in phenotyping oral lesions and supporting clinical decision-making in oral medicine.
Collapse
Affiliation(s)
- Federico Rebaudi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | | | - Alfredo De Rosa
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Marco Roghi
- Department of Oral Pathology, Istituto Stomatologico Italiano, Milan, Italy
| | | | - Simona Candiani
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
16
|
Ruiz-Lorente I, Gimeno L, López-Abad A, López Cubillana P, Fernández Aparicio T, Asensio Egea LJ, Moreno Avilés J, Doñate Iñiguez G, Guzmán Martínez-Valls PL, Server G, Escudero-Bregante JF, Ferri B, Campillo JA, Pons-Fuster E, Martínez Hernández MD, Martínez-Sánchez MV, Ceballos D, Minguela A. Exploring the Immunoresponse in Bladder Cancer Immunotherapy. Cells 2024; 13:1937. [PMID: 39682686 PMCID: PMC11640729 DOI: 10.3390/cells13231937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) represents a wide spectrum of diseases, ranging from recurrent non-invasive tumors to advanced stages that require intensive treatments. BC accounts for an estimated 500,000 new cases and 200,000 deaths worldwide every year. Understanding the biology of BC has changed how this disease is diagnosed and treated. Bladder cancer is highly immunogenic, involving innate and adaptive components of the immune system. Although little is still known of how immune cells respond to BC, immunotherapy with bacillus Calmette-Guérin (BCG) remains the gold standard in high-risk non-muscle invasive BC. For muscle-invasive BC and metastatic stages, immune checkpoint inhibitors targeting CTLA-4, PD-1, and PD-L1 have emerged as potent therapies, enhancing immune surveillance and tumor cell elimination. This review aims to unravel the immune responses involving innate and adaptive immune cells in BC that will contribute to establishing new and promising therapeutic options, while reviewing the immunotherapies currently in use in bladder cancer.
Collapse
Affiliation(s)
- Inmaculada Ruiz-Lorente
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Lourdes Gimeno
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain;
| | - Alicia López-Abad
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - Pedro López Cubillana
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | | | | | | | | | | | - Gerardo Server
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - José Félix Escudero-Bregante
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - Belén Ferri
- Pathology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - José Antonio Campillo
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Eduardo Pons-Fuster
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain;
| | - María Dolores Martínez Hernández
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - María Victoria Martínez-Sánchez
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Diana Ceballos
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Alfredo Minguela
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| |
Collapse
|
17
|
Zhou Y, Wang Y, Liang J, Qian J, Wu Z, Gao Z, Qi J, Zhu S, Li N, Chen Y, Chen G, Nie L, Guo T, Wang H. Generation, Characterization, and Preclinical Studies of a Novel NKG2A-Targeted Antibody BRY805 for Cancer Immunotherapy. Antibodies (Basel) 2024; 13:93. [PMID: 39584993 PMCID: PMC11587108 DOI: 10.3390/antib13040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Immuno-oncology has revolutionized cancer treatment, with NKG2A emerging as a novel target for immunotherapy. The blockade of NKG2A using the immune checkpoint inhibitor (ICI) monalizumab has been shown to enhance the responses of both NK cells and CD8+ T cells. However, monalizumab has demonstrated limited efficacy in in vitro cytotoxic assays and clinical trials. In our study, we discovered and characterized a novel anti-NKG2A antibody, BRY805, which exhibits high specificity for the human CD94/NKG2A heterodimer complex and does not bind to the activating NKG2C receptor. In vitro cytotoxicity assays demonstrated that BRY805 effectively activated NK92 cells and primary NK cells, thereby enhancing the cytotoxic activity of effector cells against cancer cells overexpressing HLA-E, with significantly greater efficacy compared to monalizumab. Furthermore, BRY805 exhibited synergistic antitumor activity when combined with PD-L1 monoclonal antibodies. In a mouse xenograft model, BRY805 showed superior tumor control relative to monalizumab and demonstrated a favorable safety profile in non-human primate studies.
Collapse
Affiliation(s)
- Yaqiong Zhou
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Yiru Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jinfeng Liang
- Zhejiang Center for Drug and Cosmetic Evaluation, Zhejiang Medical Products Administration, Hangzhou 310012, China
| | - Jing Qian
- Zhejiang Center for Drug and Cosmetic Evaluation, Zhejiang Medical Products Administration, Hangzhou 310012, China
| | - Zhenhua Wu
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Zhangzhao Gao
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Jian Qi
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Shanshan Zhu
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Na Li
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Yao Chen
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Gang Chen
- BioRay Pharmaceutical Corp., San Diego, CA 92121, USA
| | - Lei Nie
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Tingting Guo
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Haibin Wang
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| |
Collapse
|
18
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Le Luduec JB, Kontopoulos T, Panjwani MK, Sottile R, Liu H, Schäfer G, Massalski C, Lange V, Hsu KC. Polygenic polymorphism is associated with NKG2A repertoire and influences lymphocyte phenotype and function. Blood Adv 2024; 8:5382-5399. [PMID: 39158076 PMCID: PMC11568789 DOI: 10.1182/bloodadvances.2024013508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024] Open
Abstract
ABSTRACT CD94/NKG2A is a heterodimeric receptor commonly found on natural killer (NK) and T cells, and its interaction with its ligand HLA-E on adjacent cells leads to inhibitory signaling and cell suppression. We have identified several killer cell lectin-like receptor (KLR)C1 (NKG2A) single nucleotide polymorphisms (SNPs) that are associated with NKG2A expression on NK cells, CD8+ T cells, and Vγ9/Vδ2+ T cells. Additionally, due to strong linkage disequilibrium, polymorphisms in KLRC2 (NKG2C) and KLRK1 (NKG2D) are also associated with NKG2A surface density and frequency. NKG2A surface expression correlates with single-cell NK responsiveness, and NKG2A+ NK cell frequency is associated with total NK repertoire response and inhibitability, making the identification of SNPs responsible for expression and frequency important for predicting the innate immune response. Because HLA-E expression is dependent on HLA class I signal peptides, we analyzed the relationship between peptide abundance and HLA-E expression levels. Our findings revealed a strong association between peptide availability and HLA-E expression. We identified the HLA-C killer immunoglobulin-like receptor ligand epitope as a predictive marker for HLA-ABC expression, with the HLA-C1 epitope associated with high HLA-E expression and the HLA-C2 epitope associated with low HLA-E expression. The relationship between HLA-C epitopes and HLA-E expression was independent of HLA-E allotypes and HLA-B leader peptides. Although HLA-E expression showed no significant influence on NKG2A-mediated NK education, it did affect NK cell inhibition. In summary, these findings underscore the importance of NKG2A SNPs and HLA-C epitopes as predictive markers of NK cell phenotype and function and should be evaluated as prognostic markers for diseases that express high levels of HLA-E.
Collapse
Affiliation(s)
- Jean-Benoît Le Luduec
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Theodota Kontopoulos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - M Kazim Panjwani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rosa Sottile
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Humanitas Clinical and Research Center, Pieve Emanuele, Italy
| | - Hongtao Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gesine Schäfer
- Genotyping Laboratory, Deutsche Knochenmarkspenderdatei Life Science Lab, Dresden, Germany
| | - Carolin Massalski
- Genotyping Laboratory, Deutsche Knochenmarkspenderdatei Life Science Lab, Dresden, Germany
| | - Vinzenz Lange
- Genotyping Laboratory, Deutsche Knochenmarkspenderdatei Life Science Lab, Dresden, Germany
| | - Katharine C Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
21
|
Li N, Chen S, Xu X, Wang H, Zheng P, Fei X, Ke H, Lei Y, Zhou Y, Yang X, Ouyang Y, Xie C, He C, Hu Y, Cao Y, Li Z, Xie Y, Ge Z, Shu X, Lu N, Liu J, Zhu Y. Single-cell transcriptomic profiling uncovers cellular complexity and microenvironment in gastric tumorigenesis associated with Helicobacter pylori. J Adv Res 2024:S2090-1232(24)00466-1. [PMID: 39414226 DOI: 10.1016/j.jare.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) infection is the main risk for gastric cancer (GC). However, the cellular heterogeneity and underlying molecular mechanisms in H. pylori-driven gastric tumorigenesis are poorly understood. OBJECTIVE Here, we generated a single-cell atlas of gastric tumorigenesis comprising 18 specimens of gastritis, gastric intestinal metaplasia (IM) and GC with or without H. pylori infection. METHODS Single-cell RNA sequencing (scRNA-seq) was performed. Immunofluorescence, immunohistochemistry and qRT-PCR analysis were applied in a second human gastric tissues cohort for validation. Bioinformatics analyses of public TCGA and GEO datasets were applied. RESULTS Single-cell RNA profile highlights cellular heterogeneity and alterations in tissue ecology throughout the progression of gastric carcinoma. Various cell lineages exhibited unique cancer-associated expression profiles, such as tumor-like epithelial cell subset (EPC), inflammatory cancer-associated fibroblasts (iCAFs) and Tumor-associated macrophage (TAM). Notably, we revealed that the specific epithelial subset enterocytes from the precancerous lesion GIM, exhibited elevated expression of genes related to lipid metabolism, and HNF4G was predicted as its specific transcription factor. Furthermore, we identified differentially expressed genes in H. pylori-positive and negative epithelial cells, fibroblasts and myeloid cells were identified. Futhermore, H. pylori-positive specimens exhibited enriched cell-cell communication, characterized by significantly active TNF, SPP1, and THY1 signaling networks. CONCLUSIONS Our study provides a comprehensive landscape of the gastric carcinogenesis ecosystem and novel insights into the molecular mechanisms of different cell types in H. pylori-induced GC.
Collapse
Affiliation(s)
- Nianshuang Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Sihai Chen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Pan Zheng
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Fei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huajing Ke
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuting Lei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanan Zhou
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyu Yang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yaobin Ouyang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Hu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Cao
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhengrong Li
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xu Shu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Jianping Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Yin Zhu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
22
|
Kader T, Lin JR, Hug C, Coy S, Chen YA, de Bruijn I, Shih N, Jung E, Pelletier RJ, Leon ML, Mingo G, Omran DK, Lee JS, Yapp C, Satravada BA, Kundra R, Xu Y, Chan S, Tefft JB, Muhlich J, Kim S, Gysler SM, Agudo J, Heath JR, Schultz N, Drescher C, Sorger PK, Drapkin R, Santagata S. Multimodal Spatial Profiling Reveals Immune Suppression and Microenvironment Remodeling in Fallopian Tube Precursors to High-Grade Serous Ovarian Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615007. [PMID: 39386723 PMCID: PMC11463462 DOI: 10.1101/2024.09.25.615007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
High-Grade Serous Ovarian Cancer (HGSOC) originates from fallopian tube (FT) precursors. However, the molecular changes that occur as precancerous lesions progress to HGSOC are not well understood. To address this, we integrated high-plex imaging and spatial transcriptomics to analyze human tissue samples at different stages of HGSOC development, including p53 signatures, serous tubal intraepithelial carcinomas (STIC), and invasive HGSOC. Our findings reveal immune modulating mechanisms within precursor epithelium, characterized by chromosomal instability, persistent interferon (IFN) signaling, and dysregulated innate and adaptive immunity. FT precursors display elevated expression of MHC-class I, including HLA-E, and IFN-stimulated genes, typically linked to later-stage tumorigenesis. These molecular alterations coincide with progressive shifts in the tumor microenvironment, transitioning from immune surveillance in early STICs to immune suppression in advanced STICs and cancer. These insights identify potential biomarkers and therapeutic targets for HGSOC interception and clarify the molecular transitions from precancer to cancer.
Collapse
Affiliation(s)
- Tanjina Kader
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shannon Coy
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Ino de Bruijn
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Natalie Shih
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Mariana Lopez Leon
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gabriel Mingo
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dalia Khaled Omran
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jong Suk Lee
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | | | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Yilin Xu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabrina Chan
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Juliann B Tefft
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah Kim
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nikolaus Schultz
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Charles Drescher
- Swedish Cancer Institute Gynecologic Oncology and Pelvic Surgery, Seattle, WA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Zhou LF, Liao HY, Han Y, Zhao Y. The use of organoids in creating immune microenvironments and treating gynecological tumors. J Transl Med 2024; 22:856. [PMID: 39313812 PMCID: PMC11421176 DOI: 10.1186/s12967-024-05649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Owing to patient-derived tumor tissues and cells, significant advances have been made in personalized cancer treatment and precision medicine, with cancer stem cell-derived three-dimensional tumor organoids serving as crucial in vitro models that accurately replicate the structural, phenotypic, and genetic characteristics of tumors. However, despite their extensive use in drug testing, genome editing, and transplantation for facilitating personalized treatment approaches in clinical practice, the inadequate capacity of these organoids to effectively model immune cells and stromal components within the tumor microenvironment limits their potential. Additionally, effective clinical immunotherapy has led the tumor immune microenvironment to garner considerable attention, increasing the demand for simulating patient-specific tumor-immune interactions. Consequently, co-culture techniques integrating tumor organoids with immune cells and tumor microenvironment constituents have been developed to expand the possibilities for personalized drug response investigations, with recent advancements enhancing the understanding of the strengths, limitations, and applicability of the co-culture approach. Herein, the recent advancements in the field of tumor organoids have been comprehensively reviewed, specifically highlighting the tumor organoid co-culture-related developments with various immune cell models and their implications for clinical research. Furthermore, this review delineates the current state of research and application of organoid models regarding the therapeutic approaches and related challenges for gynecological tumors. This study may provide a theoretical basis for further research on the use of patient-derived organoids in tumor immunity, drug development, and precision medicine.
Collapse
Affiliation(s)
- Ling-Feng Zhou
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China
| | - Hui-Yan Liao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China
| | - Yang Han
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| |
Collapse
|
24
|
Ranti D, Yu H, Wang YA, Bieber C, Strandgaard T, Salomé B, Houghton S, Kim J, Ravichandran H, Okulate I, Merritt E, Bang S, Demetriou A, Li Z, Lindskrog SV, Ruan DF, Daza J, Rai R, Hegewisch-Solloa E, Mace EM, Fernandez-Rodriguez R, Izadmehr S, Doherty G, Narasimhan A, Farkas AM, Cruz-Encarnacion P, Shroff S, Patel F, Tran M, Park SJ, Qi J, Patel M, Geanon D, Kelly G, de Real RM, Lee B, Nie K, Miake-Iye S, Angeliadis K, Radkevich E, Thin TH, Garcia-Barros M, Brown H, Martin B, Mateo A, Soto A, Sussman R, Shiwlani S, Francisco-Simon S, Beaumont KG, Hu Y, Wang YC, Wang L, Sebra RP, Smith S, Skobe M, Clancy-Thompson E, Palmer D, Hammond S, Hopkins BD, Wiklund P, Zhu J, Bravo-Cordero JJ, Brody R, Hopkins B, Chen Z, Kim-Schulze S, Dyrskjøt L, Elemento O, Tocheva A, Song WM, Bhardwaj N, Galsky MD, Sfakianos JP, Horowitz A. HLA-E and NKG2A Mediate Resistance to M. bovis BCG Immunotherapy in Non-Muscle-Invasive Bladder Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610816. [PMID: 39282294 PMCID: PMC11398371 DOI: 10.1101/2024.09.02.610816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mycobacterium bovis Bacillus Calmette-Guerin (BCG) is the primary treatment for non-muscle-invasive bladder cancer (NMIBC), known to stimulate inflammatory cytokines, notably interferon (IFN)-γ. We observed that prolonged IFN-γ exposure fosters adaptive resistance in recurrent tumors, aiding immune evasion and tumor proliferation. We identify HLA-E and NKG2A, part of a novel NK and T cell checkpoint pathway, as key mediators of resistance in BCG-unresponsive NMIBC. IFN-γ enhances HLA-E and PD-L1 expression in recurrent tumors, with an enrichment of intra-tumoral NKG2A-expressing NK and CD8 T cells. CXCL9+ macrophages and dendritic cells and CXCL12-expressing stromal cells likely recruit CXCR3/CXCR4-expressing NK and T cells and CXCR7+ HLA-EHIGH tumor cells. NK and CD8 T cells remain functional within BCG-unresponsive tumors but are inhibited by HLA-E and PD-L1, providing a framework for combined NKG2A and PD-L1 blockade strategy for bladder-sparing treatment of BCG-unresponsive NMIBC.
Collapse
Affiliation(s)
- D Ranti
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Yu
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Y A Wang
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Bieber
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T Strandgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - B Salomé
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean Houghton
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - J Kim
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - H Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - I Okulate
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Merritt
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Bang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Demetriou
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Z Li
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - D F Ruan
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Daza
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Rai
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York NY, USA
| | - E M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York NY, USA
| | - R Fernandez-Rodriguez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Izadmehr
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Doherty
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Narasimhan
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A M Farkas
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P Cruz-Encarnacion
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Shroff
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - F Patel
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Tran
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S J Park
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Qi
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D Geanon
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R M de Real
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - B Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Miake-Iye
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K Angeliadis
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Radkevich
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T H Thin
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - M Garcia-Barros
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - H Brown
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - B Martin
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - A Mateo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - A Soto
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - R Sussman
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - S Shiwlani
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - S Francisco-Simon
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - K G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Y Hu
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Y-C Wang
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Smith
- Center for Inflammation research and Translational Medicine, Brunel University London, London, UK
| | - M Skobe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - D Palmer
- AstraZeneca, Oncology R & D Unit, Gaithersburg, Maryland, USA
| | - S Hammond
- AstraZeneca, Oncology R & D Unit, Gaithersburg, Maryland, USA
| | - B D Hopkins
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J J Bravo-Cordero
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Brody
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - B Hopkins
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Inflammation research and Translational Medicine, Brunel University London, London, UK
- AstraZeneca, Oncology R & D Unit, Gaithersburg, Maryland, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Z Chen
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Kim-Schulze
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - O Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - A Tocheva
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W-M Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N Bhardwaj
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M D Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J P Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Horowitz
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Martin KE, Hammer Q, Perica K, Sadelain M, Malmberg KJ. Engineering immune-evasive allogeneic cellular immunotherapies. Nat Rev Immunol 2024; 24:680-693. [PMID: 38658708 DOI: 10.1038/s41577-024-01022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics.
Collapse
Affiliation(s)
- Karen E Martin
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karlo Perica
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway.
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway.
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Cheng W, Zhu N, Wang J, Yang R. A role of gut microbiota metabolites in HLA-E and NKG2 blockage immunotherapy against tumors: new insights for clinical application. Front Immunol 2024; 15:1331518. [PMID: 39229258 PMCID: PMC11368731 DOI: 10.3389/fimmu.2024.1331518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
One of major breakthroughs in immunotherapy against tumor is from blocking immune checkpoint molecules on tumor and reactive T cells. The development of CTLA-4 and PD-1 blockage antibodies has triggered to search for additional effective therapeutic strategies. This causes recent findings that blocking the interaction of checkpoint molecule NKG2A in NK and CD8 T cells with HLA-E in tumors is effective in defensing tumors. Interestingly, gut microbiota also affects this immune checkpoint immunotherapy against tumor. Gut microbiota such as bacteria can contribute to the regulation of host immune response and homeostasis. They not only promote the differentiation and function of immunosuppressive cells but also the inflammatory cells through the metabolites such as tryptophan (Trp) and bile acid (BA) metabolites as well as short chain fatty acids (SCFAs). These gut microbiota metabolites (GMMs) educated immune cells can affect the differentiation and function of effective CD8 and NK cells. Notably, these metabolites also directly affect the activity of CD8 and NK cells. Furthermore, the expression of CD94/NKG2A in the immune cells and/or their ligand HLA-E in the tumor cells is also regulated by gut microbiota associated immune factors. These findings offer new insights for the clinical application of gut microbiota in precise and/or personalized treatments of tumors. In this review, we will discuss the impacts of GMMs and GMM educated immune cells on the activity of effective CD8 and NK cells and the expression of CD94/NKG2A in immune cells and/or their ligand HLA-E in tumor cells.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Patin EC, Nenclares P, Chan Wah Hak C, Dillon MT, Patrikeev A, McLaughlin M, Grove L, Foo S, Soliman H, Barata JP, Marsden J, Baldock H, Gkantalis J, Roulstone V, Kyula J, Burley A, Hubbard L, Pedersen M, Smith SA, Clancy-Thompson E, Melcher AA, Ono M, Rullan A, Harrington KJ. Sculpting the tumour microenvironment by combining radiotherapy and ATR inhibition for curative-intent adjuvant immunotherapy. Nat Commun 2024; 15:6923. [PMID: 39134540 PMCID: PMC11319479 DOI: 10.1038/s41467-024-51236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The combination of radiotherapy/chemoradiotherapy and immune checkpoint blockade can result in poor outcomes in patients with locally advanced head and neck squamous cell carcinoma (HNSCC). Here, we show that combining ATR inhibition (ATRi) with radiotherapy (RT) increases the frequency of activated NKG2A+PD-1+ T cells in animal models of HNSCC. Compared with the ATRi/RT treatment regimen alone, the addition of simultaneous NKG2A and PD-L1 blockade to ATRi/RT, in the adjuvant, post-radiotherapy setting induces a robust antitumour response driven by higher infiltration and activation of cytotoxic T cells in the tumour microenvironment. The efficacy of this combination relies on CD40/CD40L costimulation and infiltration of activated, proliferating memory CD8+ and CD4+ T cells with persistent or new T cell receptor (TCR) signalling, respectively. We also observe increased richness in the TCR repertoire and emergence of numerous and large TCR clonotypes that cluster based on antigen specificity in response to NKG2A/PD-L1/ATRi/RT. Collectively, our data point towards potential combination approaches for the treatment of HNSCC.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, UK.
| | - Pablo Nenclares
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Charleen Chan Wah Hak
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Magnus T Dillon
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Anton Patrikeev
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | - Lorna Grove
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Shane Foo
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | | | | | - Holly Baldock
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Jim Gkantalis
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | - Joan Kyula
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Amy Burley
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Lisa Hubbard
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | | | - Alan A Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Kevin J Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| |
Collapse
|
28
|
Gong Y, Germeraad WTV, Zhang X, Wu N, Li B, Janssen L, He Z, Gijbels MJJ, Wu B, Gijsbers BLMG, Olieslagers TI, Bos GMJ, Zheng L, Klein Wolterink RGJ. NKG2A genetic deletion promotes human primary NK cell anti-tumor responses better than an anti-NKG2A monoclonal antibody. Mol Ther 2024; 32:2711-2727. [PMID: 38943249 PMCID: PMC11405175 DOI: 10.1016/j.ymthe.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024] Open
Abstract
Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.
Collapse
Affiliation(s)
- Ying Gong
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China; Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands
| | - Wilfred T V Germeraad
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands; CiMaas BV, 6202 AZ Maastricht, the Netherlands
| | - Xulin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou 510000, China
| | - Nisha Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Bo Li
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Lynn Janssen
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands
| | - Zongzhong He
- Department of Transfusion Medicine of General Hospital of Southern Theatre Command, Guangzhou 510515, P.R. China
| | - Marion J J Gijbels
- GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands; Department of Pathology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, 1081 HV Amsterdam, the Netherlands
| | - Bodeng Wu
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Birgit L M G Gijsbers
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands
| | - Timo I Olieslagers
- GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands; Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, 6202 AZ Maastricht, the Netherlands
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands; CiMaas BV, 6202 AZ Maastricht, the Netherlands
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China.
| | - Roel G J Klein Wolterink
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands.
| |
Collapse
|
29
|
Wen M, He L, Guo C, Zhao D, Hou Y, Yang X, Meng H. Expression and clinical significance of NKG2A and HLA-E in advanced laryngeal carcinoma. Pathol Res Pract 2024; 260:155383. [PMID: 38924853 DOI: 10.1016/j.prp.2024.155383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The purpose was to detected features of the expression levels of NKG2A and its ligand HLA-E, a new member of the immune checkpoints, in advanced laryngeal carcinoma and their clinicopathologic significance. MATERIAL AND METHODS We analyzed the expression levels of HLA-E and NKG2A in multiple types of tumors utilizing the Tumor Immune Estimation Resource (TIMER) database and immunohistochemistry and qRT-PCR analysis of paraffin embedded tissue samples to reveal the correlations of the clinicopathological factors with the expression of these two proteins in advanced laryngeal carcinoma as well as their prognostic significance. RESULTS KLRC1 (the coding gene of NKG2A) and HLA-E are substantially overexpressed in various human cancers than normal tissues. HNSCC is also included. KLRC1 is differentially expressed in different HPV subgroups of patients, with higher expression in the HPV-positive group. Consistent with this, immunohistochemical results also revealed the high expression of these two proteins in tumor tissue. In addition, immunohistochemical staining also displayed a preference for the distribution of NKG2A-positive cells in tumor tissue. Clinicopathological analyses also displayed that the density of NKG2A-positive cells of the HPV-positive group infiltrating laryngeal carcinoma tissue was larger than that in the HPV-negative group. Prognostic analyses indicated that the expression of this immune checkpoint does not affect the overall survival length of patients, but the highly expressed HLA-E is significantly correlated with local recurrence in the patients. CONCLUSIONS The findings suggest that the expression levels of HLA-E and NKG2A is upregulated in advanced laryngeal carcinoma. The NKG2A-positive cells infiltrating the tumor are mainly distributed in the cancer nest, while infiltrating cell number may be regulated by HPV. The highly expressed HLA-E may promote local recurrence in patients with advanced laryngeal carcinoma.
Collapse
Affiliation(s)
- Meina Wen
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin He
- Department of Stomatology, Nangang Hospital, Heilongjiang Province Hospital, China
| | - Chenxu Guo
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Di Zhao
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunjing Hou
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinxin Yang
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China; Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
30
|
Verhaar ER, Gan J, Buhl S, Li Z, Horowitz A, Ploegh HL. A monoclonal antibody that recognizes a unique 13-residue epitope in the cytoplasmic tail of HLA-E. Mol Immunol 2024; 172:56-67. [PMID: 38901180 PMCID: PMC11257791 DOI: 10.1016/j.molimm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
The Class I MHC molecule (MHC-I) HLA-E presents peptides that are derived from the signal sequences, either those of other MHC-I products, or of viral type I membrane glycoproteins. Monoclonal antibodies with proven specificity for HLA-E, and with no cross-reactions with other MHC-I products, have yet to be described. To obtain anti-HLA-E-specific antibodies suitable for a range of applications, we generated monoclonal antibodies against a unique feature of HLA-E: its cytoplasmic tail. We created an immunogen by performing an enzymatically catalyzed transpeptidation reaction to obtain a fusion of the cytoplasmic tail of HLA-E with a nanobody that recognizes murine Class II MHC (MHC-II) products. We obtained a mouse monoclonal antibody that recognizes a 13-residue stretch in the HLA-E cytoplasmic tail. We cloned the genes that encode this antibody in expression vectors to place an LPETG sortase recognition motif at the C-terminus of the heavy and light chains. This arrangement allows the site-specific installation of fluorophores or biotin at these C-termini. The resulting immunoglobulin preparations, labeled with 4 equivalents of a fluorescent or biotinylated payload of choice, can then be used for direct immunofluorescence or detection of the tag by fluorescence or by streptavidin-based methods. We also show that the 13-residue sequence can serve as an epitope tag, independent of the site of its placement within a protein's sequence. The antibody can be used diagnostically to stain for HLA-E on patient tumor samples, it can be used as an antibody-epitope tag for extracellular proteins, and it enables research into the unique role of the cytoplasmic tail of HLA-E.
Collapse
Affiliation(s)
- Elisha R Verhaar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jin Gan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Buhl
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Ziao Li
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
31
|
Wang F, Yue S, Huang Q, Lei T, Li X, Wang C, Yue J, Liu C. Cellular heterogeneity and key subsets of tissue-resident memory T cells in cervical cancer. NPJ Precis Oncol 2024; 8:145. [PMID: 39014148 PMCID: PMC11252146 DOI: 10.1038/s41698-024-00637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Tissue-resident memory T cells (TRMs) play a critical role in cancer immunity by offering quick and effective immune responses. However, the cellular heterogeneity of TRMs and their significance in cervical cancer (CC) remain unknown. In this study, we generated and analyzed single-cell RNA sequencing data from 12,945 TRMs (ITGAE+ CD3D+) and 25,627 non-TRMs (ITGAE- CD3D+), derived from 11 CC tissues and 5 normal cervical tissues. We found that TRMs were more immunoreactive than non-TRMs, and TRMs in CC tissues were more activated than those in normal cervical tissues. Six CD8+ TRM subclusters and one CD4+ TRM subcluster were identified. Among them, CXCL13+ CD8+ TRMs were more abundant in CC tissues than in normal cervical tissues, had both cytotoxic and inhibitory features, and were enriched in pathways related to defense responses to the virus. Meanwhile, PLAC8+ CD8+ TRMs were less abundant in CC tissues than in normal cervical tissues but had highly cytotoxic features. The signature gene set scores of both cell subclusters were positively correlated with the overall survival and progression-free survival of patients with CC following radiotherapy. Of note, the association between HLA-E and NKG2A, either alone or in a complex with CD94, was enriched in CXCL13+ CD8+ TRMs interacting with epithelial cells at CC tissues. The in-depth characterization of TRMs heterogeneity in the microenvironment of CC could have important implications for advancing treatment and improving the prognosis of patients with CC.
Collapse
Affiliation(s)
- Fuhao Wang
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China
| | - Shengqin Yue
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingyu Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohui Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
32
|
Nössing C, Herek P, Shariat SF, Berger W, Englinger B. Advances in preclinical assessment of therapeutic targets for bladder cancer precision medicine. Curr Opin Urol 2024; 34:251-257. [PMID: 38602053 PMCID: PMC11155291 DOI: 10.1097/mou.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Bladder cancer incidence is on the rise, and until recently, there has been little to no change in treatment regimens over the last 40 years. Hence, it is imperative to work on strategies and approaches to untangle the complexity of intra- and inter-tumour heterogeneity of bladder cancer with the aim of improving patient-specific care and treatment outcomes. The focus of this review is therefore to highlight novel targets, advances, and therapy approaches for bladder cancer patients. RECENT FINDINGS The success of combining an antibody-drug conjugate (ADC) with immunotherapy has been recently hailed as a game changer in treating bladder cancer patients. Hence, interest in other ADCs as a treatment option is also rife. Furthermore, strategies to overcome chemoresistance to standard therapy have been described recently. In addition, other studies showed that targeting genomic alterations (e.g. mutations in FGFR3 , DNA damage repair genes and loss of the Y chromosome) could also be helpful as prognostic and treatment stratification biomarkers. The use of single-cell RNA sequencing approaches has allowed better characterisation of the tumour microenvironment and subsequent identification of novel targets. Functional precision medicine could be another avenue to improve and guide personalized treatment options. SUMMARY Several novel preclinical targets and treatment options have been described recently. The validation of these advances will lead to the development and implementation of robust personalized treatment regimens for bladder cancer patients.
Collapse
Affiliation(s)
| | - Paula Herek
- Department of Urology, Comprehensive Cancer Center
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Shahrokh F. Shariat
- Department of Urology, Comprehensive Cancer Center
- Department of Urology, Weill Cornell Medical College, New York, New York
- Department of Urology, University of Texas Southwestern, Dallas, Texas, USA
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute for Urology, University of Jordan, Amman, Jordan
- Research center for Evidence Medicine, Urology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Bernhard Englinger
- Department of Urology, Comprehensive Cancer Center
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
33
|
Wang L, Izadmehr S, Sfakianos JP, Tran M, Beaumont KG, Brody R, Cordon-Cardo C, Horowitz A, Sebra R, Oh WK, Bhardwaj N, Galsky MD, Zhu J. Single-cell transcriptomic-informed deconvolution of bulk data identifies immune checkpoint blockade resistance in urothelial cancer. iScience 2024; 27:109928. [PMID: 38812546 PMCID: PMC11133924 DOI: 10.1016/j.isci.2024.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Interactions within the tumor microenvironment (TME) significantly influence tumor progression and treatment responses. While single-cell RNA sequencing (scRNA-seq) and spatial genomics facilitate TME exploration, many clinical cohorts are assessed at the bulk tissue level. Integrating scRNA-seq and bulk tissue RNA-seq data through computational deconvolution is essential for obtaining clinically relevant insights. Our method, ProM, enables the examination of major and minor cell types. Through evaluation against existing methods using paired single-cell and bulk RNA sequencing of human urothelial cancer (UC) samples, ProM demonstrates superiority. Application to UC cohorts treated with immune checkpoint inhibitors reveals pre-treatment cellular features associated with poor outcomes, such as elevated SPP1 expression in macrophage/monocytes (MM). Our deconvolution method and paired single-cell and bulk tissue RNA-seq dataset contribute novel insights into TME heterogeneity and resistance to immune checkpoint blockade.
Collapse
Affiliation(s)
- Li Wang
- Department of Precision Medicine, Aitia, Somerville, MA 02143, USA
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
| | - Sudeh Izadmehr
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
| | - John P. Sfakianos
- Department of Urology; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Tran
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachel Brody
- Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Cordon-Cardo
- Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amir Horowitz
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William K. Oh
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
| | - Nina Bhardwaj
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew D. Galsky
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
| | - Jun Zhu
- Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
| |
Collapse
|
34
|
Rohn H, Rebmann V. Is HLA-E with its receptors an immune checkpoint or an antigenic determinant in allo-HCT? Best Pract Res Clin Haematol 2024; 37:101560. [PMID: 39098806 DOI: 10.1016/j.beha.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality. Recently, non-classical HLA class I molecules, especially HLA-E, have gained increasing attention in the context of allogeneic HCT. This review aims to summarize the latest findings on the immunomodulatory role of HLA-E, which serves as a ligand for receptors of the innate and adaptive immune system. In particular, we aim to elucidate how (i) polymorphisms within HLA-E, (ii) the NKG2A/C axis and (iii) the repertoire of peptides presented by HLA-E jointly influence the functionality of immune effector cells. Understanding this intricate network of interactions is crucial as it significantly affects NK and T cell responses and thus clinical outcomes after HCT.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
35
|
Riva E, Carboni S, di Berardino-Besson W, Moyat M, Belnoue E, Devy-Dimanche L, Rossi M. Bimodal Effect of NKG2A Blockade on Intratumoral and Systemic CD8 T Cell Response Induced by Cancer Vaccine. Cancers (Basel) 2024; 16:2036. [PMID: 38893156 PMCID: PMC11171001 DOI: 10.3390/cancers16112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Immune check-point blockade (ICB) has revitalized cancer immunotherapy, showing unprecedented efficacy despite only a narrow number of indications and with limited long-term protection. Cancer vaccines are promising combination partners for ICB to widen the patient population profiting from these treatments. Therapeutic heterologous prime-boost vaccination with KISIMATM protein vaccine and VSV-GP-TAg oncolytic virus was shown to inflame the tumor microenvironment, promoting significant infiltration of antigen-specific CD8 T cells resulting in robust antitumoral efficacy in mouse tumor models, and clinical trials are currently ongoing. Here, we report the impact of NKG2A blockade on antitumoral CD8 T cell immune response elicited by KISIMA-VSV-GP-TAg vaccination in tumor mouse models. Combination therapy significantly reduced the amount of vaccine-induced exhausted CD8 T cells infiltrating the tumor, resulting in short-term improved tumor growth control and prolonged mouse survival, while it also influenced the establishment of systemic effector memory CD8 T cell response. Taken together, these data show a compartment-dependent effect of NKG2A blockade on cancer vaccine-induced T cell immunity, increasing intratumoral T cell efficacy and attenuating the development of peripheral effector memory CD8 T cell response.
Collapse
Affiliation(s)
- Erika Riva
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Susanna Carboni
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Wilma di Berardino-Besson
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Mati Moyat
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Elodie Belnoue
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Laetitia Devy-Dimanche
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Matteo Rossi
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| |
Collapse
|
36
|
Yao Z, Yang L, Yang X, Liu F, Fu B, Xiong J. Stimulator of interferon genes mediated immune senescence reveals the immune microenvironment and prognostic characteristics of bladder cancer. Heliyon 2024; 10:e28803. [PMID: 38707337 PMCID: PMC11066586 DOI: 10.1016/j.heliyon.2024.e28803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024] Open
Abstract
Background Studies have shown that the stimulator of interferon genes (STING) is critical in tumorigenesis, and development. This study aimed to investigate the immune profile and prognostic significance of STING-mediated immune senescence in bladder cancer (BLCA). Methods We identified differential genes between tumor and normal tissue based on the Cancer Genome Atlas database, and used consensus clustering to identify BLCA subtypes. The genes most associated with overall survival were screened by further analysis and used to construct risk models. Then, comparing the immune microenvironment, tumor mutational load (TMB), and microsatellite instability (MSI) scores between different risk groups. Eventually, a nomogram was constructed based on clinical information and risk scores. The model was validated using receiver operating curves (ROC) and calibration plots. Results We identified 160 differential genes, including 13 genes most associated with prognosis. Three subtypes of bladder cancer with different clinical and immunological features were identified. Immunotherapy was more likely to benefit the low-risk group, which had higher TMB and MSI scores. The nomogram was found to be highly predictive based on ROC analysis and calibration plots. Conclusion The risk model and nomogram not only predict the prognosis of BLCA patients but also can guide the treatment.
Collapse
Affiliation(s)
- Zhijun Yao
- Department of Urology, Hengyang Central Hospital, Hengyang, 421001, China
| | - Lin Yang
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Xiaorong Yang
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Fang Liu
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Bin Fu
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Jing Xiong
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| |
Collapse
|
37
|
Scimeca M, Bischof J, Bonfiglio R, Nale E, Iacovelli V, Carilli M, Vittori M, Agostini M, Rovella V, Servadei F, Giacobbi E, Candi E, Shi Y, Melino G, Mauriello A, Bove P. Molecular profiling of a bladder cancer with very high tumour mutational burden. Cell Death Discov 2024; 10:202. [PMID: 38688924 PMCID: PMC11061316 DOI: 10.1038/s41420-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
The increasing incidence of urothelial bladder cancer is a notable global concern, as evidenced by the epidemiological data in terms of frequency, distribution, as well as mortality rates. Although numerous molecular alterations have been linked to the occurrence and progression of bladder cancer, currently there is a limited knowledge on the molecular signature able of accurately predicting clinical outcomes. In this report, we present a case of a pT3b high-grade infiltrating urothelial carcinoma with areas of squamous differentiation characterized by very high tumor mutational burden (TMB), with up-regulations of immune checkpoints. The high TMB, along with elevated expressions of PD-L1, PD-L2, and PD1, underscores the rationale for developing a personalized immunotherapy focused on the use of immune-checkpoint inhibitors. Additionally, molecular analysis revealed somatic mutations in several other cancer-related genes, including TP53, TP63 and NOTCH3. Mutations of TP53 and TP63 genes provide mechanistic insights on the molecular mechanisms underlying disease development and progression. Notably, the above-mentioned mutations and the elevated hypoxia score make the targeting of p53 and/or hypoxia related pathways a plausible personalized medicine option for this bladder cancer, particularly in combination with immunotherapy. Our data suggest a requirement for molecular profiling in bladder cancer to possibly select appropriate immune-checkpoint therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Elisabetta Nale
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Valerio Iacovelli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Marco Carilli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Matteo Vittori
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Pierluigi Bove
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy.
| |
Collapse
|
38
|
Tang H, Chen L, Liu X, Zeng S, Tan H, Chen G. Pan-cancer dissection of vasculogenic mimicry characteristic to provide potential therapeutic targets. Front Pharmacol 2024; 15:1346719. [PMID: 38694917 PMCID: PMC11061449 DOI: 10.3389/fphar.2024.1346719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/30/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Vasculogenic mimicry (VM) represents a novel form of tumor angiogenesis that is associated with tumor invasiveness and drug resistance. However, the VM landscape across cancer types remains poorly understood. In this study, we elucidate the characterizations of VM across cancers based on multi-omics data and provide potential targeted therapeutic strategies. Methods Multi-omics data from The Cancer Genome Atlas was used to conduct comprehensive analyses of the characteristics of VM related genes (VRGs) across cancer types. Pan-cancer vasculogenic mimicry score was established to provide a depiction of the VM landscape across cancer types. The correlation between VM and cancer phenotypes was conducted to explore potential regulatory mechanisms of VM. We further systematically examined the relationship between VM and both tumor immunity and tumor microenvironment (TME). In addition, cell communication analysis based on single-cell transcriptome data was used to investigate the interactions between VM cells and TME. Finally, transcriptional and drug response data from the Genomics of Drug Sensitivity in Cancer database were utilized to identify potential therapeutic targets and drugs. The impact of VM on immunotherapy was also further clarified. Results Our study revealed that VRGs were dysregulated in tumor and regulated by multiple mechanisms. Then, VM level was found to be heterogeneous among different tumors and correlated with tumor invasiveness, metastatic potential, malignancy, and prognosis. VM was found to be strongly associated with epithelial-mesenchymal transition (EMT). Further analyses revealed cancer-associated fibroblasts can promote EMT and VM formation. Furthermore, the immune-suppressive state is associated with a microenvironment characterized by high levels of VM. VM score can be used as an indicator to predict the effect of immunotherapy. Finally, seven potential drugs targeting VM were identified. Conclusion In conclusion, we elucidate the characteristics and key regulatory mechanisms of VM across various cancer types, underscoring the pivotal role of CAFs in VM. VM was further found to be associated with the immunosuppressive TME. We also provide clues for the research of drugs targeting VM. Our study provides an initial overview and reference point for future research on VM, opening up new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Haibin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuxun Chen
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xvdong Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengjie Zeng
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Zheng K, Hai Y, Chen H, Zhang Y, Hu X, Ni K. Tumor immune dysfunction and exclusion subtypes in bladder cancer and pan-cancer: a novel molecular subtyping strategy and immunotherapeutic prediction model. J Transl Med 2024; 22:365. [PMID: 38632658 PMCID: PMC11025237 DOI: 10.1186/s12967-024-05186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Molecular subtyping is expected to enable precise treatment. However, reliable subtyping strategies for clinical application remains defective and controversial. Given the significance of tumor immune dysfunction and exclusion (TIDE), we aimed to develop a novel TIDE-based subtyping strategy to guide personalized immunotherapy in the bladder cancer (BC). METHODS Transcriptome data of BC was used to evaluate the heterogeneity and the status of TIDE patterns. Subsequently, consensus clustering was applied to classify BC patients based on TIDE marker-genes. Patients' clinicopathological, molecular features and signaling pathways of the different TIDE subtypes were well characterized. We also utilize the deconvolution algorithms to analyze the tumor microenvironment, and further explore the sensitivity and mechanisms of each subtype to immunotherapy. Furthermore, BC patient clinical information, real-world BC samples and urine samples were collected for the validation of our findings, which were used for RNA-seq analysis, H&E staining, immunohistochemistry and immunofluorescence staining, and enzyme-linked immunosorbent assay. Finally, we also explored the conservation of our novel TIDE subtypes in pan-cancers. RESULTS We identified 69 TIDE biomarker genes and classified BC samples into three subtypes using consensus clustering. Subtype I showed the lowest TIDE status and malignancy with the best prognosis and highest sensitivity to immune checkpoint blockade (ICB) treatment, which was enriched of metabolic related signaling pathways. Subtype III represented the highest TIDE status and malignancy with the poorest prognosis and resistance to ICB treatment, resulting from its inhibitory immune microenvironment and T cell terminal exhaustion. Subtype II was in a transitional state with intermediate TIDE level, malignancy, and prognosis. We further confirmed the existence and characteristics of our novel TIDE subtypes using real-world BC samples and collected patient clinical data. This subtyping method was proved to be more efficient than previous known methods in identifying non-responders to immunotherapy. We also propose that combining our TIDE subtypes with known biomarkers can potentially improve the sensitivity and specificity of these biomarkers. Moreover, besides guiding ICB treatment, this classification approach can assist in selecting the frontline or recommended drugs. Finally, we confirmed that the TIDE subtypes are conserved across the pan-tumors. CONCLUSIONS Our novel TIDE-based subtyping method can serve as a powerful clinical tool for BC and pan-cancer patients, and potentially guiding personalized therapy decisions for selecting potential beneficiaries and excluding resistant patients of ICB therapy.
Collapse
Affiliation(s)
- Kun Zheng
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youlong Hai
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hongqi Chen
- Department of Urology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215200, Jiangsu, China
| | - Yukun Zhang
- Beijing University of Chinese Medicine East Hospital, Zaozhuang Hospital, Zaozhuang, 277000, Shandong, China
| | - Xiaoyong Hu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Kai Ni
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
40
|
Degagné É, Donohoue PD, Roy S, Scherer J, Fowler TW, Davis RT, Reyes GA, Kwong G, Stanaway M, Larroca Vicena V, Mutha D, Guo R, Edwards L, Schilling B, Shaw M, Smith SC, Kohrs B, Kufeldt HJ, Churchward G, Ruan F, Nyer DB, McSweeney K, Irby MJ, Fuller CK, Banh L, Toh MS, Thompson M, Owen AL, An Z, Gradia S, Skoble J, Bryan M, Garner E, Kanner SB. High-Specificity CRISPR-Mediated Genome Engineering in Anti-BCMA Allogeneic CAR T Cells Suppresses Allograft Rejection in Preclinical Models. Cancer Immunol Res 2024; 12:462-477. [PMID: 38345397 PMCID: PMC10985478 DOI: 10.1158/2326-6066.cir-23-0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Allogeneic chimeric antigen receptor (CAR) T cell therapies hold the potential to overcome many of the challenges associated with patient-derived (autologous) CAR T cells. Key considerations in the development of allogeneic CAR T cell therapies include prevention of graft-vs-host disease (GvHD) and suppression of allograft rejection. Here, we describe preclinical data supporting the ongoing first-in-human clinical study, the CaMMouflage trial (NCT05722418), evaluating CB-011 in patients with relapsed/refractory multiple myeloma. CB-011 is a hypoimmunogenic, allogeneic anti-B-cell maturation antigen (BCMA) CAR T cell therapy candidate. CB-011 cells feature 4 genomic alterations and were engineered from healthy donor-derived T cells using a Cas12a CRISPR hybrid RNA-DNA (chRDNA) genome-editing technology platform. To address allograft rejection, CAR T cells were engineered to prevent endogenous HLA class I complex expression and overexpress a single-chain polyprotein complex composed of beta-2 microglobulin (B2M) tethered to HLA-E. In addition, T-cell receptor (TCR) expression was disrupted at the TCR alpha constant locus in combination with the site-specific insertion of a humanized BCMA-specific CAR. CB-011 cells exhibited robust plasmablast cytotoxicity in vitro in a mixed lymphocyte reaction in cell cocultures derived from patients with multiple myeloma. In addition, CB-011 cells demonstrated suppressed recognition by and cytotoxicity from HLA-mismatched T cells. CB-011 cells were protected from natural killer cell-mediated cytotoxicity in vitro and in vivo due to endogenous promoter-driven expression of B2M-HLA-E. Potent antitumor efficacy, when combined with an immune-cloaking armoring strategy to dampen allograft rejection, offers optimized therapeutic potential in multiple myeloma. See related Spotlight by Caimi and Melenhorst, p. 385.
Collapse
Affiliation(s)
| | | | - Suparna Roy
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | | | | | | | | | | | - Devin Mutha
- Caribou Biosciences, Inc., Berkeley, California
| | - Raymond Guo
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | - McKay Shaw
- Caribou Biosciences, Inc., Berkeley, California
| | | | - Bryan Kohrs
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | - Finey Ruan
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | | | | | - Lynda Banh
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | | | - Zili An
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | - Mara Bryan
- Caribou Biosciences, Inc., Berkeley, California
| | | | | |
Collapse
|
41
|
MacLachlan BJ, Sullivan LC, Brooks AG, Rossjohn J, Vivian JP. Structure of the murine CD94-NKG2A receptor in complex with Qa-1 b presenting an MHC-I leader peptide. FEBS J 2024; 291:1530-1544. [PMID: 38158698 DOI: 10.1111/febs.17050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The heterodimeric natural killer cells antigen CD94 (CD94)-NKG2-A/NKG2-B type II integral membrane protein (NKG2A) receptor family expressed on human and mouse natural killer (NK) cells monitors global major histocompatibility complex (MHC) class I cell surface expression levels through binding to MHC class Ia-derived leader sequence peptides presented by HLA class I histocompatibility antigen, alpha chain E (HLA-E; in humans) or H-2 class I histocompatibility antigen, D-37 (Qa-1b; in mice). Although the molecular basis underpinning human CD94-NKG2A recognition of HLA-E is known, the equivalent interaction in the murine setting is not. By determining the high-resolution crystal structure of murine CD94-NKG2A in complex with Qa-1b presenting the Qa-1 determinant modifier peptide (QDM), we resolved the mode of binding. Compared to the human homologue, the murine CD94-NKG2A-Qa-1b-QDM displayed alterations in the distribution of interactions across CD94 and NKG2A subunits that coincide with differences in electrostatic complementarity of the ternary complex and the lack of cross-species reactivity. Nevertheless, we show that Qa-1b could be modified through W65R + N73I mutations to mimic HLA-E, facilitating binding with both human and murine CD94-NKG2A. These data underscore human and murine CD94-NKG2A cross-species heterogeneity and provide a foundation for humanising Qa-1b in immune system models.
Collapse
Affiliation(s)
- Bruce J MacLachlan
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Julian P Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
42
|
Liu J, Gao Y, Song C, Liao W, Meng L, Yang S, Xiong Y. Immunotherapeutic prospects and progress in bladder cancer. J Cell Mol Med 2024; 28:e18101. [PMID: 38165009 PMCID: PMC10902563 DOI: 10.1111/jcmm.18101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024] Open
Abstract
Bladder cancer is one of the most common malignant tumours of the urogenital system, with high morbidity and mortality. In most cases, surgery is considered the first choice of treatment, followed by adjuvant chemotherapy. However, the 5-year recurrence rate is still as high as 65% in patients with non-invasive or in situ tumours and up to 73% in patients with slightly more advanced disease at initial diagnosis. Various treatment methods for bladder cancer have been developed, and hundreds of new immunotherapies are being tested. To date, only a small percentage of people have had success with new treatments, though studies have suggested that the combination of immunotherapy with other therapies improves treatment efficiency and positive outcomes for individuals, with great hopes for the future. In this article, we summarize the origins, therapeutic mechanisms and current status of research on immunotherapeutic agents for bladder cancer.
Collapse
Affiliation(s)
- Junwei Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Yue Gao
- Department of Party and AdministrationRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Chao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Wenbiao Liao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Lingchao Meng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Sixing Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Yunhe Xiong
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| |
Collapse
|
43
|
Zhang X, Wang J, Wang M, Du M, Chen J, Wang L, Wu J. IFN-β Pretreatment Alleviates Allogeneic Renal Tubular Epithelial Cell-Induced NK Cell Responses via the IRF7/HLA-E/NKG2A Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:715-722. [PMID: 38149913 DOI: 10.4049/jimmunol.2200941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Immune checkpoint molecules are promising targets for suppressing the immune response but have received little attention in immune tolerance induction in organ transplantation. In this study, we found that IFN-β could induce the expression of HLA-E as well as PD-L1 on human renal tubular epithelial cell line HK-2 and renal tissue of the C57BL/6 mouse. The JAK/STAT2 pathway was necessary for this process. Upregulation of both HLA-E and PD-L1 was fully abrogated by the JAK1/2 inhibitor ruxolitinib. Signaling pathway molecules, including STAT1, STAT2, mTOR, Tyk2, and p38 MAPK, were involved in HLA-E and PD-L1 upregulation. IRF7 is the key transcription factor responsible for the activation of HLA-E and PD-L1 promoters. Through screening an epigenetic regulation library, we found a natural compound, bisdemethoxycurcumin, enhanced IFN-β-induced HLA-E and PD-L1 expression in vitro and in vivo. In PBMC-derived CD56+ NK cells, we found that NKG2A but not PD1 was constitutively expressed, indicating HLA-E/NKG2A as a more potent target to induce tolerance to innate immune cells. Pretreating HK-2 cells by IFN-β significantly attenuated the degranulation of their coincubated NK cells and protected cells from NK-mediated lysis. In conclusion, IFN-β pretreatment could activate HLA-E and PD-L1 transcription through the JAK/STAT/IRF7 pathway and then could protect renal tubular epithelial cells from allogeneic immune attack mediated by NK cells.
Collapse
Affiliation(s)
- Xing Zhang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengbao Du
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Limengmeng Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
44
|
Taylor BC, Sun X, Gonzalez-Ericsson PI, Sanchez V, Sanders ME, Wescott EC, Opalenik SR, Hanna A, Chou ST, Van Kaer L, Gomez H, Isaacs C, Ballinger TJ, Santa-Maria CA, Shah PD, Dees EC, Lehmann BD, Abramson VG, Pietenpol JA, Balko JM. NKG2A Is a Therapeutic Vulnerability in Immunotherapy Resistant MHC-I Heterogeneous Triple-Negative Breast Cancer. Cancer Discov 2024; 14:290-307. [PMID: 37791898 PMCID: PMC10850946 DOI: 10.1158/2159-8290.cd-23-0519] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Despite the success of immune checkpoint inhibition (ICI) in treating cancer, patients with triple-negative breast cancer (TNBC) often develop resistance to therapy, and the underlying mechanisms are unclear. MHC-I expression is essential for antigen presentation and T-cell-directed immunotherapy responses. This study demonstrates that TNBC patients display intratumor heterogeneity in regional MHC-I expression. In murine models, loss of MHC-I negates antitumor immunity and ICI response, whereas intratumor MHC-I heterogeneity leads to increased infiltration of natural killer (NK) cells in an IFNγ-dependent manner. Using spatial technologies, MHC-I heterogeneity is associated with clinical resistance to anti-programmed death (PD) L1 therapy and increased NK:T-cell ratios in human breast tumors. MHC-I heterogeneous tumors require NKG2A to suppress NK-cell function. Combining anti-NKG2A and anti-PD-L1 therapies restores complete response in heterogeneous MHC-I murine models, dependent on the presence of activated, tumor-infiltrating NK and CD8+ T cells. These results suggest that similar strategies may enhance patient benefit in clinical trials. SIGNIFICANCE Clinical resistance to immunotherapy is common in breast cancer, and many patients will likely require combination therapy to maximize immunotherapeutic benefit. This study demonstrates that heterogeneous MHC-I expression drives resistance to anti-PD-L1 therapy and exposes NKG2A on NK cells as a target to overcome resistance. This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
| | - Xiaopeng Sun
- Cancer Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Paula I. Gonzalez-Ericsson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda E. Sanders
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth C. Wescott
- Department of Pathology, Microbiology, and Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Susan R. Opalenik
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann Hanna
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shu-Ting Chou
- Cancer Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Luc Van Kaer
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Henry Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Claudine Isaacs
- Division of Hematology-Oncology, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Tarah J. Ballinger
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Payal D. Shah
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth C. Dees
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Brian D. Lehmann
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vandana G. Abramson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer A. Pietenpol
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin M. Balko
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
45
|
Qiu Y, Liu L, Jiang W, Xu Z, Wang J, Dai S, Guo J, Xu J. NKG2A +CD8 + T cells infiltration determines immunosuppressive contexture and inferior response to immunotherapy in clear cell renal cell carcinoma. J Immunother Cancer 2024; 12:e008368. [PMID: 38262706 PMCID: PMC10824007 DOI: 10.1136/jitc-2023-008368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Immunotherapy is gaining momentum, but current treatments have limitations in terms of beneficiaries. Clear cell renal cell carcinoma (ccRCC) harbors the highest expression of human leukocyte antigen E (HLA-E), ligand of NKG2A, among all solid tumors. In this study, we aim to investigate the role of NKG2A+CD8+ T cells in tumor microenvironment and its potential as a novel target in ccRCC. METHODS This study included four independent cohorts, including 234 patients from Zhongshan cohort (ZSHC) who underwent partial or radical nephrectomy at Zhongshan Hospital, and 117 metastatic patients from metastatic Zhongshan cohort (ZSHC-metastatic renal cell carcinoma) who were treated with immune checkpoint inhibitor or tyrosine kinase inhibitor alone. We also incorporated a cohort of 530 patients diagnosed with ccRCC from The Cancer Genome Atlas (referred to as TCGA-kidney renal clear cell carcinoma) and 311 patients from CheckMate cohort for bioinformatics exploration and hypothesis validation. Fresh surgical specimens from 15 patients who underwent ccRCC surgery at Zhongshan Hospital were collected for flow cytometry analysis. Another 10 fresh surgical specimens were used to investigate the therapeutic potential of NKG2A blockade after in vitro intervention. The infiltration of NKG2A+CD8+ T cells was assessed using immunohistochemical staining, flow cytometry, and immunofluorescence staining in ZSHC cohort. RESULTS Patients with higher infiltration of NKG2A+CD8+ T cells in ccRCC exhibited shorter overall survival and resistance to immunotherapy. NKG2A+CD8+ T cells expressed upregulated checkpoint molecules and displayed impaired effector functions, along with tissue-residency characteristics. Combination of programmed cell death protein-1 (PD-1) blockade and NKG2A blockade demonstrated an enhanced capability in reactivating CD8+ T cells effector functions. CONCLUSION Intense infiltration of NKG2A+CD8+ T cells were associated with poorer prognosis and response to immunotherapy. NKG2A blockade combined with current immunotherapy exhibited a robust ability to reactivate CD8+ T cells effector functions.
Collapse
Affiliation(s)
- Youqi Qiu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenbin Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziyang Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiahao Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyuan Dai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Deng H, Huang J, Gao N, Liu Z, Yi Z, Xiao J, Gao X, Zhang C, Juliet M, Hu J, Chen J, Zu X. Nanotherapeutic System with Effective Microwave Sensitization and Pyroptosis Programming Enable Synergistic Microwave-Immunotherapy in Bladder Cancer. Biomater Res 2024; 28. [DOI: 10.34133/bmr.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/10/2024] [Indexed: 12/01/2024] Open
Abstract
Currently, the prognosis for patients with advanced bladder cancer remains poor, with only a minority being sensitive to immune checkpoint inhibitors. There is a need to develop additional treatment strategies. Microwave therapy, as a promising approach for some inoperable tumors, still faces challenges such as limited efficacy and high recurrence rates. Additionally, the cell damage and necrosis induced by conventional microwave treatment only act as weak immunostimulatory factors for antitumor immunity, failing to activate effective antitumor immune responses. Recent discoveries have shown that inducing pyroptosis can provide a good opportunity for enhancing systemic immune responses and alleviating immune suppression in cancer therapy. Here, we have developed Mn-ZrMOF@DAC, a microwave-sensitized nanoparticle loaded with the DNA methylation inhibitor decitabine. The Mn-ZrMOF@DAC can enhance the effect of microwave thermal therapy and generate reactive oxygen species under microwave irradiation, causing thermal and oxidative damage to cancer cells. Furthermore, there was an important up-regulation of the key pyroptosis protein GSDME, with a marked increase in pyroptotic cell numbers. In vivo experiments demonstrated that mice injected with Mn-ZrMOF@DAC nanoparticles followed by microwave radiation treatment exhibited potent antitumor effects and enhanced the efficacy of anti-PD-1 therapy. This therapy not only enhanced the efficacy of microwave treatment, exhibiting significant antitumor effects, but also activated antitumor immunity by inducing pyroptosis, thus enhancing the efficacy of immunotherapy for bladder cancer. It holds promise for providing new avenues in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Hao Deng
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders,
Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Southwest Hospital,
Army Medical University, Chongqing, People’s Republic of China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders,
Xiangya Hospital, Central South University, Changsha, China
| | - Ning Gao
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Xin Gao
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Chunyu Zhang
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Matsika Juliet
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders,
Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders,
Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders,
Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The First Affiliate Hospital of Hunan Normal,
University (Hunan Provincial People’s Hospital), Changsha, Hunan Province China
| |
Collapse
|
47
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
48
|
Chen M, Bie L, Ying J. Cancer cell-intrinsic PD-1: Its role in malignant progression and immunotherapy. Biomed Pharmacother 2023; 167:115514. [PMID: 37716115 DOI: 10.1016/j.biopha.2023.115514] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Programmed cell death protein-1 (PD-1), also called CD279, is coded by the PDCD1 gene and is constitutively expressed on the surface of immune cells. As a receptor and immune checkpoint, PD-1 can bind to programmed death ligand-1/programmed death ligand-2 (PD-L1/PD-L2) in tumor cells, leading to tumor immune evasion. Anti-PD-1 and anti-PD-L1 are important components in tumor immune therapy. PD-1 is also expressed as an intrinsic variant (iPD-1) in cancer cells where it plays important roles in malignant progression as proposed by recent studies. However, iPD-1 has received much less attention compared to PD-1 expressed on immune cells although there is an unmet medical need for fully elucidating the mechanisms of actions to achieve the best response in tumor immunotherapy. iPD-1 suppresses tumorigenesis in non-small cell lung cancer (NSCLC) and colon cancer, whereas it promotes tumorigenesis in melanoma, hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDAC), thyroid cancer (TC), glioblastoma (GBM), and triple-negative breast cancer (TNBC). In this review, we focus on the role of iPD-1 in tumorigenesis and development and its molecular mechanisms. We also deeply discuss nivolumab-based combined therapy in common tumor therapy. iPD-1 may explain the different therapeutic effects of anti-PD-1 treatment and provide critical information for use in combined anti-tumor approaches.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
49
|
Borgeaud M, Sandoval J, Obeid M, Banna G, Michielin O, Addeo A, Friedlaender A. Novel targets for immune-checkpoint inhibition in cancer. Cancer Treat Rev 2023; 120:102614. [PMID: 37603905 DOI: 10.1016/j.ctrv.2023.102614] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Immune-checkpoint inhibitors have revolutionized cancer therapy, yet many patients either do not derive any benefit from treatment or develop a resistance to checkpoint inhibitors. Intrinsic resistance can result from neoantigen depletion, defective antigen presentation, PD-L1 downregulation, immune-checkpoint ligand upregulation, immunosuppression, and tumor cell phenotypic changes. On the other hand, extrinsic resistance involves acquired upregulation of inhibitory immune-checkpoints, leading to T-cell exhaustion. Current data suggest that PD-1, CTLA-4, and LAG-3 upregulation limits the efficacy of single-agent immune-checkpoint inhibitors. Ongoing clinical trials are investigating novel immune-checkpoint targets to avoid or overcome resistance. This review provides an in-depth analysis of the evolving landscape of potentially targetable immune-checkpoints in cancer. We highlight their biology, emphasizing the current understanding of resistance mechanisms and focusing on promising strategies that are under investigation. We also summarize current results and ongoing clinical trials in this crucial field that could once again revolutionize outcomes for cancer patients.
Collapse
Affiliation(s)
| | | | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois, Switzerland
| | - Giuseppe Banna
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | | | | | - Alex Friedlaender
- Geneva University Hospitals, Switzerland; Clinique Générale Beaulieu, Geneva, Switzerland.
| |
Collapse
|
50
|
Li Z, Guo M, Lin W, Huang P. Machine Learning-Based Integration Develops a Macrophage-Related Index for Predicting Prognosis and Immunotherapy Response in Lung Adenocarcinoma. Arch Med Res 2023; 54:102897. [PMID: 37865004 DOI: 10.1016/j.arcmed.2023.102897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Macrophages play a critical role in tumor immune microenvironment (TIME) formation and cancer progression in lung adenocarcinoma (LUAD). However, few studies have comprehensively and systematically described the characteristics of macrophages in LUAD. METHODS This study identified macrophage-related markers with single-cell RNA sequencing data from the GSE189487 dataset. An integrative machine learning-based procedure based on 10 algorithms was developed to construct a macrophage-related index (MRI) in The Cancer Genome Atlas (TCGA), GSE30219, GSE31210, and GSE72094 datasets. Several algorithms were used to evaluate the associations of MRI with TIME and immunotherapy-related biomarkers. The role of MRI in predicting the immunotherapy response was evaluated with the GSE91061 dataset. RESULTS The optimal MRI constructed by the combination of the Lasso algorithm and plsRCox was an independent risk factor in LUAD and showed a stable and powerful performance in predicting the overall survival rate of patients with LUAD. Those with low MRI scores had a higher TIME score, a higher level of immune cells, a higher immunophenoscore, and a lower Tumor Immune Dysfunction and Exclusion (TIDE) score, indicating a better response to immunotherapy. The IC50 value of common drugs for chemotherapy and target therapy with low MRI scores was higher compared to high MRI scores. Moreover, the survival prediction nomogram, developed from MRI, had good potential for clinical application in predicting the 1-, 3-, and 5-year overall survival rate of LUAD. CONCLUSION Our study constructed for the first time a consensus MRI for LUAD with 10 machine learning algorithms. The MRI could be helpful for risk stratification, prognosis, and selection of treatment approach in LUAD.
Collapse
Affiliation(s)
- Zuwei Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Minzhang Guo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wanli Lin
- Department of Thoracic Surgery, Gaozhou People's Hospital, Maoming, China
| | - Peiyuan Huang
- Department of Pharmacy, Gaozhou People's Hospital, Maoming, China.
| |
Collapse
|