1
|
Ikliptikawati DK, Makiyama K, Hazawa M, Wong RW. Unlocking the Gateway: The Spatio-Temporal Dynamics of the p53 Family Driven by the Nuclear Pores and Its Implication for the Therapeutic Approach in Cancer. Int J Mol Sci 2024; 25:7465. [PMID: 39000572 PMCID: PMC11242911 DOI: 10.3390/ijms25137465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The p53 family remains a captivating focus of an extensive number of current studies. Accumulating evidence indicates that p53 abnormalities rank among the most prevalent in cancer. Given the numerous existing studies, which mostly focus on the mutations, expression profiles, and functional perturbations exhibited by members of the p53 family across diverse malignancies, this review will concentrate more on less explored facets regarding p53 activation and stabilization by the nuclear pore complex (NPC) in cancer, drawing on several studies. p53 integrates a broad spectrum of signals and is subject to diverse regulatory mechanisms to enact the necessary cellular response. It is widely acknowledged that each stage of p53 regulation, from synthesis to degradation, significantly influences its functionality in executing specific tasks. Over recent decades, a large body of data has established that mechanisms of regulation, closely linked with protein activation and stabilization, involve intricate interactions with various cellular components. These often transcend canonical regulatory pathways. This new knowledge has expanded from the regulation of genes themselves to epigenomics and proteomics, whereby interaction partners increase in number and complexity compared with earlier paradigms. Specifically, studies have recently shown the involvement of the NPC protein in such complex interactions, underscoring the further complexity of p53 regulation. Furthermore, we also discuss therapeutic strategies based on recent developments in this field in combination with established targeted therapies.
Collapse
Affiliation(s)
- Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
| | - Kei Makiyama
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Richard W. Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| |
Collapse
|
2
|
Dual Role of p73 in Cancer Microenvironment and DNA Damage Response. Cells 2021; 10:cells10123516. [PMID: 34944027 PMCID: PMC8700694 DOI: 10.3390/cells10123516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms that regulate cancer progression is pivotal for the development of new therapies. Although p53 is mutated in half of human cancers, its family member p73 is not. At the same time, isoforms of p73 are often overexpressed in cancers and p73 can overtake many p53 functions to kill abnormal cells. According to the latest studies, while p73 represses epithelial–mesenchymal transition and metastasis, it can also promote tumour growth by modulating crosstalk between cancer and immune cells in the tumor microenvironment, M2 macrophage polarisation, Th2 T-cell differentiation, and angiogenesis. Thus, p73 likely plays a dual role as a tumor suppressor by regulating apoptosis in response to genotoxic stress or as an oncoprotein by promoting the immunosuppressive environment and immune cell differentiation.
Collapse
|
3
|
Wang J, Thomas HR, Li Z, Yeo NCF, Scott HE, Dang N, Hossain MI, Andrabi SA, Parant JM. Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis. Cell Death Dis 2021; 12:659. [PMID: 34193827 PMCID: PMC8245518 DOI: 10.1038/s41419-021-03902-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Cellular stress can lead to several human disease pathologies due to aberrant cell death. The p53 family (tp53, tp63, and tp73) and downstream transcriptional apoptotic target genes (PUMA/BBC3 and NOXA/PMAIP1) have been implicated as mediators of stress signals. To evaluate the importance of key stress response components in vivo, we have generated zebrafish null alleles in puma, noxa, p53, p63, and p73. Utilizing these genetic mutants, we have deciphered that the apoptotic response to genotoxic stress requires p53 and puma, but not p63, p73, or noxa. We also identified a delayed secondary wave of genotoxic stress-induced apoptosis that is p53/puma independent. Contrary to genotoxic stress, ER stress-induced apoptosis requires p63 and puma, but not p53, p73, or noxa. Lastly, the oxidative stress-induced apoptotic response requires p63, and both noxa and puma. Our data also indicate that while the neural tube is poised for apoptosis due to genotoxic stress, the epidermis is poised for apoptosis due to ER and oxidative stress. These data indicate there are convergent as well as unique molecular pathways involved in the different stress responses. The commonality of puma in these stress pathways, and the lack of gross or tumorigenic phenotypes with puma loss suggest that a inhibitor of Puma may have therapeutic application. In addition, we have also generated a knockout of the negative regulator of p53, mdm2 to further evaluate the p53-induced apoptosis. Our data indicate that the p53 null allele completely rescues the mdm2 null lethality, while the puma null completely rescues the mdm2 null apoptosis but only partially rescues the phenotype. Indicating Puma is the key mediator of p53-dependent apoptosis. Interestingly the p53 homozygous null zebrafish develop tumors faster than the previously described p53 homozygous missense mutant zebrafish, suggesting the missense allele may be hypomorphic allele.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Holly R Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Zhang Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nan Cher Florence Yeo
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Hannah E Scott
- Department of Biology, University of Alabama at Birmingham Collage of Arts and Sciences Department and Genetics Department, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Nghi Dang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Mohammed Iqbal Hossain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
4
|
Ren M, Kazemian M, Zheng M, He J, Li P, Oh J, Liao W, Li J, Rajaseelan J, Kelsall BL, Peltz G, Leonard WJ. Transcription factor p73 regulates Th1 differentiation. Nat Commun 2020; 11:1475. [PMID: 32193462 PMCID: PMC7081339 DOI: 10.1038/s41467-020-15172-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Inter-individual differences in T helper (Th) cell responses affect susceptibility to infectious, allergic and autoimmune diseases. To identify factors contributing to these response differences, here we analyze in vitro differentiated Th1 cells from 16 inbred mouse strains. Haplotype-based computational genetic analysis indicates that the p53 family protein, p73, affects Th1 differentiation. In cells differentiated under Th1 conditions in vitro, p73 negatively regulates IFNγ production. p73 binds within, or upstream of, and modulates the expression of Th1 differentiation-related genes such as Ifng and Il12rb2. Furthermore, in mouse experimental autoimmune encephalitis, p73-deficient mice have increased IFNγ production and less disease severity, whereas in an adoptive transfer model of inflammatory bowel disease, transfer of p73-deficient naïve CD4+ T cells increases Th1 responses and augments disease severity. Our results thus identify p73 as a negative regulator of the Th1 immune response, suggesting that p73 dysregulation may contribute to susceptibility to autoimmune disease. Heterogeneous helper T (Th) cell responses contribute to differential susceptibility to immunological disorders. Here the authors perform haplotype-based computational screens of 16 inbred mouse strains to identify a transcription factor, p73, as an important negative regulator of Th1 differentiation, with p73 deficient mice manifesting alterations in two inflammatory disease models.
Collapse
Affiliation(s)
- Min Ren
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892-1674, USA
| | - Majid Kazemian
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892-1674, USA.,Department of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, 37906, USA
| | - Ming Zheng
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - JianPing He
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892-1674, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892-1674, USA
| | - Wei Liao
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892-1674, USA
| | - Jessica Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892-1674, USA
| | - Jonathan Rajaseelan
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892-1674, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892-1674, USA.
| |
Collapse
|
5
|
El Husseini N, Hales BF. The Roles of P53 and Its Family Proteins, P63 and P73, in the DNA Damage Stress Response in Organogenesis-Stage Mouse Embryos. Toxicol Sci 2019; 162:439-449. [PMID: 29228353 DOI: 10.1093/toxsci/kfx270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Members of the P53 transcription factor family, P53, P63, and P73, play important roles in normal development and in regulating the expression of genes that control apoptosis and cell cycle progression in response to genotoxic stress. P53 is involved in the DNA damage response pathway that is activated by hydroxyurea in organogenesis-stage murine embryos. The extent to which P63 and P73 contribute to this stress response is not known. To address this question, we examined the roles of P53, P63, and P73 in mediating the response of Trp53-positive and Trp53-deficient murine embryos to a single dose of hydroxyurea (400 mg/kg) on gestational day 9. Hydroxyurea treatment downregulated the expression of Trp63 and upregulated Trp73 in the absence of effects on the levels of Trp53 transcripts; Trp73 upregulation was P53-dependent. At the protein level, hydroxyurea treatment increased the levels and phosphorylation of P53 in the absence of effects on P63 and P73. Upregulation of the expression of genes that regulate cell cycle arrest and apoptosis, Cdkn1a, Rb1, Fas, Trp53inp1, and Pmaip1, was P53-dependent in hydroxyurea-treated embryos. The increase in cleaved caspase-3 and cleaved mammalian sterile-20-like-1 kinase levels induced by hydroxyurea was also P53-dependent; in contrast, the increase in phosphorylated H2AX, a marker of DNA double-strand breaks, in response to hydroxyurea treatment was only partially P53-dependent. Together, our data show that P53 is the principal P53 family member that is activated in the embryonic DNA damage response.
Collapse
Affiliation(s)
- Nazem El Husseini
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
6
|
Awais R, Spiller DG, White MRH, Paraoan L. p63 is required beside p53 for PERP-mediated apoptosis in uveal melanoma. Br J Cancer 2016; 115:983-992. [PMID: 27584665 PMCID: PMC5061904 DOI: 10.1038/bjc.2016.269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022] Open
Abstract
Background: PERP (p53 apoptosis effector related to PMP-22), a transcriptional target of p53, is downregulated and contributes to the impairment of apoptosis in uveal melanoma (UM). Intriguingly, PERP is not induced in UM despite functional p53. p63, located on chromosome 3, which is characteristically altered in high-risk UM, can transactivate PERP. Here, we determine the functional role of p63 expression in the initiation of p53/PERP-mediated apoptosis in UM. Methods: PERP expression was monitored by quantitative PCR (qPCR) and immunoblotting in UM cell lines treated with DNA-damaging agents. The functional role of p63 was assessed by transient expression of p63-turbo GFP (p63-tGFP) in the apoptosis- resistant, 3q-deficient OCM-1 cells. Expression and localisation of p63, PERP and p53, and induction of apoptosis were characterised by qPCR, immunoblotting and live cell confocal microscopy. Results: PERP expression was significantly downregulated in all UM cell lines. DNA-damaging treatments failed to induce apoptosis and activate PERP in OCM-1 cells, which displayed non-functional levels of p63. Expression of p63-tGFP induced apoptosis with marked increase in PERP expression and associated p53 accumulation. Conclusions: Lack of p63 contributes to reduced PERP levels and impaired p53-mediated apoptosis in UM. p63 expression is required for PERP-mediated apoptosis in UM.
Collapse
Affiliation(s)
- Raheela Awais
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - David G Spiller
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Michael R H White
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
7
|
Li N, Lorenzi F, Kalakouti E, Normatova M, Babaei-Jadidi R, Tomlinson I, Nateri AS. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15. Oncotarget 2016; 6:9240-56. [PMID: 25860929 PMCID: PMC4496214 DOI: 10.18632/oncotarget.3284] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter.
Collapse
Affiliation(s)
- Ningning Li
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Federica Lorenzi
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Eliana Kalakouti
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Hillingdon Hospital, Uxbridge UB8 3NN, UK
| | - Makhliyo Normatova
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
8
|
Troiano A, Lomoriello IS, di Martino O, Fusco S, Pollice A, Vivo M, La Mantia G, Calabrò V. Y-box Binding Protein-1 Is Part of a Complex Molecular Network Linking ΔNp63α to the PI3K/akt Pathway in Cutaneous Squamous Cell Carcinoma. J Cell Physiol 2015; 230:2067-74. [PMID: 25639555 DOI: 10.1002/jcp.24934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/16/2015] [Indexed: 12/24/2022]
Abstract
Cutaneous squamous cell carcinomas (SCCs) typically lack somatic oncogene-activating mutations and most of them contain p53 mutations. However, the presence of p53 mutations in skin premalignant lesions suggests that these represent early events during tumor progression and additional alterations may be required for SCC development. SCC cells frequently express high levels of ΔNp63α and Y-box binding 1 (YB-1 or YBX1) oncoproteins. Here, we show that knockdown of YB-1 in spontaneously immortalized HaCaT and non-metastatic SCC011 cells led to a dramatic decrease of ΔNp63α, cell detachment and death. In highly metastatic SCC022 cells, instead, YB-1 silencing induces PI3K/AKT signaling hyperactivation which counteracts the effect of YB-1 depletion and promotes cell survival. In summary, our results unveil a functional cross-talk between YB-1, ΔNp63α and the PI3K/AKT pathway critically governing survival of squamous carcinoma cells.
Collapse
Affiliation(s)
- Annaelena Troiano
- Department of Biology, University of Naples 'Federico II,', Naples, Italy
| | | | - Orsola di Martino
- Department of Biology, University of Naples 'Federico II,', Naples, Italy
| | - Sabato Fusco
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Alessandra Pollice
- Department of Biology, University of Naples 'Federico II,', Naples, Italy
| | - Maria Vivo
- Department of Biology, University of Naples 'Federico II,', Naples, Italy
| | - Girolama La Mantia
- Department of Biology, University of Naples 'Federico II,', Naples, Italy
| | - Viola Calabrò
- Department of Biology, University of Naples 'Federico II,', Naples, Italy
| |
Collapse
|
9
|
Assefnia S, Kang K, Groeneveld S, Yamaji D, Dabydeen S, Alamri A, Liu X, Hennighausen L, Furth PA. Trp63 is regulated by STAT5 in mammary tissue and subject to differentiation in cancer. Endocr Relat Cancer 2014; 21:443-57. [PMID: 24692510 PMCID: PMC4073690 DOI: 10.1530/erc-14-0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Transformation-related protein 63 (Trp63), the predominant member of the Trp53 family, contributes to epithelial differentiation and is expressed in breast neoplasia. Trp63 features two distinct promoters yielding specific mRNAs encoding two major TRP63 isoforms, a transactivating transcription factor and a dominant negative isoform. Specific TRP63 isoforms are linked to cell cycle arrest, apoptosis, survival, and epithelial mesenchymal transition (EMT). Although TRP63 overexpression in cultured cells is used to elucidate functions, little is known about Trp63 regulation in normal and cancerous mammary tissues. This study used ChIP-seq to interrogate transcription factor binding and histone modifications of the Trp63 locus in mammary tissue and RNA-seq and immunohistochemistry to gauge gene expression. H3K4me2 and H3K4me3 marks coincided only with the proximal promoter, supporting RNA-seq data showing the predominance of the dominant negative isoform. STAT5 bound specifically to the Trp63 proximal promoter and Trp63 mRNA levels were elevated upon deleting Stat5 from mammary tissue, suggesting its role as a negative regulator. The dominant negative TRP63 isoform was localized to nuclei of basal mammary epithelial cells throughout reproductive cycles and retained in a majority of the triple-negative cancers generated from loss of full-length Brca1. Increased expression of dominant negative isoforms was correlated with developmental windows of increased progesterone receptor binding to the proximal Trp63 promoter and decreased expression during lactation was correlated with STAT5 binding to the same region. TRP63 is present in the majority of triple-negative cancers resulting from loss of Brca1 but diminished in less differentiated cancer subtypes and in cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Shahin Assefnia
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Keunsoo Kang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0822, USA
- Department of Microbiology, Dankook University, Cheonan 330-714, Republic of Korea
| | - Svenja Groeneveld
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department Pharmazie, Ludwig-Maximilians-Universität München, Germany
| | - Daisuke Yamaji
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0822, USA
| | - Sarah Dabydeen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Ahmad Alamri
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- College of Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0822, USA
| | - Priscilla A. Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Corresponding author: Priscilla A. Furth, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd NW, Research Bldg., Room 520A, Washington, DC 20057 USA
| |
Collapse
|
10
|
TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol 2013; 15:991-1000. [PMID: 23811687 PMCID: PMC3733810 DOI: 10.1038/ncb2789] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 05/16/2013] [Indexed: 12/12/2022]
Abstract
TAp73 is a structural homologue of the pre-eminent tumor suppressor p53. However, unlike p53, TAp73 is rarely mutated, and instead is frequently over-expressed in human tumors. It remains unclear whether TAp73 affords an advantage to tumor cells and if so, what is the underlying mechanism. Here we show that TAp73 supports the proliferation of human and mouse tumor cells. TAp73 activates the expression of the glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP). By stimulating G6PD, TAp73 increases PPP flux and directs glucose to the production of NADPH and ribose, for the synthesis of macromolecules and detoxification of reactive oxygen species (ROS). The growth defect of TAp73-deficient cells can be rescued by either enforced G6PD expression or the presence of nucleosides plus an ROS scavenger. These findings establish a critical role for TAp73 in regulating metabolism, and connect TAp73 and the PPP to oncogenic cell growth.
Collapse
|
11
|
Matin RN, Chikh A, Chong SLP, Mesher D, Graf M, Sanza' P, Senatore V, Scatolini M, Moretti F, Leigh IM, Proby CM, Costanzo A, Chiorino G, Cerio R, Harwood CA, Bergamaschi D. p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis. ACTA ACUST UNITED AC 2013; 210:581-603. [PMID: 23420876 PMCID: PMC3600906 DOI: 10.1084/jem.20121439] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
p63 is up-regulated in melanoma and prevents nuclear accumulation of p53. The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterized. Mutations in TP53 occur infrequently, yet the TP53 apoptotic pathway is often abrogated. This may result from alterations in TP53 family members, including the TP53 homologue TP63. Here we demonstrate that TP63 has an antiapoptotic role in melanoma and is responsible for mediating chemoresistance. Although p63 was not expressed in primary melanocytes, up-regulation of p63 mRNA and protein was observed in melanoma cell lines and clinical samples, providing the first evidence of significant p63 expression in this lineage. Upon genotoxic stress, endogenous p63 isoforms were stabilized in both nuclear and mitochondrial subcellular compartments. Our data provide evidence of a physiological interaction between p63 with p53 whereby translocation of p63 to the mitochondria occurred through a codependent process with p53, whereas accumulation of p53 in the nucleus was prevented by p63. Using RNA interference technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance, revealing a novel oncogenic role for p63 in melanoma cells. Furthermore, expression of p63 in both primary and metastatic melanoma clinical samples significantly correlated with melanoma-specific deaths in these patients. Ultimately, these observations provide a possible explanation for abrogation of the p53-mediated apoptotic pathway in melanoma, implicating novel approaches aimed at sensitizing melanoma to therapeutic agents.
Collapse
Affiliation(s)
- Rubeta N Matin
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Su X, Chakravarti D, Flores ER. p63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nat Rev Cancer 2013; 13:136-43. [PMID: 23344544 PMCID: PMC4181578 DOI: 10.1038/nrc3446] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of p63 in cancer has been an area of intense debate and controversy. Is TP63 (which encodes p63) a tumour suppressor gene or an oncogene? This debate is partly due to the complexity of the gene. There are several p63 isoforms - some with tumour suppressive functions and others with oncogenic functions. In this Opinion article, we focus on the recent advances in understanding p63 biology and its roles in cancer. In this regard, we discuss the role of p63 in multiple stem cell compartments, ageing, in the response to DNA damage and in DNA repair. Finally, we highlight the importance of understanding the interactions between all three p53 family members and the potential impact of this knowledge on cancer therapy and regenerative medicine.
Collapse
Affiliation(s)
- Xiaohua Su
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | |
Collapse
|
13
|
Jolliffe AK, Derry WB. The TP53 signaling network in mammals and worms. Brief Funct Genomics 2012; 12:129-41. [PMID: 23165352 DOI: 10.1093/bfgp/els047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nematode worm Caenorhabditis elegans has been an invaluable model organism for studying the molecular mechanisms that govern cell fate, from fundamental aspects of multicellular development to programmed cell death (apoptosis). The transparency of this organism permits visualization of cells in living animals at high resolution. The powerful genetics and functional genomics tools available in C. elegans allow for detailed analysis of gene function, including genes that are frequently deregulated in human diseases such as cancer. The TP53 protein is a critical suppressor of tumor formation in vertebrates, and the TP53 gene is mutated in over 50% of human cancers. TP53 suppresses malignancy by integrating a variety of cellular stresses that direct it to activate transcription of genes that help to repair the damage or trigger apoptotic death if the damage is beyond repair. The TP53 paralogs, TP63 and TP73, have distinct roles in development as well as overlapping functions with TP53 in apoptosis and repair, which complicates their analysis in vertebrates. C. elegans contains a single TP53 family member, cep-1, that shares properties of all three vertebrate genes and thus offers a simple system in which to study the biological functions of this important gene family. This review summarizes major advances in our understanding of the TP53 family using C. elegans as a model organism.
Collapse
|
14
|
Li X, Chen J, Yi Y, Li C, Zhang Y. DNA damage down-regulates ΔNp63α and induces apoptosis independent of wild type p53. Biochem Biophys Res Commun 2012; 423:338-343. [PMID: 22659744 DOI: 10.1016/j.bbrc.2012.05.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/23/2012] [Indexed: 11/16/2022]
Abstract
The tumor suppressor p53 is pivotal in cell growth arrest and apoptosis upon cellular stresses including DNA damage. Mounting evidence indicates that p63 proteins, which are homologs of p53, are also involved in apoptosis under certain circumstances. In this study, we found that treatment with DNA damage agents leads to down-regulation of ΔNp63α and induces apoptosis in FaDu and HaCat cells carrying mutant p53. Further study shows that DNA damage reduces steady-state mRNA level of ΔNp63α, but has little effect on its protein stability. In addition, knockdown of endogenous ΔNp63α directly induces apoptosis and sensitizes cells to DNA damage, while exogenous expression of ΔNp63α partially confers cellular resistance to DNA damage. Together, these data suggest that DNA damage down-regulates ΔNp63α, which may directly contribute to DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Xiaorong Li
- Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | |
Collapse
|
15
|
Correlation between low-level expression of the tumor suppressor gene TAp73 and the chemoresistance of human glioma stem cells. Cancer Chemother Pharmacol 2012; 69:1205-12. [PMID: 22258403 DOI: 10.1007/s00280-012-1823-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Glioma stem cells (GSCs) are regarded as the root of glioma growth and recurrence. Chemoresistance is one of the characteristics of GSCs that increases the difficulties in eradicating the cells by anticancer drugs. PURPOSE The objective of this study is to investigate the correlation between expression of the tumor suppressor gene TAp73 and the chemoresistance of human GSCs. METHODS MTT and tumor sphere formation assays were used to analyze the chemoresistance phenotype of GSCs derived from primary human glioma specimens under cisplatin exposure. Reverse transcription real-time PCR was applied for assaying mRNA levels of TAp73. Protein levels of TAp73, p21, Bax, and cleared caspase 3 were assayed by western blot. Cell apoptosis was analyzed by flow cytometry after the annexin V fluorescence staining. RESULTS GSCs exhibited increased chemoresistance compared to differentiated glioma cells (DGCs) derived from the same tumor specimen. The expression of TAp73 was lower in GSCs and was not sensitive to cisplatin treatment as compared to DGCs. Overexpression of TAp73 by transfection increased the apoptosis of GSCs in the presence of cisplatin and reduced the chemoresistance of GSC. TAp73 knockdown by siRNA in DGCs reduced cisplatin-induced apoptosis and increased the resistance to cisplatin. CONCLUSION These findings indicate that TAp73 silencing is hallmark of GSC to maintain their chemoresistance phenotype. Thus, targeting TAp73 may provide a novel strategy to eradicating GSCs.
Collapse
|
16
|
Abstract
The transcription factor p63 is expressed as at least six different isoforms, of which two have been assigned critical biological roles within ectodermal development and skin stem cell biology on the one hand and supervision of the genetic stability of oocytes on the other hand. These two isoforms contain a C-terminal inhibitory domain that negatively regulates their transcriptional activity. This inhibitory domain contains two individual components: one that uses an internal binding mechanism to interact with and mask the transactivation domain and one that is based on sumoylation. We have carried out an extensive alanine scanning study to identify critical regions within the inhibitory domain. These experiments show that a stretch of ∼13 amino acids is crucial for the binding function. Further, investigation of transcriptional activity and the intracellular level of mutants that cannot be sumoylated suggests that sumoylation reduces the concentration of p63. We therefore propose that the inhibitory function of the C-terminal domain is in part due to direct inhibition of the transcriptional activity of the protein and in part due to indirect inhibition by controlling the concentration of p63.
Collapse
|
17
|
Abstract
One of the basic principles that nature uses in evolution is to recycle successful concepts and create new functions by modifying existing units. This conservatism in evolution has resulted in an astonishingly high sequence identity of genes, even between evolutionarily distant species such as the nematode Caenorhabditis elegans and Homo sapiens. The recycling of successful concepts in conjunction with gene duplication events has also led to the existence of highly homologous proteins within the genome of many species. Often, these homologous proteins show similar, yet distinct functions that, in combination with their individual tissue distribution, define their specific physiological role. One prominent example is the p53 protein family, which consists of p53, p63, and p73. Recent advances in understanding the specific biological functions of these members have shed some light onto the evolution of this crucial protein family, from a germ line-specific quality-control factor to a somatic tumor suppressor. Furthermore, structures of the oligomerization domains of the mammalian paralogs, p53 and p73, and invertebrate orthologs, CEP-1 and DMP53, have delineated evolutionary changes and revealed that the oligomerization domain of p53 lacks additional stabilizing structural elements present in all other p53 family members. This suggests that p53 is the most recent evolutionary member of this protein family and predicts a mechanism for p53 activation.
Collapse
|
18
|
Moergel M, Abt E, Stockinger M, Kunkel M. Overexpression of p63 is associated with radiation resistance and prognosis in oral squamous cell carcinoma. Oral Oncol 2010; 46:667-71. [PMID: 20656547 DOI: 10.1016/j.oraloncology.2010.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND The tumor suppressor homologue p63 is expressed in basal and parabasal layers of intraoral mucosa. Full length transcripts with transactivational domain (TA forms) present with homology to p53 and implicate functions governing cell proliferation, differentiation and apoptosis control. To date studies show an increase of p63 expression in oral dysplasia and additionally high expression levels correlated with poor prognosis for patients with OSCC, whereas a possible link to radiation resistance of tumors has not been investigated yet. In the present study we tested the hypothesis for p63 being a marker of radioresistance and overall survival in OSCC. METHODS p63 Expression was labeled by immunohistochemistry in pre-treatment biopsies collected from 33 patients with OSCC. Quantification of the labeling index (Li) based on the relation of p63 positive cells to overall tumor cell count. Histological examination of the resection specimen allowed categorization of the radiation response. Statistical analyses of the association between Li and radiation response were performed. Survival analysis utilized Kaplan-Meier estimates and additionally a Cox regression model was built for p63 (Li), T stage, N-stage and chemotherapy and presented as hazard ratios. RESULTS All tumors had enhanced p63 expression. The median Li was 63.1% (range 36-87%). Tumors with a p63 positive cell count>63.1% showed increased resistance to radiation (p=0.027). Overall survival was higher (p=0.001) for patients with low Li (<median value) than those with high Li (>median value) and multivariate Cox regression analysis confirmed the significance of p63 as a prognostic marker of survival. CONCLUSIONS The results of this analysis advocate p63 expression in pre-treatment tumor tissue to be a marker of radiation resistance in OSCC, with high expression levels being associated with poor radiation response and shorter survival. The promising results of this biomarker should now be confirmed by a study with larger patient counts.
Collapse
Affiliation(s)
- Maximilian Moergel
- Department of Oral and Maxillofacial Surgery, University of Mainz, Medical Center, Mainz, Germany.
| | | | | | | |
Collapse
|
19
|
Cornils H, Stegert MR, Hergovich A, Hynx D, Schmitz D, Dirnhofer S, Hemmings BA. Ablation of the kinase NDR1 predisposes mice to the development of T cell lymphoma. Sci Signal 2010; 3:ra47. [PMID: 20551432 DOI: 10.1126/scisignal.2000681] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Defective apoptosis contributes to the development of various human malignancies. The kinases nuclear Dbf2-related 1 (NDR1) and NDR2 mediate apoptosis downstream of the tumor suppressor proteins RASSF1A (Ras association domain family member 1A) and MST1 (mammalian Ste20-like kinase 1). To further analyze the role of NDR1 in apoptosis, we generated NDR1-deficient mice. Although NDR1 is activated by both intrinsic and extrinsic proapoptotic stimuli, which indicates a role for NDR1 in regulating apoptosis, NDR1-deficient T cells underwent apoptosis in a manner similar to that of wild-type cells in response to different proapoptotic stimuli. Analysis of the abundances of NDR1 and NDR2 proteins revealed that loss of NDR1 was functionally compensated for by an increase in the abundance of NDR2 protein. Despite this compensation, NDR1(-/-) and NDR1(+/-) mice were more prone to the development of T cell lymphomas than were wild-type mice. Tumor development in mice and humans was accompanied by a decrease in the overall amounts of NDR proteins in T cell lymphoma samples. Thus, reduction in the abundance of NDR1 triggered a decrease in the total amount of both isoforms. Together, our data suggest that a reduction in the abundances of the NDR proteins results in defective responses to proapoptotic stimuli, thereby facilitating the development of tumors.
Collapse
Affiliation(s)
- Hauke Cornils
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Qian Y, Chen X. Tumor suppression by p53: making cells senescent. Histol Histopathol 2010; 25:515-26. [PMID: 20183804 DOI: 10.14670/hh-25.515] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular senescence is a permanent cell cycle arrest and a potent tumor suppression mechanism. The p53 tumor suppressor is a sequence-specific transcription factor and acts as a central hub sensing various stress signals and activating an array of target genes to induce cell cycle arrest, apoptosis, and senescence. Recent reports showed that restoration of p53 induces premature senescence and tumor regression in mice with hepatocarcinomas or sarcomas. Thus, p53-mediated senescence is capable of eliminating cancer cells in vivo. p63 and p73, two homologues of p53, have similar function in cell cycle arrest and apoptosis. However, the role of p63 and p73 in cellular senescence is elusive. In this review, we will discuss how p53 regulates senescence and future studies about p53 family members in senescence.
Collapse
Affiliation(s)
- Yingjuan Qian
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
21
|
Abstract
Mammalian cells are barraged with endogenous metabolic byproducts and environmental insults that can lead to nearly a million genomic lesions per cell per day. Networks of proteins that repair these lesions are essential for genome maintenance, and a compromise in these pathways propagates mutations that can cause aging and cancer. The p53 tumor suppressor plays a central role in repairing the effects of DNA damage, and has therefore earned the title of "guardian of the genome." In this issue of Genes & Development, Wilhelm and colleagues (pp. 549-560) demonstrate that p73-an older sibling of p53-inhibits pathways that resolve DNA double-strand breaks.
Collapse
|
22
|
Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J, Wang S, Yang D, Philip PA, Sarkar FH, Mohammad RM. MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. Eur J Cancer 2010; 46:1122-31. [PMID: 20156675 DOI: 10.1016/j.ejca.2010.01.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
Small molecule inhibitors (SMIs) of murine double minute 2 (MDM2) are known to restore the apoptotic and cell cycle regulatory functions of p53 by disrupting the MDM2-p53 interaction. In principle, these SMIs are not effective against tumours with mutation in the tumour suppressor p53 (mut-p53), which is known to be present in approximately 50% of all cancers. In this study we are reporting, for the first time, that MI-319 in combination with cisplatin induced cell growth inhibition and apoptosis in pancreatic cancer (PC) cells irrespective of their p53 mutational status. MI-319-cisplatin combination synergistically suppressed cell growth (MTT Combination Index [CI]<1) and colony formation (clonogenic assay) and induced apoptosis. Western blot analysis and siRNA silencing studies in mutant as well as p53 null cells highlighted a mechanism involving p73 which is also known to be under the regulation of MDM2, and unlike p53, it is rarely mutated in PC. Down-regulating MDM2 using siRNA enhanced p73 reactivation and increased cell death. Further, the combination effectively reduced tumour growth in both wt-p53 and mut-p53 tumour xenograft models (50% Capan-2 animals were tumour free). Consistent with our in vitro results, remnant tumour tissue analysis showed up-regulation of p73 and the cell cycle regulator p21. In conclusion, this study highlights a new role of MDM2 inhibitors in combination with cisplatin, and thus warrants further clinical investigation in human pancreatic tumours containing both wt-p53 and mut-p53.
Collapse
Affiliation(s)
- Asfar S Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Targeted deletion of p73 in mice reveals its role in T cell development and lymphomagenesis. PLoS One 2009; 4:e7784. [PMID: 19907659 PMCID: PMC2771421 DOI: 10.1371/journal.pone.0007784] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/13/2009] [Indexed: 11/25/2022] Open
Abstract
Transcriptional silencing of the p73 gene through methylation has been demonstrated in human leukemias and lymphomas. However, the role of p73 in the malignant process remains to be explored. We show here that p73 acts as a T cell-specific tumor suppressor in a genetically defined mouse model, and that concomitant ablation of p53 and p73 predisposes mice to an increased incidence of thymic lymphomas compared to the loss of p53 alone. Our results demonstrate a causal role for loss of p73 in progression of T cell lymphomas to the stage of aggressive, disseminated disease. We provide evidence that tumorigenesis in mice lacking p53 and p73 proceeds through mechanisms involving altered patterns of gene expression, defects in early T cell development, impaired apoptosis, and the ensuing accumulation of chromosomal aberrations. Collectively, our data imply that tumor suppressive properties of p73 are highly dependent on cellular context, wherein p73 plays a major role in T cell development and neoplasia.
Collapse
|
24
|
Abstract
Loss of p53 function occurs during the development of most, if not all, tumour types. This paves the way for genomic instability, tumour-associated changes in metabolism, insensitivity to apoptotic signals, invasiveness and motility. However, the nature of the causal link between early tumorigenic events and the induction of the p53-mediated checkpoints that constitute a barrier to tumour progression remains uncertain. This Review considers the role of the DNA damage response, which is activated during the early stages of tumour development, in mobilizing the tumour suppression function of p53. The relationship between these events and oncogene-induced p53 activation through the ARF pathway is also discussed.
Collapse
Affiliation(s)
- David W Meek
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
25
|
Snow AL, Marsh RA, Krummey SM, Roehrs P, Young LR, Zhang K, van Hoff J, Dhar D, Nichols KE, Filipovich AH, Su HC, Bleesing JJ, Lenardo MJ. Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J Clin Invest 2009; 119:2976-89. [PMID: 19759517 DOI: 10.1172/jci39518] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 07/22/2009] [Indexed: 12/12/2022] Open
Abstract
X-linked lymphoproliferative disease (XLP) is a rare congenital immunodeficiency that leads to an extreme, usually fatal increase in the number of lymphocytes upon infection with EBV. It is most commonly defined molecularly by loss of expression of SLAM-associated protein (SAP). Despite this, there is little understanding of how SAP deficiency causes lymphocytosis following EBV infection. Here we show that T cells from individuals with XLP are specifically resistant to apoptosis mediated by TCR restimulation, a process that normally constrains T cell expansion during immune responses. Expression of SAP and the SLAM family receptor NK, T, and B cell antigen (NTB-A) were required for TCR-induced upregulation of key pro-apoptotic molecules and subsequent apoptosis. Further, SAP/NTB-A signaling augmented the strength of the proximal TCR signal to achieve the threshold required for restimulation-induced cell death (RICD). Strikingly, TCR ligation in activated T cells triggered increased recruitment of SAP to NTB-A, dissociation of the phosphatase SHP-1, and colocalization of NTB-A with CD3 aggregates. In contrast, NTB-A and SHP-1 contributed to RICD resistance in XLP T cells. Our results reveal what we believe to be novel roles for NTB-A and SAP in regulating T cell homeostasis through apoptosis and provide mechanistic insight into the pathogenesis of lymphoproliferative disease in XLP.
Collapse
Affiliation(s)
- Andrew L Snow
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases/NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
DNA damage or unprotected telomeres can trigger apoptosis via signaling pathways that directly sense abnormal DNA structures and activate the p53 transcription factor. We describe a p53-independent mechanism that acts in parallel to the canonical DNA damage response pathway in Drosophila to induce apoptosis after exposure to ionizing radiation. Following recovery from damage-induced cell cycle arrest, p53 mutant cells activate the JNK pathway and expression of the pro-apoptotic gene hid. Mutations in grp, a cell cycle checkpoint gene, and puc, a negative regulator of the JNK pathway, sensitize p53 mutant cells to ionizing radiation (IR)-induced apoptosis. Induction of chromosome aberrations by DNA damage generates cells with segmental aneuploidy and heterozygous for mutations in ribosomal protein genes. p53-independent apoptosis limits the formation of these aneuploid cells following DNA damage. We propose that reduced copy number of haploinsufficient genes following chromosome damage activates apoptosis and helps maintain genomic integrity.
Collapse
|
27
|
Griesmann H, Schlereth K, Krause M, Samans B, Stiewe T. p53 and p73 in suppression of Myc-driven lymphomagenesis. Int J Cancer 2009; 124:502-6. [PMID: 18942718 DOI: 10.1002/ijc.23978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Induction of apoptosis by the tumor suppressor p53 is known to protect from Myc-driven lymphomagenesis. The p53 family member p73 is also a proapoptotic protein, which is activated in response to oncogenes like Myc. Here, we have investigated whether p73 provides a similar protection from Myc-driven lymphomas as p53. Confirming previous studies, the inactivation of a single p53 allele (p53+/-) strongly reduced the median survival of Emu-Myc transgenic mice from 103 to 39 days and was invariably associated with a loss of the wild-type p53 allele. In contrast, mutational inactivation of a p73 allele (p73+/-) reduced the median survival by only 12 days. Lymphomas that developed in the p73+/- background showed no loss of heterozygosity (LOH). Furthermore, gene expression profiling of p73+/+, p73+/- and p73-/- lymphomas indicated that p73+/- lymphomas retained p73 transcriptional activity. Subtle gene expression differences between p73+/+ and p73+/- lymphomas, however, suggest a haploinsufficient phenotype on some p73 target genes. This might help to explain why p73+/- animals succumbed to disease slightly earlier than their p73+/+ littermates (log-rank test p<0.0395) and why p73 often shows monoallelic inactivation in human lymphomas. Together these data demonstrate that in Myc-driven lymphomagenesis p73 has weak tumor suppressor activity compared with p53.
Collapse
Affiliation(s)
- Heidi Griesmann
- Department for Hematology, Oncology and Immunology, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Abstract
While p53 has been extensively characterized as a tumor suppressor, it has been more difficult to determine whether p63 and/or p73 play a similar role. Every system in which these family members have been studied, from cells to animal models to human tissues, seems to create more questions than answers. Tomasini and colleagues (2677-2691) demonstrate that one isoform of p73 is responsible for preventing tumor formation in vivo, providing critical validation of an isoform-based model of p73 function.
Collapse
Affiliation(s)
- Jennifer M Rosenbluth
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennesee 37232, USA
| | | |
Collapse
|
29
|
Abstract
The p53 tumor suppressor continues to hold distinction as the most frequently mutated gene in human cancer. The ability of p53 to induce programmed cell death, or apoptosis, of cells exposed to environmental or oncogenic stress constitutes a major pathway whereby p53 exerts its tumor suppressor function. In the past decade, we have discovered that p53 is not alone in its mission to destroy damaged or aberrantly proliferating cells: it has two homologs, p63 and p73, that in various cellular contexts and stresses contribute to this process. In this review, the mechanisms whereby p53, and in some cases p63 and p73, induce apoptosis are discussed. Other reviews have focused more extensively on the contribution of individual p53-regulated genes to apoptosis induction by this protein, whereas in this review, we focus more on those factors that mediate the decision between growth arrest and apoptosis by p53, p63 and p73, and on the post-translational modifications and protein-protein interactions that influence this decision.
Collapse
Affiliation(s)
- E. Christine Pietsch
- Division of Medical Sciences, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia PA, 19111
| | - Stephen M. Sykes
- Brigham and Women's Hospital, 1 Blackfan Circle, Boston, MA 02115
| | - Steven B. McMahon
- Kimmel Cancer Center, Thomas Jefferson Medical College, 233 S. 10th St. Philadelphia, Pennsylvania 19107
| | - Maureen E. Murphy
- Division of Medical Sciences, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia PA, 19111
| |
Collapse
|
30
|
Danilova N, Sakamoto KM, Lin S. p53 family in development. Mech Dev 2008; 125:919-31. [PMID: 18835440 DOI: 10.1016/j.mod.2008.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 09/04/2008] [Accepted: 09/12/2008] [Indexed: 12/17/2022]
Abstract
The p53 family network is a unique cellular processor that integrates information from various pathways and determines cellular choices between proliferation, replication arrest/repair, differentiation, senescence, or apoptosis. The most studied role of the p53 family is the regulation of stress response and tumor suppression. By removing damaged cells from the proliferating pool, p53 family members preserve the integrity of the genome. In addition to this well recognized role, recent data implicate the p53 protein family in a broader role of controlling cell proliferation, differentiation and death. Members of the p53 protein family with opposing activity perform coordination of these processes. Imbalance of p53 protein family may contribute to a significant proportion of congenital developmental abnormalities in humans.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, 615 Charles E. Young Drive South, BSRB 454, Los Angeles, CA 90095-1606, USA.
| | | | | |
Collapse
|
31
|
Vilgelm A, El-Rifai W, Zaika A. Therapeutic prospects for p73 and p63: rising from the shadow of p53. Drug Resist Updat 2008; 11:152-63. [PMID: 18801697 DOI: 10.1016/j.drup.2008.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/06/2008] [Accepted: 08/11/2008] [Indexed: 01/15/2023]
Abstract
The p53 protein family consists of three transcription factors: p53, p63, and p73. These proteins share significant structural and functional similarities and each has unique biological functions as well. Although the role of p53 in cellular stress is extensively studied, many questions remain about p63 and p73. In this review we summarize current data on functional interactions within the p53 family, their regulation and roles in response to genotoxic stress. We also discuss the significance of p73 and p63 for cancer therapy and outline novel approaches in development of therapeutic drugs that specifically target the p53 family.
Collapse
Affiliation(s)
- Anna Vilgelm
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | | | | |
Collapse
|
32
|
Patel S, George R, Autore F, Fraternali F, Ladbury JE, Nikolova PV. Molecular interactions of ASPP1 and ASPP2 with the p53 protein family and the apoptotic promoters PUMA and Bax. Nucleic Acids Res 2008; 36:5139-51. [PMID: 18676979 PMCID: PMC2532732 DOI: 10.1093/nar/gkn490] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The apoptosis stimulating p53 proteins, ASPP1 and ASPP2, are the first two common activators of the p53 protein family that selectively enable the latter to regulate specific apoptotic target genes, which facilitates yes yet unknown mechanisms for discrimination between cell cycle arrest and apoptosis. To better understand the interplay between ASPP- and p53-family of proteins we investigated the molecular interactions between them using biochemical methods and structure-based homology modelling. The data demonstrate that: (i) the binding of ASPP1 and ASPP2 to p53, p63 and p73 is direct; (ii) the C-termini of ASPP1 and ASPP2 interact with the DNA-binding domains of p53 protein family with dissociation constants, Kd, in the lower micro-molar range; (iii) the stoichiometry of binding is 1:1; (iv) the DNA-binding domains of p53 family members are sufficient for these protein–protein interactions; (v) EMSA titrations revealed that while tri-complex formation between ASPPs, p53 family of proteins and PUMA/Bax is mutually exclusive, ASPP2 (but not ASPP1) formed a complex with PUMA (but not Bax) and displaced p53 and p73. The structure-based homology modelling revealed subtle differences between ASPP2 and ASPP1 and together with the experimental data provide novel mechanistic insights.
Collapse
Affiliation(s)
- Seema Patel
- Department of Biochemistry and Pharmaceutical Science Division, School of Biomedical and Health Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford St., London SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|
33
|
Malaguarnera R, Vella V, Pandini G, Sanfilippo M, Pezzino V, Vigneri R, Frasca F. TAp73 alpha increases p53 tumor suppressor activity in thyroid cancer cells via the inhibition of Mdm2-mediated degradation. Mol Cancer Res 2008; 6:64-77. [PMID: 18234963 DOI: 10.1158/1541-7786.mcr-07-0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p53 family proteins include p53 tumor suppressor, p63, and p73. Despite the high similarity in structure and function with p53, p63, and p73 function in tumor suppression is still controversial. Here, we show that TAp73alpha, a transcriptionally active p73 isoform, is able to synergize p53 tumor suppressor function in thyroid cancer cells. Indeed, depletion of p73 by small interfering RNA in thyroid cancer cells resulted in a reduced transcriptional activity of p53. Ectopic coexpression of both p53 and TAp73alpha in thyroid cancer cells resulted in increased transcription and tumor suppressor function compared with p53 or TAp73alpha alone, as well as in increased p53 protein levels. The enhancing effect of TAp73alpha on p53 activity is Mdm2 dependent because it is prevented by Mdm2 depletion by small interfering RNA. At least two mechanisms may explain the interference of TAp73alpha with p53 function. First, in thyroid cancer cells, TAp73alpha inhibits the effect of p53 on Mdm2 induction by antagonizing p53 at the Mdm2 promoter level. Second, a TAp73alpha mutant (G264W), which is devoid of DNA binding capability, is still able to increase p53 protein levels by competing with p53 for Mdm2 protein binding. Taken together, these results indicate that in thyroid cancer cells, TAp73alpha is able to increase p53 protein level and function by interfering with Mdm2-mediated p53 degradation. These results may be useful for designing gene therapies aimed at restoring a normal p53 function in thyroid cancer cells.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Endocrinologia-Dipartimento di Medicina Interna e di Medicina Specialistica-Università di Catania, Ospedale Garibaldi, Nesima, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
p53 is arguably the most intensively studied protein to date, yet there is much that we ignore about its function as a transcription factor. The p53-dependent transcriptional program is remarkably flexible, as it varies with the nature of p53-activating stimuli, the cell type and the duration of the activation signal. This flexibility may allow cells to mount alternative responses to p53 activation, such as cell cycle arrest or apoptosis. Here, I organize the available data into two alternative models to explain how this regulatory diversity is achieved.
Collapse
|
35
|
Patel S, Bui TT, Drake AF, Fraternali F, Nikolova PV. The p73 DNA Binding Domain Displays Enhanced Stability Relative to Its Homologue, the Tumor Suppressor p53, and Exhibits Cooperative DNA Binding. Biochemistry 2008; 47:3235-44. [DOI: 10.1021/bi7023207] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Seema Patel
- Department of Biochemistry and Pharamceutical Sciences Research Division, School of Biomedical & Health Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom, and Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, Kingʼs College London, London SE1 1UL, United Kingdom
| | - Tam T.T. Bui
- Department of Biochemistry and Pharamceutical Sciences Research Division, School of Biomedical & Health Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom, and Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, Kingʼs College London, London SE1 1UL, United Kingdom
| | - Alex F. Drake
- Department of Biochemistry and Pharamceutical Sciences Research Division, School of Biomedical & Health Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom, and Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, Kingʼs College London, London SE1 1UL, United Kingdom
| | - Franca Fraternali
- Department of Biochemistry and Pharamceutical Sciences Research Division, School of Biomedical & Health Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom, and Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, Kingʼs College London, London SE1 1UL, United Kingdom
| | - Penka V. Nikolova
- Department of Biochemistry and Pharamceutical Sciences Research Division, School of Biomedical & Health Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom, and Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, Kingʼs College London, London SE1 1UL, United Kingdom
| |
Collapse
|
36
|
|
37
|
The proline-rich domain in p63 is necessary for the transcriptional and apoptosis-inducing activities of TAp63. Oncogene 2007; 27:2843-50. [PMID: 18037962 DOI: 10.1038/sj.onc.1210948] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p63 shares considerable sequence identity with p53, especially in its DNA-binding, activation and tetramerization domains. When the upstream promoter is used for p63 expression, three major transactivation p63 (TAp63) isoforms (alpha, beta and gamma) are produced. p63 is also expressed from an alternate promoter located in intron 3, producing three major DeltaNp63 isoforms. Recent studies demonstrated that p63 has the potential to function as a tumor suppressor or an oncoprotein. To further address this, we generated cell lines that inducibly express each TAp63 isoform. We showed that TAp63 isoforms are capable of inducing p53-responsive genes, inhibiting cell proliferation and promoting apoptosis. Interestingly, we discovered that both the activation domain (residues 1-59) and the proline-rich domain (residues 67-127) are required for TAp63 transcriptional activity. Likewise, TAp63beta(DeltaPRD), deleted of residues 60-133, possessed a greatly attenuated ability to induce endogenous target genes and promote apoptosis, but retained the ability to inhibit cell proliferation when expressed in stable, inducible cell lines. TAp63beta(DeltaPRD) also functioned as a dominant negative to wild-type p63beta in a dose-dependent manner. Furthermore, the loss of function seen with deletion of the proline-rich domain was not due to a DNA-binding defect, as TAp63beta(DeltaPRD) was found to strongly bind endogenous promoters using chromatin immunoprecipitation assay. Finally, mutational analysis revealed that a PXXP motif at residues 124-127 contributes to the transcriptional activity of TAp63. Altogether, our findings suggest that TAp63 transcriptional activity can be regulated by modification(s) of, or protein interactions with, the p63 proline-rich domain.
Collapse
|
38
|
RelA/NF-kappaB recruitment on the bax gene promoter antagonizes p73-dependent apoptosis in costimulated T cells. Cell Death Differ 2007; 15:354-63. [PMID: 18034190 DOI: 10.1038/sj.cdd.4402264] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The balance between antiapoptotic and proapoptotic proteins of the Bcl-2 family is critical in determining the fate of T cells in response to death stimuli. Proapoptotic genes, such as bax, are generally regulated by the p53 family of transcription factors, whereas NF-kappaB subunits can activate the transcription of antiapoptotic Bcl-2 members. Here, we show that CD28 activation protects memory T cells from irradiation-induced apoptosis by both upregulating bcl-xL and inhibiting bax gene expression. We found that p73, but not p53, binds to and trans-activates the bax gene promoter in irradiated T cells. The activation of RelA/NF-kappaB subunit in CD28 costimulated T cells and its binding onto the bax gene promoter results in suppression of bax transcription and decrease in both p73 and RNA polymerase II recruitment in vivo. RelA recruitment on the bax gene promoter is also accompanied by the lost of p300 binding and the parallel appearance of histone deacetylase-1-containing complexes. These findings identify RelA/NF-kappaB as a critical regulator of T-cell survival by affecting the balance of Bcl-2 family members.
Collapse
|
39
|
Marchini S, Marabese M, Marrazzo E, Mariani P, Cattaneo D, Fossati R, Compagnoni A, Fruscio R, Lissoni AA, Broggini M. DeltaNp63 expression is associated with poor survival in ovarian cancer. Ann Oncol 2007; 19:501-7. [PMID: 17998283 DOI: 10.1093/annonc/mdm519] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND P63 belongs to the 'p53 family' whose role in cancer progression has been recently revisited in light of the plethora of splicing variants that are generated. We analyzed the expression of the full-length TAp63 gene and its dominant-negative form deltaNp63 in ovarian cancer biopsies to correlate their expression with clinical outcome. MATERIALS AND METHODS Real-time RT-PCR analysis was used to determine the levels of TAp63 and deltaNp63 in 83 stage I and in 86 stage III ovarian cancer biopsies and in seven human ovarian cancer cell. RESULTS TAp63 levels were comparable in stage I and stage III, but deltaNp63 levels increased 77-fold in stage III, independently of the p53 status. Patients with high deltaNp63 expression had the worst overall survival (OS); patients with a deltaNp63/TAp63 ratio >2 had a poor OS. Patients with a high deltaNp63/TAp63 ratio were those with a poor response to platinum-based therapy. CONCLUSIONS Data indicate a role for deltaNp63 as a potential biomarker to predict patient's outcome and tumor progression in ovarian cancer. This would have particularly clinical relevance in ovarian cancer where the high rate of mortality reflects our lack of knowledge of molecular mechanisms underlying cell progression toward malignancy.
Collapse
Affiliation(s)
- S Marchini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Johnson J, Lagowski J, Sundberg A, Lawson S, Liu Y, Kulesz-Martin M. p73 loss triggers conversion to squamous cell carcinoma reversible upon reconstitution with TAp73alpha. Cancer Res 2007; 67:7723-30. [PMID: 17699776 DOI: 10.1158/0008-5472.can-07-1195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression level of the p53 family member, p73, is frequently deregulated in human epithelial cancers, correlating with tumor invasiveness, therapeutic resistance, and poor patient prognosis. However, the question remains whether p73 contributes directly to the process of malignant conversion or whether aberrant p73 expression represents a later selective event to maintain tumor viability. We explored the role of p73 in malignant conversion in a clonal model of epidermal carcinogenesis. Whether sporadic or small interfering RNA (siRNA) induced, loss of p73 in initiated p53+/+ keratinocytes leads to loss of cellular responsiveness to DNA damage by ionizing radiation (IR) and conversion to squamous cell carcinoma (SCC). Reconstitution of TAp73alpha but not DeltaNp73alpha reduced tumorigenicity in vivo, but did not restore cellular sensitivity to IR, uncoupling p73-mediated DNA damage response from its tumor-suppressive role. These studies provide direct evidence that loss of p73 can contribute to malignant conversion and support a role for TAp73alpha in tumor suppression of SCC. The results support the activation of TAp73alpha as a rational mechanism for cancer therapy in solid tumors of the epithelium.
Collapse
Affiliation(s)
- Jodi Johnson
- Department of Dermatology, OHSU Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
41
|
King KE, Weinberg WC. p63: defining roles in morphogenesis, homeostasis, and neoplasia of the epidermis. Mol Carcinog 2007; 46:716-24. [PMID: 17477357 DOI: 10.1002/mc.20337] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
p63 is a member of a gene family also including the p53 tumor suppressor and p73. In contrast to p53, p63 is rarely mutated in human cancers. Rather, gene amplification and dysregulated expression of p63 protein have been observed, particularly in squamous cell carcinomas. p63 is essential for development of stratified squamous epithelium, including the epidermis. The p63 gene is expressed as multiple protein isoforms with different functional capacities, and the balance of these isoforms, along with the presence or absence of the other family members, p53 and p73, can impact biological outcome. Both gene silencing and overexpression approaches have been utilized to elucidate the contributions of specific p63 isoforms to normal epidermal morphogenesis and tissue maintenance. While numerous studies have established the essential nature of p63 in the epidermis, the basis of this requirement, and the unique, as well as, overlapping functions of the individual isoforms, remain controversial. In this review, we summarize the current understanding of roles played by specific p63 isoforms within the context of epidermal morphogenesis and homeostasis of the established epidermis, and the potential impact of p63 dysregulation on cancer development.
Collapse
Affiliation(s)
- Kathryn E King
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, FDA Center for Drug Evaluation and Research, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
42
|
Wang J, Liu YX, Hande MP, Wong AC, Jin YJ, Yin Y. TAp73 is a downstream target of p53 in controlling the cellular defense against stress. J Biol Chem 2007; 282:29152-62. [PMID: 17693405 DOI: 10.1074/jbc.m703408200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TAp73 is a p53 tumor suppressor gene homologue that is known to be mainly involved in apoptosis. We report here that TAp73 is necessary for the cellular response to oxidative stress and that TAp73 functions as a downstream target of p53 in this process. We show that p53 physically interacts with the TAp73 promoter under stress conditions that lead to cell death. Particularly, p53 binds to a palindromic site in the TAp73 promoter, activates the promoter of TAp73, and selectively induces TAp73 transcription. TAp73 expression is highly increased under oxidative stress in a p53-dependent manner. Furthermore, knock-down of TAp73 expression inhibits the cellular apoptotic response to oxidative damage. In contrast, the ectopic expression of TAp73 in p53(-/-) mouse embryonic fibroblasts induces oxidative cell death. Our findings demonstrate that p53 is a direct transcriptional regulator of TAp73. Our data reveal a new pathway for cellular protection against oxidative damage and provide evidence that TAp73 is a stress-response gene and a downstream effector in the p53 pathway.
Collapse
Affiliation(s)
- Jianli Wang
- Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
43
|
Talos F, Nemajerova A, Flores ER, Petrenko O, Moll UM. p73 Suppresses Polyploidy and Aneuploidy in the Absence of Functional p53. Mol Cell 2007; 27:647-59. [PMID: 17707235 DOI: 10.1016/j.molcel.2007.06.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/19/2007] [Accepted: 06/25/2007] [Indexed: 11/25/2022]
Abstract
Previous studies showed that p53 plays a central role in G1 and DNA damage checkpoints, thus contributing to genomic stability. We show here that p73 also plays a role in genomic integrity but this mechanism is manifest only when p53 is lost. Isolated p73 loss in primary cells does not induce genomic instability. Instead, it results in impaired proliferation and premature senescence due to compensatory activation of p53. Combined loss of p73 and p53 rescues these defects, but at the expense of exacerbated genomic instability. This leads to rapid increase in polyploidy and aneuploidy, markedly exceeding that of p53 loss alone. Constitutive deregulation of cyclin-Cdk activities and excess failure of the G2/M DNA damage checkpoint appear to fuel increased ploidy abnormalities upon p53/p73 loss, while primary mitotic defects do not play a causal role. These data indicate that p73 is essential for suppressing polyploidy and aneuploidy when p53 is inactivated.
Collapse
Affiliation(s)
- Flaminia Talos
- Department of Pathology, Health Science Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | |
Collapse
|
44
|
Senoo M, Pinto F, Crum CP, McKeon F. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007; 129:523-36. [PMID: 17482546 DOI: 10.1016/j.cell.2007.02.045] [Citation(s) in RCA: 697] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 12/01/2006] [Accepted: 02/16/2007] [Indexed: 01/24/2023]
Abstract
The distinguishing feature of adult stem cells is their extraordinary capacity to divide prior to the onset of senescence. While stratified epithelia such as skin, prostate, and breast are highly regenerative and account disproportionately for human cancers, genes essential for the proliferative capacity of their stem cells remain unknown. Here we analyze p63, a gene whose deletion in mice results in the catastrophic loss of all stratified epithelia. We demonstrate that p63 is strongly expressed in epithelial cells with high clonogenic and proliferative capacity and that stem cells lacking p63 undergo a premature proliferative rundown. Additionally, we show that p63 is dispensable for both the commitment and differentiation of these stem cells during tissue morphogenesis. Together, these data identify p63 as a key, lineage-specific determinant of the proliferative capacity in stem cells of stratified epithelia.
Collapse
Affiliation(s)
- Makoto Senoo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
45
|
Chen G, Tai AK, Lin M, Chang F, Terhorst C, Huber BT. Increased proliferation of CD8+ T cells in SAP-deficient mice is associated with impaired activation-induced cell death. Eur J Immunol 2007; 37:663-74. [PMID: 17266174 DOI: 10.1002/eji.200636417] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Defective signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is responsible for the human X-linked lymphoproliferative syndrome. Defects in T helper 2, natural killer, natural killer T and B cells have been demonstrated in SAP-deficient humans and mice, and increased proliferation of CD8+ T cells has been observed. In the current study, we investigated the properties of CD8+ T cell proliferation and activation-induced cell death (AICD), using OT-I T cell receptor (TCR)-transgenic mice on either wild-type (WT) or SAP-/- background. Interestingly, we found that ovalbumin peptide-activated SAP-/- CD8+ T cells have lower AICD compared to their WT counterparts. Furthermore, the induction of p73, a key mediator of TCR-induced apoptosis through the mitochondrial apoptotic pathway, was significantly reduced at both the mRNA and protein levels in the activated mutant cells. Meanwhile, a reduced level of activated caspase 9 was observed in the mutant cells. We conclude that reduced AICD in activated SAP-/- CD8+ T cells is associated with impaired p73 induction, indicating that the initiation of the mitochondrial apoptotic pathway might be impaired. Our data demonstrate an intrinsic defect in SAP-/- CD8+ T cells and shed light on the increased responsiveness of CD8+ T cells in SAP-/- mice.
Collapse
Affiliation(s)
- Gang Chen
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
46
|
Marabese M, Vikhanskaya F, Broggini M. p73: a chiaroscuro gene in cancer. Eur J Cancer 2007; 43:1361-72. [PMID: 17428654 DOI: 10.1016/j.ejca.2007.01.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/19/2007] [Accepted: 01/25/2007] [Indexed: 11/24/2022]
Abstract
p73 is a member of the p53 family which is gaining increasing importance in the field of cancer. Its structural homology with p53 led to the assumption that it could act as a new tumour suppressor gene. Increasing knowledge of its function, however, has cast doubts on this role. A particularly interesting characteristic of p73 is that the cell contains different isoforms with distinct and sometimes opposite functions. Evidence in the last few years clearly indicates that p73 does share some activities with p53 but also that it has some distinct functions. This review focuses on p73's role in the development and progression of cancer, analysing the gene structure and regulation and discussing similarities with p53 and differences. Recent results obtained with specific detection methods on the levels and functions of the different isoforms in tumours are also discussed.
Collapse
Affiliation(s)
- Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, 20157 Milan, Italy.
| | | | | |
Collapse
|
47
|
Gueven N, Chen P, Nakamura J, Becherel OJ, Kijas AW, Grattan-Smith P, Lavin MF. A subgroup of spinocerebellar ataxias defective in DNA damage responses. Neuroscience 2007; 145:1418-25. [PMID: 17224243 DOI: 10.1016/j.neuroscience.2006.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 01/16/2023]
Abstract
A subgroup of human autosomal recessive ataxias is also characterized by disturbances of eye movement or oculomotor apraxia. These include ataxia telangiectasia (A-T); ataxia telangiectasia like disorder (ATLD); ataxia oculomotor apraxia type 1 (AOA1) and ataxia oculomotor apraxia type 2 (AOA2). What appears to be emerging is that all of these have in common some form of defect in DNA damage response which could account for the neurodegenerative changes seen in these disorders. We describe here sensitivity to DNA damaging agents in AOA1 and evidence that these cells have a defect in single strand break repair. Comparison is made with what appears to be a novel form of AOA (AOA3) which also shows sensitivity to agents that lead to single strand breaks in DNA as well as a reduced capacity to repair these breaks. AOA3 cells are defective in the DNA damage-induced p53 response. This defect can be overcome by incubation with the mdm2 antagonists, nutlins, but combined treatment with nutlins and DNA damage does not enhance the response. We also show that AOA3 cells are deficient in p73 activation after DNA damage. These data provide further evidence that different forms of AOA have in common a reduced capacity to cope with damage to DNA, which may account for the neurodegeneration observed in these syndromes.
Collapse
Affiliation(s)
- N Gueven
- Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The p53-related genes p63 and p73 exhibit significant structural homology to p53; however, they do not function as classical tumor suppressors and are rarely mutated in human cancers. Both p63 and p73 exhibit tissue-specific roles in normal development and a complex contribution to tumorigenesis that is due to their expression as multiple protein isoforms. The predominant p63/p73 isoforms expressed both in normal development and in many tumors lack the conserved transactivation (TA) domain; these isoforms instead exhibit a truncated N-terminus (DeltaN) and function at least in part as transcriptional repressors. p63 and p73 isoforms are regulated through both transcriptional and post-translational mechanisms, and they in turn regulate diverse cellular functions including proliferation, survival and differentiation. The net effect of p63/p73 expression in a given context depends on the ratio of TA/DeltaN isoforms expressed, on physical interaction between p63 and p73 isoforms, and on functional interactions with p53 at the promoters of specific downstream target genes. These multifaceted interactions occur in diverse ways in tumor-specific contexts, demonstrating a functional 'p53 family network' in human tumorigenesis. Understanding the regulation and mechanistic contributions of p63 and p73 in human cancers may ultimately provide new therapeutic opportunities for a variety of these diseases.
Collapse
Affiliation(s)
- M P Deyoung
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | |
Collapse
|
49
|
Derry WB, Bierings R, van Iersel M, Satkunendran T, Reinke V, Rothman JH. Regulation of developmental rate and germ cell proliferation in Caenorhabditis elegans by the p53 gene network. Cell Death Differ 2006; 14:662-70. [PMID: 17186023 DOI: 10.1038/sj.cdd.4402075] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Caenorhabditis elegans CEP-1 activates germline apoptosis in response to genotoxic stress, similar to its mammalian counterpart, tumor suppressor p53. In mammals, there are three p53 family members (p53, p63, and p73) that activate and repress many distinct and overlapping sets of genes, revealing a complex transcriptional regulatory network. Because CEP-1 is the sole p53 family member in C. elegans, analysis of this network is greatly simplified in this organism. We found that CEP-1 functions during normal development in the absence of stress to repress many (331) genes and activate only a few (28) genes. In response to genotoxic stress, 1394 genes are activated and 942 are repressed, many of which contain p53-binding sites. Comparison of the CEP-1 transcriptional network with transcriptional targets of the human p53 family reveals considerable overlap between CEP-1-regulated genes and homologues regulated by human p63 and p53, suggesting a composite p53/p63 action for CEP-1. We found that phg-1, the C. elegans Gas1 (growth arrest-specific 1) homologue, is activated by CEP-1 and is a negative regulator of cell proliferation in the germline in response to genotoxic stress. Further, we find that CEP-1 and PHG-1 mediate the decreased developmental rate and embryonic viability of mutations in the clk-2/TEL2 gene, which regulates lifespan and checkpoint responses.
Collapse
Affiliation(s)
- W B Derry
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Limesand KH, Schwertfeger KL, Anderson SM. MDM2 is required for suppression of apoptosis by activated Akt1 in salivary acinar cells. Mol Cell Biol 2006; 26:8840-56. [PMID: 16982679 PMCID: PMC1636839 DOI: 10.1128/mcb.01846-05] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chronic damage to the salivary glands is a common side effect following head and neck irradiation. It is hypothesized that irreversible damage to the salivary glands occurs immediately after radiation; however, previous studies with rat models have not shown a causal role for apoptosis in radiation-induced injury. We report that etoposide and gamma irradiation induce apoptosis of salivary acinar cells from FVB control mice in vitro and in vivo; however, apoptosis is reduced in transgenic mice expressing a constitutively activated mutant of Akt1 (myr-Akt1). Expression of myr-Akt1 in the salivary glands results in a significant reduction in phosphorylation of p53 at serine(18), total p53 protein accumulation, and p21(WAF1) or Bax mRNA following etoposide or gamma irradiation of primary salivary acinar cells. The reduced level of p53 protein in myr-Akt1 salivary glands corresponds with an increase in MDM2 phosphorylation in vivo, suggesting that the Akt/MDM2/p53 pathway is responsible for suppression of apoptosis. Dominant-negative Akt blocked phosphorylation of MDM2 in salivary acinar cells from myr-Akt1 transgenic mice. Reduction of MDM2 levels in myr-Akt1 primary salivary acinar cells with small interfering RNA increases the levels of p53 protein and renders these cells susceptible to etoposide-induced apoptosis in spite of the presence of activated Akt1. These results indicate that MDM2 is a critical substrate of activated Akt1 in the suppression of p53-dependent apoptosis in vivo.
Collapse
Affiliation(s)
- Kirsten H Limesand
- Department of Pathology, University of Colorado Health Sciences Center at Fitzsimons, Aurora, CO 80045, USA
| | | | | |
Collapse
|