1
|
Zhang L, Lin Y, Zhang Z, Chen Y, Zhong J. Immune regulation and organ damage link adiponectin to sepsis. Front Immunol 2024; 15:1444884. [PMID: 39664383 PMCID: PMC11632310 DOI: 10.3389/fimmu.2024.1444884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Sepsis is a life-threatening syndrome characterized by organ dysfunction, resulting from an uncontrolled or abnormal immune response to infection, which leads to septicemia. It involves a disruption of immune homeostasis, marked by the release of Inflammatory factors and dysfunction of immune cells. Adiponectin is widely recognized as an anti-inflammatory mediator, playing a crucial role in regulating immune cell function and exerting protective effects on tissues and organs. However, the physiological role of adiponectin in septicemia remains unclear due to the condition's association with immune response dysregulation and organ damage. This study focuses on the potential relationship between adiponectin and excessive immune responses, along with organ injury in septicemia. Additionally, we investigate possible explanations for the observed discrepancies in adiponectin levels among critically ill or deceased patients compared to theoretical expectations, aiming to provide valuable insights for clinical diagnostics and therapeutic interventions in sepsis.
Collapse
Affiliation(s)
| | | | - Zhongying Zhang
- Medical Laboratory Center, Xiamen Humanity Hospital, Xiamen, Fujian, China
| | | | | |
Collapse
|
2
|
Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome: Correlative Clinical Evaluation Based on Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:1-25. [PMID: 39287847 DOI: 10.1007/978-3-031-63657-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Increase in the prevalence of obesity has become a major worldwide health problem in adults as well as among children and adolescents. In the last four decades, studies have revealed that the significant increase in the prevalence of obesity has become a pandemic. Obesity is the result of complex interactions between biological, genetic, environmental, and behavioral factors. Indeed, almost all of the children suffering from obesity in early childhood face with being overweight or obese in adolescence. Different phenotypes have different risk factors in the clinical evaluation of obesity. Individuals suffering from metabolically unhealthy obesity (MUO) are at an excess risk of developing cardiovascular diseases (CVDs), several cancer types, and metabolic syndrome (MetS), whereas the metabolically healthy obesity (MHO) phenotype has a high risk of all-cause mortality and cardiometabolic events but not MetS. While most obese individuals have the MUO phenotype, the frequency of the MHO phenotype is at most 10-20%. Over time, approximately three-quarters of obese individuals transform from MHO to MUO. Total adiposity and truncal subcutaneous fat accumulation during adolescence are positively and independently associated with atherosclerosis in adulthood. Obesity, in general, causes a large reduction in life expectancy. However, the mortality rate of morbid obesity is greater among younger than older adults. Insulin resistance (IR) develops with the central accumulation of body fat. MHO patients are insulin-sensitive like healthy normal-weight individuals and have lower visceral fat content and cardiovascular consequences than do the majority of MUO patients. MetS includes clustering of abdominal obesity, dyslipidemia, hyperglycemia, and hypertension. The average incidence of MetS is 3%, with a 1.5-fold increase in the risk of death from all causes in these patients. If lifestyle modifications, dietary habits, and pharmacotherapy do not provide any benefit, then bariatric surgery is recommended to reduce weight and improve comorbid diseases. However, obesity treatment should be continuous in obese patients by monitoring the accompanying diseases and their consequences. In addition to sodium-glucose co-transporter-2 (SGLT2) inhibitors, the long-acting glucagon-like peptide-1 (GLP-1) receptor agonist reduces the mean body weight. However, caloric restriction provides more favorable improvement in body composition than does treatment with the GLP-1 receptor (GLP1R) agonist alone. Combination therapy with orlistat and phentermine are the US Food and Drug Administration (FDA)-approved anti-obesity drugs. Recombinant leptin and synthetic melanocortin-4-receptor agonists are used in rarely occurring, monogenic obesity, which is due to loss of function in the leptin-melanocortin pathway.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Didriksson I, Leffler M, Spångfors M, Lindberg S, Reepalu A, Nilsson A, Cronqvist J, Andertun S, Nelderup M, Jungner M, Johnsson P, Lilja G, Frigyesi A, Friberg H. Intensive care unit burden is associated with increased mortality in critically ill COVID-19 patients. Acta Anaesthesiol Scand 2022; 67:329-338. [PMID: 36537243 PMCID: PMC9878196 DOI: 10.1111/aas.14184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Traditional models to predict intensive care outcomes do not perform well in COVID-19. We undertook a comprehensive study of factors affecting mortality and functional outcome after severe COVID-19. METHODS In this prospective multicentre cohort study, we enrolled laboratory-confirmed, critically ill COVID-19 patients at six ICUs in the Skåne Region, Sweden, between May 11, 2020, and May 10, 2021. Demographics and clinical data were collected. ICU burden was defined as the total number of ICU-treated COVID-19 patients in the region on admission. Surviving patients had a follow-up at 90 days for assessment of functional outcome using the Glasgow Outcome Scale-Extended (GOSE), an ordinal scale (1-8) with GOSE ≥5 representing a favourable outcome. The primary outcome was 90-day mortality; the secondary outcome was functional outcome at 90 days. RESULTS Among 498 included patients, 74% were male with a median age of 66 years and a median body mass index (BMI) of 30 kg/m2 . Invasive mechanical ventilation was employed in 72%. Mortality in the ICU, in-hospital and at 90 days was 30%, 38% and 39%, respectively. Mortality increased markedly at age 60 and older. Increasing ICU burden was independently associated with a two-fold increase in mortality. Higher BMI was not associated with increased mortality. Besides age and ICU burden, smoking status, cortisone use, Pa CO2 >7 kPa, and inflammatory markers on admission were independent factors of 90-day mortality. Lower GOSE at 90 days was associated with a longer stay in the ICU. CONCLUSION In critically ill COVID-19 patients, the 90-day mortality was 39% and increased considerably at age 60 or older. The ICU burden was associated with mortality, whereas a high BMI was not. A longer stay in the ICU was associated with unfavourable functional outcomes at 90 days.
Collapse
Affiliation(s)
- Ingrid Didriksson
- Department of Clinical Sciences, Anaesthesiology and Intensive CareLund UniversityLundSweden,Skåne University HospitalIntensive and Perioperative CareMalmöSweden
| | - Märta Leffler
- Department of Clinical Sciences, Anaesthesiology and Intensive CareLund UniversityLundSweden,Skåne University HospitalIntensive and Perioperative CareMalmöSweden
| | - Martin Spångfors
- Department of Clinical Sciences, Anaesthesiology and Intensive CareLund UniversityLundSweden,Kristianstad HospitalAnaesthesia and Intensive CareKristianstadSweden
| | - Sarah Lindberg
- Skåne University HospitalResearch and EducationLundSweden
| | - Anton Reepalu
- Department of Translational MedicineLund UniversityMalmöSweden,Department of Infectious DiseasesSkåne University HospitalMalmöSweden
| | - Anna Nilsson
- Department of Translational MedicineLund UniversityMalmöSweden,Department of Infectious DiseasesSkåne University HospitalMalmöSweden
| | - Jonas Cronqvist
- Department of Translational MedicineLund UniversityMalmöSweden,Department of Infectious DiseasesSkåne University HospitalMalmöSweden
| | - Sara Andertun
- Helsingborg HospitalAnaesthesia, and Intensive CareHelsingborgSweden
| | - Maria Nelderup
- Helsingborg HospitalAnaesthesia, and Intensive CareHelsingborgSweden
| | - Mårten Jungner
- Department of Clinical Sciences, Anaesthesiology and Intensive CareLund UniversityLundSweden,Skåne University HospitalIntensive and Perioperative CareMalmöSweden
| | - Patrik Johnsson
- Department of Clinical Sciences, Anaesthesiology and Intensive CareLund UniversityLundSweden,Skåne University HospitalIntensive and Perioperative CareMalmöSweden
| | - Gisela Lilja
- Skåne University HospitalDepartment of NeurologyLundSweden
| | - Attila Frigyesi
- Department of Clinical Sciences, Anaesthesiology and Intensive CareLund UniversityLundSweden,Skåne University HospitalIntensive and Perioperative CareLundSweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesiology and Intensive CareLund UniversityLundSweden,Skåne University HospitalIntensive and Perioperative CareMalmöSweden
| |
Collapse
|
4
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
5
|
Jouda J, Abdul Kareem Jabbar E, Salih Abdulhadi F, Atiyah Kamil Y. Assessment of some Physiological Biomarkers in COVID-19 Patients in Thi-Qar, Iraq. ARCHIVES OF RAZI INSTITUTE 2022; 77:1097-1104. [PMID: 36618280 PMCID: PMC9759240 DOI: 10.22092/ari.2022.357267.2006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 01/10/2023]
Abstract
It is believed that many biomarkers and factors could be linked to the prognosis of coronavirus disease 2019 (COVID-19). Therefore, this study aimed to evaluate the association of lactate dehydrogenase (LDH), D-Dimer, vitamin D, and ferritin statuses with the prognosis of COVID-19; moreover, it was attempted to investigate its prevalence according to age, employment status, body mass index (BMI), and place of residency in a population sample of hospitalized patients in Thi-Qar, Iraq. This study evaluated 200 COVID-19 patients and 100 controls. The BMI of all individuals was calculated, and such demographic characteristics as age, gender, place of residency, and occupational status were collected from all participants. Blood samples were taken and used to estimate D-Dimer, LDH, vitamin D, ferritin, oxygen, and pulse rate. The mean age of the patients approached the fifth decade, and 72% of the cases were more than 40 years of age. In addition, 60% of the patients were living in the countryside, and 52% of the participants were employed, compared to only 8% of the cases who were students. The BMI of the patients was obtained at 31.44±10.2 kg/m2; accordingly, 47% and 40% of the cases were obese and overweight, respectively, compared to only 12% of the patients who had normal weight (P˂0.05). There were significantly lower vitamin D levels in the patients; however, the concentrations of LDH, serum ferritin, and D-Dimer were significantly higher in the patients, compared to the control group (P˂0.05). Not only age and body weight but also employment status and place of residency maybe also the important risk factors for COVID-19 distribution. LDH, D-dimer, vitamin D, and ferritin statuses could be used as good biomarkers for this disease and its severity.
Collapse
Affiliation(s)
- J Jouda
- Department of Biology, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| | - E Abdul Kareem Jabbar
- Department of Medical Basic Sciences, College of Nursing, University of Thi-Qar, Thi-Qar, Iraq
| | - F Salih Abdulhadi
- Department of Biology, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| | - Y Atiyah Kamil
- Biological Health Department, Infertility Unit, Imam Hussein Teaching Hospital, Thi-Qar, Iraq
| |
Collapse
|
6
|
Stellate Ganglion Block Combined with Dexmedetomidine Protects Obese Rats from Lipopolysaccharide-Induced Acute Lung Injury. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5635063. [PMID: 35392150 PMCID: PMC8983233 DOI: 10.1155/2022/5635063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022]
Abstract
Objective To investigate the effect and mechanism of combined stellate ganglion block (SGB) and dexmedetomidine (Dex) in obesity-related acute lung injury. Methods Thirty-six 4-week-old male Wistar rats were randomly divided into 6 groups, each with 6 rats: blank group (Control), high-fat diet group (HFD), high-fat + lipopolysaccharide (LPS)-induced acute lung injury group (HFD + LPS), SGB group, Dex group, and SGB + Dex group. H&E staining detected the pathological structure of rat lung tissue. TUNEL staining was used to examine cell apoptosis in lung tissue. Oxidative factors were accessed by biochemical reagents. ELISA was employed to measure the levels of TNF-α, IL-1β, and MCP1 in rat alveolar lavage fluid. Western blot detected the protein expression of glucose-regulated Protein 78 (GRP78), C/EBP homologous protein (CHOP), protein kinase R-like endoplasmic reticulum kinase (PERK), and p-PERK in lung tissue. Results The body weight of rats in the HFD group was higher than that in the control group. The use of SGB or Dex alone could significantly reduce the rate of pulmonary edema and lung cell apoptosis in HFD-induced obese rats and reduce MPO, TNF-α, IL-1β, and MCP1 levels, increasing the activity of SOD and GSH-Px. In addition, using SGB or Dex alone can also significantly reduce the protein expression levels of GRP78, CHOP, and p-PERK. The combined use of SGB and Dex can enhance the above effects. Conclusion The combined use of SGB and Dex can protect against obesity-related acute lung injury and is more effective than using SGB or Dex alone.
Collapse
|
7
|
Chiang MD, Chang CY, Shih HJ, Le VL, Huang YH, Huang CJ. Exosomes from Human Placenta Choriodecidual Membrane-Derived Mesenchymal Stem Cells Mitigate Endoplasmic Reticulum Stress, Inflammation, and Lung Injury in Lipopolysaccharide-Treated Obese Mice. Antioxidants (Basel) 2022; 11:antiox11040615. [PMID: 35453300 PMCID: PMC9029526 DOI: 10.3390/antiox11040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Endoplasmic reticulum (ER) stress mediates the effects of obesity on aggravating sepsis-induced lung injury. We investigated whether exosomes from human placenta choriodecidual membrane-derived mesenchymal stem cells (pcMSCs) can mitigate pulmonary ER stress, lung injury, and the mechanisms of inflammation, oxidation, and apoptosis in lipopolysaccharide-treated obese mice. Diet-induced obese (DIO) mice (adult male C57BL/6J mice fed with a 12-week high-fat diet) received lipopolysaccharide (10 mg/kg, i.p.; DIOLPS group) or lipopolysaccharide plus exosomes (1 × 108 particles/mouse, i.p.; DIOLPSExo group). Our data demonstrated lower levels of ER stress (upregulation of glucose-regulated protein 78, phosphorylated eukaryotic initiation factor 2α, and C/EBP homologous protein; p = 0.038, <0.001, and <0.001, respectively), inflammation (activation of nuclear factor-kB, hypoxia-inducible factor-1α, macrophages, and NLR family pyrin domain containing 3; upregulation of tumor necrosis factor-α, interleukin-1β, and interleukin-6; p = 0.03, <0.001, <0.001, <0.001, <0.001, <0.001, and <0.001, respectively), lipid peroxidation (p < 0.001), and apoptosis (DNA fragmentation, p = 0.003) in lung tissues, as well as lower lung injury level (decreases in tidal volume, peak inspiratory flow, and end expiratory volume; increases in resistance, injury score, and tissue water content; p < 0.001, <0.001, <0.001, <0.001, <0.001, and =0.002, respectively) in the DIOLPSExo group than in the DIOLPS group. In conclusion, exosomes from human pcMSCs mitigate pulmonary ER stress, inflammation, oxidation, apoptosis, and lung injury in lipopolysaccharide-treated obese mice.
Collapse
Affiliation(s)
- Milton D. Chiang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.D.C.); (V.L.L.)
| | - Chao-Yuan Chang
- Department of Medical Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hung-Jen Shih
- Division of Urology, Department of Surgery, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Recreation and Holistic Wellness, MinDao University, Changhua 523, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Van Long Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.D.C.); (V.L.L.)
- Department of Anesthesiology and Critical Care, Hue University of Medicine and Pharmacy, Hue City 52000, Vietnam
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Jen Huang
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-29307930 (ext. 2160); Fax: +886-2-29302448
| |
Collapse
|
8
|
Medeiros ML, Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal Exacerbates Lipopolysaccharide-Induced Acute Lung Injury via RAGE-Induced ROS Generation: Protective Effects of Metformin. J Inflamm Res 2021; 14:6477-6489. [PMID: 34880648 PMCID: PMC8648108 DOI: 10.2147/jir.s337115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 01/11/2023] Open
Abstract
Purpose Methylglyoxal (MGO) is a highly reactive dicarbonyl species implicated in diabetic-associated diseases. Acute lung injury (ALI) symptoms and prognosis are worsened by diabetes and obesity. Here, we hypothesized that elevated MGO levels aggravate ALI, which can be prevented by metformin. Therefore, this study evaluated the lung inflammation in lipopolysaccharide (LPS)-exposed mice pretreated with MGO. Methods C57Bl/6 male mice treated or not with MGO for 12 weeks were intranasally instilled with LPS (30 µg) to induce ALI, and metformin (300 mg/kg) was given as gavage in the last two weeks of treatment. After 6 h, bronchoalveolar lavage fluid (BALF) and lung tissues were collected to quantify the cell infiltration, cytokine levels, reactive-oxygen species (ROS) production, and RAGE expression. Results LPS exposure markedly increased the neutrophil infiltration in BALF and lung tissue, which was accompanied by higher levels of IFN-γ, TNF-α and IL-1β compared with untreated group. MGO treatment significantly increased the airways neutrophil infiltration and mRNA expressions of TNF-α and IL-1β, whereas COX-2 expression remained unchanged. In lung tissues of LPS-exposed mice, MGO treatment significantly increased the immunostaining and mRNA expression of RAGE, and the ROS levels. Serum MGO concentration achieved after 12-week intake was 9.2-fold higher than control mice, which was normalized by metformin treatment. Metformin also reduced the inflammatory markers in response to MGO. Conclusion MGO intake potentiates the LPS-induced ALI, increases RAGE expression and ROS generation, which is normalized by metformin. MGO scavengers may be a good adjuvant therapy to reduce ALI in patients with cardiometabolic diseases.
Collapse
Affiliation(s)
- Matheus L Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Akila L Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
9
|
Kokoszynska M, Ubags ND, Bivona JJ, Ventrone S, Reed LF, Dixon AE, Wargo MJ, Poynter ME, Suratt BT. Storage conditions of high-fat diets affect pulmonary inflammation. Physiol Rep 2021; 9:e15116. [PMID: 34822216 PMCID: PMC8614184 DOI: 10.14814/phy2.15116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/03/2021] [Accepted: 06/12/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity alters the risks and outcomes of inflammatory lung diseases. It is important to accurately recapitulate the obese state in animal models to understand these effects on the pathogenesis of disease. Diet-induced obesity is a commonly used model of obesity, but when applied to other disease models like acute respiratory distress syndrome, pneumonia, and asthma, it yields widely divergent. We hypothesized high-fat chow storage conditions would affect lipid oxidation and inflammatory response in the lungs of lipopolysaccharide (LPS)-challenged mice. For 6 weeks, C57BL/6crl mice were fed either a 10% (low-fat diet, LFD) or 60% (high-fat diet, HFD) stored at room temperature (RT, 23°C) for up to 7, 14, 21, or 42 days. Mice were treated with nebulized LPS to induce lung inflammation, and neutrophil levels in bronchoalveolar lavage were determined 24 h later. Lipid oxidation (malondialdehyde, MDA) was assayed by thiobarbituric acid reactive substances in chow and mouse plasma. Concentrations of MDA in chow and plasma rose in proportion to the duration of RT chow storage. Mice fed a HFD stored <2 weeks at RT had an attenuated response 24 h after LPS compared with mice fed an LFD. This effect was reversed after 2 weeks of chow storage at RT. Chow stored above freezing underwent lipid oxidation associated with significant alterations in the LPS-induced pulmonary inflammatory response. Our data show that storage conditions affect lipid peroxidation, which in turn affects pulmonary inflammatory responses in a mouse model of disease. It also suggests changes in the microbiome, although not significantly different suggests decreased variety and richness of bacteria in the gut, a large aspect of the immune system. Dietary composition and storage of chow may also affect pulmonary inflammation and the gut microbiome in humans.
Collapse
Affiliation(s)
- Marta Kokoszynska
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Niki D. Ubags
- Faculty of Biology and MedicineUniversity of LausanneService de PneumologieCHUVLausanneSwitzerland
| | - Joseph J. Bivona
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
- Cellular, Molecular, and Biomedical Sciences Doctoral ProgramUniversity of VermontBurlingtonVermontUSA
| | - Sebastian Ventrone
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Leah F. Reed
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Anne E. Dixon
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Matthew J. Wargo
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Matthew E. Poynter
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Benjamin T. Suratt
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| |
Collapse
|
10
|
Plataki M, Pan D, Goyal P, Hoffman K, Choi JMK, Huang H, Safford MM, Schenck EJ. Association of body mass index with morbidity in patients hospitalised with COVID-19. BMJ Open Respir Res 2021; 8:e000970. [PMID: 34417256 PMCID: PMC8382668 DOI: 10.1136/bmjresp-2021-000970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To evaluate the association between body mass index (BMI) and clinical outcomes other than death in patients hospitalised and intubated with COVID-19. METHODS This is a single-centre cohort study of adults with COVID-19 admitted to New York Presbyterian Hospital-Weill Cornell Medicine from 3 March 2020 through 15 May 2020. Baseline and outcome variables, as well as lab and ventilatory parameters, were generated for the admitted and intubated cohorts after stratifying by BMI category. Linear regression models were used for continuous, and logistic regression models were used for categorical outcomes. RESULTS The study included 1337 admitted patients with a subset of 407 intubated patients. Among admitted patients, hospital length of stay (LOS) and home discharge was not significantly different across BMI categories independent of demographic characteristics and comorbidities. In the intubated cohort, there was no difference in in-hospital events and treatments, including renal replacement therapy, neuromuscular blockade and prone positioning. Ventilatory ratio was higher with increasing BMI on days 1, 3 and 7. There was no significant difference in ventilator free days (VFD) at 28 or 60 days, need for tracheostomy, hospital LOS, and discharge disposition based on BMI in the intubated cohort after adjustment. CONCLUSIONS In our COVID-19 population, there was no association between obesity and morbidity outcomes, such as hospital LOS, home discharge or VFD. Further research is needed to clarify the mechanisms underlying the reported effects of BMI on outcomes, which may be population dependent.
Collapse
Affiliation(s)
- Maria Plataki
- Department of Medicine, Division of Pulmonary Critical Care, New York Presbyterian Hospital - Weill Cornell Medicine, New York, New York, USA
| | - Di Pan
- Department of Medicine, Division of Pulmonary Critical Care, New York Presbyterian Hospital - Weill Cornell Medicine, New York, New York, USA
| | - Parag Goyal
- Department of Medicine, Division of Cardiology, New York Presbyterian Hospital - Weill Cornell Medicine, New York, New York, USA
- Department of Medicine, Division of General Internal Medicine, New York Presbyterian Hospital - Weill Cornell Medicine, New York, New York, USA
| | - Katherine Hoffman
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, New York, USA
| | - Jacky Man Kwan Choi
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, New York, USA
| | - Hao Huang
- Department of Medicine, Division of General Internal Medicine, New York Presbyterian Hospital - Weill Cornell Medicine, New York, New York, USA
| | - Monika M Safford
- Department of Medicine, Division of General Internal Medicine, New York Presbyterian Hospital - Weill Cornell Medicine, New York, New York, USA
| | - Edward J Schenck
- Department of Medicine, Division of Pulmonary Critical Care, New York Presbyterian Hospital - Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
11
|
Pietri L, Giorgi R, Bégu A, Lojou M, Koubi M, Cauchois R, Grangeot R, Dubois N, Kaplanski G, Valéro R, Béliard S. Excess body weight is an independent risk factor for severe forms of COVID-19. Metabolism 2021; 117:154703. [PMID: 33421506 PMCID: PMC7834365 DOI: 10.1016/j.metabol.2021.154703] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Few studies distinguished the independent role of overweight/obesity or their associated-comorbidities in the evolution towards severe forms of COVID-19. Obesity as a unifying risk factor for severe COVID-19 is an emerging hypothesis. The aim of this study was to evaluate whether excessive body weight per se, was a risk factor for developing a severe form of COVID-19. PATIENTS AND METHODS We included 131 patients hospitalized for COVID-19 pneumonia in a single center of the internal medicine department in Marseille, France. We recorded anthropometric and metabolic parameters such as fasting glycaemia, insulinemia, HOMA-IR, lipids, and all clinical criteria linked to SARS-CoV-2 infection at the admission. Excess body weight was defined by a BMI ≥ 25 kg/m2. The occurrence of a serious event was defined as a high-debit oxygen requirement over 6 L/min, admission into the intensive care unit, or death. RESULTS Among 113 patients, two thirds (n = 76, 67%) had an excess body weight. The number of serious events was significantly higher in excess body weight patients compared to normal weight patients (respectively 25% vs 8%, p = 0.03) although excess body weight patients were younger (respectively 63.6 vs 70.3 years old, p = 0.01). In multivariate analyses, the excess body weight status was the only predictor for developing a serious event linked to SARS-CoV-2 infection, with an odds ratio at 5.6 (95% CI: 1.30-23.96; p = 0.02), independently of previous obesity associated comorbidities. There was a trend towards a positive association between the BMI (normal weight, overweight and obesity) and the risk of serious events linked to COVID-19, with a marked increase from 8.1% to 20% and 30.6% respectively (p = 0.05). CONCLUSION Excess body weight was significantly associated with severe forms of the disease, independently of its classical associated comorbidities. Physicians and specialists in Public Health must be sensitized to better protect people with an excess body weight against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Léa Pietri
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, Marseille, France; APHM, Department of Nutrition, Metabolic Diseases, Endocrinology, University Hospital La Conception, Marseille, France
| | - Roch Giorgi
- Aix Marseille Univ, APHM, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Hop Timone, BioSTIC, Biostatistique et Technologies de l'Information et de la, Communication, Marseille, France
| | - Audrey Bégu
- APHM, Department of Nutrition, Metabolic Diseases, Endocrinology, University Hospital La Conception, Marseille, France
| | - Manon Lojou
- APHM, Department of Nutrition, Metabolic Diseases, Endocrinology, University Hospital La Conception, Marseille, France
| | - Marie Koubi
- Department of Internal Medicine and Clinical Immunology, La Conception Hospital, APHM, 147 Bd Baille, 13005 Marseille, France
| | - Raphael Cauchois
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, Marseille, France; Department of Internal Medicine and Clinical Immunology, La Conception Hospital, APHM, 147 Bd Baille, 13005 Marseille, France
| | - Rachel Grangeot
- APHM, Department of Nutrition, Metabolic Diseases, Endocrinology, University Hospital La Conception, Marseille, France
| | - Noémie Dubois
- APHM, Department of Nutrition, Metabolic Diseases, Endocrinology, University Hospital La Conception, Marseille, France
| | - Gilles Kaplanski
- Department of Internal Medicine and Clinical Immunology, La Conception Hospital, APHM, 147 Bd Baille, 13005 Marseille, France
| | - René Valéro
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, Marseille, France; APHM, Department of Nutrition, Metabolic Diseases, Endocrinology, University Hospital La Conception, Marseille, France
| | - Sophie Béliard
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, Marseille, France; APHM, Department of Nutrition, Metabolic Diseases, Endocrinology, University Hospital La Conception, Marseille, France.
| |
Collapse
|
12
|
Yu Q, Wang D, Wen X, Tang X, Qi D, He J, Zhao Y, Deng W, Zhu T. Adipose-derived exosomes protect the pulmonary endothelial barrier in ventilator-induced lung injury by inhibiting the TRPV4/Ca 2+ signaling pathway. Am J Physiol Lung Cell Mol Physiol 2020; 318:L723-L741. [PMID: 32073873 PMCID: PMC7191475 DOI: 10.1152/ajplung.00255.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mechanical ventilation (MV) is the main supportive treatment of acute respiratory distress syndrome (ARDS), but it may lead to ventilator-induced lung injury (VILI). Large epidemiological studies have found that obesity was associated with lower mortality in mechanically ventilated patients with acute lung injury, which is known as “obesity paradox.” However, the effects of obesity on VILI are unknown. In the present study, wild-type mice were fed a high-fat diet (HFD) and ventilated with high tidal volume to investigate the effects of obesity on VILI in vivo, and pulmonary microvascular endothelial cells (PMVECs) were subjected to 18% cyclic stretching (CS) to further investigate its underlying mechanism in vitro. We found that HFD protects mice from VILI by alleviating the pulmonary endothelial barrier injury and inflammatory responses in mice. Adipose-derived exosomes can regulate distant tissues as novel adipokines, providing a new mechanism for cell-cell interactions. We extracted three adipose-derived exosomes, including HFD mouse serum exosome (S-Exo), adipose tissue exosome (AT-Exo), and adipose-derived stem cell exosome (ADSC-Exo), and further explored their effects on MV or 18% CS-induced VILI in vivo and in vitro. Administration of three exosomes protected against VILI by suppressing pulmonary endothelial barrier hyperpermeability, repairing the expression of adherens junctions, and alleviating inflammatory response in vivo and in vitro, accompanied by transient receptor potential vanilloid 4 (TRPV4)/Ca2+ pathway inhibition. Collectively, these data indicated that HFD-induced obesity plays a protective role in VILI by alleviating the pulmonary endothelial barrier injury and inflammatory response via adipose-derived exosomes, at least partially, through inhibiting the TRPV4/Ca2+ pathway.
Collapse
Affiliation(s)
- Qian Yu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoting Wen
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing He
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Wei K, Luo J, Cao J, Peng L, Ren L, Zhang F. Adiponectin Protects Obese Rats from Aggravated Acute Lung Injury via Suppression of Endoplasmic Reticulum Stress. Diabetes Metab Syndr Obes 2020; 13:4179-4190. [PMID: 33192080 PMCID: PMC7653273 DOI: 10.2147/dmso.s278684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress seems to mediate the obesity-induced susceptibility to acute lung injury (ALI). The present study was designed to evaluate the role of ER stress in adiponectin (APN)-induced lung protection in an obese rat model treated with lipopolysaccharide (LPS). METHODS Four-week-old male Sprague-Dawley rats fed either a normal chow diet or a high-fat diet for 12 weeks were randomly assigned to one of the following groups: lean rats, diet-induced obesity rats, lean rats with ALI, obese rats with ALI, obese rats pretreated with 4-phenylbutyric acid (4-PBA) before ALI or obese rats pretreated with APN before ALI. At 24 h after instillation of LPS into the lungs, cell counts in the bronchoalveolar lavage fluid (BALF) were determined. Lung tissues were separated to assess the degree of inflammation, pulmonary oedema, epithelial apoptosis and the expression of ER stress marker proteins. RESULTS The 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) expression in the lung tissues of obese rats was upregulated before ALI, as well as the elevated apoptosis in epithelial cells. During ALI, the expression of ER stress marker proteins was similarly increased in both lean and obese rats, while significant downregulation of Mitofusin 2 (MFN2) was detected in obese epithelial cells. The lung tissues of obese rats showed higher concentrations of tumor necrosis factor-alpha (TNF-α), Interleukin 6 (IL-6) and IL-10, enhanced neutrophil counts and elevated wet/dry weight ratios. APN and 4-PBA decreased the degree of ER stress and suppressed LPS-induced lung inflammation, pulmonary oedema and epithelial apoptosis. CONCLUSION APN may exert protective effects against the exacerbated lung injuries in obese rats by attenuating ER stress, which operates as a key molecular pathway in the progression of ALI.
Collapse
Affiliation(s)
- Ke Wei
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Ke Wei Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1# Youyi Road, Yuzhong District, Chongqing, People’s Republic of ChinaTel +86 23 89011069Fax +86 23 89011062 Email
| | - Jie Luo
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Lihua Peng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Fan Zhang
- Department of Anesthesiology, Jianyang People’s Hospital, Jianyang, Sichuan641400, People’s Republic of China
| |
Collapse
|
14
|
Zhang W, Wang Y, Li W, Wang J. Association Between Obesity and Short-And Long-Term Mortality in Patients With Acute Respiratory Distress Syndrome Based on the Berlin Definition. Front Endocrinol (Lausanne) 2020; 11:611435. [PMID: 33643222 PMCID: PMC7907504 DOI: 10.3389/fendo.2020.611435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Acute respiratory distress syndrome (ARDS) is one of the most common causes of death in intensive care units (ICU). Previous studies have reported the potential protective effect of obesity on ARDS patients. However, these findings are inconsistent, in which less was reported on long-term prognosis and diagnosed ARDS by Berlin definition. This study aimed to investigate the relationship between obesity and short-term and long-term mortality in patients with ARDS based on the Berlin Definition. METHODS This is a retrospective cohort study from the Medical Information Mart for Intensive Care III (MIMIC-III) database, in which all the patients were diagnosed with ARDS according to the Berlin definition. The patients were divided into four groups according to the WHO body mass index (BMI) categories. The multivariable logistic regression and Cox regression analysis were used to investigate the relationship between BMI and short-term and long-term mortality. RESULT A total of 2,378 patients with ARDS were enrolled in our study. In-hospital mortality was 27.92%, and 1,036 (43.57%) patients had died after 1-year follow-up. After adjusting for confounders, the in-hospital and 1-year mortality risks of obese patients were significantly lower than those of normal weight (OR 0.72, 95%CI 0.55-0.94, P=0.0168; HR 0.80, 95%CI 0.68-0.94 P=0.0084; respectively), while those mortality risks of underweight patients were higher than normal weight patients (P=0.0102, P=0.0184; respectively). The smooth curve showed that BMI, which was used as a continuous variable, was negatively correlated with in-hospital and 1-year mortality. The results were consistent after being stratified by age, gender, race, type of admission, severity of organ dysfunction, and severity of ARDS. The Kaplan-Meier survival curves showed that obese patients had significant lower 1-year mortality than normal weight patients. CONCLUSION We found that obesity was associated with decreased risk of short-term and long-term mortality in patients with ARDS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Wei Zhang,
| | - Yadan Wang
- Medical Department, Ruibiao (Wuhan) Biotechnology Co. Ltd, Wuhan, China
| | - Weijie Li
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
15
|
Karampela I, Christodoulatos GS, Dalamaga M. The Role of Adipose Tissue and Adipokines in Sepsis: Inflammatory and Metabolic Considerations, and the Obesity Paradox. Curr Obes Rep 2019; 8:434-457. [PMID: 31637623 DOI: 10.1007/s13679-019-00360-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Sepsis has become a global health problem with rising incidence and high mortality, creating a substantial social and economic burden. Early diagnosis and treatment can improve outcome, but reliable sepsis biomarkers are lacking. This review summarizes current evidence of the pathophysiological mechanisms linking adipose tissue to sepsis and presents experimental and clinical data on adipokines and sepsis along with important insights into the obesity paradox in sepsis survival. RECENT FINDINGS Sepsis is characterized by significant alterations in circulating cytokines and adipokines, biologically active molecules produced by the adipose tissue, being implicated in metabolic and inflammatory processes. Although data are inconclusive regarding classic adipokines such as leptin and adiponectin, recent evidence have highlighted the striking elevation of resistin and visfatin in critical illness and sepsis as well as their association with sepsis severity and outcomes. Given that inflammatory and metabolic pathways are involved in sepsis, studying adipokines presents an attractive, innovative, and promising research field that may provide more powerful diagnostic and prognostic biomarkers as well as novel therapeutic targets, empowering the therapeutic armamentarium for sepsis management in order to improve survival.
Collapse
Affiliation(s)
- Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| |
Collapse
|
16
|
Plataki M, Fan L, Sanchez E, Huang Z, Torres LK, Imamura M, Zhu Y, Cohen DE, Cloonan SM, Choi AM. Fatty acid synthase downregulation contributes to acute lung injury in murine diet-induced obesity. JCI Insight 2019; 5:127823. [PMID: 31287803 DOI: 10.1172/jci.insight.127823] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity is rising worldwide and obese patients comprise a specific population in the intensive care unit. Acute respiratory distress syndrome (ARDS) incidence is increased in obese patients. Exposure of rodents to hyperoxia mimics many of the features of ARDS. In this report, we demonstrate that high fat diet induced obesity increases the severity of hyperoxic acute lung injury in mice in part by altering fatty acid synthase (FASN) levels in the lung. Obese mice exposed to hyperoxia had significantly reduced survival and increased lung damage. Transcriptomic analysis of lung homogenates identified Fasn as one of the most significantly altered mitochondrial associated genes in mice receiving 60% compared to 10% fat diet. FASN protein levels in the lung of high fat diet mice were lower by immunoblotting and immunohistochemistry. Depletion of FASN in type II alveolar epithelial cells resulted in altered mitochondrial bioenergetics and more severe lung injury with hyperoxic exposure, even upon the administration of a 60% fat diet. This is the first study to show that a high fat diet leads to altered FASN expression in the lung and that both a high fat diet and reduced FASN expression in alveolar epithelial cells promote lung injury.
Collapse
Affiliation(s)
- Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.,NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - LiChao Fan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Elizabeth Sanchez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ziling Huang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Lisa K Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Mitsuru Imamura
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yizhang Zhu
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.,NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| |
Collapse
|
17
|
Zhou Q, Wang M, Li S, Zhang J, Ma Q, Ding Y, Ge H, Shen N, Zheng Y, Sun Y. Impact of body mass index on survival of medical patients with sepsis: a prospective cohort study in a university hospital in China. BMJ Open 2018; 8:e021979. [PMID: 30209156 PMCID: PMC6144486 DOI: 10.1136/bmjopen-2018-021979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/24/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To evaluate the impact of body mass index (BMI) on survival of a Chinese cohort of medical patients with sepsis. DESIGN A single-centre prospective cohort study conducted from May 2015 to April 2017. SETTING A tertiary care university hospital in China. PARTICIPANTS A total of 178 patients with sepsis admitted to the medical intensive care unit (ICU) were included. MAIN OUTCOME MEASURES The primary outcome was 90-day mortality while the secondary outcomes were in-hospital mortality, length of ICU stay and length of hospital stay. RESULTS The median age (IQR) was 78 (66-84) years old, and 77.0% patients were older than 65 years. The 90-day mortality was 47.2%. The in-hospital mortality was 41.6%, and the length of ICU stay and hospital stay were 12 (5-22) and 15 (9-28) days, respectively. Cox proportional hazard regression analysis identified that Sequential Organ Failure Assessment score (HR=1.229, p<0.001), Acute Physiology and Chronic Health Evaluation II score (HR=1.050, p<0.001) and BMI (HR=0.940, p=0.029) were all independently associated with the 90-day mortality. Patients were divided into four groups based on BMI (underweight 33 (18.5%), normal 98 (55.1%), overweight 36 (20.2%) and obese 11 (6.2%)). The 90-day mortality (66.7%, 48.0%, 36.1% and 18.2%, p=0.015) and in-hospital mortality (60.6%, 41.8%, 30.6% and 18.2%, p=0.027) were statistically different among the four groups. Differences in survival among the four groups were demonstrated by Kaplan-Meier survival analysis (p=0.008), with the underweight patients showing a lower survival rate. CONCLUSIONS BMI was an independent factor associated with 90-day survival in a Chinese cohort of medical patients with sepsis, with patients having a lower BMI at a higher risk of death.
Collapse
Affiliation(s)
- Qingtao Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Meng Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Li
- Emergency Department, Peking University Third Hospital, Beijing, China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Qingbian Ma
- Emergency Department, Peking University Third Hospital, Beijing, China
| | - Yanling Ding
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Hongxia Ge
- Emergency Department, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yaan Zheng
- Emergency Department, Peking University Third Hospital, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Obesity and Overweight Problems Among Individuals 1 to 25 Years Following Acute Rehabilitation for Traumatic Brain Injury: A NIDILRR Traumatic Brain Injury Model Systems Study. J Head Trauma Rehabil 2018; 33:246-256. [DOI: 10.1097/htr.0000000000000408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Qi D, Wang D, Zhang C, Tang X, He J, Zhao Y, Deng W, Deng X. Vaspin protects against LPS‑induced ARDS by inhibiting inflammation, apoptosis and reactive oxygen species generation in pulmonary endothelial cells via the Akt/GSK‑3β pathway. Int J Mol Med 2017; 40:1803-1817. [PMID: 29039444 PMCID: PMC5716428 DOI: 10.3892/ijmm.2017.3176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/27/2017] [Indexed: 11/06/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein-rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity-associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad-vaspin) to examine its effects on lipopolysaccharide (LPS)-induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10] levels, and intercellular cell adhesion molecule-1 (ICAM-1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)-vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF-α and IL-6) and endothelial-specific adhesion markers [vascular cell adhesion molecule-1 and E-selectin], activation of nuclear factor-κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad-vaspin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)-3β pathway. In addition, pretreatment of HPMECs with rh-vaspin attenuated inflammation, apoptosis and ROS generation without alterations in AJs and cytoskeletal organization following LPS insult, which was accompanied by activation of the Akt/GSK3β pathway. In conclusion, the present study demonstrated that vaspin protects against LPS-induced ARDS by reversing EC barrier dysfunction via the suppression of inflammation, apoptosis and ROS production in pulmonary ECs, at least partially via activation of the Akt/GSK3β pathway. These findings provide evidence of a causal link between vaspin and EC dysfunction in ARDS, and suggest a potential therapeutic intervention for patients with ARDS.
Collapse
Affiliation(s)
- Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chunrong Zhang
- Department of Emergency, Yongchuan Affiliated Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jing He
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yan Zhao
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Wang Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xinyu Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
20
|
Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:1-17. [PMID: 28585193 DOI: 10.1007/978-3-319-48382-5_1] [Citation(s) in RCA: 712] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increase in prevalence of obesity has become a worldwide major health problem in adults, as well as among children and adolescents. Furthermore, total adiposity and truncal subcutaneous fat accumulation during adolescence are positively and independently associated with atherosclerosis at adult ages. Centrally accumulation of body fat is associated with insulin resistance, whereas distribution of body fat in a peripheral pattern is metabolically less important. Obesity is associated with a large decrease in life expectancy. The effect of extreme obesity on mortality is greater among younger than older adults. In this respect, obesity is also associated with increased risk of several cancer types. However, up to 30% of obese patients are metabolically healthy with insulin sensitivity similar to healthy normal weight individuals, lower visceral fat content, and lower intima media thickness of the carotid artery than the majority of metabolically "unhealthy" obese patients.Abdominal obesity is the most frequently observed component of metabolic syndrome. The metabolic syndrome; clustering of abdominal obesity, dyslipidemia, hyperglycemia and hypertension, is a major public health challenge. The average prevalence of metabolic syndrome is 31%, and is associated with a two-fold increase in the risk of coronary heart disease, cerebrovascular disease, and a 1.5-fold increase in the risk of all-cause mortality.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey. .,, Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
21
|
Abstract
Obesity is an important risk factor for both community-acquired pneumonia (CAP) and healthcare-associated pneumonia. In striking contrast, emerging data suggest that obesity is associated with more favorable outcome of pneumonia, a protective effect coined 'the obesity paradox'. Areas covered: The aim of the present review is to summarize the existing evidence on the outcome of pneumonia in obese patients and to discuss the mechanisms underpinning the association between obesity and pneumonia outcome. Several observational studies showed that obesity is associated with better outcome of CAP. In contrast, obesity represents a risk factor for adverse outcome in patients infected with pandemic influenza. Very limited data exist on the association between obesity and the outcome of healthcare-associated pneumonia. The pathophysiological mechanisms contributing to these paradoxical findings are unclear. Expert commentary: It is possible that residual confounding might partly explain the better outcome of pneumonia in obese patients. On the other hand, obesity might indeed offer a survival advantage in patients with acute diseases, including pneumonia. Clearly, larger and well-designed studies are needed to clarify the pathogenetic links between obesity and pneumonia outcome, which might represent novel therapeutic targets in the management of infectious diseases.
Collapse
Affiliation(s)
- Marianthi Papagianni
- a First Propedeutic Department of Internal Medicine, Medical School , Aristotle University of Thessaloniki, AHEPA Hospital , Thessaloniki , Greece
| | - Konstantinos Tziomalos
- a First Propedeutic Department of Internal Medicine, Medical School , Aristotle University of Thessaloniki, AHEPA Hospital , Thessaloniki , Greece
| |
Collapse
|
22
|
Comorbidities impact on the prognosis of severe acute community-acquired pneumonia. Porto Biomed J 2017; 2:265-272. [PMID: 32289091 PMCID: PMC6806761 DOI: 10.1016/j.pbj.2017.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023] Open
Abstract
Highlights Abstract Community-acquired pneumonia (CAP) is a frequent cause of admission to hospital worldwide with high mortality rates. Host comorbidities may be associated not just with a greater risk of developing the disease but also with worse outcomes. In this work, the evaluation of the impact of host comorbidities on the prognosis of severe CAP patients admitted to an Intensive Care Unit (ICU) was proposed. Severity indexes, some clinical and analytic parameters at admission in ICU as well as patient comorbidities were analyzed and statistically compared with mortality. In this study, although there was no clear link between comorbidities and mortality, factors such as smoking, obesity and previous renal disease impairment seem to have an impact on the prognosis of severe CAP.
Collapse
|
23
|
Wang Q, Yan H, Wang G, Qiu Z, Bai B, Wang S, Yu P, Feng Q, Zhao Q, He X, Liu C. RNA sequence analysis of rat acute experimental pancreatitis with and without fatty liver: a gene expression profiling comparative study. Sci Rep 2017; 7:734. [PMID: 28389636 PMCID: PMC5429720 DOI: 10.1038/s41598-017-00821-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Fatty liver (FL) is one of the risk factors for acute pancreatitis and is also indicative of a worse prognosis as compared to acute pancreatitis without fatty liver (AP). The aim of the present study was to analyze, at the hepatic level, the differentially expressed genes (DEGs) between acute pancreatitis with fatty liver (APFL) rats and AP rats. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses of these DEGs indicated that PPARα signalling pathway and fatty acid degradation pathway may be involved in the pathological process of APFL, which indicated that fatty liver may aggravate pancreatitis through these pathways. Moreover, the excessive activation of JAK/STAT signaling pathway and toll-like receptor signaling pathway was also found in APFL group as shown in heat map. In conclusion, the inhibition of PPARα signaling pathway and the fatty acid degradation pathway may lead to the further disorder of lipid metabolism, which can aggravate pancreatitis.
Collapse
Affiliation(s)
- Qian Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hongkai Yan
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 201907, China
| | - Gang Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zhaoyan Qiu
- Department of General Surgery, The General Hospital of the People's Liberation Army, Beijing, 100039, China
| | - Bin Bai
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xian, 710032, China
| | - Shiqi Wang
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xian, 710032, China
| | - Pengfei Yu
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xian, 710032, China
| | - Quanxin Feng
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xian, 710032, China
| | - Qingchuan Zhao
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xian, 710032, China.
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Chaoxu Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 201907, China. .,Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xian, 710032, China.
| |
Collapse
|
24
|
Affiliation(s)
- Mohammed A. Shalaby
- Consultant ICU, ECMO program assistant director, ECMO Center, KFHJ ICU, King Fahd Hospital Jeddah, 2nd floor, Al Andalus Street, Al Hamara, P.O. Box 23325, Jeddah, Saudi Arabia www.kfhj.med.sa.com
| |
Collapse
|
25
|
Belliato M, Cremascoli L, Aliberti A, Pagani M, Pellegrini C, Iotti GA. A case of veno-venous extracorporeal membrane oxygenation for severe respiratory failure in a superobese patient. Clin Case Rep 2016; 4:1147-1150. [PMID: 27980751 PMCID: PMC5134152 DOI: 10.1002/ccr3.732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022] Open
Abstract
After risk assessment, veno‐venous extracorporeal membrane oxygenation (ECMO) has been achieved in a superobese adult patient as a bridge to recovery of respiratory failure, despite the weight‐related difficulties. Early v‐v ECMO implantation could be considered to support and to conduct weaning both from sedation and from invasive mechanical ventilation, with the goal to perform physiokinesitherapy during awake ECMO.
Collapse
Affiliation(s)
- Mirko Belliato
- Second ICU S.C. Anestesia e Rianimazione 2 Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Luca Cremascoli
- Scuola di Specializzazione in Anestesia e Rianimazione Resident of Università degli Studi di Pavia Pavia Italy
| | - Anna Aliberti
- Second ICU S.C. Anestesia e Rianimazione 2 Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Michele Pagani
- Second ICU S.C. Anestesia e Rianimazione 2 Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Carlo Pellegrini
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche Cardiosurgery of Università degli Studi di Pavia Pavia Italy
| | - Giorgio Antonio Iotti
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche Anaesthesiology of Università degli Studi di Pavia Pavia Italy; S.C. Anestesia e Rianimazione 2 Fondazione IRCCS Policlinico San Matteo Pavia Italy
| |
Collapse
|
26
|
Qi D, Tang X, He J, Wang D, Zhao Y, Deng W, Deng X, Zhou G, Xia J, Zhong X, Pu S. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism. Cell Death Dis 2016; 7:e2360. [PMID: 27607575 PMCID: PMC5059868 DOI: 10.1038/cddis.2016.265] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS.
Collapse
Affiliation(s)
- Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing He
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoqi Zhou
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xia
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Zhong
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenglan Pu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Pepper DJ, Sun J, Welsh J, Cui X, Suffredini AF, Eichacker PQ. Increased body mass index and adjusted mortality in ICU patients with sepsis or septic shock: a systematic review and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:181. [PMID: 27306751 PMCID: PMC4908772 DOI: 10.1186/s13054-016-1360-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022]
Abstract
Background At least 25 % of adults admitted to intensive care units (ICU) in the United States have an overweight, obese or morbidly obese body mass index (BMI). The effect of BMI on adjusted mortality in adults requiring ICU treatment for sepsis is unclear. We performed a systematic review of adjusted all-cause mortality for underweight, overweight, obese and morbidly obese BMIs relative to normal BMI for adults admitted to the ICU with sepsis, severe sepsis, and septic shock. Method PubMed, the Cochrane Library, and EMBASE electronic databases were searched through November 18, 2015, without language restrictions. We included studies that reported multivariate regression analyses for all-cause mortality using standard BMI categories for adults admitted to the ICU for sepsis, severe sepsis, and septic shock. Articles were selected by consensus among multiple reviewers. Electronic database searches yielded 10,312 articles, of which six were eligible. Data were extracted by one reviewer and then reviewed by three independent reviewers. For the meta-analyses performed, the adjusted odds ratios (aOR) of mortality were combined using a random-effects model. Risk of bias was assessed using the Newcastle-Ottawa quality assessment scale for cohort studies. Results Four retrospective (n = 6609 patients) and two prospective (n = 556) studies met inclusion criteria. Compared to normal BMI, across five studies each, overweight or obese BMIs reduced the adjusted odds ratio (95 % CI) of mortality [aOR] [0.83 (0.75, 0.91) p < 0.001 and 0.82 (0.67, 0.99) p = 0.04, respectively] with low or moderate heterogeneity (I2 = 15.7 %, p = 0.31 and I2 = 53.0 %, p = 0.07, respectively). Across three studies each, morbidly obese BMI and underweight BMI did not alter aOR [0.90 (0.59, 1.39), p = 0.64; I2 = 43.3 %, p = 0.17; and 1.24 (0.79, 1.95), p = 0.35; I2 = 15.6 %, p = 0.31 respectively]. Only one study clearly defined how and when height and weight measurements were calculated. Site of underlying infection and illness severity may have favored overweight and obese BMIs. Conclusions This is the first meta-analysis to show that overweight or obese BMIs reduce adjusted mortality in adults admitted to the ICU with sepsis, severe sepsis, or septic shock. More rigorous studies that address these limitations are needed to clarify the impact of BMI on sepsis ICU outcomes. Trial registration PROSPERO International prospective register of systematic reviews 10.15124/CRD42014010556. Registered on July 11, 2014. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1360-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dominique J Pepper
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Clinical Center Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Clinical Center Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Judith Welsh
- National Institutes of Health Library, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Clinical Center Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Anthony F Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Clinical Center Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Clinical Center Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
28
|
Ubags NDJ, Stapleton RD, Vernooy JHJ, Burg E, Bement J, Hayes CM, Ventrone S, Zabeau L, Tavernier J, Poynter ME, Parsons PE, Dixon AE, Wargo MJ, Littenberg B, Wouters EFM, Suratt BT. Hyperleptinemia is associated with impaired pulmonary host defense. JCI Insight 2016; 1. [PMID: 27347561 DOI: 10.1172/jci.insight.82101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have previously reported that obesity attenuates pulmonary inflammation in both patients with acute respiratory distress syndrome (ARDS) and in mouse models of the disease. We hypothesized that obesity-associated hyperleptinemia, and not body mass per se, drives attenuation of the pulmonary inflammatory response and that this e_ect could also impair the host response to pneumonia. We examined the correlation between circulating leptin levels and risk, severity, and outcome of pneumonia in 2 patient cohorts (NHANES III and ARDSNet-ALVEOLI) and in mouse models of diet-induced obesity and lean hyperleptinemia. Plasma leptin levels in ambulatory subjects (NHANES) correlated positively with annual risk of respiratory infection independent of BMI. In patients with severe pneumonia resulting in ARDS (ARDSNet-ALVEOLI), plasma leptin levels were found to correlate positively with subsequent mortality. In obese mice with pneumonia, plasma leptin levels were associated with pneumonia severity, and in obese mice with sterile lung injury, leptin levels were inversely related to bronchoalveolar lavage neutrophilia, as well as to plasma IL-6 and G-CSF levels. These results were recapitulated in lean mice with experimentally induced hyperleptinemia. Our findings suggest that the association between obesity and elevated risk of pulmonary infection may be driven by hyperleptinemia.
Collapse
Affiliation(s)
- Niki D J Ubags
- Department of Respiratory Medicine, Maastricht University Medical Centre+, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, Netherlands; Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Renee D Stapleton
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Juanita H J Vernooy
- Department of Respiratory Medicine, Maastricht University Medical Centre+, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, Netherlands
| | - Elianne Burg
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Jenna Bement
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Catherine M Hayes
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Sebastian Ventrone
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Lennart Zabeau
- Flanders Institute for Biotechnology (VIB), Department of Medical Protein Research, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- Flanders Institute for Biotechnology (VIB), Department of Medical Protein Research, Ghent University, Ghent, Belgium
| | - Matthew E Poynter
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Polly E Parsons
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Anne E Dixon
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Matthew J Wargo
- Department of Microbiology & Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Benjamin Littenberg
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Centre+, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, Netherlands
| | - Benjamin T Suratt
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
29
|
Palakshappa JA, Anderson BJ, Reilly JP, Shashaty MGS, Ueno R, Wu Q, Ittner CAG, Tommasini A, Dunn TG, Charles D, Kazi A, Christie JD, Meyer NJ. Low Plasma Levels of Adiponectin Do Not Explain Acute Respiratory Distress Syndrome Risk: a Prospective Cohort Study of Patients with Severe Sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:71. [PMID: 26984771 PMCID: PMC4794929 DOI: 10.1186/s13054-016-1244-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/17/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Obesity is associated with the development of acute respiratory distress syndrome (ARDS) in at-risk patients. Low plasma levels of adiponectin, a circulating hormone-like molecule, have been implicated as a possible mechanism for this association. The objective of this study was to determine the association of plasma adiponectin level at ICU admission with ARDS and 30-day mortality in patients with severe sepsis and septic shock. METHODS This is a prospective cohort study of patients admitted to the medical ICU at the Hospital of the University of Pennsylvania. Plasma adiponectin was measured at the time of ICU admission. ARDS was defined by Berlin criteria. Multivariable logistic regression was used to determine the association of plasma adiponectin with the development of ARDS and mortality at 30 days. RESULTS The study included 164 patients. The incidence of ARDS within 5 days of admission was 45%. The median initial plasma adiponectin level was 7.62 mcg/ml (IQR: 3.87, 14.90) in those without ARDS compared to 8.93 mcg/ml (IQR: 4.60, 18.85) in those developing ARDS. The adjusted odds ratio for ARDS associated with each 5 mcg increase in adiponectin was 1.12 (95% CI 1.01, 1.25), p-value 0.025). A total of 82 patients (51%) of the cohort died within 30 days of ICU admission. There was a statistically significant association between adiponectin and mortality in the unadjusted model (OR 1.11, 95% CI 1.00, 1.23, p-value 0.04) that was no longer significant after adjusting for potential confounders. CONCLUSIONS In this study, low levels of adiponectin were not associated with an increased risk of ARDS in patients with severe sepsis and septic shock. This argues against low levels of adiponectin as a mechanism explaining the association of obesity with ARDS. At present, it is unclear whether circulating adiponectin is involved in the pathogenesis of ARDS or simply represents an epiphenomenon of other unknown functions of adipose tissue or metabolic alterations in sepsis.
Collapse
Affiliation(s)
- Jessica A Palakshappa
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Brian J Anderson
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - John P Reilly
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Michael G S Shashaty
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Ryo Ueno
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| | - Qufei Wu
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Caroline A G Ittner
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Anna Tommasini
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Thomas G Dunn
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Dudley Charles
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Altaf Kazi
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
30
|
Wilson B, Typpo K. Nutrition: A Primary Therapy in Pediatric Acute Respiratory Distress Syndrome. Front Pediatr 2016; 4:108. [PMID: 27790606 PMCID: PMC5061746 DOI: 10.3389/fped.2016.00108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
Appropriate nutrition is an essential component of intensive care management of children with acute respiratory distress syndrome (ARDS) and is linked to patient outcomes. One out of every two children in the pediatric intensive care unit (PICU) will develop malnutrition or have worsening of baseline malnutrition and present with specific micronutrient deficiencies. Early and adequate enteral nutrition (EN) is associated with improved 60-day survival after pediatric critical illness, and, yet, despite early EN guidelines, critically ill children receive on average only 55% of goal calories by PICU day 10. Inadequate delivery of EN is due to perceived feeding intolerance, reluctance to enterally feed children with hemodynamic instability, and fluid restriction. Underlying each of these factors is large practice variation between providers and across institutions for initiation, advancement, and maintenance of EN. Strategies to improve early initiation and advancement and to maintain delivery of EN are needed to improve morbidity and mortality from pediatric ARDS. Both, over and underfeeding, prolong duration of mechanical ventilation in children and worsen other organ function such that precise calorie goals are needed. The gut is thought to act as a "motor" of organ dysfunction, and emerging data regarding the role of intestinal barrier functions and the intestinal microbiome on organ dysfunction and outcomes of critical illness present exciting opportunities to improve patient outcomes. Nutrition should be considered a primary rather than supportive therapy for pediatric ARDS. Precise nutritional therapies, which are titrated and targeted to preservation of intestinal barrier function, prevention of intestinal dysbiosis, preservation of lean body mass, and blunting of the systemic inflammatory response, offer great potential for improving outcomes of pediatric ARDS. In this review, we examine the current evidence regarding dose, route, and timing of nutrition, current recommendations for provision of nutrition to children with ARDS, and the current literature for immune-modulating diets for pediatric ARDS. We will examine emerging data regarding the role of the intestinal microbiome in modulating the response to critical illness.
Collapse
Affiliation(s)
- Bryan Wilson
- Department of Emergency Medicine, University of Arizona College of Medicine , Tucson, AZ , USA
| | - Katri Typpo
- Department of Pediatrics, Steele Children's Research Center, University of Arizona College of Medicine , Tucson, AZ , USA
| |
Collapse
|
31
|
Ull C, Buchwald D, Strauch J, Schildhauer TA, Swol J. Extremely obese patients treated with venovenous ECMO--an intensivist's challenge. Am J Emerg Med 2015; 33:1720.e3-4. [PMID: 25886896 DOI: 10.1016/j.ajem.2015.03.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 03/30/2015] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christopher Ull
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Dirk Buchwald
- Department of Cardiac and Thoracic Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Justus Strauch
- Department of Cardiac and Thoracic Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Thomas Armin Schildhauer
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Justyna Swol
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
Collapse
|