1
|
Sierra Rodero B, Martínez-Toledo C, Nadal E, Molina-Alejandre M, García Campelo R, Gil-González Á, Massuti B, García-Grande A, Dómine M, Insa A, de Castro Carpeño J, Huidobro Vence G, Majem M, Martinez-Marti A, Megias D, Lobato D, Collazo-Lorduy A, Calvo V, Provencio M, Cruz-Bermúdez A. Peripheral memory B cell population maintenance and long-term survival after perioperative chemoimmunotherapy in NSCLC (NADIM trial). Oncoimmunology 2025; 14:2513109. [PMID: 40468805 PMCID: PMC12143677 DOI: 10.1080/2162402x.2025.2513109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/19/2025] [Accepted: 05/26/2025] [Indexed: 06/11/2025] Open
Abstract
Perioperative chemoimmunotherapy has significantly improved survival rates for non-small cell lung cancer (NSCLC). However, current tissue biomarkers remain inadequate, underscoring the need for more sensitive and accessible alternatives to monitor relapse risk. Intratumoral B-cells are increasingly recognized for their role in enhancing immunotherapy outcomes, yet the contribution of peripheral B-cells to immune surveillance remains unexplored. Peripheral B-cell immunophenotypes were analyzed from blood samples (at diagnosis, post-neoadjuvant, and at 6- and 12-months of adjuvant treatment) in 41 stage IIIA NSCLC patients treated with perioperative nivolumab plus chemotherapy, included in the NADIM clinical trial (NCT03081689). Results were correlated with 5-year survival outcomes and validated through unsupervised clustering. An increase in the percentage of total B-cells (CD19+CD20+) and naïve B-cells (CD19+CD20+CD24+CD38+CD27-CD10-), along with a reduction in CD20 expression on total B-cells, a decrease in the proportion of memory B-cells (CD19+CD20+CD24+CD38-/lowCD27+) and transitional B-cells (CD19+CD20+CD24++CD38++CD10+), was observed during the time encompassed between the end of neoadjuvant treatment and the posterior 6 months of adjuvant treatment. Higher levels of CD20 expression on total B-cells, along with an increased percentage of memory B-cells, or activated B-cells (CD19+CD20+CD25+), at 6- and 12-months of adjuvant treatment, were associated with increased survival. Conversely, higher levels of a newly described circulating population of CD19+CD20lowCD25lowCD27low B-cells during adjuvant treatment were linked to disease progression. Perioperative nivolumab plus chemotherapy in resectable NSCLC patients induces significant changes in peripheral B-cells. The persistence of circulating memory B-cells during adjuvant treatment might play a crucial role in survival.
Collapse
Affiliation(s)
- Belén Sierra Rodero
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Cristina Martínez-Toledo
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Ernest Nadal
- Institut Català d’Oncologia (ICO), Oncobell Program, IDIBELL. L’Hospitalet De Llobregat, Barcelona, Spain
| | - Marta Molina-Alejandre
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Rosario García Campelo
- Servicio de Oncología Médica, Hospital Universitario A Coruña, A Coruña, A Coruña, Spain
| | - Ángeles Gil-González
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Bartomeu Massuti
- Servicio de Oncología Médica, Hospital General Dr. Balmis de Alicante, ISABIAL, Alicante, Spain
| | - Aránzazu García-Grande
- Flow Cytometry Core Facility, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Madrid, Spain
| | - Manuel Dómine
- Servicio de Oncologia Médica, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Amelia Insa
- Fundación INCLIVA, Servicio de Oncología Médica, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Gerardo Huidobro Vence
- , Servicio de Oncología Médica, Hospital Alvaro Cunqueiro, Complexo Hospitalario Universitario de Vigo, Spain
| | - Margarita Majem
- Servicio de Oncología Médica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alex Martinez-Marti
- Vall Hebron Institute of Oncology (VHIO), Servicio de Oncología Médica, Hospital Universitari Vall d’Hebrón, Barcelona, Spain
| | - Diego Megias
- Unidad de Microscopía Óptica Avanzada, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Daniel Lobato
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Ana Collazo-Lorduy
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Virginia Calvo
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Alberto Cruz-Bermúdez
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| |
Collapse
|
2
|
Shi Y, Luo Q, Duan J, Tang B, Guan Q. The rules of different B cell subtypes in colorectal cancer: friends or foes? Future Oncol 2025:1-12. [PMID: 40491002 DOI: 10.1080/14796694.2025.2511588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 05/23/2025] [Indexed: 06/11/2025] Open
Abstract
Tumor-infiltrating B cells (TIBs) are the most important cell type involved in the immune response. TIBs display considerable intratumor heterogeneity due to genetic variation, epigenetic differences and transcriptional plasticity in the tumor microenvironment (TME). Owing to the unique anatomical location of CRC, the B cell subpopulation exhibits more extensive heterogeneity. Many studies have shown that TIBs have gradually become a key predictor of immunotherapy for malignant cancers, including CRC. TIBs have essential functions, including antigen presentation and antibody secretion, and they promote T-cell activation and myeloid chemotaxis. However, owing to the complex TME, TIBs not only promote the antitumor immune response but also inhibit the immune response. With the in-depth study of tumor-infiltrating T cells, tumor-associated myeloid cells and the interactions among these cells in the TME, the special role of immune cells in the TME has gradually become clear. However, the influence of TIBs in the TME and their interactions with nonimmune cells in the TME remain unclear. Here, we summarize the current progress in TIBs based on single-cell RNA sequencing in CRC in recent years, focusing on specific effector or regulatory characteristics of different B cell subclusters in the CRC TME.
Collapse
Affiliation(s)
- Yuanchao Shi
- The First Clinical Academy of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery and Gastrointestinal Oncology Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Qianwen Luo
- The First Clinical Academy of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery and Gastrointestinal Oncology Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Jingwei Duan
- Emergency Department, Peking University Third Hospital, Beijing, China
| | - Bo Tang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Quanlin Guan
- The First Clinical Academy of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery and Gastrointestinal Oncology Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
4
|
Li Y, Bhargava R, Tran JT, Blane TR, Peng L, Luan F, Huang Z, Zhang Z, Sun Y, Xiao C, Nemazee D. Blocking plasma cell fate enhances antigen-specific presentation by B cells to boost anti-tumor immunity. Nat Commun 2025; 16:4454. [PMID: 40360528 PMCID: PMC12075458 DOI: 10.1038/s41467-025-59622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
B cells engage in anti-tumor immunity but how they contribute to cancer suppression remains unclear. We report that inhibiting plasma cell differentiation either in IgMi mice lacking Igh elements needed for antibody secretion or in mice with B cell-specific knockout of Blimp-1 (Blimp-1 BcKO) promotes rather than inhibits antitumor immunity and increases numbers of activated B cells. Deficiency of Blimp-1 in tumor-infiltrating B cells generates a unique transcription profile associated with expansion of mutated clones targeting cognate tumor cells. Major histocompatibility complex class II (MHC II) is required for anti-tumor efficacy. Blimp-1-deficient B cells have increased expression of CD80 and CD86 costimulatory molecules that enhance effector T cell function. The Blimp-1 inhibitor valproic acid suppresses tumor growth in a B cell-dependent manner. Thus, inhibition of plasma cell differentiation results in enhanced tumor-specific antigen presentation by B cells and thereby tumor repression, suggesting a potential avenue of immunotherapy against cancer.
Collapse
Affiliation(s)
- Yunqiao Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Raag Bhargava
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jenny Tuyet Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tanya R Blane
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Fangkun Luan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zefan Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yunfan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Xu J, Ji Q, Kong Q, Lv L, Zhu B, Huang X, Chen Z, Xu P, Li X, Yin W, Wang H. Minimally invasive diagnosis of precancerous cervical lesions using single-cell peripheral immune atlas. Cell Rep Med 2025:102149. [PMID: 40412381 DOI: 10.1016/j.xcrm.2025.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/10/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
Cervical cancer remains a major global health concern for women. Current screening methods are either invasive or lead to low participation and over-referral for colposcopy, particularly among high-risk human papillomavirus (HPV)-positive women. This study analyzes 613 participants with varying cervical lesions using mass cytometry by time-of-flight (CyTOF) to identify disease-specific peripheral immune signatures. A diagnostic model based on 23 immune features achieves ∼91% sensitivity and specificity for detecting precancerous and cancerous lesions. A separate model for HPV-positive women shows even higher accuracy (∼93% sensitivity, ∼95% specificity), especially in HPV16/18-positive cases (99% sensitivity, 100% specificity). In an independent validation cohort (n = 105), the model distinguishes cervical intraepithelial neoplasia (CIN) 2+ from ≤CIN1 with 86.5% sensitivity and 85.3% specificity (area under the curve [AUC] = 0.89). These findings support peripheral immune profiling as a minimally invasive and accurate biomarker strategy for early cervical cancer screening, particularly in HPV16/18-positive women.
Collapse
Affiliation(s)
- Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qinghua Ji
- Zhejiang Puluoting Health Technology Co Ltd, Hangzhou, Zhejiang, China
| | - Quanming Kong
- Zhejiang Puluoting Health Technology Co Ltd, Hangzhou, Zhejiang, China
| | - Lijuan Lv
- Zhejiang Puluoting Health Technology Co Ltd, Hangzhou, Zhejiang, China
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiufeng Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyun Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Li
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hui Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Mughal SS, Reiss Y, Felsberg J, Meyer L, Macas J, Schlue S, Starzetz T, Köhrer K, Fehm T, Müller V, Lamszus K, Schadendorf D, Helfrich I, Wikman H, Berghoff A, Brors B, Plate KH, Reifenberger G. Identification and characterization of tertiary lymphoid structures in brain metastases. Acta Neuropathol Commun 2025; 13:91. [PMID: 40319321 PMCID: PMC12049775 DOI: 10.1186/s40478-025-02007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/13/2025] [Indexed: 05/07/2025] Open
Abstract
Brain metastases (BrM) are the most common cancers in the brain and linked to poor prognosis. Given the high incidence and often limited treatment options, understanding the complexity of the BrM tumor microenvironment is crucial for the development of novel therapeutic strategies. We performed transcriptome-wide gene expression profiling combined with spatial immune cell profiling to characterize the tumor immune microenvironment in 95 patients with BrM from different primary tumors. We found that BrM from lung carcinoma and malignant melanoma showed overall higher immune cell infiltration as compared to BrM from breast carcinoma. RNA sequencing-based immune cell deconvolution revealed gene expression signatures indicative of tertiary lymphoid structures (TLS) in subsets of BrM, mostly from lung cancer and melanoma. This finding was corroborated by multiplex immunofluorescence staining of immune cells in BrM tissue sections. Detection of TLS signatures was more common in treatment-naïve BrM and associated with prolonged survival after BrM diagnosis in lung cancer patients. Our findings highlight the cellular diversity of the tumor immune microenvironment in BrM of different cancer types and suggest a role of TLS formation for BrM patient outcome.
Collapse
Affiliation(s)
- Sadaf S Mughal
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120, Heidelberg, Germany.
| | - Yvonne Reiss
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
| | - Lasse Meyer
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Silja Schlue
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Tatjana Starzetz
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
| | - Karl Köhrer
- Center for Biological and Medical Research (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, Center of Integrated Oncology ABCD, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 50, 45147, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iris Helfrich
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 50, 45147, Essen, Germany
- Department of Dermatology and Allergy, University Hospital of Munich, Ludwig-Maximilian-University (LMU), Frauenlobstrasse 9-11, 80337, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Anna Berghoff
- Department of Internal Medicine 1, Clinical Division of Oncology, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Medical Faculty and Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120, Heidelberg, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Gong Y, Xu R, Gao G, Li S, Liu Y. The role of fatty acid metabolism on B cells and B cell-related autoimmune diseases. Inflamm Res 2025; 74:75. [PMID: 40299047 DOI: 10.1007/s00011-025-02042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Fatty acid metabolism plays a critical role in regulating immune cell function, including B cells, which are central to humoral immunity and the pathogenesis of autoimmune diseases. Emerging evidence suggests that fatty acid metabolism influences B cell development, activation, differentiation, and antibody production, thereby impacting B cell-related autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In this review, we discuss the mechanisms by which fatty acid metabolism modulates B cell biology, including energy provision, membrane composition, and signaling pathways. We highlight how alterations in fatty acid synthesis, oxidation, and uptake affect B cell function and contribute to autoimmune pathogenesis. Additionally, we explore the therapeutic potential of targeting fatty acid metabolism in B cells to treat autoimmune diseases. Understanding the interplay between fatty acid metabolism and B cell immunity may provide novel insights into the development of precision therapies for B cell-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Yanmei Gong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Ruiqi Xu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Guohui Gao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Simiao Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China.
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China, China.
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, Shandong, China.
| |
Collapse
|
8
|
Yang JI, Moresco P, Fearon D, Yao M. Identification of B cell antigens in solid cancer: initial insights and functional implications. Front Immunol 2025; 16:1571570. [PMID: 40356924 PMCID: PMC12066463 DOI: 10.3389/fimmu.2025.1571570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025] Open
Abstract
Cancer antigen discovery has mostly focused on T cell antigens, while antigens driving B cell responses have been largely overlooked despite representing another important branch of adaptive immune responses in cancer. Traditional B cell antigens in cancer have been studied using serological approaches analyzing polyclonal antibodies in serum. With recent technological advances in single-cell sequencing, a few studies have begun to investigate single B cell antigen specificity in the tumor microenvironment using immunoglobulin single-cell sequencing, recombinant monoclonal antibody production, cancer binding screening, and antigen identification. In this review, we highlight the initial insights into B cell directed cancer antigens and categorize them into cancer-associated viral antigens and non-viral antigens, with the latter featuring autoantigens. We will further discuss the functions of B cells in cancer in the context of their antigen specificity, and categorize their functions into antibody effector function, T cell activation, and B cell secretion. Lastly, we will provide perspectives on the challenges and opportunities in the identification of new B cell cancer antigens and highlight their translational potential.
Collapse
Affiliation(s)
- Jung-In Yang
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Philip Moresco
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, United States
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Douglas Fearon
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Min Yao
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY, United States
| |
Collapse
|
9
|
Lu XF, Zhang HW, Chang X, Guo YZ. F-box protein 22: A prognostic biomarker for colon cancer associated with immune infiltration and chemotherapy resistance. World J Gastrointest Oncol 2025; 17:102913. [PMID: 40235877 PMCID: PMC11995338 DOI: 10.4251/wjgo.v17.i4.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Colon cancer represents a significant malignant neoplasm within the digestive system, characterized by a high incidence rate and substantial disease burden. The F-box protein 22 (FBXO22) plays a role in forming a specific type of ubiquitin ligase subunit, which is expressed abnormally in various malignant neoplasms and shows a notable relationship with prognosis in patients with cancer. Nevertheless, the function of FBXO22 in the context of colon cancer remains inadequately elucidated. AIM To explore the role of FBXO22 in colon cancer by examining FBXO22 expression patterns and analyzing how the protein affects the prognosis in patients who have undergone surgery. METHODS Samples of cancerous and nearby normal tissues from patients with colon cancer were gathered, along with pertinent clinical data. Expression levels of the FBXO22 gene in both cancerous and paracancerous tissues were assessed through immunohistochemistry. The median H score served as a criterion for categorizing FBXO22 gene expression into high and low levels in cancerous tissues, and the relationship between these expression levels and various pathologic characteristics of patients, such as age, sex, and clinical stage, was analyzed. Colon cancer cell lines HCT116 and DLD-1 were used and divided into three groups: A blank control group, a negative control group, and a si-FBXO22 group. FBXO22 gene mRNA and protein expression were measured 24 hours post-transfection using real-time fluorescence quantitative polymerase chain reaction and western blotting. The proliferation capabilities of the cells in each group were assessed using the Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, while cellular migration and invasion abilities were evaluated using scratch healing and Transwell assays. Various online platforms, including the Timer Immune Estimation Resource, were used to analyze pan-cancer expression, promoter methylation levels, and mutation frequencies of the FBXO22 gene in colon cancer patients. Additionally, the correlation between FBXO22 gene expression, patient prognosis, immune cell infiltration, and the expression of immune molecules in the colon cancer microenvironment was investigated. The relationship between FBXO22 gene expression and chemotherapy resistance, along with the potential mechanisms of action of the FBXO22 gene, were analyzed using The Cancer Genome Atlas dataset and the Genomics of Drug Sensitivity in Cancer drug training set via R software. RESULTS Compared with normal colonic tissues, the FBXO22 gene was highly expressed in colon cancer tissues. Post-operative patients with colon cancer elevated FBXO22 reduced survival and exhibited resistance to various chemotherapeutic agents. FBXO22 expression suppresses the infiltration of anti-tumor immune cells. In vitro, FBXO22 knockdown inhibited the proliferation and migration of colon cancer cells. CONCLUSION The FBXO22 gene is a biomarker of poor prognosis in patients with colon cancer and has potential as a target for immunotherapy and overcoming chemotherapy resistance.
Collapse
Affiliation(s)
- Xiao-Fei Lu
- Department of Clinical Medicine, Hebei University of Engineering, Handan 056002, Hebei Province, China
| | - Hong-Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| | - Xiao Chang
- Department of Gastroenterology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| | - Yong-Ze Guo
- Department of Gastroenterology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| |
Collapse
|
10
|
Martin SD, Thornton S, Chow C, Milne K, de Barros JS, Morris KA, Leung S, Jamieson A, Nelson BH, Cochrane DR, Huntsman DG, Gilks CB, Hoang L, McAlpine JN, Zhang AW. Activated immune infiltrates expand opportunities for targeted therapy in p53-abnormal endometrial carcinoma. J Pathol 2025. [PMID: 40223796 DOI: 10.1002/path.6429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Tumor protein p53 mutated/abnormal (p53abn) endometrial carcinomas account for over 50% of deaths but comprise only 15% of all endometrial carcinomas. Most patients show limited response to standard-of-care chemotherapy with or without radiotherapy, and only a minority of cases are amenable to targeted therapies like poly-ADP ribose polymerase (PARP) inhibitors and HER2-directed therapies. Recent immunotherapy clinical trials have demonstrated remarkable efficacy, not only in mismatch repair deficient (MMRd) tumors but also in a subset of mismatch repair-proficient (MMRp) tumors. However, the immune microenvironment and its relationship to other therapeutic targets in MMRp endometrial carcinoma remains poorly understood. Here, we characterize the immune microenvironment of p53abn endometrial carcinoma, the most clinically aggressive subtype of MMRp endometrial carcinoma, and correlate antitumor immune signatures with other targetable alterations. We accrued 256 treatment-naïve p53abn endometrial carcinomas and systemically profiled T-cell, B-cell, myeloid, and tumor-cell populations with multiplex immunofluorescence to assess the tissue localization and functional status of immune cells. Shallow whole-genome sequencing was performed on a subset of 126 cases. Patterns of immune infiltration were compared to survival outcomes and mutational signatures. Mixture modeling divided p53abn endometrial carcinoma into tumor-infiltrating lymphocyte (TIL)-rich and TIL-poor subsets. Over 50% of tumors were TIL-rich. TIL-rich cases overexpressed targetable immune evasion molecules and were associated with longer overall and disease-specific survival in multivariate analysis. This effect was particularly pronounced in advanced stage disease and in patients who did not receive adjuvant chemotherapy. TIL did not associate with homologous recombination deficient mutational signatures or HER2 amplification. Our findings demonstrate a biological rationale for immunotherapy in a substantial subset of patients with p53abn endometrial cancer and may help inform combination therapies with immune checkpoint inhibition, PARP inhibitors, and anti-HER2 agents. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Spencer D Martin
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Shelby Thornton
- Molecular and Advanced Pathology Core (MAPcore), The University of British Columbia, Vancouver, Canada
| | - Christine Chow
- Molecular and Advanced Pathology Core (MAPcore), The University of British Columbia, Vancouver, Canada
| | - Katy Milne
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada
| | - Juliana Sobral de Barros
- Department of Molecular Oncology, British Columbia Cancer Agency, The University of British Columbia, Vancouver, Canada
| | - Kayleigh A Morris
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada
| | - Samuel Leung
- Department of Molecular Oncology, British Columbia Cancer Agency, The University of British Columbia, Vancouver, Canada
| | - Amy Jamieson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of British Columbia, Vancouver, Canada
| | - Brad H Nelson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, The University of British Columbia, Vancouver, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Jessica N McAlpine
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of British Columbia, Vancouver, Canada
| | - Allen W Zhang
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Kalemoglu E, Jani Y, Canaslan K, Bilen MA. The role of immunotherapy in targeting tumor microenvironment in genitourinary cancers. Front Immunol 2025; 16:1506278. [PMID: 40260236 PMCID: PMC12009843 DOI: 10.3389/fimmu.2025.1506278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Genitourinary (GU) cancers, including renal cell carcinoma, prostate cancer, bladder cancer, and testicular cancer, represent a significant health burden and are among the leading causes of cancer-related mortality worldwide. Despite advancements in traditional treatment modalities such as chemotherapy, radiotherapy, and surgery, the complex interplay within the tumor microenvironment (TME) poses substantial hurdles to achieving durable remission and cure. The TME, characterized by its dynamic and multifaceted nature, comprises various cell types, signaling molecules, and the extracellular matrix, all of which are instrumental in cancer progression, metastasis, and therapy resistance. Recent breakthroughs in immunotherapy (IO) have opened a new era in the management of GU cancers, offering renewed hope by leveraging the body's immune system to combat cancer more selectively and effectively. This approach, distinct from conventional therapies, aims to disrupt cancer's ability to evade immune detection through mechanisms such as checkpoint inhibition, therapeutic vaccines, and adoptive cell transfer therapies. These strategies highlight the shift towards personalized medicine, emphasizing the importance of understanding the intricate dynamics within the TME for the development of targeted treatments. This article provides an in-depth overview of the current landscape of treatment strategies for GU cancers, with a focus on IO targeting the specific cell types of TME. By exploring the roles of various cell types within the TME and their impact on cancer progression, this review aims to underscore the transformative potential of IO strategies in TME targeting, offering more effective and personalized treatment options for patients with GU cancers, thereby improving outcomes and quality of life.
Collapse
Affiliation(s)
- Ecem Kalemoglu
- Department of Internal Medicine, Rutgers-Jersey City Medical Center, Jersey City, NJ, United States
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Yash Jani
- Medical College of Georgia, Augusta, GA, United States
| | - Kubra Canaslan
- Department of Medical Oncology, Dokuz Eylul University, Izmir, Türkiye
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
12
|
Jiao M, Guo Y, Zhang H, Wen H, Chen P, Wang Z, Yu B, Zhuma K, Zhang Y, Qie J, Xing Y, Zhao P, Pan Z, Wang L, Zhang D, Li F, Ren Y, Chen C, Chu Y, Gu J, Liu R. ACAT1 regulates tertiary lymphoid structures and correlates with immunotherapy response in non-small cell lung cancer. J Clin Invest 2025; 135:e181517. [PMID: 40166933 PMCID: PMC11957694 DOI: 10.1172/jci181517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/08/2025] [Indexed: 04/02/2025] Open
Abstract
Tertiary lymphoid structures (TLS) in the tumor microenvironment (TME) are emerging solid-tumor indicators of prognosis and response to immunotherapy. Considering that tumorigenesis requires metabolic reprogramming and subsequent TME remodeling, the discovery of TLS metabolic regulators is expected to produce immunotherapeutic targets. To identify such metabolic regulators, we constructed a metabolism-focused sgRNA library and performed an in vivo CRISPR screening in an orthotopic lung tumor mouse model. Combined with The Cancer Genome Atlas database analysis of TLS-related metabolic hub genes, we found that the loss of Acat1 in tumor cells sensitized tumors to anti-PD1 treatment, accompanied by increased TLS in the TME. Mechanistic studies revealed that ACAT1 resulted in mitochondrial protein hypersuccinylation in lung tumor cells and subsequently enhanced mitochondrial oxidative metabolism, which impeded TLS formation. Elimination of ROS by NAC or Acat1 knockdown promoted B cell aggregation and TLS construction. Consistently, data from tissue microassays of 305 patients with lung cancer showed that TLS were more abundant in non-small cell lung cancer (NSCLC) tissues with lower ACAT1 expression. Intratumoral ACAT1 expression was associated with poor immunotherapy outcomes in patients with NSCLC. In conclusion, our results identified ACAT1 as a metabolic regulator of TLS and a promising immunotherapeutic target in NSCLC.
Collapse
Affiliation(s)
- Mengxia Jiao
- Shanghai Fifth People’s Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yifan Guo
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyu Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haoyu Wen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peng Chen
- Shanghai Fifth People’s Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiqiang Wang
- Shanghai Fifth People’s Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Neurology, Children’s Hospital of Fudan University, Shanghai, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| | - Kameina Zhuma
- Department of Immunology, School of Basic Medical Sciences, and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| | - Yuchen Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingbo Qie
- Shanghai Fifth People’s Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yun Xing
- Shanghai Fifth People’s Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pengyuan Zhao
- Shanghai Fifth People’s Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zihe Pan
- Shanghai Fifth People’s Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| | - Dan Zhang
- Shanghai Fifth People’s Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Li
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiwei Chu
- Shanghai Fifth People’s Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People’s Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Wahafu W, Zhou Q, Yang X, Yang Y, Zhao Y, Wang Z, Kang X, Ye X, Xing N. Spatial relationships and interactions of immune cell niches are linked to the pathologic response of muscle-invasive bladder cancer to neoadjuvant therapy. J Transl Med 2025; 23:375. [PMID: 40148849 PMCID: PMC11948894 DOI: 10.1186/s12967-025-06358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The identification of the complex spatial architecture of immune cell infiltration and its interaction mechanisms within tumor ecosystems provides crucial insights into therapeutic responses to neoadjuvant therapy in muscle-invasive bladder cancer (MIBC). This study aims to characterize the spatial features of distinct cell-type niches within the tumor microenvironment (TME) of patients with varying responses to neoadjuvant therapy. METHODS We performed spatial transcriptomic profiling on six MIBC specimens obtained from a registered clinical trial (ChiCTR2000032359), generating whole-transcriptome spatial atlases to map the TME architecture. High-throughput analytical frameworks were employed to deconstruct the TME, and key findings were validated through immunohistochemistry and mouse model experiments. RESULTS Our analysis revealed that tissues from complete responders exhibited greater infiltration of T and B cells, with the formation of tertiary lymphoid structure (TLS). Trajectory analysis identified CCL19/CCL21 as the key signaling molecules driving TLS formation in MIBC. Mouse experiments demonstrated that recombinant CCL19/CCL21 protein injections promoted intratumoral TLS formation and enhance the efficacy of immunotherapy. Furthermore, we observed significant intrinsic heterogeneity within individual tumors, which may contribute to the lack of therapeutic efficacy in MIBC. CONCLUSIONS This study underscores the critical role of TLS formation in the response to neoadjuvant therapy in MIBC. We identified CCL19/CCL21 as key drivers of TLS formation within MIBC tumors and potential immune-sensitizing agents. Additionally, the intrinsic heterogeneity of tumor should be considered a significant factor influencing therapeutic efficacy.
Collapse
Affiliation(s)
- Wasilijiang Wahafu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Quan Zhou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xihua Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Yongming Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Yuanyuan Zhao
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Zhu Wang
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Xiangpeng Kang
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Xiongjun Ye
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China.
| |
Collapse
|
14
|
Wu Y, Zhu L, Li S, Liu L, Wang Y, Yang Y, Mu Y, Zhu Q, Jiang Y, Wu C, Xi P, Ma C, Liang L, Gao M, Hu Y, Ding Q, Pan S. DA-DRD5 signaling reprograms B cells to promote CD8 + T cell-mediated antitumor immunity. Cell Rep 2025; 44:115364. [PMID: 40023842 DOI: 10.1016/j.celrep.2025.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/16/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Neuronal signals have emerged as pivotal regulators of B cells that regulate antitumor immunity and tumor progression. However, the functional relevance and mechanistic basis of the effects of the neurotransmitter dopamine (DA) on tumor immunity remain elusive. Here, we discovered that plasma DA levels are positively correlated with circulating B cell numbers and potently activate B cell responses in a manner dependent on the DRD5 receptor. Notably, DRD5 signaling enhanced the Janus kinase 1 (JAK1)-STAT1 signaling in B cell responses, which enhanced B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion and cytotoxicity in tumor-specific effector of T cells. Our findings demonstrate that DA signaling suppresses tumor progression and highlight DRD5 as a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Lei Zhu
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, China; Department of Breast Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing 210004, China
| | - Sheng Li
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Lu Liu
- Department of Immunology, Nanjing Medical University, Nanjing 211166, China
| | - Yaman Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Yongbing Yang
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi 214000, China
| | - Yuan Mu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Qiuying Zhu
- The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Yuying Jiang
- Department of Immunology, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Wu
- Department of Pathology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing 210004, China
| | - Peiwen Xi
- Department of Health Management Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunmei Ma
- Department of Immunology, Nanjing Medical University, Nanjing 211166, China
| | - Lijun Liang
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Min Gao
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, China
| | - Yingchao Hu
- Department of Immunology, Nanjing Medical University, Nanjing 211166, China.
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, China.
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China.
| |
Collapse
|
15
|
Giri S, Lamichhane G, Pandey J, Khadayat R, K. C. S, Devkota HP, Khadka D. Immune Modulation and Immunotherapy in Solid Tumors: Mechanisms of Resistance and Potential Therapeutic Strategies. Int J Mol Sci 2025; 26:2923. [PMID: 40243502 PMCID: PMC11989189 DOI: 10.3390/ijms26072923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Understanding the modulation of specific immune cells within the tumor microenvironment (TME) offers new hope in cancer treatments, especially in cancer immunotherapies. In recent years, immune modulation and resistance to immunotherapy have become critical challenges in cancer treatments. However, novel strategies for immune modulation have emerged as promising approaches for oncology due to the vital roles of the immunomodulators in regulating tumor progression and metastasis and modulating immunological responses to standard of care in cancer treatments. With the progress in immuno-oncology, a growing number of novel immunomodulators and mechanisms are being uncovered, offering the potential for enhanced clinical immunotherapy in the near future. Thus, gaining a comprehensive understanding of the broader context is essential. Herein, we particularly summarize the paradoxical role of tumor-related immune cells, focusing on how targeted immune cells and their actions are modulated by immunotherapies to overcome immunotherapeutic resistance in tumor cells. We also highlight the molecular mechanisms employed by tumors to evade the long-term effects of immunotherapeutic agents, rendering them ineffective.
Collapse
Affiliation(s)
- Suman Giri
- Asian College for Advance Studies, Purbanchal University, Satdobato, Lalitpur 44700, Nepal;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jitendra Pandey
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Ramesh Khadayat
- Patan Hospital, Patan Academic of Health Sciences, Lagankhel, Lalitpur 44700, Nepal;
| | - Sindhu K. C.
- Department of Pharmacology, Chitwan Medical College, Tribhuwan University, Bharatpur-05, Chitwan 44200, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oehonmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan;
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| | - Dipendra Khadka
- NADIANBIO Co., Ltd., Wonkwang University School of Medicine, Business Incubation Center R201-1, Iksan 54538, Jeonbuk, Republic of Korea
- KHAS Health Pvt. Ltd., Dhangadhi-04, Kailali 10910, Nepal
| |
Collapse
|
16
|
Liu H, Zheng R, Zhuang Z, Xue L, Chen M, Wu Y, Zeng Y. Diagnostic Efficacy and Clinical Significance of Lymphocyte Subsets, Granzyme B and Perforin in the Peripheral Blood of Patients with Invasive Breast Cancer Following Neoadjuvant Chemotherapy. Cancer Manag Res 2025; 17:589-602. [PMID: 40124841 PMCID: PMC11928756 DOI: 10.2147/cmar.s502155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose Breast cancer, a predominant contributor to cancer-related mortality worldwide, is increasingly managed through the application of neoadjuvant chemotherapy (NAC). Analyzing the dynamic changes in peripheral blood lymphocyte subsets, granzyme B and perforin are crucial for investigating their roles in tumorigenesis, development and treatment; this study aimed to use these analyses to diagnose malignant breast tumor, assess the anti-tumor immunity and predict chemotherapy efficacy in breast cancer patients. Patients and Methods To address this objective, a total of 582 peripheral blood samples were collected from healthy controls (n=47), benign breast disease patients (n=401) and breast cancer patients (n=134). Lymphocyte subsets, along with granzyme B and perforin expression, were assessed using flow cytometry. Changes before and after NAC were also monitored. Results Breast cancer patients exhibited reduced proportions and absolute counts of CD3+ and CD8+ T cells, increased NK cell percentage and CD4+/CD8+ ratio, and higher levels of granzyme B and perforin in CD3+, CD8+ T cells and NK cells. Post-NAC, the percentages of CD3+, CD4+, CD8+ T cells and NK cells increased, along with a higher CD4+/CD8+ ratio, while B cell percentages decreased compared to pre-NAC. Furthermore, the effective group showed higher percentages of CD3+, CD8+ T cells and lower percentages of B cells than the ineffective group post-NAC. Incidentally, Granzyme B and perforin expression in CD3+ and CD8+ T cells was elevated following postoperative chemotherapy. Conclusion These findings indicated that peripheral blood lymphocyte subsets, along with granzyme B and perforin levels, could serve as potential biomarkers for differentiating benign from malignant breast tumors, assessing anti-tumor immunity and predicting chemotherapy efficacy.
Collapse
Affiliation(s)
- Han Liu
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Ruinian Zheng
- Phase I Clinical Trial Center, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, People’s Republic of China
| | - Zhaowei Zhuang
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Liwen Xue
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Minggui Chen
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuluo Wu
- Department of Oncology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yan Zeng
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| |
Collapse
|
17
|
El-Far M, Mustafa AS, Attallah A, A Abdelrazek M. High prevalence of antinuclear antibodies in hepatitis C related hepatocellular carcinoma. J Immunoassay Immunochem 2025; 46:218-231. [PMID: 40094397 DOI: 10.1080/15321819.2025.2480368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In chronic hepatitis C (CHC), the virus may induce autoimmune responses via autoantibodies production, including antinuclear antibodies (ANA). Former studies reported great ANA predisposition in CHC and these ANAs may be related to worse prognosis including hepatocellular carcinoma (HCC). We aimed to evaluate the association between ANA incidence and CHC-related HCC development and to evaluate these molecules effect on HCC severity including tumor size and advanced stages. Results revealed that ANA seropositivity was associated with disease severity. HCC patients (54%, OR = 9.7) were associated with ANA positivity more than liver cirrhosis (24.5%) and fibrosis (10.8%). ANA positivity was significantly high in patients with severe tumor features including macrovascular invasion (61.9%; OR = 8.1), large size (68.2%; OR = 2.4), Child C (83.3%; OR = 8.1), BCLC end stage (83.3%; OR = 8.6) and advanced CLIP stage (80.9%; OR = 7.9). ANA positivity were significantly (p < 0.05) correlated with some estimated liver fibrosis related biomarkers including EMA (r = 0.206), fibronectin (r = 0.273), cytokeratin-1 (r = 0.365) and collagen III (r = 0.324). In conclusion, our observation of increased ANA+ serum samples among CHC-related HCC might suggest the oncogenic role of ANA in such patients. Also, clinicians need to appreciate value of ANA testing among HCC patients as these molecules were associated with tumor severity and worse outcomes.
Collapse
Affiliation(s)
- Mohamed El-Far
- Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed S Mustafa
- Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
- Research and Development Department, Biotechnology Research Centre, New Damietta, Egypt
| | - AbdelfattahM Attallah
- Research and Development Department, Biotechnology Research Centre, New Damietta, Egypt
| | - Mohamed A Abdelrazek
- Research and Development Department, Biotechnology Research Centre, New Damietta, Egypt
| |
Collapse
|
18
|
Wu RZ, Sun QQ, Fu Y, Yu HN, Liu WY, Wu YH, Zhang H, Pan YL, Rui X. Fatty acid metabolism-derived prognostic model for lung adenocarcinoma: unraveling the link to survival and immune response. Front Immunol 2025; 16:1507845. [PMID: 40181976 PMCID: PMC11965909 DOI: 10.3389/fimmu.2025.1507845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common malignant tumors globally, characterized by poor prognosis and high mortality. Abnormal fatty acid metabolism plays a crucial role in LUAD progression. This study aims to develop a prognostic model based on fatty acid metabolism to improve the overall prognosis of LUAD. Materials and methods Bioinformatics analyses were performed using TCGA and GEO datasets, supplemented by cell experiments. A total of 309 fatty acid metabolism-related genes were identified from MsigDB. Differentially expressed genes were analyzed using the 'limma' R package. A prognostic model was constructed using LASSO regression and validated with survival analyses via the 'survminer', 'survival', and 'pROC' R packages. The analysis included somatic mutations, tumor mutation burden, clinical correlations, stemness analysis, cytokine correlations, and enrichment analysis. Protein interaction networks were constructed using STRING and Cytoscape, while immune cell infiltration and immunotherapy responses were evaluated with the 'oncoPredict' R package. Results were validated through cell experiments and immunohistochemistry staining of lung tissues. Results We identified 125 differentially expressed genes related to fatty acid metabolism, with 33 genes significantly associated with prognosis. Patients in the high-risk group had poorer overall survival and progression-free survival, and the risk score correlated with gender, N stage, clinical stage, and T stage. The risk score was also associated with cancer stem cells, with a significantly higher mRNAsi index in the high-risk group. Additionally, the risk score correlated with various cytokine expressions and showed significant enrichment in cell cycle pathways. Key genes like CDK1 were highly expressed in LUAD cell lines and validated in clinical samples. The low-risk group showed better responses to immune checkpoint inhibitors, with the risk score correlating with immune checkpoint gene expression. Conclusion This study successfully established a novel prognostic model based on fatty acid metabolism, which provides valuable insights for the treatment of LUAD.
Collapse
Affiliation(s)
- Rui-Ze Wu
- School of Public Health, Harbin Medical University, Harbin, China
| | - Qian-Qian Sun
- School of Public Health, Harbin Medical University, Harbin, China
| | - Yao Fu
- School of Public Health, Harbin Medical University, Harbin, China
| | - Han-Nong Yu
- School of Public Health, Harbin Medical University, Harbin, China
| | - Wei-Yang Liu
- School of Public Health, Harbin Medical University, Harbin, China
| | - Yong-Hui Wu
- School of Public Health, Harbin Medical University, Harbin, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu-Lin Pan
- School of Public Health, Harbin Medical University, Harbin, China
| | - Xin Rui
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
19
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
20
|
Li Z, Liu S, Liu D, Yang K, Xiong J, Fang Z. Multiple mechanisms and applications of tertiary lymphoid structures and immune checkpoint blockade. J Exp Clin Cancer Res 2025; 44:84. [PMID: 40038799 PMCID: PMC11881293 DOI: 10.1186/s13046-025-03318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) inhibits tumor immune escape and has significantly advanced tumor therapy. However, ICB benefits only a minority of patients treated and may lead to many immune-related adverse events. Therefore, identifying factors that can predict treatment outcomes, enhance synergy with ICB, and mitigate immune-related adverse events is urgently needed. MAIN TEXT Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues that arise from the tumor periphery. They have been found to be associated with better prognosis and improved clinical outcomes after ICB therapy. TLS may help address the problems associated with ICB. The multiple mechanisms of action between TLS and ICB remain unknown. This paper described potential mechanisms of interaction between the two and explored their potential applications.
Collapse
Affiliation(s)
- Zelin Li
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuhan Liu
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Deyu Liu
- Department of Clinical Medicine, Queen Mary School of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kangping Yang
- The 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jing Xiong
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Department of General Practice, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Ziling Fang
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Department of Oncology, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
21
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
22
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. m6A RNA methylation: a pivotal regulator of tumor immunity and a promising target for cancer immunotherapy. J Transl Med 2025; 23:245. [PMID: 40022120 PMCID: PMC11871626 DOI: 10.1186/s12967-025-06221-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
M6A modification is one of the most common regulatory mechanisms of gene expression in eukaryotic cells, influencing processes such as RNA splicing, degradation, stability, and protein translation. Studies have shown that m6A methylation is closely associated with tumorigenesis and progression, and it plays a key regulatory role in tumor immune responses. m6A modification participates in regulating the differentiation and maturation of immune cells, as well as related anti-tumor immune responses. In the tumor microenvironment, m6A modification can also affect immune cell recruitment, activation, and polarization, thereby promoting or inhibiting tumor cell proliferation and metastasis, and reshaping the tumor immune microenvironment. In recent years, immunotherapies for tumors, such as immune checkpoint inhibitors and adoptive cell immunotherapy, have been increasingly applied in clinical settings, achieving favorable outcomes. Targeting m6A modifications to modulate the immune system, such as using small-molecule inhibitors to target dysregulated m6A regulatory factors or inducing immune cell reprogramming, can enhance anti-tumor immune responses and strengthen immune cell recognition and cytotoxicity against tumor cells. m6A modification represents a new direction in tumor immunotherapy with promising clinical potential. This review discusses the regulatory role of m6A methylation on immune cells and tumor immune responses and explores new strategies for immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yixiao Yuan
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Fan Zhou
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jun Pu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China.
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Xiulin Jiang
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
23
|
Neo SY, Shuen TWH, Khare S, Chong J, Lau M, Shirgaonkar N, Chua L, Zhao J, Lee K, Tan C, Ba R, Lim J, Chua J, Cheong HS, Chai HM, Chan CY, Chung AYF, Cheow PC, Jeyaraj PR, Teo JY, Koh YX, Chok AY, Chow PKH, Goh B, Wan WK, Leow WQ, Loh TJZ, Tang PY, Karunanithi J, Ngo NT, Lim TKH, Xu S, Dasgupta R, Toh HC, Lam KP. Atypical memory B cells acquire Breg phenotypes in hepatocellular carcinoma. JCI Insight 2025; 10:e187025. [PMID: 39998891 PMCID: PMC11981623 DOI: 10.1172/jci.insight.187025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
The functional plasticity of tumor-infiltrating lymphocyte B-cells (TIL-B) spans from antitumor responses to noncanonical immune suppression. Yet, how the tumor microenvironment (TME) influences TIL-B development is still underappreciated. Our current study integrated single-cell transcriptomics and B cell receptor (BCR) sequencing to profile TIL-B phenotypes and clonalities in hepatocellular carcinoma (HCC). Using trajectory and gene regulatory network analysis, we were able to characterize plasma cells and memory and naive B cells within the HCC TME and further revealed a downregulation of BCR signaling genes in plasma cells and a subset of inflammatory TNF+ memory B cells. Within the TME, a nonswitched memory B cell subset acquired an age-associated B cell phenotype (TBET+CD11c+) and expressed higher levels of PD-L1, CD25, and granzyme B. We further demonstrated that the presence of HCC tumor cells could confer suppressive functions on peripheral blood B cells that in turn, dampen T cell costimulation. To the best of our knowledge, these findings represent novel mechanisms of noncanonical immune suppression in HCC. While previous studies identified atypical memory B cells in chronic hepatitis and across several solid cancer types, we further highlighted their potential role as regulatory B cells (Bregs) within both the TME and peripheral blood of HCC patients.
Collapse
Affiliation(s)
- Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Shruti Khare
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joni Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maichan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Niranjan Shirgaonkar
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Levene Chua
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Junzhe Zhao
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Keene Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Charmaine Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rebecca Ba
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Janice Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Joelle Chua
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Hui Shi Cheong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Hui Min Chai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Chung Yip Chan
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Alexander Yaw Fui Chung
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Peng Chung Cheow
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Prema Raj Jeyaraj
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Jin Yao Teo
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Ye Xin Koh
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Aik Yong Chok
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Pierce Kah Hoe Chow
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore
| | - Brian Goh
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Wei Keat Wan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Tracy Jie Zhen Loh
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Po Yin Tang
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | | | - Nye Thane Ngo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ramanuj Dasgupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
24
|
Li C, Ke F, Mao S, Montemayor Z, Traore MDM, Balsa AD, Djibo M, Karekar N, Hu H, Wen H, Gao W, Sun D. SARS-CoV-2 B Epitope-Guided Neoantigen NanoVaccines Enhance Tumor-Specific CD4/CD8 T Cell Immunity through B Cell Antigen Presentation. ACS NANO 2025; 19:7038-7054. [PMID: 39943808 DOI: 10.1021/acsnano.4c15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Current neoantigen cancer vaccines activate T cell immunity through dendritic cell/macrophage-mediated antigen presentation. It is unclear whether incorporating B cell-mediated antigen presentation into current neoantigen vaccines could enhance CD4/CD8 T cell immunity to improve their anticancer efficacy. We developed SARS-CoV-2 B cell epitope-guided neoantigen peptide/mRNA cancer nanovaccines (BSARSTNeoAgVax) to improve anticancer efficacy by enhancing tumor-specific CD4/CD8 T cell antitumor immunity through B cell-mediated antigen presentation. BSARSTNeoAgVax cross-linked with B cell receptor, promoted SARS-CoV-2 B cell-mediated antigen presentation to tumor-specific CD4 T cells, increased tumor-specific follicular/nonfollicular CD4 T cells, and enhanced B cell-dependent tumor-specific CD8 T cell immunity. BSARSTNeoAgVax achieved superior efficacy in melanoma, pancreatic, and breast cancer models compared with the current neoantigen vaccines. Our study provides a universal platform, SARS-CoV-2 B epitope-guided neoantigen nanovaccines, to improve anticancer efficacy against various cancer types by enhancing CD4/CD8 T cell antitumor immunity through viral-specific B cell-mediated antigen presentation.
Collapse
Affiliation(s)
- Chengyi Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fang Ke
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shuai Mao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zera Montemayor
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alejandra Duran Balsa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mahamadou Djibo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neha Karekar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hanning Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology and Pharmaceutical Science, College of Pharmacy, The University of Houston, Houston, Texas 77204, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Zhang P, Gao C, Zhang Z, Yuan Z, Zhang Q, Zhang P, Du S, Zhou W, Li Y, Li S. Systematic inference of super-resolution cell spatial profiles from histology images. Nat Commun 2025; 16:1838. [PMID: 39984438 PMCID: PMC11845739 DOI: 10.1038/s41467-025-57072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Inferring cell spatial profiles from histology images is critical for cancer diagnosis and treatment in clinical settings. In this study, we report a weakly-supervised deep-learning method, HistoCell, to directly infer super-resolution cell spatial profiles consisting of cell types, cell states and their spatial network from histology images at the single-nucleus-level. Benchmark analysis demonstrates that HistoCell robustly achieves state-of-the-art performance in terms of cell type/states prediction solely from histology images across multiple cancer tissues. HistoCell can significantly enhance the deconvolution accuracy for the spatial transcriptomics data and enable accurate annotation of subtle cancer tissue architectures. Moreover, HistoCell is applied to de novo discovery of clinically relevant spatial organization indicators, including prognosis and drug response biomarkers, across diverse cancer types. HistoCell also enable image-based screening of cell populations that drives phenotype of interest, and is applied to discover the cell population and corresponding spatial organization indicators associated with gastric malignant transformation risk. Overall, HistoCell emerges as a powerful and versatile tool for cancer studies in histology image-only cohorts.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Chaofei Gao
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Zhuoyu Zhang
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qian Zhang
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shao Li
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
26
|
Samiea A, Celis G, Yadav R, Rodda LB, Moreau JM. B cells in non-lymphoid tissues. Nat Rev Immunol 2025:10.1038/s41577-025-01137-6. [PMID: 39910240 DOI: 10.1038/s41577-025-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
B cells have long been understood to be drivers of both humoral and cellular immunity. Recent advances underscore this importance but also indicate that in infection, inflammatory disease and cancer, B cells function directly at sites of inflammation and form tissue-resident memory populations. The spatial organization and cellular niches of tissue B cells have profound effects on their function and on disease outcome, as well as on patient response to therapy. Here we review the role of B cells in peripheral tissues in homeostasis and disease, and discuss the newly identified cellular and molecular signals that are involved in regulating their activity. We integrate emerging data from multi-omic human studies with experimental models to propose a framework for B cell function in tissue inflammation and homeostasis.
Collapse
Affiliation(s)
- Abrar Samiea
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - George Celis
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Rashi Yadav
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Lauren B Rodda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
| | - Joshua M Moreau
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
27
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
28
|
Hiraga T. Immune microenvironment of cancer bone metastasis. Bone 2025; 191:117328. [PMID: 39549899 DOI: 10.1016/j.bone.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Bone is a common and frequent site of metastasis in cancer patients, leading to a significant reduction in quality of life and increased mortality. Bone marrow, the primary site of hematopoiesis, also serves as both a primary and secondary lymphoid organ. It harbors and supports a diverse array of immune cells, thereby creating a distinct immune microenvironment. These immune cells engage in a range of activities, including anti-tumor, pro-tumor, or a combination of both, which influence the development and progression of bone metastases. Rapid advances in cancer immunotherapy have underscored its potential to eradicate bone metastases. However, clinical outcomes have not yet met expectations. To improve the efficacy of immunotherapy, it is crucial to gain a comprehensive and in-depth understanding of the immune microenvironment within bone metastases. This review provides an overview of the current understanding of the role of different immune cells, their anti-tumor and pro-tumor activities, and their overall contribution to bone metastasis.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan.
| |
Collapse
|
29
|
Song S, Wang C, Chen Y, Zhou X, Han Y, Zhang H. Dynamic roles of tumor-infiltrating B lymphocytes in cancer immunotherapy. Cancer Immunol Immunother 2025; 74:92. [PMID: 39891668 PMCID: PMC11787113 DOI: 10.1007/s00262-024-03936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 02/03/2025]
Abstract
The amazing diversity of B cells within the tumor microenvironment is the basis for the diverse development of B cell-based immunotherapies. Here, we focus on elucidating the mechanisms of tumor intervention mediated by four tumor-infiltrating B lymphocytes. Naive B cells present the initial antigen, germinal center B cell subsets enhance antibody affinity, and immunoglobulin subtypes exert multiple immune effects, while regulatory B cells establish immune tolerance. Together they reflect the complexity of the changing dynamics of cancer immunity. Additionally, we have investigated the dynamic effects of tumor-infiltrating B lymphocytes in immunotherapy and their relationship to prognosis, providing new insights into potential treatment strategies for patients.
Collapse
Affiliation(s)
- Shishengnan Song
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chong Wang
- Department of Thoracic Surgery, Beijing Chest Hospital Affiliated to Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), 9 Beiguan Street, Tongzhou, 101149, Beijing, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, NT, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital Affiliated to Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), 9 Beiguan Street, Tongzhou, 101149, Beijing, China.
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
30
|
Wang X, Shen W, Yao L, Li C, You H, Guo D. Current status and future prospects of molecular imaging in targeting the tumor immune microenvironment. Front Immunol 2025; 16:1518555. [PMID: 39911388 PMCID: PMC11794535 DOI: 10.3389/fimmu.2025.1518555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Molecular imaging technologies have significantly transformed cancer research and clinical practice, offering valuable tools for visualizing and understanding the complex tumor immune microenvironment. These technologies allow for the non-invasive examination of key components within the tumor immune microenvironment, including immune cells, cytokines, and stromal cells, providing crucial insights into tumor biology and treatment responses. This paper reviews the latest advancements in molecular imaging, with a focus on its applications in assessing interactions within the tumor immune microenvironment. Additionally, the challenges faced by molecular imaging technologies are discussed, such as the need for highly sensitive and specific imaging agents, issues with data integration, and difficulties in clinical translation. The future outlook emphasizes the potential of molecular imaging to enhance personalized cancer treatment through the integration of artificial intelligence and the development of novel imaging probes. Addressing these challenges is essential to fully realizing the potential of molecular imaging in improving cancer diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weifen Shen
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingjun Yao
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Li
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huiming You
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Duancheng Guo
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Scaletti C, Pratesi S, Bellando Randone S, Di Pietro L, Campochiaro C, Annunziato F, Matucci Cerinic M. The B-cells paradigm in systemic sclerosis: an update on pathophysiology and B-cell-targeted therapies. Clin Exp Immunol 2025; 219:uxae098. [PMID: 39498828 PMCID: PMC11754866 DOI: 10.1093/cei/uxae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024] Open
Abstract
Systemic sclerosis (SSc) is considered a rare autoimmune disease in which there are alterations of both the innate and adaptive immune response resulting in the production of autoantibodies. Abnormalities of the immune system compromise the normal function of blood vessels leading to a vasculopathy manifested by Raynaud's phenomenon, an early sign of SSc . As a consequence of this reactive picture, the disease can evolve leading to tissue fibrosis. Several SSc-specific autoantibodies are currently known and are associated with specific clinical manifestations and prognosis. Although the pathogenetic role of these autoantibodies is still unclear, their production by B cells and plasma cells suggests the importance of these cells in the development of SSc. This review narratively examines B-cell dysfunctions and their role in the pathogenesis of SSc and discusses B-cell-targeted therapies currently used or potentially useful for the management of end-organ complications.
Collapse
Affiliation(s)
- Cristina Scaletti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sara Pratesi
- Flow Cytometry Diagnostic Center and Immunotherapy, University Hospital Careggi, Florence, Italy
| | - Silvia Bellando Randone
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Florence, and Scleroderma Unit, University Hospital Careggi, Florence, Italy
| | - Linda Di Pietro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Flow Cytometry Diagnostic Center and Immunotherapy, University Hospital Careggi, Florence, Italy
| | - Marco Matucci Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
32
|
Peyraud F, Guegan JP, Vanhersecke L, Brunet M, Teyssonneau D, Palmieri LJ, Bessede A, Italiano A. Tertiary lymphoid structures and cancer immunotherapy: From bench to bedside. MED 2025; 6:100546. [PMID: 39798544 DOI: 10.1016/j.medj.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 01/15/2025]
Abstract
Tertiary lymphoid structures (TLSs) are organized ectopic lymphoid aggregates within the tumor microenvironment that serve as crucial sites for the development of adaptive antitumor cellular and humoral immunity. TLSs have been consistently documented in numerous cancer types, correlating with improved prognosis and enhanced responses to immunotherapy, especially immune-checkpoint blockade (ICB). Given the potential role of TLSs as predictive biomarkers for the efficacy of ICB in cancer patients, the therapeutic manipulation of TLSs is gaining significant attention as a promising avenue for cancer treatment. Herein, we comprehensively review the composition, definition, and detection methods of TLSs in humans. We also discuss the contributions of TLSs to antitumor immunity, their prognostic value in cancer patients, and their association with therapeutic response to ICB-based immunotherapy. Finally, we present preclinical data supporting the potential of therapeutically manipulating TLSs as a promising approach for innovative cancer immunotherapy.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France.
| | | | - Lucile Vanhersecke
- Faculty of Medicine, University of Bordeaux, Bordeaux, France; Department of Pathology, Institut Bergonié, Bordeaux, France
| | - Maxime Brunet
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Diego Teyssonneau
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | - Lola-Jade Palmieri
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | | | - Antoine Italiano
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
33
|
Klein C, Devi-Marulkar P, Dieu-Nosjean MC, Germain C. Advancement of Techniques for Precise Visualization and Quantification of Tertiary Lymphoid Structure-Associated Immune Cells in Tissue Samples. Methods Mol Biol 2025; 2864:181-203. [PMID: 39527223 DOI: 10.1007/978-1-0716-4184-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary Lymphoid Structures (TLS) are considered as genuine markers of inflammation. Their presence within inflamed tissues or the tumor microenvironment has been associated with the local development of an active immune response. While high densities of TLS are correlated with disease severity in autoimmune diseases or during graft rejection, it has been associated with longer patient survival in many cancer types and more recently with positive responses to anti-PD-1 immunotherapy. Their efficient visualization and quantification within human tissues may represent new tools for helping clinicians in adjusting their therapeutic strategy. In clinical settings, the use of single-marker immunohistochemistry (IHC) protocols prevails in immune cell infiltration in formalin-fixed, paraffin-embedded (FFPE) tissues. In contrast, the development of automated multiplex immunofluorescence markings, i.e., 40-plex, requires very costly investments in equipment and analysis stations. Yet, employing two or more markers can enhance the characterization of immune infiltrates, particularly in the context of TLS. Besides the growing development of multiplex labeling approaches, imaging can also be used to overcome some technical difficulties encountered during the immunolabeling of tissues with several markers.This chapter describes IHC methods to visualize in human tissue (tumoral or not) the presence of TLS. These methods are based on the immunostaining of four TLS-associated immune cell populations, namely, follicular B cells, follicular dendritic Cells (FDCs), mature Dendritic Cells (mDCs), and Follicular Helper T cells (TFH), together with non-TFH T cells. Methodologies for subsequent quantification of TLS density are also proposed, as well as a virtual multiplexing method based on image registration using the open-source software ImageJ (IJ), aiming at co-localizing several immune cell populations from different IHC stainings performed on serial tissue sections.
Collapse
Affiliation(s)
- Christophe Klein
- Center of Cellular Imaging and Cytometry, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
| | - Priyanka Devi-Marulkar
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- INSERMU1138, Cordeliers Research Center, Paris, France
- Laboratory "Cancer, Immune Control and Escape", Paris, France
- Pole promotion de la recherche clinique, Direction de la Recherche de l'Ensemble Hospitalier (DREH), Institut Curie, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France
- Inserm U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections (CIMI), Faculté de Médecine Sorbonne Université, Paris, France
| | - Claire Germain
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France.
- INSERMU1138, Cordeliers Research Center, Paris, France.
- Laboratory "Cancer, Immune Control and Escape", Paris, France.
- BIOMUNEX Pharmaceuticals, Bioincubateur Paris Biotech Santé, Hôpital Cochin, Paris, France.
| |
Collapse
|
34
|
Lv Z, Wang TY, Bi Y, Li D, Wu Q, Wang B, Ma Y. BAFF overexpression in triple-negative breast cancer promotes tumor growth by inducing IL-10-secreting regulatory B cells that suppress anti-tumor T cell responses. Breast Cancer Res Treat 2025; 209:405-418. [PMID: 39400783 DOI: 10.1007/s10549-024-07504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Despite BAFF's (B cell activating factor, BAFF) known influence on B cell survival and proliferation, its specific effects within the tumor microenvironment remain unclear. We aimed to elucidate how BAFF overexpression in breast cancer cells impacts tumor growth and the functions of T and B cells in the tumor microenvironment. METHODS BAFF was overexpressed in the 4T1 mouse triple-negative breast cancer cell line, and tumor growth, immune cell infiltration, and activity were assessed in vitro and in vivo using flow cytometry, co-culture assays, and mouse tumor models with B cell depletion. RESULTS BAFF overexpression in 4T1 cells promoted tumor growth in vivo, suppressed CD8+ T cell activity, and increased IL-10-secreting CD5+ regulatory B cells in tumors. 4T1/BAFF cells directly enhanced IL-10 production in CD5+ B cells via BAFF/BAFF-receptor interactions, and IL-10 from CD5+ B cells inhibited IFN-γ secretion by T cells. B cell depletion partially reversed the tumor-promoting effects of BAFF overexpression. Our study reveals a novel mechanism by which BAFF can foster tumor progression, with the induction of IL-10-secreting regulatory B cells that suppress anti-tumor T cell responses appearing to be a key component of BAFF's tumor-promoting activity. CONCLUSION These findings underscore the complex immunomodulatory effects that BAFF exerts in the tumor microenvironment and point to BAFF-induced regulatory B cells as a potential new therapeutic target in breast cancer that warrants further investigation.
Collapse
Affiliation(s)
- Zhuangwei Lv
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, 76 West Yanta Road, China
- School of Forensic Medicine, Xinxiang Medical University, 76 West Yanta Road, Xinxiang, Henan, 453003, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yu Bi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, 76 West Yanta Road, China
| | - Dandan Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, 76 West Yanta Road, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Baofeng Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yunfeng Ma
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, 76 West Yanta Road, China.
| |
Collapse
|
35
|
Devi-Marulkar P, Kaplon H, Dieu-Nosjean MC, Lawand M. Method Development for Sorting Immune Cell Populations Within Tertiary Lymphoid Structures. Methods Mol Biol 2025; 2864:247-262. [PMID: 39527226 DOI: 10.1007/978-1-0716-4184-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The tumor microenvironment is a complex network of interacting cells composed of immune and nonimmune cells. It has been reported that the composition of the immune contexture has a significant impact on tumor growth and patient survival in different solid tumors. For instance, we and other groups have previously demonstrated that a strong infiltration of T-helper type 1 (Th1), memory CD8+ T cells, and immune cells organized into tertiary lymphoid structures is associated with the long-term survival of cancer patients. Nevertheless, the prognostic value of the other immune populations, namely regulatory T cells (Treg), B cells, and gamma-delta (γδ) T cells remains a matter of debate. Herein, we describe novel flow cytometry-based strategies to sort out these different immune populations to evaluate their role in non-small-cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Priyanka Devi-Marulkar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Pole promotion de la recherche clinique, Direction de la Recherche de l'Ensemble Hospitalier (DREH), Institut Curie, Paris, France
| | - Hélène Kaplon
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Translational Medicine Department, Institut de Recherches Internationales Servier, Gif-sur-Yvette, France
| | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France
- Inserm U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections (CIMI), Faculté de Médecine Sorbonne Université, Paris, France
| | - Myriam Lawand
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France.
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France.
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France.
- Department of Biology, University of Balamand, Souk El-Gharb, Aley, Lebanon.
| |
Collapse
|
36
|
Hashimoto A, Hashimoto S. Plasticity and Tumor Microenvironment in Pancreatic Cancer: Genetic, Metabolic, and Immune Perspectives. Cancers (Basel) 2024; 16:4094. [PMID: 39682280 DOI: 10.3390/cancers16234094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues in response to aging, environmental damage, and chronic inflammation, suggesting that not only intrinsic factors within cancer cells, but also environmental alterations are important key factors in cancer development and progression. Pancreatic cancer tissue is mostly comprised of stromal cells and immune cells. The desmoplasmic microenvironment characteristic of pancreatic cancer is hypoxic and hypotrophic. Pancreatic cancer cells may adapt to this environment by rewiring their metabolism through epigenomic changes, enhancing intrinsic plasticity, creating an acidic and immunosuppressive tumor microenvironment, and inducing noncancerous cells to become tumor-promoting. In addition, pancreatic cancer has often metastasized to local and distant sites by the time of diagnosis, suggesting that a similar mechanism is operating from the precancerous stage. Here, we review key recent findings on how pancreatic cancers acquire plasticity, undergo metabolic reprogramming, and promote immunosuppressive microenvironment formation during their evolution. Furthermore, we present the following two signaling pathways that we have identified: one based on the small G-protein ARF6 driven by KRAS/TP53 mutations, and the other based on the RNA-binding protein Arid5a mediated by inflammatory cytokines, which promote both metabolic reprogramming and immune evasion in pancreatic cancer. Finally, the striking diversity among pancreatic cancers in the relative importance of mutational burden and the tumor microenvironment, their clinical relevance, and the potential for novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
37
|
Bod L, Shalapour S. B cells spatial organization defines their phenotype and function in cancer "Tell me with whom you consort, and I will tell you who you are" - Goethe. Curr Opin Immunol 2024; 91:102504. [PMID: 39547092 DOI: 10.1016/j.coi.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The presence of B cells and their subtypes in the tumor environment has been recognized a for very long time. Immunoglobulins specific for more than thousands of tumor-associated antigens were detected in the sera of patients with cancer; however, antibody-mediated cancer cell killing is usually impaired. The role of humoral immune response remained elusive until recently, with new discoveries regarding their contribution in regulating antitumor immunity, particularly during immunotherapy. Humoral immunity has been described to promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome in different tumor entities. The antagonism effect of B cells depends on their subtypes and immunoglobulin isotypes and is regulated by their spatial distribution and localization. In this short review, we will focus on how the spatial organization of B cells within the tumor microenvironment, tumor-associated lymph nodes, and tertiary lymphoid structures define their fate and function and contribute to the regulation of antitumor immunity.
Collapse
Affiliation(s)
- Lloyd Bod
- Department of Medicine, Krantz Family Center for Cancer Research, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
38
|
Yu C, Xu J, Xu S, Tang L, Han Q, Sun Z. Research trends, hotspots and future directions of tertiary lymphoid structures in cancer: a comprehensive informatics analysis and visualization study. Discov Oncol 2024; 15:665. [PMID: 39549226 PMCID: PMC11569082 DOI: 10.1007/s12672-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Many studies have reported the presence of tertiary lymphoid structures (TLSs) in cancer, but the research progress of TLSs in cancer has not been systematically analyzed. Therefore, we analyzed the global scientific knowledge in the field using informatics methods. The results showed that TLSs in cancer have received increasing attention since the 21st century, with an annual publication growth rate of 27.86%. Unsupervised hierarchical clustering based on machine learning further categorized the research features into four clusters, with the cluster related to immunotherapy being considered an emerging cluster. TLSs and immunotherapy were identified as the top two hotspots with the highest occurrence frequency and total link strength. The Walktrap algorithm indicated that "TLSs, carcinoma, prognostic value" and "high endothelial venules, germinal-centers, node-like structures" are important to TLSs but remain underexplored, representing promising research directions. These findings suggest that cancer-related TLSs have brought new insights into antitumor immunity, and targeting TLSs has the potential to transform the landscape of antitumor immunotherapy.
Collapse
Affiliation(s)
- Chengdong Yu
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Jiawei Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Siyi Xu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Tang
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Qinyuan Han
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengkui Sun
- Jiangxi Medical College, Nanchang University, Nanchang, China.
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China.
| |
Collapse
|
39
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX, Liang JN. Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: from molecular mechanisms to therapeutic strategies. Mol Cancer 2024; 23:254. [PMID: 39543660 PMCID: PMC11562679 DOI: 10.1186/s12943-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Liver metastases are commonly detected in the advanced stages of various malignant tumors, representing a significant clinical challenge. Throughout the process of liver metastases formation, immune cells play a pivotal role, particularly in the pre-metastatic and metastatic niches within the liver. Immune cells establish extensive and intricate interactions with tumor cells and other components in the liver, collectively promoting and sustaining the growth of liver metastases. Despite the limited efficacy of existing therapeutic modalities against some advanced liver metastases, novel immune-based treatment approaches are continuously being explored and validated. Building on the systematic elucidation of the immunosuppressive characteristics of liver metastases, we explored the potential of novel immunotherapies applicable to patients with liver metastases from multiple dimensions.
Collapse
Affiliation(s)
- Chang Zhu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jing-Yu Liao
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yi-Yang Liu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ze-Yu Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Rui-Zhi Chang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| | - Jun-Nan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| |
Collapse
|
40
|
Conejo-Garcia JR, Lopez-Bailon LU, Anadon CM. Unraveling spontaneous humoral immune responses against human cancer: a road to novel immunotherapies. J Leukoc Biol 2024; 116:919-926. [PMID: 39190797 DOI: 10.1093/jleuko/qiae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
In immuno-oncology, the focus has traditionally been on αβ T cells, and immune checkpoint inhibitors that primarily target PD-1 or CTLA4 in these lymphocytes have revolutionized the management of multiple human malignancies. However, recent research highlights the crucial role of B cells and the antibodies they produce in antagonizing malignant progression, offering new avenues for immunotherapy. Our group has demonstrated that dimeric Immunoglobulin A can penetrate tumor cells, neutralize oncogenic drivers in endosomes, and expel them from the cytosol. This mechanistic insight suggests that engineered antibodies targeting this pathway may effectively reach previously inaccessible targets. Investigating antibody production within intratumoral germinal centers and understanding the impact of different immunoglobulins on malignant progression could furnish new tools for the therapeutic arsenal, including the development of tumor-penetrating antibodies. This review aims to elucidate the nature of humoral adaptive immune responses in human cancer and explore how they could herald a new era of immunotherapeutic modalities. By expanding the scope of antitumor immunotherapies, these approaches have the potential to benefit a broader range of cancer patients, particularly through the utilization of tumor cell-penetrating antibodies.
Collapse
Affiliation(s)
- Jose R Conejo-Garcia
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| | - Luis U Lopez-Bailon
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| | - Carmen M Anadon
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
41
|
Räuber S, Schulte-Mecklenbeck A, Willison A, Hagler R, Jonas M, Pul D, Masanneck L, Schroeter CB, Golombeck KS, Lichtenberg S, Strippel C, Gallus M, Dik A, Kerkhoff R, Barman S, Weber KJ, Kovac S, Korsen M, Pawlitzki M, Goebels N, Ruck T, Gross CC, Paulus W, Reifenberger G, Hanke M, Grauer O, Rapp M, Sabel M, Wiendl H, Meuth SG, Melzer N. Flow cytometry identifies changes in peripheral and intrathecal lymphocyte patterns in CNS autoimmune disorders and primary CNS malignancies. J Neuroinflammation 2024; 21:286. [PMID: 39497174 PMCID: PMC11536547 DOI: 10.1186/s12974-024-03269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Immune dysregulation is a hallmark of autoimmune diseases of the central nervous system (CNS), characterized by an excessive immune response, and primary CNS tumors (pCNS-tumors) showing a highly immunosuppressive parenchymal microenvironment. METHODS Aiming to provide novel insights into the pathogenesis of CNS autoimmunity and cerebral tumor immunity, we analyzed the peripheral blood (PB) and cerebrospinal fluid (CSF) of 81 autoimmune limbic encephalitis (ALE), 148 relapsing-remitting multiple sclerosis (RRMS), 33 IDH-wildtype glioma, 9 primary diffuse large B cell lymphoma of the CNS (CNS-DLBCL), and 110 controls by flow cytometry (FC). Additionally, an in-depth immunophenotyping of the PB from an independent cohort of 20 RRMS and 18 IDH-wildtype glioblastoma patients compared to 19 controls was performed by FC combined with unsupervised computational approaches. RESULTS We identified alterations in peripheral and intrathecal adaptive immunity, mainly affecting the T cell (Tc) but also the B cell (Bc) compartment in ALE, RRMS, and pCNS-tumors compared to controls. ALE, RRMS, and pCNS-tumors featured higher expression of the T cell activation marker HLA-DR, which was even more pronounced in pCNS-tumors than in ALE or RRMS. Glioblastoma patients showed signs of T cell exhaustion that were not visible in RRMS patients. In-depth characterization of the PB revealed differences mainly in the T effector and memory compartment between RRMS and glioblastoma patients and similar alterations in the Bc compartment, including atypical Bc, CD19+CD20- double negative Bc, and plasma cells. PB and CSF mFC together with CSF routine parameters could reliably differentiate ALE and RRMS from pCNS-tumors facilitating early diagnosis and treatment. CONCLUSIONS ALE, RRMS, and pCNS-tumors show distinct but partially overlapping changes mainly in HLA-DR+ Tc, memory Tc, exhausted Tc, and Bc subsets providing insights into disease pathogenesis. Moreover, mFC shows diagnostic potential facilitating early diagnosis and treatment.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ramona Hagler
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marius Jonas
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Duygu Pul
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lars Masanneck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Kristin S Golombeck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Stefanie Lichtenberg
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marco Gallus
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Ruth Kerkhoff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina J Weber
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Melanie Korsen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University of Münster, Münster, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hanke
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.
| |
Collapse
|
42
|
Lopes CDH, Braganca Xavier C, Torrado C, Veneziani AC, Megid TBC. A Comprehensive Exploration of Agents Targeting Tumor Microenvironment: Challenges and Future Perspectives. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:283-299. [PMID: 39524466 PMCID: PMC11541921 DOI: 10.36401/jipo-24-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 11/16/2024]
Abstract
The tumor microenvironment (TME) encompasses the complex and diverse surroundings in which tumors arise. Emerging insights highlight the TME's critical role in tumor development, progression, metastasis, and treatment response. Consequently, the TME has attracted significant research and clinical interest, leading to the identification of numerous novel therapeutic targets. Advances in molecular technologies now enable detailed genomic and transcriptional analysis of cancer cells and the TME and the integration of microenvironmental data to the tumor genomic landscape. This comprehensive review discusses current progress in targeting the TME for drug development, addressing associated challenges, strategies for modulating the pro-tumor microenvironment, and the discovery of new targets.
Collapse
Affiliation(s)
| | | | - Carlos Torrado
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
43
|
Koedijk JB, van der Werf I, Penter L, Vermeulen MA, Barneh F, Perzolli A, Meesters-Ensing JI, Metselaar DS, Margaritis T, Fiocco M, de Groot-Kruseman HA, Moeniralam R, Bang Christensen K, Porter B, Pfaff K, Garcia JS, Rodig SJ, Wu CJ, Hasle H, Nierkens S, Belderbos ME, Zwaan CM, Heidenreich O. A multidimensional analysis reveals distinct immune phenotypes and the composition of immune aggregates in pediatric acute myeloid leukemia. Leukemia 2024; 38:2332-2343. [PMID: 39187578 PMCID: PMC11518988 DOI: 10.1038/s41375-024-02381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Because of the low mutational burden and consequently, fewer potential neoantigens, children with acute myeloid leukemia (AML) are thought to have a T cell-depleted or 'cold' tumor microenvironment and may have a low likelihood of response to T cell-directed immunotherapies. Understanding the composition, phenotype, and spatial organization of T cells and other microenvironmental populations in the pediatric AML bone marrow (BM) is essential for informing future immunotherapeutic trials about targetable immune-evasion mechanisms specific to pediatric AML. Here, we conducted a multidimensional analysis of the tumor immune microenvironment in pediatric AML and non-leukemic controls. We demonstrated that nearly one-third of pediatric AML cases has an immune-infiltrated BM, which is characterized by a decreased ratio of M2- to M1-like macrophages. Furthermore, we detected the presence of large T cell networks, both with and without colocalizing B cells, in the BM and dissected the cellular composition of T- and B cell-rich aggregates using spatial transcriptomics. These analyses revealed that these aggregates are hotspots of CD8+ T cells, memory B cells, plasma cells and/or plasmablasts, and M1-like macrophages. Collectively, our study provides a multidimensional characterization of the BM immune microenvironment in pediatric AML and indicates starting points for further investigations into immunomodulatory mechanisms in this devastating disease.
Collapse
Affiliation(s)
- Joost B Koedijk
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Inge van der Werf
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, 3521 AL, Utrecht, The Netherlands
- Sanford Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Hematology, Oncology, and Cancer Immunology, Campus Virchow Klinikum, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Marijn A Vermeulen
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Farnaz Barneh
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Alicia Perzolli
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | | | - Dennis S Metselaar
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Thanasis Margaritis
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Rubina Moeniralam
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | | | - Billie Porter
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacqueline S Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Henrik Hasle
- Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Mirjam E Belderbos
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
- University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
44
|
Mubthasima PP, Kannan A. Unraveling the role of EPHA2 in regulating migration and immunomodulation processes in cervical cancer: exploring the synergic effect of 17β-estradiol on cancer progression. Med Oncol 2024; 41:255. [PMID: 39352425 DOI: 10.1007/s12032-024-02508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/16/2024] [Indexed: 11/14/2024]
Abstract
Cervical cancer remained among the most prevalent cancers in women. Erythropoietin-producing hepatocellular A2 (EPHA2) is overexpressed in many cancers, including cervical cancer, and the mechanism by which it regulates cervical cancer progression is not yet fully understood. Exosomes are extracellular vesicles that carry information in the form of biomolecules, deliver it to the recipient cell, and play a vital role in cellular communication. 17β-Estradiol is the natural female steroid hormone with the greatest estrogenic activity, and it induces cell death in cancer. In this study, we investigated the function of EPHA2 in cervical cancer migration and immunomodulation and the presence of EPHA2 in the cervical cancer serum-derived exosome. A knockdown of EPHA2 (KD-EPHA2) in cervical cancer reduces cancer cell migration by regulating the CD113/Ezrin pathway. Furthermore, EPHA2 exhibited significant involvement in immunomodulation by orchestrating IL-6-mediated signalling cascades, including the AKT-mTOR and JAK-STAT pathways. Immune infiltration analysis revealed a correlation between EPHA2 expression in cervical cancer and the infiltration of various immune cell populations. KD-EPHA2 enhances the 17β-Estradiol inhibitory effect on cell proliferation and migration during cancer progression. In summary, our study revealed that EPHA2 is overexpressed in cervical cancer and plays a vital role in cancer cell migration and immunomodulation, and 17β-Estradiol, along with KD-EPHA2, enhances the inhibitory effect on cancer cell migration and proliferation.
Collapse
Affiliation(s)
- P P Mubthasima
- Cancer and Exosome Biology Laboratory, Department of Biochemistry, CSIR- Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anbarasu Kannan
- Cancer and Exosome Biology Laboratory, Department of Biochemistry, CSIR- Central Food Technological Research Institute, Mysuru, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
45
|
Bedore S, van der Eerden J, Boghani F, Patel SJ, Yassin S, Aguilar K, Lokeshwar VB. Protein-Based Predictive Biomarkers to Personalize Neoadjuvant Therapy for Bladder Cancer-A Systematic Review of the Current Status. Int J Mol Sci 2024; 25:9899. [PMID: 39337385 PMCID: PMC11432686 DOI: 10.3390/ijms25189899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The clinical outcome of patients with muscle-invasive bladder cancer (MIBC) is poor despite the approval of neoadjuvant chemotherapy or immunotherapy to improve overall survival after cystectomy. MIBC subtypes, immune, transcriptome, metabolomic signatures, and mutation burden have the potential to predict treatment response but none have been incorporated into clinical practice, as tumor heterogeneity and lineage plasticity influence their efficacy. Using the PRISMA statement, we conducted a systematic review of the literature, involving 135 studies published within the last five years, to identify studies reporting on the prognostic value of protein-based biomarkers for response to neoadjuvant therapy in patients with MIBC. The studies were grouped based on biomarkers related to molecular subtypes, cancer stem cell, actin-cytoskeleton, epithelial-mesenchymal transition, apoptosis, and tumor-infiltrating immune cells. These studies show the potential of protein-based biomarkers, especially in the spatial context, to reduce the influence of tumor heterogeneity on a biomarker's prognostic capability. Nevertheless, currently, there is little consensus on the methodology, reagents, and the scoring systems to allow reliable assessment of the biomarkers of interest. Furthermore, the small sample size of several studies necessitates the validation of potential prognostic biomarkers in larger multicenter cohorts before their use for individualizing neoadjuvant therapy regimens for patients with MIBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (S.B.); (J.v.d.E.); (S.J.P.); (S.Y.); (K.A.)
| |
Collapse
|
46
|
Qin M, Chen Y, Wang X, Zhang X, Pan X. Dexmedetomidine induces IL-10 secretion by B lymphocytes in the peripheral blood of patients with hepatocellular carcinoma. Immunobiology 2024; 229:152842. [PMID: 39154383 DOI: 10.1016/j.imbio.2024.152842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND/AIM To investigate the distribution of subpopulations of peripheral blood B lymphocytes in individuals with hepatocellular carcinoma (HCC), and to evaluate the effect of dexmedetomidine (DEX) on B lymphocyte differentiation in patients with HCC in vitro. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from the HCC group and the healthy group, and the distribution of peripheral blood B-lymphocyte subpopulations in the two groups was examined by Flow Cytometry (FCM). B lymphocytes extracted from the peripheral blood of the HCC group were divided into D0, D1, D2 and D4 groups according to the different dose of DEX in the culture medium (0 μM, 1 μM, 2 μM and 4 μM). After 72 h of in vitro culture, FCM was used to detect differences in the percentage of apoptotic B lymphocytes and the percentage of B lymphocytes that can express interleukin 10(IL-10) and transforming growth factor-β (TGF-β) in each group. RESULTS In contrast to the healthy group, the HCC group exhibited a statistically significant increase in the proportion of CD19 + CD73 + B lymphocyte subpopulation (P<0.05). In the in vitro culture experiment, the differences in apoptosis of B lymphocytes and the percentage of TGF-β expression in each group were not statistically significant; When compared to the control group, there was a significant increase in the percentage of B lymphocytes expressing IL-10 across the D1, D2, and D4 groups (P<0.05). CONCLUSION The peripheral blood of HCC patients is characterized by an elevated presence of CD19 + CD73 + B lymphocyte subpopulations; DEX may have an immunosuppressive effect by promoting IL-10 secretion from peripheral blood B lymphocytes of HCC patients.
Collapse
Affiliation(s)
- Miaomiao Qin
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Yining Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinxin Wang
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Xiaobao Zhang
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China.
| | - Xiongxiong Pan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
47
|
Teillaud JL, Houel A, Panouillot M, Riffard C, Dieu-Nosjean MC. Tertiary lymphoid structures in anticancer immunity. Nat Rev Cancer 2024; 24:629-646. [PMID: 39117919 DOI: 10.1038/s41568-024-00728-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates where adaptive antitumour cellular and humoral responses can be elaborated. Initially described in non-small cell lung cancer as functional immune lymphoid structures associated with better clinical outcome, TLS have also been found in many other carcinomas, as well as melanomas and sarcomas, and associated with improved response to immunotherapy. The manipulation of TLS as a therapeutic strategy is now coming of age owing to the likely role of TLS in the improved survival of patients with cancer receiving immune checkpoint inhibitor treatment. TLS have also garnered considerable interest as a predictive biomarker of the response to antitumour therapies, including immune checkpoint blockade and, possibly, chemotherapy. However, several important questions still remain regarding the definition of TLS in terms of both their cellular composition and functions. Here, we summarize the current views on the composition of TLS at different stages of their development. We also discuss the role of B cells and T cells associated with TLS and their dialogue in mounting antibody and cellular antitumour responses, as well as some of the various mechanisms that negatively regulate antitumour activity of TLS. The prognostic value of TLS to the clinical outcome of patients with cancer and the relationship between TLS and the response to therapy are then addressed. Finally, we present some preclinical evidence that favours the idea that manipulating the formation and function of TLS could lead to a potent next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Ana Houel
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Transgene, Illkirch-Graffenstaden, France
| | - Marylou Panouillot
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Sanofi, Vitry-sur-Seine, France
| | - Clémence Riffard
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France.
| |
Collapse
|
48
|
Wang S, Castro BA, Katz JL, Arrieta V, Najem H, Vazquez-Cervantes GI, Wan H, Olson IE, Hou D, Dapash M, Billingham LK, Chia TY, Wei C, Rashidi A, Platanias LC, McCortney K, Horbinski CM, Stupp R, Zhang P, Ahmed AU, Sonabend AM, Heimberger AB, Lesniak MS, Riviere-Cazaux C, Burns T, Miska J, Fischietti M, Lee-Chang C. B cell-based therapy produces antibodies that inhibit glioblastoma growth. J Clin Invest 2024; 134:e177384. [PMID: 39207859 PMCID: PMC11473152 DOI: 10.1172/jci177384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and malignant brain tumor with limited therapeutic options and a poor prognosis. Despite current treatments, the invasive nature of GBM often leads to recurrence. A promising alternative strategy is to harness the potential of the immune system against tumor cells. Our previous data showed that the BVax (B cell-based vaccine) can induce therapeutic responses in preclinical models of GBM. In this study, we aimed to characterize the antigenic reactivity of BVax-derived Abs and evaluate their therapeutic potential. We performed immunoproteomics and functional assays in murine models and samples from patients with GBM. Our investigations revealed that BVax distributed throughout the GBM tumor microenvironment and then differentiated into Ab-producing plasmablasts. Proteomics analyses indicated that the Abs produced by BVax had unique reactivity, predominantly targeting factors associated with cell motility and the extracellular matrix. Crucially, these Abs inhibited critical processes such as GBM cell migration and invasion. These findings provide valuable insights into the therapeutic potential of BVax-derived Abs for patients with GBM, pointing toward a novel direction for GBM immunotherapy.
Collapse
Affiliation(s)
- Si Wang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Brandyn A. Castro
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurological Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Joshua L. Katz
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Victor Arrieta
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Gustavo I. Vazquez-Cervantes
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Hanxiao Wan
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Ian E. Olson
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - David Hou
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mark Dapash
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leah K. Billingham
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Tzu-yi Chia
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Chao Wei
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Craig M. Horbinski
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peng Zhang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | | | - Terry Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesotta, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
49
|
Yang Y, Chen X, Pan J, Ning H, Zhang Y, Bo Y, Ren X, Li J, Qin S, Wang D, Chen MM, Zhang Z. Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes. Cell 2024; 187:4790-4811.e22. [PMID: 39047727 DOI: 10.1016/j.cell.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Characterizing the compositional and phenotypic characteristics of tumor-infiltrating B cells (TIBs) is important for advancing our understanding of their role in cancer development. Here, we establish a comprehensive resource of human B cells by integrating single-cell RNA sequencing data of B cells from 649 patients across 19 major cancer types. We demonstrate substantial heterogeneity in their total abundance and subtype composition and observe immunoglobulin G (IgG)-skewness of antibody-secreting cell isotypes. Moreover, we identify stress-response memory B cells and tumor-associated atypical B cells (TAABs), two tumor-enriched subpopulations with prognostic potential, shared in a pan-cancer manner. In particular, TAABs, characterized by a high clonal expansion level and proliferative capacity as well as by close interactions with activated CD4 T cells in tumors, are predictive of immunotherapy response. Our integrative resource depicts distinct clinically relevant TIB subsets, laying a foundation for further exploration of functional commonality and diversity of B cells in cancer.
Collapse
Affiliation(s)
- Yu Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jieying Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Huiheng Ning
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiesheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Shishang Qin
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| | - Min-Min Chen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
50
|
Yao X, He Y, Xiao C, Zhou R, Zhao C, Wang W. The Potential of Immunotherapy for SMARCA4-Deficient Undifferentiated Uterine Sarcoma (SDUS). Biomolecules 2024; 14:987. [PMID: 39199375 PMCID: PMC11352696 DOI: 10.3390/biom14080987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: SMARCA4-deficient undifferentiated uterine sarcoma (SDUS) is a rare and aggressive cancer that urgently requires novel therapeutic strategies. Despite the proven efficacy of immunotherapy in various cancer types, its application in SDUS remains largely unexplored. This study aims to investigate the immune microenvironment of SDUS to evaluate the feasibility of utilizing immunotherapy. (2) Methods: Multiplex immunofluorescence (mIF) was employed to examine the immune microenvironment in two cases of SDUS in comparison to other subtypes of endometrial stromal sarcomas (ESSs). This research involved a comprehensive evaluation of immune cell infiltration, cellular interactions, and spatial organization within the tumor immune microenvironment (TiME). Statistical analysis was performed to assess differences in immune cell densities and interactions between SDUS and other ESSs. (3) Results: SDUS exhibited a significantly higher density of cytotoxic T lymphocytes (CTLs), T helper (Th) cells, B cells, and macrophages compared to other ESSs. Notable cellular interactions included Th-CTL and Th-B cell interactions, which were more prominent in SDUS. The spatial analysis revealed distinct immune niches characterized by lymphocyte aggregation and a vascular-rich environment, suggesting an active and engaged immune microenvironment in SDUS. (4) Conclusions: The results suggest that SDUS exhibits a highly immunogenic TiME, characterized by substantial lymphocyte infiltration and dynamic cellular interactions. These findings highlight the potential of immunotherapy as an effective treatment approach for SDUS. However, given the small number of samples evaluated, these conclusions should be drawn with caution. This study underscores the importance of additional investigation into immune-targeted therapies for this challenging cancer subtype, with a larger sample size to validate and expand upon these preliminary findings.
Collapse
Affiliation(s)
- Xiaohong Yao
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.H.)
| | - Ying He
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.H.)
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (C.X.); (R.Z.)
| | - Ruihan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (C.X.); (R.Z.)
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (C.X.); (R.Z.)
| | - Wei Wang
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.H.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| |
Collapse
|