1
|
Antsiferova M, Berrera M, Zagdoun AC, Raauf M, Nguyen TT, Murgia C, Appelt B, Trumpfheller C, Gasser S, Pilet S, Nicolini V, de Matos IG. Novel immunodominant neoepitope in a KPC mouse model of pancreatic cancer allowing identification of tumor-specific T cells. Oncoimmunology 2025; 14:2489815. [PMID: 40198613 PMCID: PMC11988233 DOI: 10.1080/2162402x.2025.2489815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025] Open
Abstract
The 4662 KPC model is one of the most widely used mouse models of pancreatic cancer. It represents an excluded immune phenotype and closely recapitulates the pathophysiology of pancreatic cancer in humans. We set out to identify the endogenous neoepitopes present in 4662 cells. By combining whole-exome and RNA-sequencing and a bioinformatic neoantigen prediction pipeline, we have identified 15 potential candidate neoantigen epitopes. Ten more highly expressed were selected for validation in an in vivo vaccination study with 4662-tumor bearing mice. The Mrps35-derived neoantigen was found to be immunogenic as we have identified endogenous T-cells responding to this neoepitope, and the response was significantly increased upon vaccination with a synthetic peptide and upon PD1-IL2v therapy. Dextramers based on this peptide were validated and can be used to monitor endogenous tumor-specific CD8+ T-cells in response to immunotherapy. This will support the development of novel therapies for this highly unmet medical need indication.
Collapse
Affiliation(s)
- Maria Antsiferova
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Marco Berrera
- Predictive Modelling and Data Analytics, Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Anne-Claire Zagdoun
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Maha Raauf
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Thuy Trinh Nguyen
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Claudio Murgia
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Birte Appelt
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Christine Trumpfheller
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Stephan Gasser
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Sylvain Pilet
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Valeria Nicolini
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Ines Grazina de Matos
- Cancer Immunotherapy, Oncology Discovery, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| |
Collapse
|
2
|
Qian G, Zhang H, Liu Y, Shribak M, Eliceiri KW, Provenzano PP. Computationally enabled polychromatic polarized imaging enables mapping of matrix architectures that promote pancreatic ductal adenocarcinoma dissemination. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00160-9. [PMID: 40350060 DOI: 10.1016/j.ajpath.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/22/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. In PDA, extracellular matrix (ECM) architectures known as Tumor-Associated Collagen Signatures (TACS) regulate invasion and metastatic spread in both early dissemination and in late-stage disease. As such, TACS has been suggested as a biomarker to aid in pathologic assessment. However, despite its significance, approaches to quantitatively capture these ECM patterns currently require advanced optical systems with signaling processing analysis. Here we present an expansion of polychromatic polarized microscopy (PPM) with inherent angular information coupled to machine learning and computational pixel-wise analysis of TACS. Using this platform, we are able to accurately capture TACS architectures in H&E stained histology sections directly through PPM contrast. Moreover, PPM facilitated identification of transitions to dissemination architectures, i.e., transitions from sequestration through expansion to dissemination from both PanINs and throughout PDA. Lastly, PPM evaluation of architectures in liver metastases, the most common metastatic site for PDA, demonstrates TACS-mediated focal and local invasion as well as identification of unique patterns anchoring aligned fibers into normal-adjacent tumor, suggesting that these patterns may be precursors to metastasis expansion and local spread from micrometastatic lesions. Combined, these findings demonstrate that PPM coupled to computational platforms is a powerful tool for analyzing ECM architecture that can be employed to advance cancer microenvironment studies and provide clinically relevant diagnostic information.
Collapse
Affiliation(s)
- Guhan Qian
- Department of Biomedical Engineering, University of Minnesota; Center for Multiparametric Imaging of Tumor Immune Microenvironments, University of Minnesota and University of Wisconsin-Madison
| | - Hongrong Zhang
- Department of Biomedical Engineering, University of Minnesota; Center for Multiparametric Imaging of Tumor Immune Microenvironments, University of Minnesota and University of Wisconsin-Madison
| | - Yuming Liu
- Center for Multiparametric Imaging of Tumor Immune Microenvironments, University of Minnesota and University of Wisconsin-Madison; Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI
| | - Michael Shribak
- Marine Biological Laboratory, University of Chicago, Woods Hole, MA
| | - Kevin W Eliceiri
- Center for Multiparametric Imaging of Tumor Immune Microenvironments, University of Minnesota and University of Wisconsin-Madison; Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota; Center for Multiparametric Imaging of Tumor Immune Microenvironments, University of Minnesota and University of Wisconsin-Madison; Masonic Cancer Center, University of Minnesota; Dept of Medicine, Div. of Hematology, Oncology, and Transplantation, University of Minnesota; Institute for Engineering in Medicine, University of Minnesota; Stem Cell Institute, University of Minnesota.
| |
Collapse
|
3
|
Dreyer SB, Beer P, Hingorani SR, Biankin AV. Improving outcomes of patients with pancreatic cancer. Nat Rev Clin Oncol 2025:10.1038/s41571-025-01019-9. [PMID: 40329051 DOI: 10.1038/s41571-025-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Research studies aimed at improving the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have brought about limited progress, and in clinical practice, the optimized use of surgery, chemotherapy and supportive care have led to modest improvements in survival that have probably reached a plateau. As a result, PDAC is expected to be the second leading cause of cancer-related death in Western societies within a decade. The development of therapeutic advances in PDAC has been challenging owing to a lack of actionable molecular targets, a typically immunosuppressive microenvironment, and a disease course characterized by rapid progression and clinical deterioration. Yet, the progress in our understanding of PDAC and identification of novel therapeutic opportunities over the past few years is leading to a strong sense of optimism in the field. In this Perspective, we address the aforementioned challenges, including biological aspects of PDAC that make this malignancy particularly difficult to treat. We explore specific areas with potential for therapeutic advances, including targeting mutant KRAS, novel strategies to harness the antitumour immune response and approaches to early detection, and propose mechanisms to improve clinical trial design and to overcome various community and institutional barriers to progress.
Collapse
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Hepatobiliary Surgery, Royal Liverpool University Hospital, Liverpool, UK
| | - Philip Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- Hull York Medical School, University of York, York, UK
| | - Sunil R Hingorani
- Department of Internal Medicine, Division of Hemotology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK.
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
4
|
Saito J, Onishi N, Yamasaki J, Koike N, Hata Y, Kimura K, Otsuki Y, Nobusue H, Sampetrean O, Shimizu T, Okazaki S, Sugihara E, Saya H. Benzaldehyde suppresses epithelial-mesenchymal plasticity and overcomes treatment resistance in cancer by targeting the interaction of 14-3-3ζ with H3S28ph. Br J Cancer 2025:10.1038/s41416-025-03006-4. [PMID: 40316727 DOI: 10.1038/s41416-025-03006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Benzaldehyde (BA) is an aromatic aldehyde found in fruits that has been studied as a potential anticancer agent on the basis of its ability to inhibit transformation in mouse embryo cells and to suppress metastasis in mice. METHODS We investigated the cytotoxic effects of BA on cancer cells, and probed its effects on intracellular signaling pathways. The anticancer effects of BA in vivo were studied by using a mouse orthotopic transplantation model of pancreatic cancer. RESULTS BA inhibited the growth of osimertinib- or radiation-resistant cancer cells as well as the interaction between 14-3-3ζ and its client proteins. The interaction of 14-3-3ζ with the Ser28-phosphorylated form of histone H3 (H3S28ph) was implicated in treatment resistance and the transcriptional regulation of genes related to epithelial-mesenchymal transition and stemness, including E2F2, SRSF1, and ID1. Treatment of mice with a BA derivative inhibited pancreatic tumor growth and lung metastasis, as well as suppressed a state of epithelial-mesenchymal plasticity (EMP) of tumor cells. CONCLUSION The interaction between 14-3-3ζ and H3S28ph plays a key role in EMP and treatment resistance in cancer. The ability of BA to inhibit this and other interactions of 14-3-3ζ offers the potential to overcome treatment resistance and to suppress metastasis.
Collapse
Affiliation(s)
- Jun Saito
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-0062, Japan
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
- Ichijokai Hospital, Ichikawa, Chiba, 272-0836, Japan
| | - Nobuyuki Onishi
- Department of Clinical Diagnostics Oncology, Clinical Research Institute for Clinical Pharmacology and Therapy, Showa University, Shinagawa, Tokyo, 142-8555, Japan
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Juntaro Yamasaki
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Naoyoshi Koike
- Department of Radiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Yukie Hata
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kiyomi Kimura
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
- Department of Breast Oncology Juntendo University School of Medicine, Bunkyo, Tokyo, 113-0033, Japan
| | - Yuji Otsuki
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyuki Nobusue
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Oltea Sampetrean
- Keio University Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Shinjuku, Tokyo, 160-8582, Japan
| | - Takatsune Shimizu
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-0062, Japan
| | - Eiji Sugihara
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hideyuki Saya
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
5
|
Abu-Serie MM, Gutiérrez-García AK, Enman M, Vaish U, Fatima H, Dudeja V. Ferroptosis- and stemness inhibition-mediated therapeutic potency of ferrous oxide nanoparticles-diethyldithiocarbamate using a co-spheroid 3D model of pancreatic cancer. J Gastroenterol 2025; 60:641-657. [PMID: 39888413 PMCID: PMC12014774 DOI: 10.1007/s00535-025-02213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate and exhibits a limited response to apoptosis-dependent chemotherapeutic drugs (e.g., gemcitabine, Gem). This is mainly attributed to the antioxidant defense system (glutathione and aldehyde dehydrogenase (ALDH) 1A1), which sustains stemness features of cancer stem cells (CSCs) and activated pancreatic stellate cells (PSCs)-generated excess stromal proteins. This dense stroma retards drug delivery. METHODS This study established co-spheroid model consisting of mouse PDAC cell line (KPC) and PSCs (1:5) to accurately investigate the anti-PDAC activity of nanocomplex of ferrous oxide nanoparticles-diethyldithiocarbamate (FeO NPs-DE), compared to Gem, using in vitro and in vivo 3D models. RESULTS In vitro and in vivo co-spheroid models demonstrated higher therapeutic efficacy of FeO NPs-DE than Gem. FeO NPs-DE induced selective accumulation of iron-dependent ferroptosis (non-apoptosis)-generated a lethal lipid peroxidation that was potentiated by DE-mediated glutathione and ALDH1A1 suppression. This led to collapse of stemness, as evidenced by down-regulating CSC genes and p-AKT protein expression. Subsequently, gene and/or protein levels of PSC activators (transforming growth factor (TGF)-β, plasminogen activator inhibitor-1, ZEB1, and phosphorylated extracellular signal-regulated kinase) and stromal proteins (collagen 1A2, smooth muscle actin, fibronectin, and matrix metalloproteinase-9) were suppressed. Moreover, DE of nanocomplex enhanced caspase 3-dependent apoptosis with diminishing the main oncogene, BCL-2. CONCLUSIONS FeO NPs-DE had a stronger eradicating effect than Gem on primary and metastatic peritoneal PDAC tumors. This nanocomplex-mediated ferroptosis and stemness inhibition provides an effective therapeutic approach for PDAC.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt.
| | - Ana K Gutiérrez-García
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| | - Macie Enman
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| | - Utpreksha Vaish
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| | - Huma Fatima
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35249, USA
| | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| |
Collapse
|
6
|
Yang MW, Jia QY, Xu DP, Xu YN, Huo YM, Liu DJ, Yang JY, Fu XL, Ma D, Duan ZH, Yin YF, Ma XSY, Xu K, Hua R, Zhang JF, Sun YW, Liu W. SRSF12 deficiency enhances tumor innervation and accelerates pancreatic tumorigenesis. Cancer Lett 2025; 616:217563. [PMID: 39986371 DOI: 10.1016/j.canlet.2025.217563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
The peripheral nervous system significantly determines the fate of solid tumors and their microenvironment. In neurotropic malignancies such as pancreatic and prostate cancer, denervation in animal models demonstrate significantly delays in tumor initiation and progression, underscoring the critical neural dependency of these cancers. While tumor innervation establishes a structural basis for the neuromodulatory effects, the degree of innervation exhibits marked heterogeneity across tumor types, and its regulatory mechanisms remain poorly characterized. In this study, we screened genes associated with innervation status in pancreatic cancer and identified the splicing factor SRSF12 as a critical gene related to tumor innervation. In clinical samples, SRSF12 was expressed at low levels in pancreatic cancer tissues, and its downregulation was linked to poor prognosis in patients. Then we crossed Kras mutation and Srsf12 knockout mice (KrasG12DSrsf12 fl/fl) together with Srsf12 fl/flPdx1cre mice and found that depletion of Srsf12 accelerated Kras-driven pancreatic tumorigenesis and enhanced tumor innervation. Furthermore, we demonstrated that SRSF12 inhibits neurite outgrowth primarily by generating a LAMA3 splice isoform that lacks the fourth and fifth LG (G45) domains. Mechanistically, G45 promotes tumor innervation by activating ITGB1 and FAK in neurons. Together, our findings delineate SRSF12 as a novel suppressor of tumor innervation and pancreatic tumorigenesis, while also identifying a tumor-specific target for SRSF12-deficient pancreatic cancer.
Collapse
Affiliation(s)
- Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Da-Peng Xu
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China
| | - Yan-Nan Xu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Xue-Liang Fu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Ding Ma
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Yi-Fan Yin
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Xue-Shi-Yu Ma
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Kan Xu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China
| | - Jun-Feng Zhang
- Shanghai Key Laboratory for cancer systems regulation and clinical translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, PR China.
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China.
| | - Wei Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China.
| |
Collapse
|
7
|
Cheng C, Hu J, Mannan R, He T, Bhattacharyya R, Magnuson B, Wisniewski JP, Peters S, Karim SA, MacLean DJ, Karabürk H, Zhang L, Rossiter NJ, Zheng Y, Xiao L, Li C, Awad D, Mahapatra S, Bao Y, Zhang Y, Cao X, Wang Z, Mehra R, Morlacchi P, Sahai V, Pasca di Magliano M, Shah YM, Weisman LS, Morton JP, Ding K, Qiao Y, Lyssiotis CA, Chinnaiyan AM. Targeting PIKfyve-driven lipid metabolism in pancreatic cancer. Nature 2025:10.1038/s41586-025-08917-z. [PMID: 40269157 DOI: 10.1038/s41586-025-08917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) subsists in a nutrient-deregulated microenvironment, making it particularly susceptible to treatments that interfere with cancer metabolism1,2. For example, PDAC uses, and is dependent on, high levels of autophagy and other lysosomal processes3-5. Although targeting these pathways has shown potential in preclinical studies, progress has been hampered by the difficulty in identifying and characterizing favourable targets for drug development6. Here, we characterize PIKfyve, a lipid kinase that is integral to lysosomal functioning7, as a targetable vulnerability in PDAC. Using a genetically engineered mouse model, we established that PIKfyve is essential to PDAC progression. Furthermore, through comprehensive metabolic analyses, we found that PIKfyve inhibition forces PDAC to upregulate a distinct transcriptional and metabolic program favouring de novo lipid synthesis. In PDAC, the KRAS-MAPK signalling pathway is a primary driver of de novo lipid synthesis. Accordingly, simultaneously targeting PIKfyve and KRAS-MAPK resulted in the elimination of the tumour burden in numerous preclinical human and mouse models. Taken together, these studies indicate that disrupting lipid metabolism through PIKfyve inhibition induces synthetic lethality in conjunction with KRAS-MAPK-directed therapies for PDAC.
Collapse
Affiliation(s)
- Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Jing Hu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Rupam Bhattacharyya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jasmine P Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Peters
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Hüseyin Karabürk
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Rossiter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Chungen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer P Morton
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Guo Y, Finan JM, Bartlett AQ, Sivagnanam S, Blise KE, Kirchberger N, Betre K, McCarthy GA, Hawthorne K, Chen C, Grossberg A, Xia Z, Coussens LM, Sears RC, Brody JR, Eil R. Post-transcriptional regulator HuR promotes immune evasion in pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.632847. [PMID: 40291674 PMCID: PMC12026414 DOI: 10.1101/2025.02.07.632847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is characterized by a limited infiltration of tumor-specific T cells and anti-tumor T cell activity. Extracellular factors in the PDAC TME have been widely reported to mediate immune suppression, but the contribution from tumor-intrinsic factors is not well understood. The RNA-binding protein, HuR (ELAVL1), is enriched in PDAC and negatively correlates with T cell infiltration. In an immunocompetent Kras-p53-Cre (KPC) orthotopic model of PDAC, we found that genetic disruption of HuR impaired tumor growth due to a novel role of HuR inducing T-cell suppression. Importantly, we found that HuR depletion in tumors enhanced both T cell number and activation states and diminished myeloid phenotypes by comprehensive spatial profiling of the PDAC TME. Mechanistically, HuR mediated the stabilization of mTOR pathway transcripts, and inhibition of mTOR activity rescued the impaired function of local T cells. Translating these findings, we demonstrated that HuR depletion sensitized PDAC tumors to immune checkpoint blockade, while isogenic, wildtype tumors are resistant. For the first time, we show that HuR facilitates tumor immune suppression in PDAC by inhibiting T cell infiltration and function and implicate targeting HuR as a potential therapeutic strategy in combination with immunotherapy.
Collapse
|
9
|
Liberda-Matyja D, Stopa KB, Krzysztofik D, Ferdek PE, Jakubowska MA, Wrobel TP. Infrared Imaging Combined with Machine Learning for Detection of the (Pre)Invasive Pancreatic Neoplasia. ACS Pharmacol Transl Sci 2025; 8:1096-1105. [PMID: 40242583 PMCID: PMC11997891 DOI: 10.1021/acsptsci.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025]
Abstract
With the challenge of limited early stage detection and a resulting five-year survival rate of only 13%, pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers. Replacing the high-cost and time-consuming grading of pancreatic samples by pathologists with automated diagnostic approaches can revolutionize PDAC detection and thus accelerate patient admission into the clinical setting for treatment. To address this unmet diagnostic need and facilitate the shift of tissue screening toward automated systems, we combined stain-free histology-specifically, Fourier-transform infrared (FT-IR) imaging-with machine learning. The obtained stain-free model was trained to distinguish between normal, benign, and malignant areas in analyzed specimens using hematoxylin and eosin stained pancreatic tissues isolated from KC (KrasG12D/+; Pdx1-Cre) or KPC mice (KrasG12D/+; Trp53R172H/+; Pdx1-Cre). Due to the pancreas-specific mosaic expression of the mutant Kras and Trp53 genes, changes in pancreatic tissues of this mouse model of PDAC closely mirror the gradual transformation of normal pancreatic epithelia into (pre)malignant structures. Thus, this mouse model provides a reliable representation of human disease progression, which we tracked in our study with a Random Forest classifier to achieve accurate detection at the cellular level. This approach yielded a comprehensive model that distinguishes normal pancreatic tissues from pathological features such as pancreatic intraepithelial neoplasia (PanIN), cancerous regions, hemorrhages, and collagen fibers, as well as a streamlined model designed to rapidly identify normal tissues versus pathologically altered regions, including PanINs. These models offer highly accurate diagnostic tools for the early detection of pancreatic malignancies, thus significantly improving the chance for timely therapeutic intervention against PDAC.
Collapse
Affiliation(s)
- Danuta Liberda-Matyja
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, ul. Łojasiewicza 11, 30-348 Krakow, Poland
- Solaris
National Synchrotron Radiation Centre, Jagiellonian
University, ul. Czerwone Maki 98, 30-392 Krakow, Poland
| | - Kinga B. Stopa
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, ul. Łojasiewicza 11, 30-348 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland
| | - Daria Krzysztofik
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, ul. Łojasiewicza 11, 30-348 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland
| | - Pawel E. Ferdek
- Department
of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| | - Monika A. Jakubowska
- Malopolska
Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland
| | - Tomasz P. Wrobel
- Solaris
National Synchrotron Radiation Centre, Jagiellonian
University, ul. Czerwone Maki 98, 30-392 Krakow, Poland
| |
Collapse
|
10
|
El Hebieshy AF, Wijfjes Z, Le Gall CM, Middelburg J, de Roode KE, Fennemann FL, Sluijter M, van Hall T, Dijkstra DJ, Trouw LA, van Dalen FJ, Rodgers Furones A, van der Schoot JMS, Derksen I, de Haard H, van der Woning B, Talavera Ormeño CMP, van Doodewaerd BR, Figdor CG, van der Heden van Noort GJ, Parren PWHI, Heskamp S, Ovaa H, Verdoes M, Scheeren FA. Site-directed multivalent conjugation of antibodies to ubiquitinated payloads. Nat Biomed Eng 2025:10.1038/s41551-024-01342-z. [PMID: 40204992 DOI: 10.1038/s41551-024-01342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/20/2024] [Indexed: 04/11/2025]
Abstract
Antibody conjugates are the foundation of a wide range of diagnostic and therapeutic applications. Although many antibody-conjugation techniques are robust and efficient, obtaining homogeneous multimeric conjugation products remains challenging. Here we report a modular and versatile technique for the site-directed multivalent conjugation of antibodies via the small-protein ubiquitin. Specifically, multiple ubiquitin fusions with antibodies, antibody fragments, nanobodies, peptides or small molecules such as fluorescent dyes can be conjugated to antibodies and nanobodies within 30 min. The technique, which we named 'ubi-tagging', allowed us to efficiently generate a bispecific T-cell engager as well as nanobodies conjugated to dendritic-cell-targeted antigens that led to potent T-cell responses. Using both recombinant ubi-tagged proteins and synthetic ubiquitin derivatives allows for the iterative, site-directed and multivalent conjugation of antibodies and nanobodies to a plethora of molecular moieties.
Collapse
Affiliation(s)
- Angela F El Hebieshy
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Zacharias Wijfjes
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Institute for Chemical Immunology, Nijmegen, the Netherlands
| | - Camille M Le Gall
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jim Middelburg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kim E de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Tagworks Pharmaceuticals, Nijmegen, the Netherlands
| | - Felix L Fennemann
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Douwe J Dijkstra
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Floris J van Dalen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrea Rodgers Furones
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Ian Derksen
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Cami M P Talavera Ormeño
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bjorn R van Doodewaerd
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Carl G Figdor
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn Verdoes
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands.
- Institute for Chemical Immunology, Nijmegen, the Netherlands.
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
11
|
Song X, Zhou Z, Liu J, Li J, Yu C, Zeh HJ, Klionsky DJ, Stockwell BR, Wang J, Kang R, Kroemer G, Tang D. Cytosolic cytochrome c represses ferroptosis. Cell Metab 2025:S1550-4131(25)00149-4. [PMID: 40233758 DOI: 10.1016/j.cmet.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/08/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
The release of cytochrome c, somatic (CYCS) from mitochondria to the cytosol is an established trigger of caspase-dependent apoptosis. Here, we unveil an unexpected role for cytosolic CYCS in inhibiting ferroptosis-a form of oxidative cell death driven by uncontrolled lipid peroxidation. Mass spectrometry and site-directed mutagenesis revealed the existence of a cytosolic complex composed of inositol polyphosphate-4-phosphatase type I A (INPP4A) and CYCS. This CYCS-INPP4A complex is distinct from the CYCS-apoptotic peptidase activating factor 1 (APAF1)-caspase-9 apoptosome formed during mitochondrial apoptosis. CYCS boosts INPP4A activity, leading to increased formation of phosphatidylinositol-3-phosphate, which prevents phospholipid peroxidation and plasma membrane rupture, thus averting ferroptotic cell death. Unbiased screening led to the identification of the small-molecule compound 10A3, which disrupts the CYCS-INPP4A interaction. 10A3 sensitized cultured cells and tumors implanted in immunocompetent mice to ferroptosis. Collectively, these findings redefine our understanding of cytosolic CYCS complexes that govern diverse cell death pathways.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Department of Critical Care Medicine, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Liaki V, Rosas-Perez B, Guerra C. Unlocking the Genetic Secrets of Pancreatic Cancer: KRAS Allelic Imbalances in Tumor Evolution. Cancers (Basel) 2025; 17:1226. [PMID: 40227826 PMCID: PMC11987834 DOI: 10.3390/cancers17071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) belongs to the types of cancer with the highest lethality. It is also remarkably chemoresistant to the few available cytotoxic therapeutic options. PDAC is characterized by limited mutational heterogeneity of the known driver genes, KRAS, CDKN2A, TP53, and SMAD4, observed in both early-stage and advanced tumors. In this review, we summarize the two proposed models of genetic evolution of pancreatic cancer. The gradual or stepwise accumulated mutations model has been widely studied. On the contrary, less evidence exists on the more recent simultaneous model, according to which rapid tumor evolution is driven by the concurrent accumulation of genetic alterations. In both models, oncogenic KRAS mutations are the main initiating event. Here, we analyze the emerging topic of KRAS allelic imbalances and how it arises during tumor evolution, as it is often detected in advanced and metastatic PDAC. We also summarize recent evidence on how it affects tumor biology, metastasis, and response to therapy. To this extent, we highlight the necessity to include studies of KRAS allelic frequencies in the design of future therapeutic strategies against pancreatic cancer.
Collapse
Affiliation(s)
- Vasiliki Liaki
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
| | - Blanca Rosas-Perez
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
| | - Carmen Guerra
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Nash A, DeBonis J, Murungi D, Castillo B, Kim B, Hu F, Chambers C, Nguyen A, Hernandez A, Wang Z, Rios PD, Ghani S, Joshi I, Isa D, Zheng N, Peng W, Igoshin OA, Oberholzer J, Hodges HC, Reticker-Flynn N, Veiseh O. IL-12-producing cytokine factories induce precursor exhausted T cells and elimination of primary and metastatic tumors. J Immunother Cancer 2025; 13:e010685. [PMID: 40169286 PMCID: PMC11962782 DOI: 10.1136/jitc-2024-010685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Curative responses to immunotherapy require the generation of robust systemic immunity with limited toxicity. Recruitment of T cell populations such as precursor exhausted T cells (Tpex) from lymphoid tissues to tumors is a hallmark of effective treatment. However, the ability to efficiently induce this recruitment is lacking in current immunotherapy approaches. Furthermore, systemic administration of immunotherapies frequently results in dose-limiting toxicities, yielding an inadequate therapeutic window for eliciting durable responses. METHODS In this investigation, we evaluated the safety and antitumor efficacy of locally administered interleukin 12 (IL-12) using a clinically translatable cytokine delivery platform (NCT05538624) to identify Tpex recruitment capabilities at tolerable cytokine doses. RESULTS We show IL-12 cytokine factories can effectively treat a broad spectrum of cancer types. Single-cell RNA sequencing data suggests that the antitumor efficacy seen in our studies was due to retinal pigmented epithelial cells-mIL12 treatment inducing differentiation of Tpex cells within the tumor microenvironment. When administered in combination with checkpoint therapy, IL-12 cytokine factory treatment generated systemic abscopal immunity, preventing subcutaneous tumor outgrowth in 8/9 mice with colorectal cancer and lung metastasis in mice with melanoma. Furthermore, this platform was well tolerated in a non-human primate without signs of toxicity. CONCLUSIONS Our new immunotherapy approach provides a robust strategy for inducing Tpex recruitment and systemic immunity against a range of solid peritoneal malignancies, many incurable with current immunotherapy strategies. Notably, these features were achieved using IL-12, and by leveraging our technology, we avoided the toxicities that have prevented the translation of IL-12 to the clinic. Our findings provide a strong rationale for the clinical development of IL-12 cytokine factories.
Collapse
Affiliation(s)
- Amanda Nash
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Jonathon DeBonis
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Danna Murungi
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Bertha Castillo
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Fangheng Hu
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Courtney Chambers
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Annie Nguyen
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Andrea Hernandez
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Zeshi Wang
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | - Ningbo Zheng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Weiyi Peng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Center for Theoretical Biological Physics, Rice University, HoustON, Texas, USA
| | - Jose Oberholzer
- Celltrans, Chicago, Illinois, USA
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - H Courtney Hodges
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathan Reticker-Flynn
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
14
|
Quemerais C, Jean C, Brunel A, Decaup E, Labrousse G, Audureau H, Raffenne J, Belhabib I, Cros J, Perraud A, Dusetti N, Nicolle R, Mathonnet M, Pyronnet S, Martineau Y, Fanjul M, Bousquet C. Unveiling FKBP7 as an early endoplasmic reticulum sentinel in pancreatic stellate cell activation, collagen remodeling and tumor progression. Cancer Lett 2025; 614:217538. [PMID: 39924075 DOI: 10.1016/j.canlet.2025.217538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), fibroblast activation leads to excessive secretion of extracellular matrix (ECM) and soluble factors that regulate tumor progression, prompting investigation into endoplasmic reticulum (ER)-resident proteins that may support this activation. We identified FKBP7, a peptidyl-prolyl isomerase in the ER, as overexpressed in PDAC stroma compared to cancer cells, and in patients with favorable prognosis. Analysis of single-cell RNA sequencing databases revealed FKBP7 expression in pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs). When analyzed by immunohistochemistry on PDAC patient tissues, FKBP7 emerged as an early activation marker in the preneoplastic stroma, preceding αSMA expression, and responding to FAK- and TGFβ-induced stiffening and pro-fibrotic programs in PSCs. Functional analyses revealed that FKBP7 knockdown in PSCs enhanced contractility, Rho/FAK signaling, and secretion of pro-inflammatory cytokines as well as remodeling of type I collagen, promoting an activated phenotype and accelerating tumor growth in vivo. Conversely, FKBP7 expression supported a tumor-restraining (i.e. encapsulating) ECM characterized by type IV collagen. Mechanistically, FKBP7 interacts with BiP, and blocking this interaction instead leads to increased PSC secretion of type I collagen. Thus, FKBP7 serves as a novel PSC marker and ER regulator in a complex with BiP of the secretion of specific collagen subtypes, highlighting its potential to mediate ECM normalization and constrain PDAC tumorigenesis.
Collapse
Affiliation(s)
- Christophe Quemerais
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Christine Jean
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Alexia Brunel
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Emilie Decaup
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Guillaume Labrousse
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Hippolyte Audureau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Jérôme Raffenne
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Ismahane Belhabib
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Jérôme Cros
- Department of Pathology, Beaujon-Bichat University Hospital - Paris Diderot University, Clichy, France
| | - Aurélie Perraud
- EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, France
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM UMR-1068, CNRS UMR-7258, Marseille, France
| | - Remy Nicolle
- Center of Research on Inflammation (CRI), INSERM U1149, Paris, France
| | - Muriel Mathonnet
- EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, France
| | - Stéphane Pyronnet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Yvan Martineau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Marjorie Fanjul
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France.
| |
Collapse
|
15
|
Ramesh RPG, Yasmin H, Ponnachan P, Al-Ramadi B, Kishore U, Joseph AM. Phenotypic heterogeneity and tumor immune microenvironment directed therapeutic strategies in pancreatic ductal adenocarcinoma. Front Immunol 2025; 16:1573522. [PMID: 40230862 PMCID: PMC11994623 DOI: 10.3389/fimmu.2025.1573522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Pancreatic cancer is an aggressive tumor with high metastatic potential which leads to decreased survival rate and resistance to chemotherapy and immunotherapy. Nearly 90% of pancreatic cancer comprises pancreatic ductal adenocarcinoma (PDAC). About 80% of diagnoses takes place at the advanced metastatic stage when it is unresectable, which renders chemotherapy regimens ineffective. There is also a dearth of specific biomarkers for early-stage detection. Advances in next generation sequencing and single cell profiling have identified molecular alterations and signatures that play a role in PDAC progression and subtype plasticity. Most chemotherapy regimens have shown only modest survival benefits, and therefore, translational approaches for immunotherapies and combination therapies are urgently required. In this review, we have examined the immunosuppressive and dense stromal network of tumor immune microenvironment with various metabolic and transcriptional changes that underlie the pro-tumorigenic properties in PDAC in terms of phenotypic heterogeneity, plasticity and subtype co-existence. Moreover, the stromal heterogeneity as well as genetic and epigenetic changes that impact PDAC development is discussed. We also review the PDAC interaction with sequestered cellular and humoral components present in the tumor immune microenvironment that modify the outcome of chemotherapy and radiation therapy. Finally, we discuss different therapeutic interventions targeting the tumor immune microenvironment aimed at better prognosis and improved survival in PDAC.
Collapse
Affiliation(s)
- Remya P. G. Ramesh
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Pretty Ponnachan
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ann Mary Joseph
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Jia H, Chen X, Zhang L, Chen M. Cancer associated fibroblasts in cancer development and therapy. J Hematol Oncol 2025; 18:36. [PMID: 40156055 PMCID: PMC11954198 DOI: 10.1186/s13045-025-01688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key players in cancer development and therapy, and they exhibit multifaceted roles in the tumor microenvironment (TME). From their diverse cellular origins, CAFs undergo phenotypic and functional transformation upon interacting with tumor cells and their presence can adversely influence treatment outcomes and the severity of the cancer. Emerging evidence from single-cell RNA sequencing (scRNA-seq) studies have highlighted the heterogeneity and plasticity of CAFs, with subtypes identifiable through distinct gene expression profiles and functional properties. CAFs influence cancer development through multiple mechanisms, including regulation of extracellular matrix (ECM) remodeling, direct promotion of tumor growth through provision of metabolic support, promoting epithelial-mesenchymal transition (EMT) to enhance cancer invasiveness and growth, as well as stimulating cancer stem cell properties within the tumor. Moreover, CAFs can induce an immunosuppressive TME and contribute to therapeutic resistance. In this review, we summarize the fundamental knowledge and recent advances regarding CAFs, focusing on their sophisticated roles in cancer development and potential as therapeutic targets. We discuss various strategies to target CAFs, including ECM modulation, direct elimination, interruption of CAF-TME crosstalk, and CAF normalization, as approaches to developing more effective treatments. An improved understanding of the complex interplay between CAFs and TME is crucial for developing new and effective targeted therapies for cancer.
Collapse
Affiliation(s)
- Hongyuan Jia
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingmin Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Linling Zhang
- Department of Respiratory and Critical Care, Chengdu Third People's Hospital, Chengdu, China
| | - Meihua Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
17
|
Salas-Escabillas DJ, Hoffman MT, Brender SM, Moore JS, Wen HJ, Benitz S, Davis ET, Long D, Wombwell AM, Chianis ERD, Allen-Petersen BL, Steele NG, Sears RC, Matsumoto I, DelGiorno KE, Crawford HC. Tuft cells transdifferentiate to neural-like progenitor cells in the progression of pancreatic cancer. Dev Cell 2025; 60:837-852.e3. [PMID: 39721583 DOI: 10.1016/j.devcel.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplasia, which progresses to neoplasia and cancer. Tuft cells (TCs) are chemosensory cells not found in the normal pancreas but arise in cancer precursor lesions and diminish during progression to carcinoma. These metaplastic TCs (mTCs) suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown. To determine the fate of mTCs during PDA progression, we created a dual recombinase lineage trace model, wherein a pancreas-specific FlpO was used to induce tumorigenesis, while a tuft-cell specific Pou2f3CreERT/+ driver was used to induce expression of a tdTomato reporter. We found that mTCs in carcinoma transdifferentiate into neural-like progenitor cells (NRPs), a cell type associated with poor survival in patients. Using conditional knockout and overexpression systems, we found that Myc activity in mTCs is necessary and sufficient to induce this tuft-to-neuroendocrine transition (TNT).
Collapse
Affiliation(s)
- Daniel J Salas-Escabillas
- Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney M Brender
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Jacee S Moore
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Simone Benitz
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Erick T Davis
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Daniel Long
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Allison M Wombwell
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Ella Rose D Chianis
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Nina G Steele
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | | | - Kathleen E DelGiorno
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Howard C Crawford
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA.
| |
Collapse
|
18
|
Garg B, Khan S, Courelli AS, Panneerpandian P, Sheik Pran Babu D, Mose ES, Gulay KCM, Sharma S, Sood D, Wenzel AT, Martsinkovskiy A, Rajbhandari N, Patel J, Jaquish D, Esparza E, Jaque K, Aggarwal N, Lambies G, D’Ippolito A, Austgen K, Johnston B, Orlando DA, Jang GH, Gallinger S, Goodfellow E, Brodt P, Commisso C, Tamayo P, Mesirov JP, Tiriac H, Lowy AM. MICAL2 Promotes Pancreatic Cancer Growth and Metastasis. Cancer Res 2025; 85:1049-1063. [PMID: 39745352 PMCID: PMC11907191 DOI: 10.1158/0008-5472.can-24-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 12/18/2024] [Indexed: 02/23/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super-enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as an SE-associated gene in human PDAC, which encodes the flavin monooxygenase enzyme that induces actin depolymerization and indirectly promotes serum response factor transcription by modulating the availability of serum response factor coactivators such as myocardin-related transcription factors (MRTF-A and MRTF-B). MICAL2 was overexpressed in PDAC, and high-MICAL2 expression correlated with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and epithelial-mesenchymal transition signaling pathways, contributing to tumor growth and metastasis. In loss- and gain-of-function experiments in human and mouse PDAC cells, MICAL2 promoted both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 also inhibited macropinocytosis. MICAL2, MRTF-A, and MRTF-B influenced PDAC cell proliferation and migration and promoted cell-cycle progression in vitro. Importantly, MICAL2 supported in vivo tumor growth and metastasis. Interestingly, MRTF-B, but not MRTF-A, phenocopied MICAL2-driven phenotypes in vivo. This study highlights the multiple ways in which MICAL2 affects PDAC biology and provides a foundation for future investigations into the potential of targeting MICAL2 for therapeutic intervention. Significance: Characterization of the epigenomic landscape of pancreatic cancer to identify early drivers of tumorigenesis uncovered MICAL2 as a super-enhancer-associated gene critical for tumor progression that represents a potential pharmacologic target.
Collapse
Affiliation(s)
- Bharti Garg
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Sohini Khan
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Asimina S. Courelli
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Ponmathi Panneerpandian
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Deepa Sheik Pran Babu
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Evangeline S. Mose
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Kevin Christian Montecillo Gulay
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Shweta Sharma
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Divya Sood
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Alexander T. Wenzel
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Alexei Martsinkovskiy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Nirakar Rajbhandari
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Jay Patel
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Dawn Jaquish
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Edgar Esparza
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Katelin Jaque
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Neetu Aggarwal
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Guillem Lambies
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | | | | | | | | | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Elliot Goodfellow
- Department of Surgery, McGill University, Montreal, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Pnina Brodt
- Department of Surgery, McGill University, Montreal, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Pablo Tamayo
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Jill P. Mesirov
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Hervé Tiriac
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Andrew M. Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
19
|
Chambers CR, Watakul S, Schofield P, Howell AE, Zhu J, Tran AMH, Kuepper N, Reed DA, Murphy KJ, Channon LM, Pereira BA, Tyma VM, Lee V, Trpceski M, Henry J, Melenec P, Abdulkhalek L, Nobis M, Metcalf XL, Ritchie S, Cadell A, Stoehr J, Magenau A, Chacon-Fajardo D, Chitty JL, O’Connell S, Zaratzian A, Tayao M, Da Silva A, Lyons RJ, Goldstein LD, Dale A, Rookyard A, Connolly A, Crossett B, Tran YTH, Kaltzis P, Vennin C, Dinevska M, Croucher DR, Samra J, Mittal A, Weatheritt RJ, Philp A, Del Monte-Nieto G, Zhang L, Enriquez RF, Cox TR, Shi YCC, Pinese M, Waddell N, Sim HW, Chtanova T, Wang Y, Joshua AM, Chantrill L, Evans TRJ, Gill AJ, Morton JP, Pajic M, Christ D, Herzog H, Timpson P, Herrmann D. Targeting the NPY/NPY1R signaling axis in mutant p53-dependent pancreatic cancer impairs metastasis. SCIENCE ADVANCES 2025; 11:eadq4416. [PMID: 40073121 PMCID: PMC11900870 DOI: 10.1126/sciadv.adq4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025]
Abstract
Pancreatic cancer (PC) is a highly metastatic malignancy. More than 80% of patients with PC present with advanced-stage disease, preventing potentially curative surgery. The neuropeptide Y (NPY) system, best known for its role in controlling energy homeostasis, has also been shown to promote tumorigenesis in a range of cancer types, but its role in PC has yet to be explored. We show that expression of NPY and NPY1R are up-regulated in mouse PC models and human patients with PC. Moreover, using the genetically engineered, autochthonous KPR172HC mouse model of PC, we demonstrate that pancreas-specific and whole-body knockout of Npy1r significantly decreases metastasis to the liver. We identify that treatment with the NPY1R antagonist BIBO3304 significantly reduces KPR172HC migratory capacity on cell-derived matrices. Pharmacological NPY1R inhibition in an intrasplenic model of PC metastasis recapitulated the results of our genetic studies, with BIBO3304 significantly decreasing liver metastasis. Together, our results reveal that NPY/NPY1R signaling is a previously unidentified antimetastatic target in PC.
Collapse
Affiliation(s)
- Cecilia R. Chambers
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Supitchaya Watakul
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Peter Schofield
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Anna E. Howell
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Jessie Zhu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Alice M. H. Tran
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Nadia Kuepper
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Kendelle J. Murphy
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Lily M. Channon
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Brooke A. Pereira
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Victoria M. Tyma
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Victoria Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Michael Trpceski
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Jake Henry
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Pauline Melenec
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Lea Abdulkhalek
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Xanthe L. Metcalf
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Shona Ritchie
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Antonia Cadell
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Janett Stoehr
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Astrid Magenau
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Diego Chacon-Fajardo
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Jessica L. Chitty
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Savannah O’Connell
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Anaiis Zaratzian
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Michael Tayao
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Andrew Da Silva
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Ruth J. Lyons
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Leonard D. Goldstein
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ashleigh Dale
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Rookyard
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Angela Connolly
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Yen T. H. Tran
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Peter Kaltzis
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Claire Vennin
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Marija Dinevska
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | | | | | - David R. Croucher
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Jaswinder Samra
- Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
| | - Anubhav Mittal
- Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
| | - Robert J. Weatheritt
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Gonzalo Del Monte-Nieto
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lei Zhang
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Thomas R. Cox
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Yan-Chuan C. Shi
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Mark Pinese
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Hao-Wen Sim
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tatyana Chtanova
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Yingxiao Wang
- Department of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Anthony M. Joshua
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Lorraine Chantrill
- Department of Medical Oncology and Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Thomas R. Jeffry Evans
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Anthony J. Gill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer P. Morton
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Marina Pajic
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Daniel Christ
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Herbert Herzog
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Gasparri AM, Pocaterra A, Colombo B, Taiè G, Gnasso C, Gori A, Pozzi F, Smith A, Magni F, Ugolini A, Doglio M, Bonini MC, Mondino A, Corti A, Curnis F. Blockade of αvβ6 and αvβ8 integrins with a chromogranin A-derived peptide inhibits TGFβ activation in tumors and suppresses tumor growth. J Exp Clin Cancer Res 2025; 44:88. [PMID: 40055773 PMCID: PMC11889887 DOI: 10.1186/s13046-025-03352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND The αvβ6- and αvβ8-integrins, two cell-adhesion receptors upregulated in many solid tumors, can promote the activation of transforming growth factor-β (TGFβ), a potent immunosuppressive cytokine, by interacting with the RGD sequence of the latency-associated peptide (LAP)/TGFβ complex. We have previously described a chromogranin A-derived peptide, called "peptide 5a", which recognizes the RGD-binding site of both αvβ6 and αvβ8 with high affinity and selectivity, and efficiently accumulates in αvβ6- or αvβ8-positive tumors. This study aims to demonstrate that peptide 5a can inhibit TGFβ activation in tumors and suppress tumor growth. METHODS Peptide 5a was chemically coupled to human serum albumin (HSA) to prolong its plasma half-life. The integrin recognition properties of this conjugate (called 5a-HSA) and its capability to block TGFβ activation by αvβ6+ and/or αvβ8+ cancer cells or by regulatory T cells (Tregs) were tested in vitro. The in vivo anti-tumor effects of 5a-HSA, alone and in combination with S-NGR-TNF (a vessel-targeted derivative of tumor necrosis factor-a), were investigated in various murine tumor models, including pancreatic ductal adenocarcinoma, fibrosarcoma, prostate cancer, and mammary adenocarcinoma. RESULTS In vitro assays showed that peptide 5a coupled to HSA maintains its capability of recognizing αvβ6 and αvβ8 with high affinity and selectivity and inhibits TGFβ activation mediated by αvβ6+ and/or αvβ8+ cancer cells, as well as by αvβ8+ Tregs. In vivo studies showed that systemic administration of 5a-HSA to tumor-bearing mice can reduce TGFβ signaling in neoplastic tissues and promote CD8-dependent anti-tumor responses. Combination therapy studies showed that 5a-HSA can enhance the anti-tumor activity of S-NGR-TNF, leading to tumor eradication. CONCLUSION Peptide 5a is an efficient tumor-homing inhibitor of αvβ6- and αvβ8-integrin that after coupling to HSA, can be used as a drug to block integrin-dependent TGFβ activation in tumors and promote immunotherapeutic responses.
Collapse
Affiliation(s)
- Anna Maria Gasparri
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Pocaterra
- Lymphocyte Activation Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Colombo
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Taiè
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gnasso
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), National Research Council of Italy, Milan, Italy
| | - Federica Pozzi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Milan, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Milan, Italy
| | - Alessia Ugolini
- Experimental Hematology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Doglio
- Experimental Hematology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
21
|
Sun X, Teper Y, Sinnett-Smith J, Markarian M, Hines OJ, Li G, Eibl G, Rozengurt E. Stress and Obesity Signaling Converge on CREB Phosphorylation to Promote Pancreatic Cancer. Mol Cancer Res 2025; 23:236-249. [PMID: 39642318 PMCID: PMC11875952 DOI: 10.1158/1541-7786.mcr-24-0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 12/08/2024]
Abstract
One of the deadliest types of cancer is pancreatic ductal adenocarcinoma (PDAC). Chronic stress and obesity are recognized as risk factors for PDAC. We hypothesized that the combination of stress and obesity strongly promotes pancreatic cancer development and growth. Here, we show that the stress mediator norepinephrine and the β-adrenergic receptor agonist isoproterenol rapidly stimulate cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation at Ser133 in human PDAC cells. Exposure to the nonselective β-adrenergic receptor antagonist propranolol or selective antagonists, including nebivolol, atenolol, or ICI118551, blocked CREB phosphorylation elicited by norepinephrine or isoproterenol in PDAC cells. Stimulation of PDAC cells with neurotensin, a neuropeptide implicated in obesity and PDAC, also stimulated CREB phosphorylation at Ser133. Mechanistically, norepinephrine induced CREB phosphorylation at Ser133 via PKA, whereas neurotensin promoted CREB phosphorylation predominantly through protein kinase D. Our results indicate that CREB is a point of signal convergence that mediates proliferation in PDAC cells and raised the possibility that stress and diet cooperate in promoting PDAC in vivo. To test this notion, mice expressing KrasG12D in all pancreatic lineages (KC mice) and fed an obesogenic high fat, calorie diet that promotes early PDAC development were subjected to social isolation stress. We show that social isolation stress induced a significant increase in the proportion of advanced PDAC precursor lesions (pancreatic intraepithelial neoplasia) in KC mice subjected to an obesogenic high fat, calorie diet. Implications: Our data imply that chronic (social isolation) stress cooperates with diet-induced obesity in accelerating the development of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoying Sun
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Yaroslav Teper
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Mineh Markarian
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - O Joe Hines
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gang Li
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA 90095
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
22
|
Petrenko O, Kirillov V, D'Amico S, Reich NC. Intratumor heterogeneity in KRAS signaling shapes treatment resistance. iScience 2025; 28:111662. [PMID: 39898020 PMCID: PMC11787500 DOI: 10.1016/j.isci.2024.111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
KRAS mutations are linked to some of the deadliest forms of cancer. Pharmacological studies suggest that co-targeting KRAS with feedback/bypass pathways could lead to enhanced anti-tumor activity. The underlying premise is that cancers display a deep-rooted hypersensitivity to KRAS inactivation. Here, we investigate the role of intratumor heterogeneity in pancreatic ductal adenocarcinoma, focusing on oncogenic KRAS addiction and treatment resistance. Integrated analysis of single-cell and bulk RNA sequencing data reveals that most tumors display a mixture of cells with vastly different degrees of KRAS dependency. We identify distinct cell populations that vary in their gene expression patterns pertaining to the predicted level of KRAS signaling activity, cell growth, and differentiation commitment within each tumor. Selective targeting of mutant KRAS suppresses the growth of tumor cells with high RAS/mitogen-activated protein kinase (MAPK) activity while sparing pre-existing subsets with low RAS signaling activity, necessitating alternative treatments. Combination immunotherapy leads to durable tumor regression in preclinical models.
Collapse
Affiliation(s)
- Oleksi Petrenko
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Stephen D'Amico
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
23
|
Sobhani N, Pittacolo M, D’Angelo A, Marchegiani G. Recent Anti-KRAS G12D Therapies: A "Possible Impossibility" for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2025; 17:704. [PMID: 40002297 PMCID: PMC11853620 DOI: 10.3390/cancers17040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer, able to thrive in a challenging tumor microenvironment. Current standard therapies, including surgery, radiation, chemotherapy, and chemoradiation, have shown a dismal survival prognosis, resulting in less than a year of life in the metastatic setting. Methods: The pressing need to find better therapeutic methods brought about the discovery of new targeted therapies against the infamous KRAS mutations, the major oncological drivers of PDAC. Results: The most common KRAS mutation is KRASG12D, which causes a conformational change in the protein that constitutively activates downstream signaling pathways driving cancer hallmarks. Novel anti-KRASG12D therapies have been developed for solid-organ tumors, including small compounds, pan-RAS inhibitors, protease inhibitors, chimeric T cell receptors, and therapeutic vaccines. Conclusions: This comprehensive review summarizes current knowledge on the biology of KRAS-driven PDAC, the latest therapeutic options that have been experimentally validated, and developments in ongoing clinical trials.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matteo Pittacolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy;
| | - Alberto D’Angelo
- Department of Medicine, Northern General Hospital, Sheffield S5 7AT, UK;
| | - Giovanni Marchegiani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy;
| |
Collapse
|
24
|
Jiang X, Wang T, Zhao B, Sun H, Dong Y, Ma Y, Li Z, Wu Y, Wang K, Guan X, Long B, Qin L, Shi W, Shi L, He Q, Liu W, Li M, Xiao L, Zhou C, Sun H, Yang J, Guan J, Zhou H, Yu Z, Jiao Z. KRAS G12D-driven pentose phosphate pathway remodeling imparts a targetable vulnerability synergizing with MRTX1133 for durable remissions in PDAC. Cell Rep Med 2025; 6:101966. [PMID: 39970873 PMCID: PMC11866490 DOI: 10.1016/j.xcrm.2025.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
The KRASG12D inhibitor MRTX1133 shows the potential to revolutionize the treatment paradigm for pancreatic ductal adenocarcinoma (PDAC), yet presents challenges. Our findings indicate that KRASG12D remodels a pentose phosphate pathway (PPP)-dominant central carbon metabolism pattern, facilitating malignant progression and resistance to MRTX1133 in PDAC. Mechanistically, KRASG12D drives excessive degradation of p53 and glucose-6-phosphate dehydrogenase (G6PD)-mediated PPP reprogramming through retinoblastoma (Rb)/E2F1/p53 axis-regulated feedback loops that amplify ubiquitin-conjugating enzyme E2T (UBE2T) transcription. Genetic ablation or pharmacological inhibition of UBE2T significantly suppresses PDAC progression and potentiates MRTX1133 efficacy. Leveraging structure advantages of the UBE2T inhibitor pentagalloylglucose (PGG), we develop a self-assembling nano co-delivery system with F-127, PGG, and MRTX1133. This system enhances the efficacy of PGG and MRTX1133, achieving durable remissions (85% overall response rate) and long-term survival (100% progression-free survival) in patient-derived xenografts and spontaneous PDAC mice. This study reveals the role of KRASG12D-preferred PPP reprogramming in MRTX1133 resistance and proposes a potentially therapeutic strategy for KRASG12D-mutated PDAC.
Collapse
Affiliation(s)
- Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Tao Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Bin Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Haonan Sun
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Yuman Dong
- Gansu Province High-Altitude High-Incidence Cancer Biobank, Lanzhou University Second Hospital, Lanzhou 730000, China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Zhigang Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Yuxia Wu
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Keshen Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Xiaoying Guan
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Bo Long
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Long Qin
- Gansu Province High-Altitude High-Incidence Cancer Biobank, Lanzhou University Second Hospital, Lanzhou 730000, China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Wengui Shi
- Gansu Province High-Altitude High-Incidence Cancer Biobank, Lanzhou University Second Hospital, Lanzhou 730000, China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Lei Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qichen He
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Wenbo Liu
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Mingdou Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Lixia Xiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Chengliang Zhou
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Jing Yang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Junhong Guan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Huinian Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Zuoyi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, Lanzhou University Second Hospital, Lanzhou 730000, China.
| |
Collapse
|
25
|
Jara CP, Al-Gahmi AM, Lazenby A, Hollingsworth MA, Carlson MA. Selective epithelial expression of KRAS G12D in the Oncopig pancreas drives ductal proliferation and desmoplasia that is accompanied by an immune response. Sci Rep 2025; 15:4736. [PMID: 39922849 PMCID: PMC11807195 DOI: 10.1038/s41598-025-87178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/16/2025] [Indexed: 02/10/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a formidable challenge in oncology, characterized by a high mortality rate, largely attributable to delayed diagnosis and the intricacies of its tumor microenvironment. Innovations in modeling pancreatic epithelial transformation provide valuable insights into the pathogenesis and potential therapeutic strategies for PDAC. We employed a porcine (Oncopig) model, utilizing the Ad-K8-Cre adenoviral vector, to investigate the effects of variable doses (107 to 1010 pfu) on pancreatic epithelial cells. This vector, the expression from which being driven by a Keratin-8 promoter, will deliver Cre-recombinase specifically to epithelial cells. Intraductal pancreatic injections in transgenic Oncopigs (LSL-KRASG12D-TP53R167H) were performed with histologically based evaluation at 2 months post-injection. Specificity of the adenoviral vector was validated through Keratin-8 expression and Cre-recombinase activity. We confirmed that the Ad-K8-Cre adenoviral vector predominantly targets ductal epithelial cells lining both large and small pancreatic ducts, as evidenced by Keratin 8 and CAM5.2 staining. Higher doses resulted in significant tissue morphology changes, including atrophy, and enlarged lymph nodes. Microscopic examination revealed concentration-dependent proliferation of the ductal epithelium, cellular atypia, metaplasia, and stromal alterations. Transgene expression was confirmed with immunohistochemistry. Desmoplastic responses were evident through vimentin, α-SMA, and Masson's trichrome staining, indicating progressive collagen deposition, particularly at the higher vector doses. Our study suggests a distinct dose-response relationship of Ad-K8-Cre in inducing pancreatic epithelial proliferation and possible neoplasia in an Oncopig model. All doses of the vector induced epithelial proliferation; the higher doses also produced stromal alterations, metaplasia, and possible neoplastic transformation. These findings highlight the potential for site-specific activation of oncogenes in large animal models of epithelial tumors, with the ability to induce stromal alterations reminiscent of human PDAC.
Collapse
Affiliation(s)
- Carlos P Jara
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Audrey Lazenby
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
26
|
Neyroud D, D'Lugos A, Trevino E, Callaway C, Lamm J, Laitano O, Poole B, Deyhle M, Brantley J, Le L, Judge A, Judge S. Local Inflammation Precedes Diaphragm Wasting and Fibrotic Remodelling in a Mouse Model of Pancreatic Cancer. J Cachexia Sarcopenia Muscle 2025; 16:e13668. [PMID: 39810606 PMCID: PMC11733308 DOI: 10.1002/jcsm.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Cancer cachexia represents a debilitating muscle wasting condition that is highly prevalent in gastrointestinal cancers, including pancreatic ductal adenocarcinoma (PDAC). Cachexia is estimated to contribute to ~30% of cancer-related deaths, with deterioration of respiratory muscles suspected to be a key contributor to cachexia-associated morbidity and mortality. In recent studies, we identified fibrotic remodelling of respiratory accessory muscles as a key feature of human PDAC cachexia. METHODS To gain insight into mechanisms driving respiratory muscle wasting and fibrotic remodelling in response to PDAC, we conducted temporal histological and transcriptomic analyses on diaphragm muscles harvested from mice-bearing orthotopic murine pancreatic (KPC) tumours at time points reflective of precachexia (D8 and D10), mild-moderate cachexia (D12 and D14) and advanced cachexia (endpoint). RESULTS During the precachexia phase, diaphragms showed significant leukocyte infiltration (+3-fold to +13-fold; D8-endpoint vs. Sham, p < 0.05) and transcriptomic enrichment of inflammatory processes associated with tissue injury that remained increased through endpoint. Diaphragm inflammation was followed by increases in PDGFR-ɑ+ fibroadipogenic progenitors (+2.5 to +3.8-fold; D10-endpoint vs. Sham, p < 0.05), fibre atrophy (-16% to -24%, D12 to endpoint vs. Sham, p < 0.05), ECM expansion (+1.5 to +1.8-fold; D14-endpoint vs. Sham, p < 0.05), collagen accumulation (+3.8-fold; endpoint vs. Sham, p = 0.0013) and reductions in breathing frequency (-55%, p = 0.0074) and diaphragm excursion (-43%, p = 0.0006). These biological processes were supported by changes in the diaphragm transcriptome. Ingenuity pathway analysis predicted factors involved in inflammatory responses to tissue injury, including TGF-β1, angiotensin and PDGF BB, as top upstream regulators activated in diaphragms prior to and throughout cachexia progression, while PGC-1α and the insulin receptor were among the top upstream regulators predicted to be suppressed. The transcriptomic dataset further revealed progressive disturbances to networks involved in lipid, glucose and oxidative metabolism, activation of the unfolded protein response and neuromuscular junction remodelling associated with denervation. CONCLUSIONS In summary, our data support leukocyte infiltration and expansion of PDGFRα mesenchymal progenitors as early events that precede wasting and fibrotic remodelling of the diaphragm in response to PDAC that may also underlie metabolic disturbances, weakness and respiratory complications.
Collapse
Affiliation(s)
- Daria Neyroud
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
- Institute of Sports SciencesUniversity of LausanneLausanneSwitzerland
| | - Andrew C. D'Lugos
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Enrique J. Trevino
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
| | - Chandler S. Callaway
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Jacqueline Lamm
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
| | - Orlando Laitano
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Brittney Poole
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Physiology and Aging, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Michael R. Deyhle
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Justina Brantley
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
| | - Lam Le
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
| | - Andrew R. Judge
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Physiology and Aging, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Sarah M. Judge
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Physiology and Aging, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
27
|
Tang R, Tay SS, Sharbeen G, Herrmann D, Youkhana J, Timpson P, Phillips PA, Biro M. Bystander Expression of Atypical Chemokine Receptor 2 Protects T Cells from Chemoattraction towards Cancer-Associated Fibroblasts. Eur J Immunol 2025; 55:e202451215. [PMID: 39931761 PMCID: PMC11811810 DOI: 10.1002/eji.202451215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 02/13/2025]
Abstract
Atypical chemokine receptors (ACKRs) are a subclass of chemokine receptors that internalise and degrade chemokines instead of eliciting chemotaxis. Scavenging by ACKRs reduces the local bioavailability of chemokines and can thus reshape chemokine gradients that direct leukocyte trafficking during inflammation and anticancer responses. In pancreatic ductal adenocarcinoma (PDAC), chemokine axes, such as CXCL12-CXCR4, are co-opted by cancer-associated fibroblasts (CAFs) for tumour growth and escape, and immunosuppression. Here, we explore the use of ACKRs to reshape chemokine gradients within the PDAC tumour microenvironment. ACKR2, previously only known to scavenge inflammatory CC chemokines, was recently shown to be able to interact with CXCL10 and CXCL14. Here, using a chemokine binding assay and cytometric bead arrays, we reveal that ACKR2 scavenges additional CXC chemokines CXCL12 and CXCL1. ACKR2 scavenges CXCL12 with reduced efficiency compared to ACKR3, previously reported to bind CXCL12. Finally, we demonstrate that the overexpression of ACKR2 on bystander cells protects primary murine cytotoxic T lymphocytes from PDAC CAF-mediated chemoattraction. These findings reveal new CXC chemokine ligands of ACKR2 and indicate that ACKR overexpression may protect T cells from misdirection by CAFs.
Collapse
Affiliation(s)
- Richard Tang
- EMBL Australia, Single Molecule Science node, School of Biomedical SciencesThe University of New South WalesSydneyNSWAustralia
| | - Szun S. Tay
- EMBL Australia, Single Molecule Science node, School of Biomedical SciencesThe University of New South WalesSydneyNSWAustralia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Faculty of Medicine and Health, Lowy Cancer Research CentreThe University of New South WalesSydneyNSWAustralia
| | - David Herrmann
- Cancer Ecosystems ProgramThe Garvan Institute of Medical Research and The Kinghorn Cancer CentreDarlinghurstNSWAustralia
- School of Clinical MedicineSt Vincent's Healthcare Clinical CampusUNSW Medicine & Health, UNSW SydneySydneyAustralia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Faculty of Medicine and Health, Lowy Cancer Research CentreThe University of New South WalesSydneyNSWAustralia
| | - Paul Timpson
- Cancer Ecosystems ProgramThe Garvan Institute of Medical Research and The Kinghorn Cancer CentreDarlinghurstNSWAustralia
- School of Clinical MedicineSt Vincent's Healthcare Clinical CampusUNSW Medicine & Health, UNSW SydneySydneyAustralia
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Faculty of Medicine and Health, Lowy Cancer Research CentreThe University of New South WalesSydneyNSWAustralia
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Biomedical SciencesThe University of New South WalesSydneyNSWAustralia
- Cancer Ecosystems ProgramThe Garvan Institute of Medical Research and The Kinghorn Cancer CentreDarlinghurstNSWAustralia
| |
Collapse
|
28
|
Schleinhege R, Neumann I, Oeckinghaus A, Schwab A, Pethő Z. A CNA-35-based high-throughput fibrosis assay reveals ORAI1 as a regulator of collagen release from pancreatic stellate cells. Matrix Biol 2025; 135:70-86. [PMID: 39662708 DOI: 10.1016/j.matbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
RATIONALE Pancreatic stellate cells (PSCs) produce a collagen-rich connective tissue in chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Ca2+-permeable ion channels such as ORAI1 are known to affect PSC proliferation and myofibroblastic phenotype. However, it is unknown whether these channels play a role in collagen secretion. METHODS Using the PSC cell line PS-1, we characterized their cell-derived matrices using staining, mass spectroscopy, and cell migration assays. We developed and validated a high-throughput in vitro fibrosis assay to rapidly determine collagen quantity either with Sirius Red or, in the optimized version, with the collagen-binding peptide CNA-35-tdTomato. We assessed collagen deposition upon stimulating cells with transforming growth factor β1 (TGF-β1) and/or vitamin C without or with ORAI1 modulation. Orai1 expression was assessed by immunohistochemistry in the fibrotic tumor tissue of a murine PDAC model (KPfC). RESULTS We found that TGF-β1 and vitamin C promote collagen deposition from PSCs. We used small interfering RNA (siRNA) and the inhibitor Synta-66 to demonstrate that ORAI1 regulates collagen secretion of PSCs but not NIH-3T3 fibroblasts. Physiological levels of vitamin C induce a drastic increase of the intracellular [Ca2+] in PSCs, with Synta-66 inhibiting Ca2+ influx. Lastly, we revealed Orai1 expression in cancer-associated fibroblasts (CAFs) in murine PDAC (KPfC) samples. CONCLUSION In conclusion, our study introduces a robust in vitro assay for fibrosis and identifies ORAI1 as being engaged in PSC-driven fibrosis.
Collapse
Affiliation(s)
- Rieke Schleinhege
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Ilka Neumann
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, University of Münster, 48149, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany.
| |
Collapse
|
29
|
Musiu C, Adamo A, Caligola S, Agostini A, Frusteri C, Lupo F, Boschi F, Busato A, Poffe O, Anselmi C, Vella A, Wang T, Dusi S, Piro G, Carbone C, Tortora G, Marzola P, D'Onofrio M, Crinò SF, Corbo V, Scarpa A, Salvia R, Malleo G, Lionetto G, Sartoris S, Ugel S, Bassi C, Bronte V, Paiella S, De Sanctis F. Local ablation disrupts immune evasion in pancreatic cancer. Cancer Lett 2025; 609:217327. [PMID: 39580047 DOI: 10.1016/j.canlet.2024.217327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Pancreatic cancer (PC) is characterised by late diagnosis, tumour heterogeneity, and a peculiar immunosuppressive microenvironment, leading to poor clinical outcomes. Local ablative techniques have been proposed to treat unresectable PC patients, although their impact on activating the host immune system and overcoming resistance to immunotherapy remains elusive. METHODS We dissected the immune-modulatory abilities triggered by local ablation in mouse and human PC models and human specimens, integrating phenotypic and molecular technologies with functional assays. RESULTS Local ablation treatment performed in mice bearing orthotopic syngeneic PC tumours triggered tumour necrosis and a short-term inflammatory process characterised by the prompt increase of HMGB1 plasma levels, coupled with an enhanced amount of circulating and tumour infiltrating myeloid cells and increased MHCII expression in splenic myeloid antigen-presenting cells. Local ablation synergised with immunotherapy to restrict tumour progression and improved the survival of PC-bearing mice by evoking a T lymphocyte-dependent anti-tumour immune response. By integrating spatial transcriptomics with histological techniques, we pinpointed how combination therapy could reshape TME towards an anti-tumour milieu characterised by the preferential entrance and colocalization of activated T lymphocytes and myeloid cells endowed with antigen presentation features instead of T regulatory lymphocytes and CD206-expressing tumour-associated macrophages. In addition, treatment-dependent TME repolarization extended to neoplastic cells, promoting a shift from squamous to a more differentiated classical phenotype. Finally, we validated the immune regulatory properties induced by local ablation in PC patients and identified an association of the short-term treatment-dependent increase of neutrophils, NLR and HMGB1 with a longer time to progression. CONCLUSION Therefore, local ablation might overcome the current limitations of immunotherapy in PC.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | | | - Antonio Agostini
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristina Frusteri
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Alice Busato
- Assessment Department Aptuit S.r.l., an Evotec Company, Verona, Italy
| | - Ornella Poffe
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Cristina Anselmi
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Antonio Vella
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Tian Wang
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Silvia Dusi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Geny Piro
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Pasquina Marzola
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Mirko D'Onofrio
- Department of Diagnostics and Public Health, Radiology Section, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Francesco Crinò
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Gastroenterology and Digestive Endoscopy Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Pathological Anatomy Section, University of Verona Hospital Trust, Verona, Italy
| | - Roberto Salvia
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Giuseppe Malleo
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Gabriella Lionetto
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy.
| | - Claudio Bassi
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | | | - Salvatore Paiella
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy.
| |
Collapse
|
30
|
Niu N, Li K, Wang J, Funes V, Espinoza B, Li P, Wang J, Lyman M, He M, Herbst B, Wichroski M, Novosiadly R, Shoucair S, Mou Y, Zheng L. Chemotherapy in synergy with innate immune agonists enhances T cell priming for checkpoint inhibitor treatment in pancreatic cancer. Biomark Res 2025; 13:21. [PMID: 39871312 PMCID: PMC11773940 DOI: 10.1186/s40364-024-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND The combination of conventional chemotherapy and immune checkpoint inhibitors (ICIs) has been unsuccessful for pancreatic ductal adenocarcinoma (PDAC). Administration of maximum tolerated dose of chemotherapy drugs may have immunosuppressive effects. METHODS We thus tested, by using the preclinical model of PDACs including the genetically engineered mouse KPC spontaneous pancreatic tumor model and the pancreatic KPC tumor orthotopic implant model, the combinations of synthetic innate immune agonists including STING and NLRP3 agonist, respectively, and ICIs with or without chemotherapy. RESULTS We found that innate agonists potentiate the role of chemotherapy in inducing effector T cells and subsequently to prime the tumor microenvironment (TME) better for ICI treatments. Triple combination of chemotherapy, innate agonists, and ICIs is superior to single modalities or double modalities in antitumor efficacies. Adding chemotherapy to innate agonists enhances the infiltration of overall CD8+ T cells and the memory cytotoxic subtype. NLRP3 agonist has a less effect than STING agonist on driving the T cell exhaustion. Adding chemotherapy to innate agonists enhances the infiltration of dendritic cells (DCs) in the tumors and CD86+ mature DCs in tumor draining lymph nodes. RNA sequencing analysis of the pancreatic tumors demonstrates the role of the combination of STING/NLRP3 agonist and chemotherapy, but not either treatment modality alone, in upregulating the T cell activation signaling. The NLRP3 agonist-mediated T cell activation is likely through regulating the nitrogen metabolism pathways. CONCLUSION This study supports the clinical testing of both STING and NLRP3 agonists, respectively, in combination with chemotherapy to sensitize PDAC patients for ICI treatments.
Collapse
Affiliation(s)
- Nan Niu
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Keyu Li
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junke Wang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Division of BiliarySurgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Vanessa Funes
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Birginia Espinoza
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Pan Li
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The First-affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianxin Wang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The First-affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Melissa Lyman
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mengni He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Brian Herbst
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | | | | | - Sami Shoucair
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yiping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Mays Cancer Center, University of Texas Health San Antonio MD Anderson, San Antonio, USA.
| |
Collapse
|
31
|
Garay MI, Mazo T, Ferrero V, Barotto NN, Lagares C, Granton MF, Moreira-Espinoza MJ, Cremonezzi DC, Comba A, Brunotto MN, Tolosa EJ, Fernandez-Zapico ME, Pasqualini ME. Novel inhibitory effect of Omega-3 fatty acids regulating pancreatic cancer progression. Carcinogenesis 2025; 46:bgae081. [PMID: 39742417 DOI: 10.1093/carcin/bgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/03/2025] Open
Abstract
Pancreatic cancer is a devastating malignancy in great need of new and more effective treatment approaches. In recent years, studies have indicated that nutritional interventions, particularly nutraceuticals, may provide novel avenues to modulate cancer progression. Here, our study characterizes the impact of ω-3 polyunsaturated fatty acids, eicosapentaenoic acid, and docosahexaenoic acid, as a nutraceutical intervention in pancreatic cancer using a genetically engineered mouse model driven by KrasG12D and Trp53R172H. This model closely resembles human pancreatic carcinogenesis, offering a disease relevant platform for translational research. Our findings showed that ω-3 polyunsaturated fatty acids intervention (using a diet supplemented with 6% cod liver oil) significantly reduced tumor volume as well as lung and liver metastasis and a trend toward improved survival rate compared with control treated mice. This antitumoral effect was accompanied by distinct changes in tumor membrane fatty acid profile and eicosanoids release. Furthermore, the eicosapentaenoic acid and docosahexaenoic acid intervention also reduced malignant histological parameters and induced apoptosis without affecting cell proliferation. Of note is the significant reduction in tumor fibrosis that was associated with decreased levels of Sonic Hedgehog, a major ligand controlling this cellular compartment in pancreatic cancer. All together our results demonstrate the impact of eicosapentaenoic acid and docosahexaenoic acid as antitumor regulators in pancreatic cancer, suggesting potential for ω-3 polyunsaturated fatty acids as a possible antitumoral dietary intervention. This research opens new avenues for integrating nutraceutical strategies in pancreatic cancer management.
Collapse
Affiliation(s)
- María I Garay
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - Tamara Mazo
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - Victoria Ferrero
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - Nelso N Barotto
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - Clarisa Lagares
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
| | - María F Granton
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - María J Moreira-Espinoza
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - David C Cremonezzi
- Departamento de Patología, Hospital Nacional de Clínicas, FCM-UNC, 5000 Córdoba, Argentina
| | - Andrea Comba
- Department of Pathology, Division Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Mabel N Brunotto
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, UNC, 5016 Córdoba, Argentina
| | - Ezequiel J Tolosa
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, United States
| | | | - María E Pasqualini
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| |
Collapse
|
32
|
Moresco P, Kastan JP, Yang JI, Prabakar R, Minicozzi F, Adams DW, Cifani P, Tuveson DA, Fearon DT. Signal peptide-independent secretion of keratin-19 by pancreatic cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633717. [PMID: 39896665 PMCID: PMC11785074 DOI: 10.1101/2025.01.18.633717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The exclusion of T cells causes immune escape of pancreatic ductal adenocarcinoma (PDA). T cell exclusion is mediated by the interaction between CXCR4 on T cells and its ligand, CXCL12, which is complexed to keratin-19 (KRT19) on the surface of PDA cells. KRT19 secretion by PDA cells is essential to this process but is unusual because KRT19 lacks an endoplasmic reticulum (ER)-directing signal peptide (SP). By using biotinylation by an ER-restricted TurboID system and a split-GFP assay in PDA cells, we demonstrate that KRT19 enters the ER via its "head" domain. Additionally, KRT19 is shown to interact with the signal recognition particle and its secretion is sensitive to canonical protein secretion inhibitors. In vivo, mouse tumors formed with ER-TurboID-expressing PDA cells contain biotinylated KRT19. In contrast, keratin-8 (KRT8), which colocalizes with KRT19 on the surface of PDA cells, does not enter the ER. Rather, KRT8 is externalized via secretory autophagy possibly in a complex with KRT19. Thus, despite lacking a classical SP, PDA cells secrete KRT19 to capture CXCL12 and protect against immune attack.
Collapse
Affiliation(s)
- Philip Moresco
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Jung-in Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | - Dexter W. Adams
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Paolo Cifani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Douglas T. Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
33
|
Wang CA, Hou YC, Hong YK, Tai YJ, Shen C, Hou PC, Fu JL, Wu CL, Cheng SM, Hwang DY, Su YY, Shan YS, Tsai SJ. Intercellular TIMP-1-CD63 signaling directs the evolution of immune escape and metastasis in KRAS-mutated pancreatic cancer cells. Mol Cancer 2025; 24:25. [PMID: 39825392 PMCID: PMC11742192 DOI: 10.1186/s12943-024-02207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/24/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND AND AIMS Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC. METHODS Single-cell RNA sequencing and analysis of primary PDAC tumors were conducted. Genetically engineered pancreas-specific Kras-mutated, dual specificity phosphatase-2 (Dusp2) knockout mouse models were established. Human and mouse primary pancreatic cancer cell lines were used for in vitro assessment of cancer characteristics. Tumor progression was studied via pancreas orthotopic and portal vein injection in the immune-competent mice. Clinical relevance was validated by digital spatial transcriptomic analysis of PDAC tumors. RESULTS Kras mutation induces the formation of pancreatic intraepithelial neoplasia (PanIN), these lesions also exhibit significant apoptotic signals. Single-cell RNA sequencing identified a subset of ERKactiveDUSP2low cells continuing to expand from early to advanced stage PDAC. In vitro and in vivo studies reveal that early infiltrating macrophage-derived tissue inhibitor of metallopeptidase 1 (TIMP-1) is the key factor in maintaining the ERKactiveDUSP2low cell population in a CD63-dependent manner. The ERKactiveDUSP2low cancer cells further exacerbate macrophage-mediated cancer malignancy, including loss of epithelial trait, increased lymphangiogenesis, and immune escape. Digital spatial profiling analysis of PDAC samples demonstrates the colocalization of TIMP-1high macrophages and CD63high cancer cells. The presence of TIMP-1high macrophages and CD63high epithelial cells correlates with poor prognosis in PDAC. CONCLUSIONS Our study reveals the vicious cycle between early infiltrating macrophages and pancreatic cancer cells, providing a mechanistic insight into the dynamic regulation directing pancreatic cancer progression.
Collapse
Affiliation(s)
- Chu-An Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu-Jing Tai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chieh Shen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chi Hou
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jhao-Lin Fu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Lin Wu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yung-Yeh Su
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research,, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Biomedical Sciences, National Chung Cheng University, No.168, Sect. 1, University Rd., Minhsiung, Chiayi, 621301, Taiwan.
| |
Collapse
|
34
|
Ohri N, Häußler J, Javakhishvili N, Vieweg D, Zourelidis A, Trojanowicz B, Haemmerle M, Esposito I, Glaß M, Sunami Y, Kleeff J. Gene expression dynamics in fibroblasts during early-stage murine pancreatic carcinogenesis. iScience 2025; 28:111572. [PMID: 39811640 PMCID: PMC11731286 DOI: 10.1016/j.isci.2024.111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive growth and metastasis, partly driven by fibroblast-mediated stromal interactions. Using RNA sequencing of fibroblasts from early-stage KPC mouse models, we identified significant upregulation of genes involved in adipogenesis, fatty acid metabolism, and the ROS pathway. ANGPTL4, a key adipogenesis regulator, was highly expressed in fibroblasts and promoted pancreatic cancer cell proliferation and migration through paracrine signaling. Notably, cancer cell-driven paracrine signals appear to regulate ANGPTL4 expression in fibroblasts, suggesting that ANGPTL4 may act as a reciprocal factor in a feedback loop that enhances tumor progression. LAMA2, an extracellular matrix gene with reduced expression, suppressed pancreatic cancer cell migration, proliferation, and invasion. This study provides the temporal transcriptional analysis of fibroblast subtypes during early PDAC, highlighting the roles of metabolic reprogramming and ECM remodeling in shaping the tumor microenvironment and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Johanna Häußler
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Nino Javakhishvili
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi 0162, Georgia
| | - David Vieweg
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Anais Zourelidis
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Monika Haemmerle
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06112 Halle (Saale), Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
35
|
Fey SK, Najumudeen AK, Watt DM, Millett LM, Ford CA, Gilroy K, Simpson RJ, McLay K, Upstill-Goddard R, Chang D, Clark W, Nixon C, Birch JL, Barry ST, Morton JP, Campbell AD, Sansom OJ. KRAS Loss of Heterozygosity Promotes MAPK-Dependent Pancreatic Ductal Adenocarcinoma Initiation and Induces Therapeutic Sensitivity to MEK Inhibition. Cancer Res 2025; 85:251-262. [PMID: 39412982 PMCID: PMC11733531 DOI: 10.1158/0008-5472.can-23-2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/11/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Pancreatic cancer is characterized by the prevalence of oncogenic mutations in KRAS. Previous studies have reported that altered KRAS gene dosage drives progression and metastasis in pancreatic cancer. Whereas the role of oncogenic KRAS mutations is well characterized, the relevance of the partnering wild-type (WT) KRAS allele in pancreatic cancer is less well understood and controversial. Using in vivo mouse modeling of pancreatic cancer, we demonstrated that WT KRAS restrains the oncogenic impact of mutant KRAS and dramatically impacts both KRAS-mediated tumorigenesis and therapeutic response. Mechanistically, deletion of WT Kras increased oncogenic KRAS signaling through the downstream MAPK effector pathway, driving pancreatic intraepithelial neoplasia initiation. In addition, in the KPC mouse model, a more aggressive model of pancreatic cancer, lack of WT KRAS led to accelerated initiation but delayed tumor progression. These tumors had altered stroma and an enrichment of immunogenic gene signatures. Importantly, loss of WT Kras sensitized Kras mutant tumors to MEK1/2 inhibition though tumors eventually became resistant and then rapidly progressed. This study demonstrates the repressive role of WT KRAS during pancreatic tumorigenesis and highlights the critical impact of the presence of WT KRAS in both tumor progression and therapeutic response in pancreatic cancer. Significance: KRAS allelic status impacts pancreatic cancer progression and has the potential to guide effective treatment in a substantial subset of patients.
Collapse
Affiliation(s)
- Sigrid K. Fey
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Dale M. Watt
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Laura M. Millett
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Kathryn Gilroy
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Kathy McLay
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rosanna Upstill-Goddard
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - David Chang
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - William Clark
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Joanna L. Birch
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon T. Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jennifer P. Morton
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Owen J. Sansom
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
36
|
Lasse-Opsahl EL, Barravecchia I, McLintock E, Lee JM, Ferris SF, Espinoza CE, Hinshaw R, Cavanaugh S, Robotti M, Rober L, Brown K, Abdelmalak KY, Galban CJ, Frankel TL, Zhang Y, Pasca di Magliano M, Galban S. KRASG12D drives immunosuppression in lung adenocarcinoma through paracrine signaling. JCI Insight 2025; 10:e182228. [PMID: 39782689 PMCID: PMC11721295 DOI: 10.1172/jci.insight.182228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. New targeted therapies against the once-deemed undruggable oncogenic KRAS are changing current therapeutic paradigms. However, resistance to targeted KRAS inhibitors almost inevitably occurs; resistance can be driven by tumor cell-intrinsic changes or by changes in the microenvironment. Here, we utilized a genetically engineered mouse model of KRASG12D-driven lung cancer that allows for inducible and reversible expression of the oncogene: activation of oncogenic KRASG12D induces tumor growth; conversely, inactivation of KRASG12D causes tumor regression. We showed that in addition to regulating cancer cell growth and survival, oncogenic KRAS regulated the transcriptional status of cancer-associated fibroblasts and macrophages in this model. Utilizing ex vivo approaches, we showed that secreted factors from cancer cells induced the expression of multiple cytokines in lung fibroblasts, and in turn drove expression of immunosuppressive factors, such as arginase 1, in macrophages. In summary, fibroblasts emerged as a key source of immune regulatory signals, and a potential therapeutic target for improving the efficacy of KRAS inhibitors in lung cancer.
Collapse
Affiliation(s)
| | - Ivana Barravecchia
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Elyse McLintock
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jennifer M. Lee
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sarah F. Ferris
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carlos E. Espinoza
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachael Hinshaw
- Graduate Program in Cancer Biology
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sophia Cavanaugh
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marzia Robotti
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- PhD School in Translational Medicine, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Lily Rober
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kristee Brown
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kristena Y. Abdelmalak
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Craig J. Galban
- Department of Radiology, and
- Department of Biomedical Engineering
| | - Timothy L. Frankel
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, and
| | - Yaqing Zhang
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, and
| | - Marina Pasca di Magliano
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, and
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stefanie Galban
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, and
| |
Collapse
|
37
|
Feng QS, Shan XF, Yau V, Cai ZG, Xie S. Facilitation of Tumor Stroma-Targeted Therapy: Model Difficulty and Co-Culture Organoid Method. Pharmaceuticals (Basel) 2025; 18:62. [PMID: 39861125 PMCID: PMC11769033 DOI: 10.3390/ph18010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Tumors, as intricate ecosystems, comprise oncocytes and the highly dynamic tumor stroma. Tumor stroma, representing the non-cancerous and non-cellular composition of the tumor microenvironment (TME), plays a crucial role in oncogenesis and progression, through its interactions with biological, chemical, and mechanical signals. This review aims to analyze the challenges of stroma mimicry models, and highlight advanced personalized co-culture approaches for recapitulating tumor stroma using patient-derived tumor organoids (PDTOs). Methods: This review synthesizes findings from recent studies on tumor stroma composition, stromal remodeling, and the spatiotemporal heterogeneities of the TME. It explores popular stroma-related models, co-culture systems integrating PDTOs with stromal elements, and advanced techniques to improve stroma mimicry. Results: Stroma remodeling, driven by stromal cells, highlights the dynamism and heterogeneity of the TME. PDTOs, derived from tumor tissues or cancer-specific stem cells, accurately mimic the tissue-specific and genetic features of primary tumors, making them valuable for drug screening. Co-culture models combining PDTOs with stromal elements effectively recreate the dynamic TME, showing promise in personalized anti-cancer therapy. Advanced co-culture techniques and flexible combinations enhance the precision of tumor-stroma recapitulation. Conclusions: PDTO-based co-culture systems offer a promising platform for stroma mimicry and personalized anti-cancer therapy development. This review underscores the importance of refining these models to advance precision medicine and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Qiu-Shi Feng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Xiao-Feng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Vicky Yau
- Division of Oral and Maxillofacial Surgery, Columbia Irving Medical Center, New York City, NY 10027, USA;
| | - Zhi-Gang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| |
Collapse
|
38
|
Vishwanath K, Choi H, Gupta M, Zhou R, Sorace AG, Yankeelov TE, Lima EABF. Modeling tumor dynamics and predicting response to chemo-, targeted-, and immune-therapies in a murine model of pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631015. [PMID: 39803494 PMCID: PMC11722293 DOI: 10.1101/2025.01.03.631015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
We seek to establish a parsimonious mathematical framework for understanding the interaction and dynamics of the response of pancreatic cancer to the NGC triple chemotherapy regimen (mNab-paclitaxel, gemcitabine, and cisplatin), stromal-targeting drugs (calcipotriol and losartan), and an immune checkpoint inhibitor (anti-PD-L1). We developed a set of ordinary differential equations describing changes in tumor size (growth and regression) under the influence of five cocktails of treatments. Model calibration relies on three tumor volume measurements obtained over a 14-day period in a genetically engineered pancreatic cancer model (KrasLSLG12D-Trp53LSLR172H-Pdx1-Cre). Our model reproduces tumor growth in the control and treatment scenarios with an average concordance correlation coefficient (CCC) of 0.99±0.01. We conduct leave-one-out predictions (average CCC=0.74±0.06), mouse-specific predictions (average CCC=0.75±0.02), and hybrid, group-informed, mouse-specific predictions (average CCC=0.85±0.04). The developed mathematical model demonstrates high accuracy in fitting the experimental tumor data and a robust ability to predict tumor response to treatment. This approach has important implications for optimizing combination NGC treatment strategies.
Collapse
Affiliation(s)
- Krithik Vishwanath
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas, 78712
- Department of Mathematics, The University of Texas at Austin, Austin, Texas, 78712
| | - Hoon Choi
- Department of Radiology, Institute of Regenerative Medicine, Institute of Translational Medicine and Therapeutics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Mamta Gupta
- Department of Radiology, Institute of Regenerative Medicine, Institute of Translational Medicine and Therapeutics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Rong Zhou
- Department of Radiology, Institute of Regenerative Medicine, Institute of Translational Medicine and Therapeutics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Anna G Sorace
- Department of Radiology, Department of Biomedical Engineering The University of Alabama, Birmingham, Birmingham, Alabama, 35223
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas, 78712
- Department of Oncology, The University of Texas at Austin, Austin, Texas, 78712
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712
- Livestrong Cancer Institutes The University of Texas at Austin, Austin, Texas, 78712
- Department of Imaging Physics The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ernesto A B F Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712
- Texas Advanced Computing Center Austin, Texas, 78758
| |
Collapse
|
39
|
Machuca J, Wirkus J, Ead AS, Vahmani P, Matsukuma KE, Mackenzie GG, Oteiza PI. Dietary ω-3 Fatty Acids Mitigate Intestinal Barrier Integrity Alterations in Mice Fed a High-Fat Diet: Implications for Pancreatic Carcinogenesis. J Nutr 2025; 155:197-210. [PMID: 39510504 DOI: 10.1016/j.tjnut.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Although body fatness is a recognized risk factor for pancreatic ductal adenocarcinoma (PDAC), the underlying mechanisms of how fat composition affects pancreatic carcinogenesis are poorly understood. High-fat diets (HFDs) can disrupt intestinal barrier function, potentially accelerating carcinogenesis. Omega-3 (ω-3) polyunsaturated fatty acids (FAs) have anti-inflammatory properties and help preserve intestinal integrity. OBJECTIVE The objective of this study was to evaluate how ω-3 FAs affect the colonic barrier in the context of HFD-induced changes, in a mouse model of PDAC [p48-Cre; LSL-KrasG12D (KC)]. METHODS Male and female KC mice were randomly assigned into 1 of the following 4 groups: 1) a control diet containing ∼11% total calories from fat with an ω-6:ω-3 FA ratio of 10:1 (C), 2) the control diet with high concentrations of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (Cω3), 3) an HFD containing 60% total calories from fat with an ω-6:ω-3 FA ratio of approximately 10:1 (HF), and 4) an HFD with high concentrations of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (HFω3). RESULTS Consumption of an HFD for 8 wk caused: 1) disruption of tight junction structure and function; 2) decreased goblet cell number; 3) higher colonic Toll-like receptor 4 (TLR4) and NADPH oxidase 1 expression; 4) activation of TLR4-triggered pathways, that is, NF-κB, c-Jun N-terminal kinase; 5) elevated plasma lipopolysaccharide concentrations; and 6) higher pancreatic TLR4 expression, and 7) accelerated acinar-to-ductal metaplasia. All of these events were mitigated in mice fed the HFω3. CONCLUSIONS Our findings support the concept that, in the context of obesity, ω-3 FAs have protective effects during early-stage pancreatic carcinogenesis through the regulation of intestinal permeability and endotoxemia.
Collapse
Affiliation(s)
- Jazmin Machuca
- Department of Nutrition, University of California, Davis, CA, United States
| | - Joanna Wirkus
- Department of Nutrition, University of California, Davis, CA, United States
| | - Aya S Ead
- Department of Nutrition, University of California, Davis, CA, United States
| | - Payam Vahmani
- Department of Animal Science, University of California, Davis, CA, United States
| | - Karen E Matsukuma
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA, United States; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA, United States
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, CA, United States; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA, United States.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, United States; Department of Environmental Toxicology, University of California, Davis, CA, United States.
| |
Collapse
|
40
|
Rupert J, Daquinag A, Yu Y, Dai Y, Zhao Z, Kolonin MG. Depletion of Adipose Stroma-Like Cancer-Associated Fibroblasts Potentiates Pancreatic Cancer Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2025; 5:5-12. [PMID: 39620946 PMCID: PMC11694247 DOI: 10.1158/2767-9764.crc-24-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
SIGNIFICANCE This study shows that populations of CAFs have distinct effects on pancreatic cancer progression and shows that depletion of CAFs expressing adipose markers potentiates tumor/metastasis suppression effects of immune checkpoint blockade.
Collapse
Affiliation(s)
- Joseph Rupert
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, McGovern Medical School, Houston, Texas
| | - Alexes Daquinag
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, McGovern Medical School, Houston, Texas
| | - Yongmei Yu
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, McGovern Medical School, Houston, Texas
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics and School of Public Health, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics and School of Public Health, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Mikhail G. Kolonin
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, McGovern Medical School, Houston, Texas
| |
Collapse
|
41
|
Schonk MM, Ducharme JB, Neyroud D, Nosacka RL, Tucker HO, Judge SM, Judge AR. Role of myofiber-specific FoxP1 in pancreatic cancer-induced muscle wasting. Am J Physiol Cell Physiol 2025; 328:C1-C8. [PMID: 39545377 DOI: 10.1152/ajpcell.00701.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Cancer cachexia affects up to 80% of patients with cancer and results in reduced quality of life and survival. We previously demonstrated that the transcriptional repressor Forkhead box P1 (FoxP1) is upregulated in the skeletal muscle of cachectic mice and people with cancer, and when overexpressed in skeletal muscle, it is sufficient to induce pathological features characteristic of cachexia. However, the role of myofiber-derived FoxP1 in both normal muscle physiology and cancer-induced muscle wasting remains largely unexplored. To address this gap, we generated a conditional mouse line with myofiber-specific ablation of FoxP1 (FoxP1SkmKO) and found that in cancer-free mice, deletion of FoxP1 in skeletal myofibers resulted in increased myofiber size in both males and females, with a significant increase in muscle mass in males. In response to murine KPC pancreatic tumor burden, we found that myofiber-derived FoxP1 mediates cancer-induced muscle wasting and diaphragm muscle weakness in male but not female mice. In summary, our findings identify myofiber-specific FoxP1 as a negative regulator of skeletal muscle with sex-specific differences in the context of cancer.NEW & NOTEWORTHY Here we identify myofiber-derived FoxP1 as a negative regulator of skeletal muscle with sex-specific effects in cancer. Under cancer-free conditions, FoxP1 knockout increased myofiber size in male and female mice. However, in response to pancreatic cancer, FoxP1 myofiber-specific deletion attenuated muscle wasting and weakness in males but not females. This highlights the need to consider sexual dimorphism in cancer-induced muscle pathologies and provides evidence suggesting that targeting FoxP1 could help mitigate these effects in males.
Collapse
Affiliation(s)
- Martin M Schonk
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Jeremy B Ducharme
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Daria Neyroud
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Rachel L Nosacka
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Haley O Tucker
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Texas, United States
| | - Sarah M Judge
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Andrew R Judge
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
42
|
Mandal S, Teslow EA, Huang M, Yu Y, Sridhar S, Crawford HC, Hockenberry AJ, Stoppler MC, Levin AM, Huang L. Molecular Differences in Pancreatic Ductal Adenocarcinomas from Black versus White Patients. CANCER RESEARCH COMMUNICATIONS 2025; 5:128-137. [PMID: 39699266 PMCID: PMC11752082 DOI: 10.1158/2767-9764.crc-24-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
SIGNIFICANCE By analyzing the records of patients with pancreatic cancer in the Tempus multimodal database, we identified genomic mutations and PD-L1 overexpression occurred more frequently in Black patients compared with their White counterparts. These molecular features may contribute to racial disparities in pancreatic cancer.
Collapse
Affiliation(s)
- Saurabh Mandal
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | | | | | | | - Swathi Sridhar
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Howard C. Crawford
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | | | | | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan
| | - Ling Huang
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
43
|
Gayibov E, Sychra T, Spálenková A, Souček P, Oliverius M. The use of patient-derived xenografts and patient-derived organoids in the search for new therapeutic regimens for pancreatic carcinoma. A review. Biomed Pharmacother 2025; 182:117750. [PMID: 39689516 DOI: 10.1016/j.biopha.2024.117750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024] Open
Abstract
Patient-derived organoids (PDOs) and xenografts (PDXs) are powerful tools for personalized medicine in pancreatic cancer (PC) research. This study explores the complementary strengths of PDOs and PDXs in terms of practicality, genetic fidelity, cost, and labor considerations. Among other models like 2D cell cultures, spheroids, cancer-on-chip systems, cell line-derived xenografts (CDX), and genetically engineered mouse models (GEMMs), PDOs and PDXs uniquely balance genetic fidelity and personalized medicine potential, offering distinct advantages over the simplicity of 2D cultures and the advanced, but often resource-intensive, GEMMs and cancer-on-chip systems. PDOs excel in high-throughput drug screening due to their ease of use, lower cost, and shorter experimental timelines. However, they lack a complete tumor microenvironment. Conversely, PDXs offer a more complex microenvironment that closely reflects patient tumors, potentially leading to more clinically relevant results. Despite limitations in size, number of specimens, and engraftment success, PDXs demonstrate significant concordance with patient responses to treatment, highlighting their value in personalized medicine. Both models exhibit significant genetic fidelity, making them suitable for drug sensitivity testing. The choice between PDOs and PDXs depends on the research focus, resource availability, and desired level of microenvironment complexity. PDOs are advantageous for high-throughput screening of a diverse array of potential therapeutic agents due to their relative ease of culture and scalability. PDXs, on the other hand, offer a more physiologically relevant model, allowing for a comprehensive evaluation of drug efficacy and mechanisms of action.
Collapse
Affiliation(s)
- Emin Gayibov
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomáš Sychra
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic; Centre of Toxicology and Health Safety, National Institute of Public Health, Prague, Czech Republic; Department of General Surgery, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Alžběta Spálenková
- Centre of Toxicology and Health Safety, National Institute of Public Health, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Souček
- Centre of Toxicology and Health Safety, National Institute of Public Health, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Martin Oliverius
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic; Department of General Surgery, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic.
| |
Collapse
|
44
|
Bakiri L, Tichet M, Marques C, Thomsen MK, Allen EA, Stolzlechner S, Cheng K, Matsuoka K, Squatrito M, Hanahan D, Wagner EF. A new effLuc/Kate dual reporter allele for tumor imaging in mice. Dis Model Mech 2025; 18:DMM052130. [PMID: 39745082 PMCID: PMC11789939 DOI: 10.1242/dmm.052130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases, such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo. Here, we report the generation of a dual reporter allele allowing simultaneous bioluminescence and fluorescence detection of cells that have undergone Cre-Lox recombination in mice. The single copy knock-in allele in the permissive collagen I locus was evaluated in the context of several cancer GEMMs, where Cre expression was achieved genetically or by ectopic virus-mediated delivery. The new reporter allele was also combined with gene-targeted alleles widely used in bone, prostate, brain and pancreas cancer research, as well as with alleles inserted into the commonly used Rosa26 and collagen I loci. This allele is, therefore, a useful addition to the portfolio of reporters to help advance preclinical research.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| | - Mélanie Tichet
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Carolina Marques
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Martin K. Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Elizabeth A. Allen
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Stefanie Stolzlechner
- Laboratory Bone Cancer Metastasis, Cellular and Molecular Tumor Biology, Center for Cancer Research, Medical University of Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| | - Ke Cheng
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Kazuhiko Matsuoka
- Laboratory Bone Cancer Metastasis, Cellular and Molecular Tumor Biology, Center for Cancer Research, Medical University of Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Douglas Hanahan
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
45
|
van der Heide CD, Campeiro JD, Ruigrok EAM, van den Brink L, Ponnala S, Hillier SM, Dalm SU. In vitro and ex vivo evaluation of preclinical models for FAP-targeted theranostics: differences and relevance for radiotracer evaluation. EJNMMI Res 2024; 14:125. [PMID: 39718718 DOI: 10.1186/s13550-024-01191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP) is an attractive target for cancer theranostics. Although FAP-targeted nuclear imaging demonstrated promising clinical results, only sub-optimal results are reported for targeted radionuclide therapy (TRT). Preclinical research is crucial in selecting promising FAP-targeted radiopharmaceuticals and for obtaining an increased understanding of factors essential for FAP-TRT improvement. FAP is mainly expressed by cancer-associated fibroblasts in the tumor stroma and less on cancer cells themselves. Therefore, other (complex) factors impact FAP-TRT efficacy compared to currently clinically applied TRT strategies. For accurate evaluation of these aspects, selection of a representative preclinical model is important. Currently mainly human cancer cell lines transduced to (over)express FAP are applied, lacking clinical representation. It is unclear how these and more physiological FAP-expressing models compare to each other, and whether/how the model influences the study outcome. We aimed to address this by comparing FAP tracer behavior in FAP-transduced HT1080-huFAP and HEK293-huFAP cells, and endogenous FAP-expressing U-87 MG cancer cells and PS-1 pancreatic stellate cells. [111In]In-FAPI-46 and a fluorescent FAP-targeted tracer (RTX-1370S) were used to compare tracer binding/uptake and localization in vitro and ex vivo. Additionally, FAP expression was determined with RT-qPCR and anti-FAP IHC. RESULTS Although FAP expression was highest in HEK293-huFAP cells and cell line derived xenografts, this did not result in the highest tracer uptake. [111In]In-FAPI-46 uptake was highest in HT1080-huFAP, closely followed by HEK293-huFAP, and a 6-10-fold lower uptake for U-87 MG and PS-1 cells. However, ex vivo U-87 MG xenografts only showed a 2-fold lower binding compared to HT1080-huFAP and HEK293-huFAP xenografts, mainly because the cell line attracts murine fibroblasts as demonstrated in our RT-qPCR and IHC studies. CONCLUSIONS The interaction between FAP and FAP-targeted tracers differs between models, indicating the need for appropriate model selection and that comparing results across studies using different models is difficult.
Collapse
Affiliation(s)
- Circe D van der Heide
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, GD, 3015, The Netherlands
| | - Joana D Campeiro
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, GD, 3015, The Netherlands
| | - Eline A M Ruigrok
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, GD, 3015, The Netherlands
| | - Lilian van den Brink
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, GD, 3015, The Netherlands
| | | | | | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, GD, 3015, The Netherlands.
| |
Collapse
|
46
|
Palencia-Campos A, Ruiz-Cañas L, Abal-Sanisidro M, López-Gil JC, Batres-Ramos S, Saraiva SM, Yagüe B, Navarro D, Alcalá S, Rubiolo JA, Bidan N, Sánchez L, Mura S, Hermann PC, de la Fuente M, Sainz B. Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis. J Nanobiotechnology 2024; 22:795. [PMID: 39719597 DOI: 10.1186/s12951-024-03010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) requires innovative therapeutic strategies to counteract its progression and metastatic potential. Since the majority of patients are diagnosed with advanced metastatic disease, treatment strategies targeting not only the primary tumor but also metastatic lesions are needed. Tumor-Associated Macrophages (TAMs) have emerged as central players, significantly influencing PDAC progression and metastasis. Our objective was to validate an innovative therapeutic strategy involving the reprogramming of TAMs using lipid nanosystems to prevent the formation of a pro-metastatic microenvironment in the liver. RESULTS In vitro results demonstrate that M2-polarized macrophages lose their M2-phenotype following treatment with lipid nanoemulsions composed of vitamin E and sphingomyelin (VitE:SM), transitioning to an M0/M1 state. Specifically, VitE:SM nanoemulsion treatment decreased the expression of macrophage M2 markers such as Arg1 and Egr2, while M1 markers such as Cd86, Il-1b and Il-12b increased. Additionally, the TGF-βR1 inhibitor Galunisertib (LY2157299) was loaded into VitE:SM nanoemulsions and delivered to C57BL/6 mice orthotopically injected with KPC PDAC tumor cells. Treated mice showed diminished primary tumor growth and reduced TAM infiltration in the liver. Moreover, we observed a decrease in liver metastasis with the nanoemulsion treatment in an intrasplenic model of PDAC liver metastasis. Finally, we validated the translatability of our VitE:SM nanosystem therapy in a human cell-based 3D co-culture model in vivo, underscoring the pivotal role of macrophages in the nanosystem's therapeutic effect in the context of human PDAC metastasis. CONCLUSIONS The demonstrated effectiveness and safety of our nanosystem therapy highlights a promising therapeutic approach for PDAC, showcasing its potential in reprogramming TAMs and mitigating the occurrence of liver metastasis.
Collapse
Affiliation(s)
- Adrián Palencia-Campos
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Laura Ruiz-Cañas
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
- Biobanco Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Marcelina Abal-Sanisidro
- Nano-Oncology and Translational Therapeutics Group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain
| | - Juan Carlos López-Gil
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), 28029, Madrid, Spain
| | - Sandra Batres-Ramos
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Sofia Mendes Saraiva
- Nano-Oncology and Translational Therapeutics Group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain
| | - Balbino Yagüe
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Diego Navarro
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), 28029, Madrid, Spain
| | - Sonia Alcalá
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela (USC), Lugo, Spain
- Laboratorio Mixto de Biotecnología Acuática, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, 2000, Rosario, Argentina
| | - Nadège Bidan
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela (USC), Lugo, Spain
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain
- DIVERSA Technologies S.L, Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain
| | - Bruno Sainz
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain.
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain.
| |
Collapse
|
47
|
Nishiwaki N, Sugiura K, Suzuki K, Li AL, Tapia Contreras C, Efe G, Shin AE, Sadeghian D, Zhao J, Maitra A, Pitarresi JR, Sims PA, Chandwani R, Rustgi AK. PRRX1 Has Functional Roles in Pancreatic Acinar to Ductal Metaplasia and Carcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 19:101442. [PMID: 39694413 PMCID: PMC11954830 DOI: 10.1016/j.jcmgh.2024.101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Noriyuki Nishiwaki
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Kensuke Sugiura
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Department of General Surgery, Chiba University, Chiba, Japan
| | - Kensuke Suzuki
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Department of General Surgery, Chiba University, Chiba, Japan
| | - Alina L Li
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Constanza Tapia Contreras
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Gizem Efe
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Alice E Shin
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Dorsay Sadeghian
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason R Pitarresi
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan School of Medicine, Worchester, Massachusetts
| | - Peter A Sims
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Digestive and Liver Disease Research Center, Columbia University, New York, New York
| | - Rohit Chandwani
- Department of Surgery and Cell and Developmental Biology, Meyer Cancer Center, Weill-Cornell Medicine, New York, New York
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Digestive and Liver Disease Research Center, Columbia University, New York, New York.
| |
Collapse
|
48
|
Oyama K, Nakata K, Tsutsumi C, Hayashi M, Zhang B, Mochida Y, Shinkawa T, Hirotaka K, Zhong P, Date S, Luo H, Kubo A, Higashijima N, Yamada Y, Abe T, Ideno N, Koikawa K, Iwamoto C, Ikenaga N, Ohuchida K, Onishi H, Morisaki T, Kuba K, Oda Y, Nakamura M. Combined Autophagy Inhibition and Dendritic Cell Recruitment Induces Antitumor Immunity and Enhances Immune Checkpoint Blockade Sensitivity in Pancreatic Cancer. Cancer Res 2024; 84:4214-4232. [PMID: 39288081 PMCID: PMC11647207 DOI: 10.1158/0008-5472.can-24-0830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The effect of immune checkpoint inhibitors is extremely limited in patients with pancreatic ductal adenocarcinoma (PDAC) due to the suppressive tumor immune microenvironment. Autophagy, which has been shown to play a role in antitumor immunity, has been proposed as a therapeutic target for PDAC. In this study, single-cell RNA sequencing of autophagy-deficient murine PDAC tumors revealed that autophagy inhibition in cancer cells induced dendritic cell (DC) activation. Analysis of human PDAC tumors substantiated a negative correlation between autophagy and DC activation signatures. Mechanistically, autophagy inhibition increased the intracellular accumulation of tumor antigens, which could activate DCs. Administration of chloroquine, an autophagy inhibitor, in combination with Flt3 ligand-induced DC infiltration inhibited tumor growth and increased tumor-infiltrating T lymphocytes. However, autophagy inhibition in cancer cells also induced CD8+ T-cell exhaustion with high expression of immune checkpoint LAG3. A triple-therapy comprising chloroquine, Flt3 ligand, and an anti-LAG3 antibody markedly reduced tumor growth in orthotopic syngeneic PDAC mouse models. Thus, targeting autophagy in cancer cells and activating DCs sensitize PDAC tumors to immune checkpoint inhibitor therapy, warranting further development of this treatment approach to overcome immunosuppression in pancreatic cancer. Significance: Inhibiting autophagy in pancreatic cancer cells enhances intracellular accumulation of tumor antigens to induce dendritic cell activation and synergizes with immunotherapy to markedly inhibit the growth of pancreatic ductal adenocarcinoma.
Collapse
MESH Headings
- Autophagy/drug effects
- Autophagy/immunology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Tumor Escape/drug effects
- Tumor Escape/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Chloroquine/pharmacology
- Chloroquine/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Mice, Inbred C57BL
- Humans
- Male
- Female
- Animals
- Mice
- Primary Cell Culture
- Tumor Cells, Cultured
- Mice, Transgenic
- Lymphocyte Activation Gene 3 Protein/antagonists & inhibitors
- Lymphocyte Activation Gene 3 Protein/immunology
- Lymphocyte Activation Gene 3 Protein/metabolism
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Membrane Proteins/pharmacology
- Membrane Proteins/therapeutic use
- Drug Synergism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
Collapse
Affiliation(s)
- Koki Oyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Endoscopic Diagnostics and Therapeutics, Kyushu University Hospital, Fukuoka, Japan
- Department of International Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Hayashi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Bo Zhang
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Mochida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Shinkawa
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kento Hirotaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Pingshan Zhong
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satomi Date
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haizhen Luo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Kubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Higashijima
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiya Abe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noboru Ideno
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Koikawa
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Keiji Kuba
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
Napp J, Siebel P, Rausch H, Kuchta K, Efferth T, Alves F, Ellenrieder V, Cameron S. Prolonged survival by combination treatment with a standardized herbal extract from Japanese Kampo-medicine (Juzentaihoto) and gemcitabine in an orthotopic transplantation pancreatic cancer model. Front Oncol 2024; 14:1454291. [PMID: 39723364 PMCID: PMC11669038 DOI: 10.3389/fonc.2024.1454291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its poor prognosis. Traditional Japanese herbal medicine (Kampo), such as Juzentaihoto (a standardized combination of 10 herbal extracts), has shown immune modulatory effects, modulation of microcirculation, and amelioration of fatigue. It is administered to patients to prevent deterioration of cachexia and counteract side effects of chemotherapy. The effect of Juzentaihoto with or without standard chemotherapy (Gemcitabine) on survival and tumor microenvironment was studied in an immunocompetent pancreatic cancer mouse model. Following tumor development ±12 days after orthotopic implantation of murine pancreatic cancer cells (KPC) into the pancreas of C57BL/6 mice, the mice were treated with Gemcitabine, Juzentaihoto, their combination (Gem/Juz) or NaCl (Ctr.). Combination treatment significantly prolonged survival (+38%) of tumor bearing mice, compared to controls as well as Gemcitabine or Juzentaihoto monotherapy. Macrophage (CD68+) infiltration in pancreatic tumors was significantly enhanced in Gem/Juz - treated animals, compared with controls (p < 0,001), with significant increases of both, macrophages (CD68+) and for lymphocytes (CD45+), especially at the tumor front. In vitro, Juz- or Gem/Juz-treated KPC tumor cells secreted significantly more macrophage-chemoattractant cytokines, e.g., CCL2, CCL20, and CXCL2, whilst Juz- and Gem/Juz-treated macrophages (MH-S) secreted cytokines of the M1 phenotype, e.g., IL6, TNF-α, and IL12. It has been shown that tumor cells recruit and polarize macrophages towards tumor-associated macrophages (TAM). Our results indicate a change in macrophage polarization which not only induced anti-tumor immune-cell activity and cytokine release, but also suggests amelioration of Gemcitabine efficacy as DNA-analogue and as partial antitumor antigen. We propose that the increased survival of tumor bearing mice after Gem/Juz combination treatment is due to the restored cytotoxicity of Gemcitabine and changes in the tumor-microenvironment - induced by Juzentaihoto - such as an increased number of M1 macrophages.
Collapse
Affiliation(s)
- Joanna Napp
- Clinic for Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Göttingen, Germany
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Paulina Siebel
- Clinic for Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Hans Rausch
- Phytochem Reference Substances, Neu-Ulm, Germany
| | - Kenny Kuchta
- Research Unit for Far Eastern Medicine, Department of Vegetation Analysis and Phytodiversity, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Göttingen, Germany
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen (UMG), Göttingen, Germany
- Clinic for Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Volker Ellenrieder
- Clinic for Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Silke Cameron
- Clinic for Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
50
|
Hughson AL, Hannon G, Salama NA, Vrooman TG, Stockwell CA, Mills BN, Garrett-Larsen J, Qiu H, Katerji R, Benoodt L, Johnston CJ, Murphy JD, Kruger E, Ye J, Gavras NW, Keeley DC, Qin SS, Lesch ML, Muhitch JB, Love TM, Calvi LM, Lord EM, Luheshi N, Elyes J, Linehan DC, Gerber SA. Integrating IL-12 mRNA nanotechnology with SBRT eliminates T cell exhaustion in preclinical models of pancreatic cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102350. [PMID: 39469666 PMCID: PMC11513558 DOI: 10.1016/j.omtn.2024.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024]
Abstract
Pronounced T cell exhaustion characterizes immunosuppressive tumors, with the tumor microenvironment (TME) employing multiple mechanisms to elicit this suppression. Traditional immunotherapies, such as immune checkpoint blockade, often fail due to their focus primarily on T cells. To overcome this, we utilized a proinflammatory cytokine, interleukin (IL)-12, that re-wires the immunosuppressive TME by inducing T cell effector function while also repolarizing immunosuppressive myeloid cells. Due to toxicities observed with systemic administration of this cytokine, we utilized lipid nanoparticles encapsulating mRNA encoding IL-12 for intratumoral injection. This strategy has been proven safe and tolerable in early clinical trials for solid malignancies. We report an unprecedented loss of exhausted T cells and the emergence of an activated phenotype in murine pancreatic ductal adenocarcinoma (PDAC) treated with stereotactic body radiation therapy (SBRT) and IL-12mRNA. Our mechanistic findings reveal that each treatment modality contributes to the T cell response differently, with SBRT expanding the T cell receptor repertoire and IL-12mRNA promoting robust T cell proliferation and effector status. This distinctive T cell signature mediated marked growth reductions and long-term survival in local and metastatic PDAC models. This is the first study of its kind combining SBRT with IL-12mRNA and provides a promising new approach for treating this aggressive malignancy.
Collapse
Affiliation(s)
- Angela L. Hughson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Gary Hannon
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Noah A. Salama
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Tara G. Vrooman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Bradley N. Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Jesse Garrett-Larsen
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Haoming Qiu
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Roula Katerji
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren Benoodt
- University of Rochester Genomics Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Carl J. Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph D. Murphy
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emma Kruger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Nicholas W. Gavras
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - David C. Keeley
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyang S. Qin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Maggie L. Lesch
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jason B. Muhitch
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tanzy M.T. Love
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M. Calvi
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Edith M. Lord
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nadia Luheshi
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Jim Elyes
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Scott A. Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|