1
|
He S, Wang Z, Zhu Y, Sun M, Lin X. Elucidating the immunomodulatory roles and mechanisms of CUL4B in the immune system: a comprehensive review. Front Immunol 2025; 16:1473817. [PMID: 40230836 PMCID: PMC11994656 DOI: 10.3389/fimmu.2025.1473817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Cullin 4B (CUL4B), a pivotal member of the Cullins protein family, plays a crucial role in immune regulation and has garnered significant research attention. CUL4B, through the Cullin 4B-RING E3 ubiquitin ligase (CRL4B) complex, regulates CD4+ T cell differentiation, fostering a balance between TH1 and TH2 subsets, and expedites DNA damage repair to bolster T cell persistence. In B cells, CUL4B upregulation stimulates immune responses but is linked to an unfavorable prognosis in lymphoma. In innate immunity, CUL4B modulates Toll-like receptor (TLR)-mediated anti-inflammatory responses, enhancing macrophage migration and adhesion. CUL4B also plays a role in potentiating anti-tumor immunity by restricting the activity of myeloid-derived suppressor cells (MDSCs). In disease pathogenesis, CUL4B limits MDSCs to enhance anti-tumor effects, and its inhibition in experimental autoimmune encephalomyelitis (EAE) models have demonstrated beneficial effects, underscoring its potential therapeutic significance in autoimmune diseases. Furthermore, CUL4B is involved in various immune-related cancers and inflammation, including pleural mesothelioma, human osteosarcoma, and colitis-associated cancer. In metabolic diseases, CUL4B regulates adipose tissue and insulin sensitivity, with its depletion improving metabolic phenotypes. This review highlights the pivotal role of CUL4B in maintaining immune homeostasis and provides novel perspectives and insights into the understanding and development of treatments for immune-related disorders.
Collapse
Affiliation(s)
| | | | | | - Mingfang Sun
- Department of Pathology, The First Hospital of China Medical University,
Shenyang, Liaoning, China
| | - Xuyong Lin
- Department of Pathology, The First Hospital of China Medical University,
Shenyang, Liaoning, China
| |
Collapse
|
2
|
Jiang W, Ma YY, Wang YF, Jin SQ, Yu RQ, Chu SX, Gao YF, Wang ML, Zou YX, Liu Q, Song Y, Zheng Y, Zhang C, Sun GP, Jiang BC, Gong YQ. GABA transporter 1 is a promising drug target for CUL4B mutation-associated epilepsy. Acta Pharmacol Sin 2025:10.1038/s41401-025-01490-1. [PMID: 39984621 DOI: 10.1038/s41401-025-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/19/2025] [Indexed: 02/23/2025]
Abstract
Cullin 4B (CUL4B) is the scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Loss-of-function mutations in the human CUL4B gene result in syndromic X-linked intellectual disability (XLID). In addition to intellectual disability, patients with CUL4B mutations exhibit epilepsy. To date, the mechanism underlying epilepsy associated with CUL4B mutation has not been elucidated. Here, we show that male mice with Cul4b deleted in the nervous system are more susceptible to both pentylenetetrazole (PTZ)- and kainic acid (KA)-induced epilepsy and exhibit spontaneous epilepsy without any chemical inducers. We identify the CRL4B complex as an E3 ubiquitin ligase that targets GABA transporter 1 (GAT1). CUL4B deletion in male mice results in GAT1 accumulation and increased GABA reuptake, leading to impaired GABA-mediated inhibitory synaptic transmission. Treating CUL4B-deficient mice with the GAT1 inhibitor tiagabine effectively reverses the increased susceptibility to chemical-induced epilepsy and attenuates spontaneous epilepsy without the use of chemical inducers. We further confirm the role of CUL4B in the regulation of GAT1 levels and GABA uptake in neurons and astrocytes differentiated from induced pluripotent stem cells (iPSCs) derived from patients with CUL4B loss-of-function mutations. Our work reveals a novel mechanism underlying the pathogenesis of epilepsy and identifies a promising drug target for treating CUL4B mutation-associated epilepsy.
Collapse
Affiliation(s)
- Wei Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yan-Yan Ma
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yu-Feng Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shi-Qi Jin
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Rui-Qi Yu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shu-Xian Chu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yang-Fan Gao
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mo-Lin Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yong-Xin Zou
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiao Liu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yu Song
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yan Zheng
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100053, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair & Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Gong-Ping Sun
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Bai-Chun Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yao-Qin Gong
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Nakagawa M, Nakagawa T. CUL4-Based Ubiquitin Ligases in Chromatin Regulation: An Evolutionary Perspective. Cells 2025; 14:63. [PMID: 39851492 PMCID: PMC11763709 DOI: 10.3390/cells14020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Ubiquitylation is a post-translational modification that modulates protein function and stability. It is orchestrated by the concerted action of three types of enzymes, with substrate specificity governed by ubiquitin ligases (E3s), which may exist as single proteins or as part of multi-protein complexes. Although Cullin (CUL) proteins lack intrinsic enzymatic activity, they participate in the formation of active ubiquitin ligase complexes, known as Cullin-Ring ubiquitin Ligases (CRLs), through their association with ROC1 or ROC2, along with substrate adaptor and receptor proteins. Mammalian genomes encode several CUL proteins (CUL1-9), each contributing to distinct CRLs. Among these CUL proteins, CUL1, CUL3, and CUL4 are believed to be the most ancient and evolutionarily conserved from yeast to mammals, with CUL4 uniquely duplicated in vertebrates. Genetic evidence strongly implicates CUL4-based ubiquitin ligases (CRL4s) in chromatin regulation across various species and suggests that, in vertebrates, CRL4s have also acquired a cytosolic role, which is facilitated by a cytosol-localizing paralog of CUL4. Substrates identified through biochemical studies have elucidated the molecular mechanisms by which CRL4s regulate chromatin and cytosolic processes. The substantial body of knowledge on CUL4 biology amassed over the past two decades provides a unique opportunity to explore the functional evolution of CRL4. In this review, we synthesize the available structural, genetic, and biochemical data on CRL4 from various model organisms and discuss the conserved and novel functions of CRL4s.
Collapse
Affiliation(s)
- Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan;
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan
| |
Collapse
|
4
|
Yu R, Han H, Chu S, Qin L, Du M, Ma Y, Wang Y, Jiang W, Song Y, Zou Y, Wang M, Liu Q, Jiang B, Gong Y, Sun G. Cullin 4B-RING E3 ligase negatively regulates the immunosuppressive capacity of mesenchymal stem cells by suppressing iNOS. Cell Death Differ 2025; 32:149-161. [PMID: 39138375 PMCID: PMC11748679 DOI: 10.1038/s41418-024-01359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that can exert immunomodulatory capacity upon stimulation with pro-inflammatory cytokines. Our previous work has identified Cullin 4B (CUL4B), a scaffold protein in the CUL4B-RING E3 ligase (CRL4B) complex, as a key regulator in the differentiation of MSCs. Here, we demonstrate the critical role of CUL4B in regulating the immunosuppressive function of MSCs. When stimulated with pro-inflammatory cytokines, MSCs lacking CUL4B display enhanced immunosuppressive capacity, which is mediated by the elevated inducible nitric oxide synthase (iNOS). TGF-β signaling can suppress iNOS by inhibiting its transcription as well as promoting its protein degradation. We show that the CRL4B complex cooperates with PRC2 complex and HDACs to repress transcription of Dlx1 and Pmepa1, two inhibitors of TGF-β signaling, leading to decreased expression and accelerated degradation of iNOS. Our study unveils the CRL4B complex as a potential therapeutic target in promoting the immunosuppressive capacity of MSCs.
Collapse
Affiliation(s)
- Ruiqi Yu
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hong Han
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shuxian Chu
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Liping Qin
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mengying Du
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yanyan Ma
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yufeng Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wei Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yu Song
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Molin Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiao Liu
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology of the Ministry of Education, State Key Laboratory of Reproductive Medicine and Offspring Health and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Liu K, Hao X, Gao Y, Cao Z, Hou M, Qin L, Song Y, Wang M, Jiang B, Liu Q, Zou Y, Gong Y, Liu G, Sun G. CUL4B protects kidneys from acute injury by restraining p53/PAI-1 signaling. Cell Death Dis 2024; 15:915. [PMID: 39695153 DOI: 10.1038/s41419-024-07299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Acute kidney injury (AKI) caused by nephrotoxins, ischemia reperfusion (IR) or sepsis is associated with high morbidity and mortality. Unveiling new mechanisms underlying AKI can help develop new therapeutic strategy. Cullin 4B (CUL4B) is a scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Here, we demonstrate that CUL4B can protect kidneys from acute injury induced by cisplatin and IR. CUL4B is upregulated in mouse tubular epithelial cells (TECs) after cisplatin treatment or IR. Loss of CUL4B in kidneys exacerbates renal injury, inflammation, and apoptosis of TECs caused by cisplatin and IR. Transcriptome analysis reveals that Cul4b deficiency enhances injury-induced PAI-1 expression. CUL4B suppresses PAI-1 expression by promoting polyubiquitination and degradation of p53. Inhibition of either PAI-1 or p53 can prevent the aggravated renal injury and inflammation caused by loss of CUL4B. Our work has identified the kidney-protective role of CUL4B against acute injury.
Collapse
Affiliation(s)
- Kaixuan Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyu Hao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yangfan Gao
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyuan Cao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Min Hou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lining Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guangyi Liu
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Jiang W, Zhang J, Wang M, Zou Y, Liu Q, Song Y, Sun G, Gong Y, Zhang F, Jiang B. The X-linked intellectual disability gene CUL4B is critical for memory and synaptic function. Acta Neuropathol Commun 2024; 12:188. [PMID: 39633474 PMCID: PMC11619648 DOI: 10.1186/s40478-024-01903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Cullin 4B (CUL4B) is the scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Loss-of-function mutations in the human CUL4B gene lead to syndromic X-linked intellectual disability (XLID). Till now, the mechanism of intellectual disability caused by CUL4B mutation still needs to be elucidated. In this study, we used single-nucleus RNA sequencing (snRNA-seq) to investigate the impact of CUL4B deficiency on the transcriptional programs of diverse cell types. The results revealed that depletion of CUL4B resulted in impaired intercellular communication and elicited cell type-specific transcriptional changes relevant to synapse dysfunction. Golgi-Cox staining of brain slices and immunostaining of in vitro cultured neurons revealed remarkable synapse loss in CUL4B-deficient mice. Ultrastructural analysis via transmission electron microscopy (TEM) showed that the width of the synaptic cleft was significantly greater in CUL4B-deficient mice. Electrophysiological experiments found a decrease in the amplitude of AMPA receptor-mediated EPSCs in the hippocampal CA1 pyramidal neurons of CUL4B-deficient mice. These results indicate that depletion of CUL4B in mice results in morphological and functional abnormalities in synapses. Furthermore, behavioral tests revealed that depletion of CUL4B in the mouse nervous system results in impaired spatial learning and memory. Taken together, the findings of this study reveal the pathogenesis of neurological disorders associated with CUL4B mutations and promote the identification of therapeutic targets that can halt synaptic abnormalities and preserve memory in individuals.
Collapse
Affiliation(s)
- Wei Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jian Zhang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Molin Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiao Liu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Song
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Medical Morphology Teaching Laboratory, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Wu Y, Chen Y, Tian X, Shao G, Lin Q, Sun A. Ubiquitination regulates autophagy in cancer: simple modifications, promising targets. J Transl Med 2024; 22:985. [PMID: 39482684 PMCID: PMC11526641 DOI: 10.1186/s12967-024-05565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 11/03/2024] Open
Abstract
Autophagy is an important lysosomal degradation process that digests and recycles bio-molecules, protein or lipid aggregates, organelles, and invaded pathogens. Autophagy plays crucial roles in regulation of metabolic and oxidative stress and multiple pathological processes. In cancer, the role of autophagy is dual and paradoxical. Ubiquitination has been identified as a key regulator of autophagy that can influence various steps in the autophagic process, with autophagy-related proteins being targeted for ubiquitination, thus impacting cancer progression and the effectiveness of therapeutic interventions. This review will concentrate on mechanisms underlying autophagy, ubiquitination, and their interactions in cancer, as well as explore the use of drugs that target the ubiquitin-proteasome system (UPS) and ubiquitination process in autophagy as part of cancer therapy.
Collapse
Affiliation(s)
- Yihui Wu
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yifei Chen
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
8
|
Guo B, Zheng Y, Fan Y, Yang Y, Wang Y, Qin L, An Y, Xu X, Zhang X, Sun G, Dou H, Shao C, Gong Y, Jiang B, Hu H. Enhanced Apc Min/+ adenoma formation after epithelial CUL4B deletion by recruitment of myeloid-derived suppressor cells. Neoplasia 2024; 53:101005. [PMID: 38761506 PMCID: PMC11127156 DOI: 10.1016/j.neo.2024.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Colorectal cancer (CRC) stands as a prevalent malignancy globally. A pivotal event in CRC pathogenesis involves the loss-of-function mutation in the APC gene, leading to the formation of benign polyps. Despite the well-established role of APC, the contribution of CUL4B to CRC initiation in the pre-tumorous stage remains poorly understood. In this investigation, we generated a murine model by crossing ApcMin/+ mice with Cul4bΔIEC mice to achieve specific deletion of Cul4b in the gut epithelium against an ApcMin/+ background. By employing histological methods, RNA-sequencing (RNA-seq), and flow cytometry, we assessed alterations and characterized the immune microenvironment. Our results unveiled that CUL4B deficiency in gut epithelium expedited ApcMin/+ adenoma formation. Notably, CUL4B in adenomas restrained the accumulation of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). In vivo inhibition of MDSCs significantly delayed the growth of CUL4B deleted ApcMin/+ adenomas. Furthermore, the addition of MDSCs to in vitro cultured ApcMin/+; Cul4bΔIEC adenoma organoids mitigated their alterations. Mechanistically, CUL4B directly interacted with the promoter of Csf3, the gene encoding granulocyte-colony stimulating factor (G-CSF) by coordinating with PRC2. Inhibiting CUL4B epigenetically activated the expression of G-CSF, promoting the recruitment of MDSCs. These findings offer novel insights into the tumor suppressor-like roles of CUL4B in regulating ApcMin/+ adenomas, suggesting a potential therapeutic strategy for CRC initiation and progression in the context of activated Wnt signaling.
Collapse
Affiliation(s)
- Beibei Guo
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yawen Zheng
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China; Department of Obstetrics & Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yujia Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yang Yang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yuxing Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Liping Qin
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yachun An
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaoran Xu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiyu Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Histoembryology, Shandong University Cheeloo Medical College, Shandong University School of Medicine, Jinan, China
| | - Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
9
|
Ni S, Takada Y, Ando T, Yu S, Yamashita Y, Takahashi Y, Sawada M, Oba M, Itoh Y, Suzuki T. Identification of a novel histone H2A mono-ubiquitination-inhibiting cell-active small molecule. Bioorg Med Chem Lett 2024; 105:129759. [PMID: 38636717 DOI: 10.1016/j.bmcl.2024.129759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Histone H2A mono-ubiquitination plays important roles in epigenetic gene expression and is also involved in tumorigenesis. Small molecules controlling H2A ubiquitination are of interest as potential chemical tools and anticancer drugs. To identify novel small molecule inhibitors of H2A ubiquitination, we synthesized and evaluated several compounds designed based on PRT4165 (1), which is a reported histone ubiquitin ligase RING1A inhibitor. We found that compound 11b strongly inhibited the viability and reduced histone H2A mono-ubiquitination in human osteosarcoma U2OS cells. Therefore, compound 11b is a promising lead compound for the development of H2A histone ubiquitination-inhibiting small molecules.
Collapse
Affiliation(s)
- Siyao Ni
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuri Takada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takaaki Ando
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shengwang Yu
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | - Yukari Takahashi
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Miho Sawada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Makoto Oba
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
10
|
Guo B, Huo X, Xie X, Zhang X, Lian J, Zhang X, Gong Y, Dou H, Fan Y, Mao Y, Wang J, Hu H. Dynamic role of CUL4B in radiation-induced intestinal injury-regeneration. Sci Rep 2024; 14:9906. [PMID: 38689033 PMCID: PMC11061312 DOI: 10.1038/s41598-024-60704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
CUL4B, a crucial scaffolding protein in the largest E3 ubiquitin ligase complex CRL4B, is involved in a broad range of physiological and pathological processes. While previous research has shown that CUL4B participates in maintaining intestinal homeostasis and function, its involvement in facilitating intestinal recovery following ionizing radiation (IR) damage has not been fully elucidated. Here, we utilized in vivo and in vitro models to decipher the role of CUL4B in intestinal repair after IR-injury. Our findings demonstrated that prior to radiation exposure, CUL4B inhibited the ubiquitination modification of PSME3, which led to the accumulation of PSME3 and subsequent negative regulation of p53-mediated apoptosis. In contrast, after radiation, CUL4B dissociated from PSME3 and translocated into the nucleus at phosphorylated histones H2A (γH2AX) foci, thereby impeding DNA damage repair and augmenting p53-mediated apoptosis through inhibition of BRCA1 phosphorylation and RAD51. Our study elucidated the dynamic role of CUL4B in the repair of radiation-induced intestinal damage and uncovered novel molecular mechanisms underlying the repair process, suggesting a potential therapeutic strategy of intestinal damage after radiation therapy for cancers.
Collapse
Affiliation(s)
- Beibei Guo
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Xiaohan Huo
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Xueyong Xie
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Xiaohui Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Jiabei Lian
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Xiyu Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Yujia Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Yunuo Mao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China.
| |
Collapse
|
11
|
Christodoulidis G, Koumarelas KE, Kouliou MN, Thodou E, Samara M. Gastric Cancer in the Era of Epigenetics. Int J Mol Sci 2024; 25:3381. [PMID: 38542354 PMCID: PMC10970362 DOI: 10.3390/ijms25063381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Gastric cancer (GC) remains a significant contributor to cancer-related mortality. Novel high-throughput techniques have enlightened the epigenetic mechanisms governing gene-expression regulation. Epigenetic characteristics contribute to molecular taxonomy and give rise to cancer-specific epigenetic patterns. Helicobacter pylori (Hp) infection has an impact on aberrant DNA methylation either through its pathogenic CagA protein or by inducing chronic inflammation. The hypomethylation of specific repetitive elements generates an epigenetic field effect early in tumorigenesis. Epstein-Barr virus (EBV) infection triggers DNA methylation by dysregulating DNA methyltransferases (DNMT) enzyme activity, while persistent Hp-EBV co-infection leads to aggressive tumor behavior. Distinct histone modifications are also responsible for oncogene upregulation and tumor-suppressor gene silencing in gastric carcinomas. While histone methylation and acetylation processes have been extensively studied, other less prevalent alterations contribute to the development and migration of gastric cancer via a complex network of interactions. Enzymes, such as Nicotinamide N-methyltransferase (NNMT), which is involved in tumor's metabolic reprogramming, interact with methyltransferases and modify gene expression. Non-coding RNA molecules, including long non-coding RNAs, circular RNAs, and miRNAs serve as epigenetic regulators contributing to GC development, metastasis, poor outcomes and therapy resistance. Serum RNA molecules hold the potential to serve as non-invasive biomarkers for diagnostic, prognostic or therapeutic applications. Gastric fluids represent a valuable source to identify potential biomarkers with diagnostic use in terms of liquid biopsy. Ongoing clinical trials are currently evaluating the efficacy of next-generation epigenetic drugs, displaying promising outcomes. Various approaches including multiple miRNA inhibitors or targeted nanoparticles carrying epigenetic drugs are being designed to enhance existing treatment efficacy and overcome treatment resistance.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Konstantinos-Eleftherios Koumarelas
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Marina-Nektaria Kouliou
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| |
Collapse
|
12
|
Ma Y, Liu X, Zhou M, Sun W, Jiang B, Liu Q, Wang M, Zou Y, Liu Q, Gong Y, Sun G. CUL4B mutations impair human cortical neurogenesis through PP2A-dependent inhibition of AKT and ERK. Cell Death Dis 2024; 15:121. [PMID: 38331954 PMCID: PMC10853546 DOI: 10.1038/s41419-024-06501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mutation in CUL4B gene is one of the most common causes for X-linked intellectual disability (XLID). CUL4B is the scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complex. While the roles of CUL4B in cancer progression and some developmental processes like adipogenesis, osteogenesis, and spermatogenesis have been studied, the mechanisms underlying the neurological disorders in patients with CUL4B mutations are poorly understood. Here, using 2D neuronal culture and cerebral organoids generated from the patient-derived induced pluripotent stem cells and their isogenic controls, we demonstrate that CUL4B is required to prevent premature cell cycle exit and precocious neuronal differentiation of neural progenitor cells. Moreover, loss-of-function mutations of CUL4B lead to increased synapse formation and enhanced neuronal excitability. Mechanistically, CRL4B complex represses transcription of PPP2R2B and PPP2R2C genes, which encode two isoforms of the regulatory subunit of protein phosphatase 2 A (PP2A) complex, through catalyzing monoubiquitination of H2AK119 in their promoter regions. CUL4B mutations result in upregulated PP2A activity, which causes inhibition of AKT and ERK, leading to premature cell cycle exit. Activation of AKT and ERK or inhibition of PP2A activity in CUL4B mutant organoids rescues the neurogenesis defect. Our work unveils an essential role of CUL4B in human cortical development.
Collapse
Affiliation(s)
- Yanyan Ma
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaolin Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenjie Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiji Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
13
|
Deng X, Ma N, He J, Xu F, Zou G. The Role of TGFBR3 in the Development of Lung Cancer. Protein Pept Lett 2024; 31:491-503. [PMID: 39092729 DOI: 10.2174/0109298665315841240731060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
The Transforming Growth Factor-β (TGF-β) mediates embryonic development, maintains cellular homeostasis, regulates immune function, and is involved in a wide range of other biological processes. TGF-β superfamily signaling pathways play an important role in cancer development and can promote or inhibit tumorigenesis. Type III TGF-β receptor (TGFBR3) is a co-receptor in the TGF-β signaling pathway, which often occurs with reduced or complete loss of expression in many cancer patients and can act as a tumor suppressor gene. The reduction or deletion of TGFBR3 is more pronounced compared to other elements in the TGF-β signaling pathway. In recent years, lung cancer is one of the major malignant tumors that endanger human health, and its prognosis is poor. Recent studies have reported that TGFBR3 expression decreases to varying degrees in different types of lung cancer, both at the tissue level and at the cellular level. The invasion, metastasis, angiogenesis, and apoptosis of lung cancer cells are closely related to the expression of TGFBR3, which strengthens the inhibitory function of TGFBR3 in the evolution of lung cancer. This article reviews the mechanism of TGFBR3 in lung cancer and the influencing factors associated with TGFBR3. Clarifying the physiological function of TGFBR3 and its molecular mechanism in lung cancer is conducive to the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Xin Deng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Nuoya Ma
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Junyu He
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Fei Xu
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Guoying Zou
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| |
Collapse
|
14
|
Sivakumar M, Ahmad SF, Emran TB, Angulo-Bejarano PI, Sharma A, Ahmed SSSJ. Network-Derived Radioresistant Breast Cancer Target with Candidate Inhibitors from Brown Algae: A Sequential Assessment from Target Selection to Quantum Chemical Calculation. Mar Drugs 2023; 21:545. [PMID: 37888480 PMCID: PMC10608582 DOI: 10.3390/md21100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Despite significant progress in early detection and treatment, a few aggressive breast cancers still exhibit resistance to therapy. This study aimed to identify a therapeutic target for radioresistant breast cancer (RRbc) through a protein network from breast cancer genes and to evaluate potent phytochemicals against the identified target. Our approach includes the integration of differential expression genes from expression datasets to create a protein network and to use survival analysis to identify the crucial RRbc protein in order to discover a therapeutic target. Next, the phytochemicals sourced from brown algae were screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), molecular dynamics (MD) simulation, MM-GBSA, and quantum mechanics against the identified target. As a result of our protein network investigation, the proto-oncogene c-KIT (KIT) protein was identified as a potent radioresistant breast cancer target. Further, phytochemical screening establishes that nahocol-A1 from brown algae has high binding characteristics (-8.56 kcal/mol) against the KIT protein. Then, quantum chemical analysis of nahocol-A1 provided insights into its electronic properties favorable for protein binding. Also, MD simulation comprehends the conformational stability of the KIT-nahocol-A1 complex. Overall, our findings suggest nahocol-A1 could serve as a promising therapeutic candidate for radioresistant breast cancer.
Collapse
Affiliation(s)
- Mahema Sivakumar
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Paola Isabel Angulo-Bejarano
- NatProLab-Plant Innovation Lab, Regional Department of Bioengineering, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Ashutosh Sharma
- NatProLab-Plant Innovation Lab, Regional Department of Bioengineering, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
15
|
Gong Q, Wang Y, Zhu K, Bai X, Feng T, Sun G, Wang M, Pan X, Qin C. CUL4B enhances the malignant phenotype of esophageal squamous cell carcinoma by suppressing TGFBR3 expression. Biochem Biophys Res Commun 2023; 676:58-65. [PMID: 37487438 DOI: 10.1016/j.bbrc.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Cullin 4B (CUL4B), which acts as a scaffold protein in CUL4B-RING ubiquitin ligase complexes (CRL4B), is frequently overexpressed in cancer and represses tumor suppressors through epigenetic mechanisms. However, the expression and function of CUL4B in esophageal squamous cell carcinoma (ESCC) have not been well illustrated. In this study, we show that upregulation of CUL4B in ESCC cells enhances proliferation, invasion and cisplatin (CDDP)-resistance, while knockdown of CUL4B significantly represses the malignant activities. Mechanistically, we demonstrate that CUL4B promotes proliferation and migration of ESCC cells through inhibiting expression of transforming growth factor beta receptor III (TGFBR3). CRL4B complex binds to the promoter of TGFBR3, and represses its transcription by catalyzing monoubiquitination at H2AK119 and coordinating with PRC2 and HDAC complexes. Taken together, our findings establish a critical role for the CUL4B/TGFBR3 axis in the regulation of ESCC malignancy.
Collapse
Affiliation(s)
- Qi Gong
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Gastroenterology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kexin Zhu
- Shandong First Medical University, Jinan, Shandong, China
| | - Xueli Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tong Feng
- Department of Thyroid Disease, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
16
|
Song Y, Jin S, Sun G, Gong Y. Cullin 4B-RING E3 ligase complex in immune cell differentiation and function. Cell Mol Immunol 2023; 20:1254-1256. [PMID: 37253945 PMCID: PMC10541864 DOI: 10.1038/s41423-023-01045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Affiliation(s)
- Yu Song
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shiqi Jin
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Gongping Sun
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
17
|
Liu X, Tian F, Cui J, Gong L, Xiang L, Fan B, Liu S, Zhan J, Zhou Y, Jiang B, Wang M, Sun G, Gong Y, Zou Y. CUL4B functions as a tumor suppressor in KRAS-driven lung tumors by inhibiting the recruitment of myeloid-derived suppressor cells. Oncogene 2023; 42:3113-3126. [PMID: 37653114 DOI: 10.1038/s41388-023-02824-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. KRAS mutations are the most common oncogenic alterations found in lung cancer. Unfortunately, treating KRAS-mutant lung adenocarcinoma (ADC) remains a major oncotherapeutic challenge. Here, we used both autochthonous and transplantable KRAS-mutant tumor models to investigate the role of tumor-derived CUL4B in KRAS-driven lung cancers. We showed that knockout or knockdown of CUL4B promotes lung ADC growth and progression in both models. Mechanistically, CUL4B directly binds to the promoter of Cxcl2 and epigenetically represses its transcription. CUL4B deletion increases the expression of CXCL2, which binds to CXCR2 on myeloid-derived suppressor cells (MDSCs) and promotes their migration to the tumor microenvironment. Targeting of MDSCs significantly delayed the growth of CUL4B knockdown KRAS-mutant tumors. Collectively, our study provides mechanistic insights into the novel tumor suppressor-like functions of CUL4B in regulating KRAS-driven lung tumor development.
Collapse
Affiliation(s)
- Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Tian
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Xiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bowen Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuangteng Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiafeng Zhan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yadi Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Molin Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
18
|
Kreienbühl J, Changkhong S, Orlowski V, Kirschner MB, Opitz I, Meerang M. Cullin 4B Ubiquitin Ligase Is Important for Cell Survival and Regulates TGF-β1 Expression in Pleural Mesothelioma. Int J Mol Sci 2023; 24:13410. [PMID: 37686215 PMCID: PMC10487616 DOI: 10.3390/ijms241713410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
We previously demonstrated that cullin 4B (CUL4B) upregulation was associated with worse outcomes of pleural mesothelioma (PM) patients, while the overexpression of its paralog CUL4A was not associated with clinical outcomes. Here, we aimed to identify the distinct roles of CUL4B and CUL4A in PM using an siRNA approach in PM cell lines (ACC Meso-1 and Mero82) and primary culture. The knockdown of CUL4B and CUL4A resulted in significantly reduced colony formation, increased cell death, and delayed cell proliferation. Furthermore, similar to the effect of CUL4A knockdown, downregulation of CUL4B led to reduced expression of Hippo pathway genes including YAP1, CTGF, and survivin. Interestingly, CUL4B and not CUL4A knockdown reduced TGF-β1 and MMP2 expression, suggesting a unique association of CUL4B with this pathway. However, the treatment of PM cells with exogenous TGF-β1 following CUL4B knockdown did not rescue PM cell growth. We further analyzed ACC Meso-1 xenograft tumor tissues treated with the cullin inhibitor, pevonedistat, which targets protein neddylation, and observed the downregulation of human TGF-β1 and MMP2. In summary, our data suggest that CUL4B overexpression is important for tumor cell growth and survival and may drive PM aggressiveness via the regulation of TGF-β1 expression and, furthermore, reveal a new mechanism of action of pevonedistat.
Collapse
Affiliation(s)
| | | | | | | | | | - Mayura Meerang
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland (V.O.); (M.B.K.); (I.O.)
| |
Collapse
|
19
|
Jo JH, Park JU, Kim YM, Ok SM, Kim DK, Jung DH, Kim HJ, Seong HA, Cho HJ, Nah J, Kim S, Fu H, Redon CE, Aladjem MI, Jang SM. RepID represses megakaryocytic differentiation by recruiting CRL4A-JARID1A at DAB2 promoter. Cell Commun Signal 2023; 21:219. [PMID: 37612584 PMCID: PMC10463337 DOI: 10.1186/s12964-023-01246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication initiation determinant protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING E3 ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. METHODS The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. RESULTS RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. CONCLUSION This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production. Video Abstract.
Collapse
Affiliation(s)
- Jae-Hyun Jo
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jong-Uk Park
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yeong-Mu Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seon-Mi Ok
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dong-Kyu Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dong-Hyun Jung
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hye-Ji Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyun-A Seong
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyo Je Cho
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jihoon Nah
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Sang-Min Jang
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
20
|
Jin S, Song Y, Zhou L, Jiang W, Qin L, Wang Y, Yu R, Liu Y, Diao Y, Zhang F, Liu K, Li P, Hu H, Jiang B, Tang W, Yi F, Gong Y, Liu G, Sun G. Depletion of CUL4B in macrophages ameliorates diabetic kidney disease via miR-194-5p/ITGA9 axis. Cell Rep 2023; 42:112550. [PMID: 37224018 DOI: 10.1016/j.celrep.2023.112550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/26/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most prevalent chronic kidney disease. Macrophage infiltration in the kidney is critical for the progression of DKD. However, the underlying mechanism is far from clear. Cullin 4B (CUL4B) is the scaffold protein in CUL4B-RING E3 ligase complexes. Previous studies have shown that depletion of CUL4B in macrophages aggravates lipopolysaccharide-induced peritonitis and septic shock. In this study, using two mouse models for DKD, we demonstrate that myeloid deficiency of CUL4B alleviates diabetes-induced renal injury and fibrosis. In vivo and in vitro analyses reveal that loss of CUL4B suppresses migration, adhesion, and renal infiltration of macrophages. Mechanistically, we show that high glucose upregulates CUL4B in macrophages. CUL4B represses expression of miR-194-5p, which leads to elevated integrin α9 (ITGA9), promoting migration and adhesion. Our study suggests the CUL4B/miR-194-5p/ITGA9 axis as an important regulator for macrophage infiltration in diabetic kidneys.
Collapse
Affiliation(s)
- Shiqi Jin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Li Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liping Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ruiqi Yu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuting Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yujie Diao
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kaixuan Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peishan Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guangyi Liu
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
21
|
Jo JH, Ok SM, Kim DK, Kim YM, Park JU, Jung DH, Kim HJ, Seong HA, Cho HJ, Nah J, Kim S, Fu H, Redon CE, Aladjem MI, Jang SM. RepID represses megakaryocytic differentiation by recruiting CRL4A-JARID1A at DAB2 promoter. RESEARCH SQUARE 2023:rs.3.rs-3045396. [PMID: 37461562 PMCID: PMC10350187 DOI: 10.21203/rs.3.rs-3045396/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Background Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication origin binding protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. Methods The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. Results RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. Conclusion This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production.
Collapse
|
22
|
Wang Y, Wang R, Liu X, Liu M, Sun L, Pan X, Hu H, Jiang B, Zou Y, Liu Q, Gong Y, Wang M, Sun G. Chemotherapy-induced executioner caspase activation increases breast cancer malignancy through epigenetic de-repression of CDH12. Oncogenesis 2023; 12:34. [PMID: 37355711 DOI: 10.1038/s41389-023-00479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Cancer relapse and metastasis are major obstacles for effective treatment. One important mechanism to eliminate cancer cells is to induce apoptosis. Activation of executioner caspases is the key step in apoptosis and was considered "a point of no return". However, in recent years, accumulating evidence has demonstrated that cells can survive executioner caspase activation in response to apoptotic stimuli through a process named anastasis. Here we show that breast cancer cells that have survived through anastasis (anastatic cells) after exposure to chemotherapeutic drugs acquire enhanced proliferation and migration. Mechanistically, cadherin 12 (CDH12) is persistently upregulated in anastatic cells and promotes breast cancer malignancy via activation of ERK and CREB. Moreover, we demonstrate that executioner caspase activation induced by chemotherapeutic drugs results in loss of DNA methylation and repressive histone modifications in the CDH12 promoter region, leading to increased CDH12 expression. Our work unveils the mechanism underlying anastasis-induced enhancement in breast cancer malignancy, offering new therapeutic targets for preventing post-chemotherapy cancer relapse and metastasis.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohe Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Menghao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lili Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
23
|
Yu R, Han H, Chu S, Ding Y, Jin S, Wang Y, Jiang W, Liu Y, Zou Y, Wang M, Liu Q, Sun G, Jiang B, Gong Y. CUL4B orchestrates mesenchymal stem cell commitment by epigenetically repressing KLF4 and C/EBPδ. Bone Res 2023; 11:29. [PMID: 37268647 DOI: 10.1038/s41413-023-00263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 06/04/2023] Open
Abstract
Dysregulated lineage commitment of mesenchymal stem cells (MSCs) contributes to impaired bone formation and an imbalance between adipogenesis and osteogenesis during skeletal aging and osteoporosis. The intrinsic cellular mechanism that regulates MSC commitment remains unclear. Here, we identified Cullin 4B (CUL4B) as a critical regulator of MSC commitment. CUL4B is expressed in bone marrow MSCs (BMSCs) and downregulated with aging in mice and humans. Conditional knockout of Cul4b in MSCs resulted in impaired postnatal skeletal development with low bone mass and reduced bone formation. Moreover, depletion of CUL4B in MSCs aggravated bone loss and marrow adipose accumulation during natural aging or after ovariectomy. In addition, CUL4B deficiency in MSCs reduced bone strength. Mechanistically, CUL4B promoted osteogenesis and inhibited adipogenesis of MSCs by repressing KLF4 and C/EBPδ expression, respectively. The CUL4B complex directly bound to Klf4 and Cebpd and epigenetically repressed their transcription. Collectively, this study reveals CUL4B-mediated epigenetic regulation of the osteogenic or adipogenic commitment of MSCs, which has therapeutic implications in osteoporosis.
Collapse
Affiliation(s)
- Ruiqi Yu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hong Han
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shuxian Chu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yijun Ding
- The Key Laboratory of Liquid‒Solid Structural Evolution and Processing of Materials of Ministry of Education and Institute of Liquid Metal and Casting Technology, School of Materials Science and Engineering, Shandong University, Jinan, 250012, China
| | - Shiqi Jin
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yufeng Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wei Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuting Liu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Molin Wang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiao Liu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
24
|
Qin L, Song Y, Zhang F, Wang R, Zhou L, Jin S, Chen C, Li C, Wang M, Jiang B, Sun G, Ma C, Gong Y, Li P. CRL4B complex-mediated H2AK119 monoubiquitination restrains Th1 and Th2 cell differentiation. Cell Death Differ 2023; 30:1488-1502. [PMID: 37024604 PMCID: PMC10244459 DOI: 10.1038/s41418-023-01155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
CD4+ T helper (Th) cell differentiation is regulated by lineage-specific expression of transcription factors, which is tightly associated with epigenetic modifications, including histone acetylation and methylation. However, the factors regulating histone modifications involved in Th cell differentiation remain largely unknown. We herein demonstrated a critical role of Cullin 4B (CUL4B) in restricting Th1 and Th2 cell differentiation. CUL4B, which is assembled into the CUL4B-RING E3 ligase (CRL4B) complex, participates in various physiological and developmental processes through epigenetic repression of transcription. Depletion of Cul4b in CD4+ T cells enhanced Th1 and Th2 cell differentiation. In vivo, an aggravated Th2 response caused by the absence of CUL4B was observed in a murine asthma model. Mechanistically, the CRL4B complex promoted monoubiquitination at H2AK119 (H2AK119ub1) and polycomb repressive complex 2 (PRC2)-mediated trimethylation at H3K27 (H3K27me3) at Tbx21 and Maf and consequently repressed their expression during Th cell differentiation. Our study suggests that CRL4B complex-mediated H2AK119ub1 deposition functions to prevent the aberrant expression of Th1 and Th2 lineage-specific genes.
Collapse
Affiliation(s)
- Liping Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fan Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shiqi Jin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chaojia Chen
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chunyang Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chunhong Ma
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Peishan Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
25
|
Luo JW, Wang CM, Su JW, Yi TZ, Tang SH. CUL4B increases platinum-based drug resistance in colorectal cancer through EMT: A study in its mechanism. J Cell Mol Med 2022; 26:5767-5778. [PMID: 36385733 PMCID: PMC9716322 DOI: 10.1111/jcmm.17585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Platinum-based chemotherapy drugs play a very important role in the treatment of patients with advanced colorectal cancer, but the drug resistance of platinum-based chemotherapy drugs is an important topic that puzzles us. If we can find mechanisms of resistance, it will be revolutionary for us. We analysed the differential genes, core genes and their enrichment pathways in platinum-resistant and non-resistant patients through a public database. Platinum-resistant cell lines were cultured in vitro for in vitro colony and Transwell analysis. Tumorigenesis analysis of nude mice in vivo. Verify the function of core genes. Through differential gene and enrichment analysis, we found that CUL4B was the main factor affecting platinum drug resistance and EMT. Our hypothesis was further verified by in vitro drug-resistant and wild-type cell lines and in vivo tumorigenesis analysis of nude mice. CUL4B leads to platinum drug resistance in colorectal cancer by affecting tumour EMT.
Collapse
Affiliation(s)
- Jian-Wu Luo
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Guangxi Huiren Medical Technology Co., Ltd, Nanning, China
| | - Chun-Ming Wang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian-Wei Su
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University For Nationalities, Baise, China
| | - Ting-Zhuang Yi
- Department of Oncology, Affiliated Hospital of YouJiang Medical University For Nationalities, Baise, China
| | - Shao-Hui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Yang Y, Zhang M, Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:277-290. [PMID: 39036551 PMCID: PMC11256729 DOI: 10.1016/j.jncc.2022.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are key factors in chromatin packaging, and are responsible for gene regulation during cell fate determination and development. Abnormal alterations in histone modifications potentially affect the stability of the genome and disrupt gene expression patterns, leading to many diseases, including cancer. In recent years, mounting evidence has shown that various histone modifications altered by aberrantly expressed modifier enzymes contribute to tumor development and metastasis through the induction of epigenetic, transcriptional, and phenotypic changes. In this review, we will discuss the existing histone modifications, both well-studied and rare ones, and their roles in solid tumors and hematopoietic cancers, to identify the molecular pathways involved and investigate targeted therapeutic drugs to reorganize the chromatin and enhance cancer treatment efficiency. Finally, clinical inhibitors of histone modifications are summarized to better understand the developmental stage of cancer therapy in using these drugs to inhibit the histone modification enzymes.
Collapse
Affiliation(s)
| | | | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Xu L, Zhou C, Liang Y, Fan T, Zhang F, Chen X, Yuan W. Epigenetic modifications in the accumulation and function of myeloid-derived suppressor cells. Front Immunol 2022; 13:1016870. [PMID: 36439186 PMCID: PMC9691837 DOI: 10.3389/fimmu.2022.1016870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 12/27/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key players under various pathologic conditions, such as cancer. Epigenetic modifications such as DNA methylation, RNA-mediated processes, and histone modification can alter gene transcription, and thus regulating pathological process. Studies have shown that epigenetic modification contributes to the accumulation and function of MDSCs. This review summarizes the crosstalk between the epigenetic alterations and MDSCs functions, and briefly introduces how the accumulation and function of MDSCs caused by epigenetic modification impact on the disease development, which represents as a promising therapeutic strategy for the related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
28
|
Yin X, Teng X, Ma T, Yang T, Zhang J, Huo M, Liu W, Yang Y, Yuan B, Yu H, Huang W, Wang Y. RUNX2 recruits the NuRD(MTA1)/CRL4B complex to promote breast cancer progression and bone metastasis. Cell Death Differ 2022; 29:2203-2217. [PMID: 35534547 PMCID: PMC9613664 DOI: 10.1038/s41418-022-01010-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is an osteogenesis-related transcription factor that has emerged as a prominent transcription repressing factor in carcinogenesis. However, the role of RUNX2 in breast cancer metastasis remains poorly understood. Here, we show that RUNX2 recruits the metastasis-associated 1 (MTA1)/NuRD and the Cullin 4B (CUL4B)-Ring E3 ligase (CRL4B) complex to form a transcriptional-repressive complex, which catalyzes the histone deacetylation and ubiquitylation. Genome-wide analysis of the RUNX2/NuRD(MTA1)/CRL4B complex targets identified a cohort of genes including peroxisome proliferator-activated receptor alpha (PPARα) and superoxide dismutase 2 (SOD2), which are critically involved in cell growth, epithelial-to-mesenchymal transition (EMT) and invasion. We demonstrate that the RUNX2/NuRD(MTA1)/CRL4B complex promotes the proliferation, invasion, tumorigenesis, bone metastasis, cancer stemness of breast cancer in vitro and in vivo. Strikingly, RUNX2 expression is upregulated in multiple human carcinomas, including breast cancer. Our study suggests that RUNX2 is a promising potential target for the future treatment strategies of breast cancer.
Collapse
Affiliation(s)
- Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jingyao Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Miaomiao Huo
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
29
|
Mi J, Wang S, Liu P, Liu C, Zhuang D, Leng X, Zhang Q, Bai F, Feng Q, Wu X. CUL4B Upregulates RUNX2 to Promote the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Epigenetically Repressing the Expression of miR-320c and miR-372/373-3p. Front Cell Dev Biol 2022; 10:921663. [PMID: 35784474 PMCID: PMC9243338 DOI: 10.3389/fcell.2022.921663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) within the periodontal ligament (PDL), termed periodontal ligament stem cells (PDLSCs), have a self-renewing capability and a multidirectional differentiation potential. The molecular mechanisms that regulate multidirectional differentiation, such as the osteogenic differentiation of PDLSCs, remain to be elucidated. Cullin 4B (CUL4B), which assembles the CUL4B-RING ubiquitin ligase (CRL4B) complex, is involved in regulating a variety of developmental and physiological processes including the skeletal development and stemness of cancer stem cells. However, nothing is known about the possible role of CUL4B in the osteogenic differentiation of PDLSCs. Here, we found that knockdown of CUL4B decreased the proliferation, migration, stemness and osteogenic differentiation ability of PDLSCs. Mechanistically, we demonstrate that CUL4B cooperates with the PRC2 complex to repress the expression of miR-320c and miR-372/373-3p, which results in the upregulation of RUNX2, a master transcription factor (TF) that regulates osteogenic differentiation. In brief, the present study reveals the role of CUL4B as a new regulator of osteogenic differentiation in PDLSCs.
Collapse
Affiliation(s)
- Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Shenzhen Research Institute of Shandong University, Shenzhen, China
- *Correspondence: Jun Mi, ; Xunwei Wu,
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xue Leng
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Jun Mi, ; Xunwei Wu,
| |
Collapse
|
30
|
Lin Z, Chen L, Wu T, Zhang Y, Huang X, Chen Y, Chen J, Xu Y. Prognostic Value of SPOCD1 in Esophageal Squamous Cell Carcinoma: A Comprehensive Study Based on Bioinformatics and Validation. Front Genet 2022; 13:872026. [PMID: 35646092 PMCID: PMC9130929 DOI: 10.3389/fgene.2022.872026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
In the study, we aimed to explore and analyze the potential function of SPOC Domain Containing 1 (SPOCD1) in esophageal squamous cell carcinoma (ESCC). We performed a comprehensive analysis of gene expression of SPOCD1 and its corresponding clinicopathological features in ESCC. In particular, the correlation between SPOCD1 and ESCC was evaluated using a wide range of analysis tools and databases, including TCGA, GTEx, GenePattern, CellMiner, GDSC, and STRING datasets. Different bioinformatics analyses, including differential expression analysis, mutation analysis, drug sensitivity analysis, function analysis, pathway analysis, co-expression network analysis, immune cell infiltration analysis, and survival analysis, were carried out to comprehensively explore the potential molecular mechanisms and functional effects of SPOCD1 on the initiation and progression of ESCC. The expression of SPOCD1 was upregulated in ESCC tissues compared to those in normal tissues. In the high SPOCD1 expression group, we found apparent mutations in TP53, TTN, and MUC16 genes, which were 92, 36, and 18%, respectively. GO and KEGG enrichment analysis of SPOCD1 and its co-expressed genes demonstrated that it may serve as an ESCC oncogene by regulating the genes expression in the essential functions and pathways of tumorigenesis, such as glycosaminoglycan binding, Cytokine-cytokine receptor interaction, and Ras signaling pathway. Besides, the immune cell infiltration results revealed that SPOCD1 expression was positively correlated with Macrophages M0 and Mast cells activated cells, and negatively correlated with plasma cells and T cells follicular helper cell infiltration. Finally, ESCC patients with high expression of SPOCD1 indicated poor overall survival. qRT-PCR demonstrated that the SPOCD1 expression in ESCC tissues was significantly higher than adjacent tissues (p < 0.001). Our study indicated that SPOCD1 was increased in ESCC tissues. The current data support the oncogenic role of SPOCD1 in the occurrence and development of ESCC. Most importantly, SPOCD1 might be an independent prognostic factor for ESCC patients.
Collapse
Affiliation(s)
- Zhizhong Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Lin Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Tingting Wu
- The School of Nusing, Fujian Medical University, Fuzhou, China.,Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yiping Zhang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Xinyi Huang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yuanmei Chen
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Junqiang Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
31
|
Selvam M, Bandi V, Ponne S, Ashok C, Baluchamy S. microRNA-150 targets major epigenetic repressors and inhibits cell proliferation. Exp Cell Res 2022; 415:113110. [DOI: 10.1016/j.yexcr.2022.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/06/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
|
32
|
Liu L, Hui R, Zeng T, Yang X, Wu Q, Yang T. CUL4B is a Potential Novel Prognostic Biomarker and is Correlated with Immune Infiltrates in Malignant Pleural Mesothelioma. Int J Gen Med 2022; 15:4613-4623. [PMID: 35535145 PMCID: PMC9078356 DOI: 10.2147/ijgm.s355889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Lu Liu
- Intensive Care Unit of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ruting Hui
- Department of Rehabilitation Medicine, Chengdu First People’s Hospital, Chengdu, 61007, People’s Republic of China
| | - Tianyang Zeng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xuetao Yang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Qingchen Wu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Tao Yang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Department of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Correspondence: Tao Yang, Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China, Email
| |
Collapse
|
33
|
Liu HT, Zou YX, Zhu WJ, Sen-Liu, Zhang GH, Ma RR, Guo XY, Gao P. lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus. Cell Death Differ 2022; 29:627-641. [PMID: 34608273 PMCID: PMC8901790 DOI: 10.1038/s41418-021-00879-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are dysregulated in different cancer types, and thus have emerged as important regulators of the initiation and progression of human cancers. However, the biological functions and the underlying mechanisms responsible for their functions in gastric cancer (GC) remain poorly understood. Here, by lncRNA microarray, we identified 1414 differentially expressed lncRNAs, among which THAP7-AS1 was significantly upregulated in GC tissues compared with non-tumorous gastric tissues. High expression of THAP7-AS1 was correlated with positive lymph node metastasis and poorer prognosis. SP1, a transcription factor, could bind directly to the THAP7-AS1 promoter region and activate its transcription. Moreover, the m6A modification of THAP7-AS1 by METTL3 enhanced its expression depending on the "reader" protein IGF2BP1-dependent pathway. THAP7-AS1 promoted GC cell progression. Mechanistically, THAP7-AS1 interacted with the 1-50 Amino Acid Region (nuclear localization signal) of CUL4B through its 1-442 nt Sequence, and it promoted interaction between nuclear localization signal (NLS) and importin α1, and improved the CUL4B protein entry into the nucleus, repressing miR-22-3p and miR-320a expression by CUL4B-catalyzed H2AK119ub1 and the EZH2-mediated H3K27me3, subsequently activating PI3K/AKT signaling pathway to promote GC progression. Moreover, LV-sh-THAP7-AS1 treatment could suppress GC growth, invasion and metastasis, indicating that THAP7-AS1 may act as a promising molecular target for GC therapies. Taken together, our results show that THAP7-AS1, transcriptionally activated by SP1 and then modified by METTL3-mediated m6A, exerts oncogenic functions, by promoting interaction between NLS and importin α1 and then improving the CUL4B protein entry into the nucleus to repress the transcription of miR-22-3p and miR-320a.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Yong-Xin Zou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Wen-Jie Zhu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Sen-Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Guo-Hao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Ran-Ran Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Xiang-Yu Guo
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.
| |
Collapse
|
34
|
Leng S, Huang W, Chen Y, Yang Y, Feng D, Liu W, Gao T, Ren Y, Huo M, Zhang J, Yang Y, Wang Y. SIRT1 coordinates with the CRL4B complex to regulate pancreatic cancer stem cells to promote tumorigenesis. Cell Death Differ 2021; 28:3329-3343. [PMID: 34163012 PMCID: PMC8630059 DOI: 10.1038/s41418-021-00821-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a common malignant tumor with poor prognosis. Recently, cancer stem cells (CSCs) were identified in several solid tumors, including pancreatic cancer. Although accumulating evidence indicates that sirtuin 1 (SIRT1) exerts biological functions in various cancers, how it contributes to tumorigenesis and metastasis of pancreatic cancer, as well as its role in CSCs, is still poorly defined. Here we show that SIRT1 interacts with the Cullin 4B (CUL4B)-Ring E3 ligase (CRL4B) complex, which is responsible for H2AK119 monoubiquitination (H2AK119ub1), collaborating as a functional unit. Genome-wide analysis of SIRT1/CUL4B targets identified a cohort of genes, including GRHL3 and FOXO3, critically involved in cell differentiation, growth, and migration. Furthermore, we found that SIRT1 and CUL4B collectively promote the proliferation, autophagy, and invasion of pancreatic cancer cells. Remarkably, we demonstrate that SIRT1/CUL4B promotes CSC-like properties, including increased stemness marker expression and sphere formation. In vivo experiments implied that SIRT1 promoted established tumor xenograft growth, increased tumor-initiating capacity in NOD/SCID mice, and increased CSC frequency. Strikingly, SIRT1 and CUL4B expression is markedly upregulated in a variety of human cancers, including pancreatic cancer. Our data provide a molecular basis for the functional interplay between histone deacetylation and ubiquitination. The results also implicate the SIRT1/CRL4B complex in pancreatic cancer metastasis and stem cell properties, thus supporting SIRT1 as a promising potential target for cancer therapy development.
Collapse
Affiliation(s)
- Shuai Leng
- grid.265021.20000 0000 9792 1228Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Wei Huang
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yang Chen
- grid.265021.20000 0000 9792 1228Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Yang Yang
- grid.265021.20000 0000 9792 1228Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Dandan Feng
- grid.265021.20000 0000 9792 1228Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Wei Liu
- grid.265021.20000 0000 9792 1228Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Tianyang Gao
- grid.265021.20000 0000 9792 1228Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Yanli Ren
- grid.265021.20000 0000 9792 1228Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Miaomiao Huo
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, Key Laboratory of Cancer and Microbiome, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Jingyao Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, Key Laboratory of Cancer and Microbiome, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yunkai Yang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, Key Laboratory of Cancer and Microbiome, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yan Wang
- grid.265021.20000 0000 9792 1228Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, Key Laboratory of Cancer and Microbiome, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
35
|
Li W, Liu J, Ji L, Tang Y, Qin J, Zhao H, Cheng X, Tian M, Jin G, He H. MiR-674-5p Suppresses the Proliferation and Migration of Glioma Cells by Targeting Cul4b. Neurochem Res 2021; 47:679-691. [PMID: 34779995 DOI: 10.1007/s11064-021-03476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Glioma multiforme (GBM) is the most common malignant primary brain tumors. Despite the considerable advances in GBM treatment, it is still one of the most lethal forms of brain tumor. New clinical biomarkers and therapeutic targets are immediately required. MicroRNAs (miRNAs) are a class of small, evolutionarily conserved noncoding RNAs and have emerged as the key regulators of many cancers. Here in this study, we showed that miR-674-5p was probably an important regulator of glioma cell growth. After the transfection with miR-674-5p mimic or inhibitor, we found that the expression level of miR-674-5p was negatively related with cell proliferation and migration in C6 cells. Based on the prediction of the target genes of miR-674-5p on the website, we chose Cullin 4B (Cul4b), a gene upregulated in GBM, and proved that it was a target of miR-674-5p. In addition, we explored the role of miR-674-5p in glioma growth in vivo. Taken together, the present study indicated that miR-674-5p suppressed glioma cell proliferation and migration by targeting Cul4b.
Collapse
Affiliation(s)
- Wen Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Juan Liu
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Li Ji
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yi Tang
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Heyan Zhao
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiang Cheng
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Meiling Tian
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Guohua Jin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China. .,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong, Jiangsu, People's Republic of China. .,Co-Innovation Center of Neuroregeneration, Nantong, Jiangsu, People's Republic of China.
| | - Hui He
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
36
|
Chen X, Wang W, Li Y, Huo Y, Zhang H, Feng F, Xi W, Zhang T, Gao J, Yang F, Chen S, Yang A, Wang T. MYSM1 inhibits human colorectal cancer tumorigenesis by activating miR-200 family members/CDH1 and blocking PI3K/AKT signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:341. [PMID: 34706761 PMCID: PMC8549173 DOI: 10.1186/s13046-021-02106-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023]
Abstract
Background Histone epigenetic modification disorder is an important predisposing factor for the occurrence and development of many cancers, including colorectal cancer (CRC). The role of MYSM1, a metalloprotease that deubiquitinates monoubiquitinated histone H2A, in colorectal cancer was identified to evaluate its potential clinical application value. Methods MYSM1 expression levels in CRC cell lines and tumor tissues were detected, and their associations with patient survival rate and clinical stage were analyzed using databases and tissue microarrays. Gain- and loss-of-function studies were performed to identify the roles of MYSM1 in CRC cell proliferation, apoptosis, cell cycle progression, epithelial-mesenchymal transition (EMT) and metastasis in vitro and in vivo. ChIP, rescue assays and signal pathway verification were conducted for mechanistic study. Immunohistochemistry (IHC) was used to further assess the relationship of MYSM1 with CRC diagnosis and prognosis. Results MYSM1 was significantly downregulated and was related to the overall survival (OS) of CRC patients. MYSM1 served as a CRC suppressor by inducing apoptosis and inhibiting cell proliferation, EMT, tumorigenic potential and metastasis. Mechanistically, MYSM1 directly bound to the promoter region of miR-200/CDH1, impaired the enrichment of repressive H2AK119ub1 modification and epigenetically enhanced miR-200/CDH1 expression. Testing of paired CRC patient samples confirmed the positive regulatory relationship between MYSM1 and miR-200/CDH1. Furthermore, silencing MYSM1 stimulated PI3K/AKT signaling and promoted EMT in CRC cells. More importantly, a positive association existed between MYSM1 expression and a favorable CRC prognosis. Conclusions MYSM1 plays essential suppressive roles in CRC tumorigenesis and is a potential target for reducing CRC progression and distant metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02106-2.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.,Air Force Health Care Center for Special Services, Hangzhou, Zhejiang, 310007, P.R. China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Yufang Li
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.,Nuclear Medicine Diagnostic Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710032, P.R. China
| | - Yi Huo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Han Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Tianze Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Jinjian Gao
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Fan Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Siyi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Angang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China.
| |
Collapse
|
37
|
Wang Y, Yan F, Nasar A, Chen ZS, Altorki NK, Stiles B, Narula N, Zhou P. CUL4 high Lung Adenocarcinomas Are Dependent on the CUL4-p21 Ubiquitin Signaling for Proliferation and Survival. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1638-1650. [PMID: 34119472 PMCID: PMC8420861 DOI: 10.1016/j.ajpath.2021.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022]
Abstract
Cullin (CUL) 4A and 4B ubiquitin ligases are often highly accumulated in human malignant neoplasms and are believed to possess oncogenic properties. However, the underlying mechanisms by which CUL4A and CUL4B promote pulmonary tumorigenesis remain largely elusive. This study reports that CUL4A and CUL4B are highly expressed in patients with non-small cell lung cancer (NSCLC), and their high expression is associated with disease progression, chemotherapy resistance, and poor survival in adenocarcinomas. Depletion of CUL4A (CUL4Ak/d) or CUL4B (CUL4Bk/d) leads to cell cycle arrest at G1 and loss of proliferation and viability of NSCLC cells in culture and in a lung cancer xenograft model, suggesting that CUL4A and 4B are oncoproteins required for tumor maintenance of certain NSCLCs. Mechanistically, increased accumulation of the cell cycle-dependent kinase inhibitor p21/Cip1/WAF1 was observed in lung cancer cells on CUL4 silencing. Knockdown of p21 rescued the G1 arrest of CUL4Ak/d or CUL4Bk/d NSCLC cells, and allowed proliferation to resume. These findings reveal that p21 is the primary downstream effector of lung adenocarcinoma dependence on CUL4, highlight the notion that not all substrates respond equally to abrogation of the CUL4 ubiquitin ligase in NSCLCs, and imply that CUL4Ahigh/CUL4Bhigh may serve as a prognostic marker and therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Yannan Wang
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York
| | - Fan Yan
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York
| | - Abu Nasar
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Weill Cornell Medicine - New York Presbyterian Hospital, New York, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, New York
| | - Nasser Khaled Altorki
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Weill Cornell Medicine - New York Presbyterian Hospital, New York, New York
| | - Brendon Stiles
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Weill Cornell Medicine - New York Presbyterian Hospital, New York, New York
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York.
| |
Collapse
|
38
|
Miao C, Liang C, Li P, Liu B, Qin C, Yuan H, Liu Y, Zhu J, Cui Y, Xu A, Wang S, Su S, Li J, Shao P, Wang Z. TRIM37 orchestrates renal cell carcinoma progression via histone H2A ubiquitination-dependent manner. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:195. [PMID: 34130705 PMCID: PMC8204444 DOI: 10.1186/s13046-021-01980-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
Background Ubiquitylation modification is one of the multiple post-transcriptional process to regulate cellular physiology, including cell signaling, cycle regulation, DNA repair and transcriptional regulation. Members of TRIM family proteins could be defined as E3 ubiquitin ligases as they contain a RING-finger domain, and alterations of TRIM proteins are involved into a broad range of diverse disorders including cancer. TRIM37 is a novel discovered E3 ubiquitin ligase and acts as a oncoprotein in multiple human neoplasms, however its biological role in RCC still remains elusive. Methods RCC microarray chips and public datasets were screened to identify novel TRIMs member as TRIM37, which was dysregulated in RCC. Gain or loss of functional cancer cell models were constructed, and in vitro and in vivo assays were performed to elucidate its tumorigenic phenotypes. Interactive network analyses were utilized to define intrinsic mechanism. Results We identified TRIM37 was upregulated in RCC tumors, and its aberrant function predicted aggressive neoplastic phenotypes, poorer survival endings. TRIM37 promoted RCC cells EMT and malignant progression via TGF-β1 signaling activation, as a consequence of directly mediated by ubiquitinating-H2A modifications. Conclusions Our findings identified a previously unappreciated role of TRIM37 in RCC progression and prognostic prediction. Importantly, we declared a novel ubiquitination-dependent link between TRIM ubiquitin ligases and TGF-β1 signaling in regulating cancerous malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01980-0.
Collapse
Affiliation(s)
- Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Pu Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Han Yuan
- Center for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore, SG, 169857, Singapore
| | - Yiyang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jundong Zhu
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, 213003, China
| | - Yankang Cui
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shifeng Su
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
39
|
Zhong M, Zhou L, Zou J, He Y, Fang Z, Xiang X. Cullin-4B promotes cell proliferation and invasion through inactivation of p53 signaling pathway in colorectal cancer. Pathol Res Pract 2021; 224:153520. [PMID: 34153655 DOI: 10.1016/j.prp.2021.153520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/06/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Cullin 4B (CUL4B) is a member of the Cullin RING E3 ligase family, which is found to be overexpressed in multiple cancers, thus facilitating tumorigenesis and progression. However, the correlation between CUL4B and p53 in colorectal cancer cells (CRC) remains to be further elucidated. In this study, we newly identified that CUL4B functions as a negative regulator of p53, thereby facilitating CRC tumorigenesis and progression. Our data has demonstrated that CUL4B was frequently overexpressed in CRC tissues, and its upregulation was closely correlated with disease progression and poor prognosis. Moreover, CUL4B knockdown suppressed cell proliferation, invasion and epithelial-mesenchymal transition (EMT) of CRC cells. Mechanistically, CUL4B depletion increased the expression of p53 protein and its downstream targets p21, PUMA and MDM2. Furthermore, CUL4B depletion prolonged the half-life of p53 protein, and CUL4B is a binding partner of MDM2. In conclusion, our study shed new lights on the complex regulatory network between CUL4B and p53, and clarifies this CUL4B-p53 axis contributes greatly to CRC tumorigenesis and progression.
Collapse
Affiliation(s)
- Min Zhong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Ling Zhou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jianping Zou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yan He
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Ziling Fang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Xiaojun Xiang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
40
|
Su D, Wang W, Hou Y, Wang L, Yi X, Cao C, Wang Y, Gao H, Wang Y, Yang C, Liu B, Chen X, Wu X, Wu J, Yan D, Wei S, Han L, Liu S, Wang Q, Shi L, Shan L. Bimodal regulation of the PRC2 complex by USP7 underlies tumorigenesis. Nucleic Acids Res 2021; 49:4421-4440. [PMID: 33849069 PMCID: PMC8096222 DOI: 10.1093/nar/gkab209] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
Although overexpression of EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is an eminent feature of various cancers, the regulation of its abundance and function remains insufficiently understood. We report here that the PRC2 complex is physically associated with ubiquitin-specific protease USP7 in cancer cells where USP7 acts to deubiquitinate and stabilize EZH2. Interestingly, we found that USP7-catalyzed H2BK120ub1 deubiquitination is a prerequisite for chromatin loading of PRC2 thus H3K27 trimethylation, and this process is not affected by H2AK119 ubiquitination catalyzed by PRC1. Genome-wide analysis of the transcriptional targets of the USP7/PRC2 complex identified a cohort of genes including FOXO1 that are involved in cell growth and proliferation. We demonstrated that the USP7/PRC2 complex drives cancer cell proliferation and tumorigenesis in vitro and in vivo. We showed that the expression of both USP7 and EZH2 elevates during tumor progression, corresponding to a diminished FOXO1 expression, and the level of the expression of USP7 and EZH2 strongly correlates with histological grades and prognosis of tumor patients. These results reveal a dual role for USP7 in the regulation of the abundance and function of EZH2, supporting the pursuit of USP7 as a therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Dongxue Su
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Liyong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Cheng Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuejiao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Beibei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuqi Wei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lulu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qian Wang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
41
|
Bacheva AV, Gotmanova NN, Belogurov AA, Kudriaeva AA. Control of Genome through Variative Nature of Histone-Modifying Ubiquitin Ligases. BIOCHEMISTRY (MOSCOW) 2021; 86:S71-S95. [PMID: 33827401 DOI: 10.1134/s0006297921140066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.
Collapse
Affiliation(s)
- Anna V Bacheva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Alexey A Belogurov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
42
|
Liu L, Cui J, Zhao Y, Liu X, Chen L, Xia Y, Wang Y, Chen S, Sun S, Shi B, Zou Y. KDM6A-ARHGDIB axis blocks metastasis of bladder cancer by inhibiting Rac1. Mol Cancer 2021; 20:77. [PMID: 34006303 PMCID: PMC8130406 DOI: 10.1186/s12943-021-01369-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background KDM6A, a histone demethylase, is frequently mutated in bladder cancer (BCa). However, the role and detailed molecular mechanism of KDM6A involved in bladder cancer progression remains unknown. Methods Tissue specimens were used to determine the expression levels and prognostic values of KDM6A and ARHGDIB. The MTT, colony formation, wound healing and Transwell migration and invasion assays were employed to detect the BCa cell proliferation, migration and invasion, respectively. Chemotaxis of macrophages was used to evaluate the ability of KDM6A to recruit macrophages. A subcutaneous tumour model and tail vein tumour injection in nude mice were used to assess the role of KDM6A in vivo. RNA sequencing, qPCR, Western blot, ChIP and phalloidin staining assay were performed to investigate the molecular functions of KDM6A. Dual-luciferase reporter assay was used to determine the effects of KDM6A and FOXA1 on the promoters of the ARHGDIB and KDM6A. Results We showed that the KDM6A inhibited the motility and invasiveness of the BCa cells. Mechanistically, KDM6A promotes the transcription of ARHGDIB by demethylating histone H3 lysine di/trimethylation (H3K27me2/3) and consequently leads to inhibition of Rac1. EZH2, which catalyses the methylation of H3K27, functions to silence ARHGDIB expression, and an EZH2 inhibitor can neutralize the metastatic effect caused by KDM6A deficiency. Furthermore, we demonstrated that FOXA1 directly binds to the KDM6A promoter and thus transactivates KDM6A, leading to diminished metastatic potential. Conclusion Our findings establish the critical role of the FOXA1-KDM6A-ARHGDIB axis in restraining the malignancy of BCa and identify KDM6A and EZH2 as potential therapeutic targets in the management of BCa. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01369-9.
Collapse
Affiliation(s)
- Lei Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaochen Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China.
| | - Yongxin Zou
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
43
|
Huang W, Zhang J, Huo M, Gao J, Yang T, Yin X, Wang P, Leng S, Feng D, Chen Y, Yang Y, Wang Y. CUL4B Promotes Breast Carcinogenesis by Coordinating with Transcriptional Repressor Complexes in Response to Hypoxia Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001515. [PMID: 34026424 PMCID: PMC8132058 DOI: 10.1002/advs.202001515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/22/2021] [Indexed: 05/09/2023]
Abstract
Cullin4B (CUL4B) is a scaffold protein of the CUL4B-Ring E3 ligase (CRL4B) complex. However, the role of CUL4B in the development of breast cancer remains poorly understood. Here it is shown that CRL4B interacts with multiple histone deacetylase (HDAC)-containing corepressor complexes, including MTA1/NuRD, SIN3A, CoREST, and NcoR/SMRT complexes. It is demonstrated that CRL4B/NuRD(MTA1) complexes cooccupy the E-cadherin and AXIN2 promoters, and could be recruited by transcription factors including Snail and ZEB2 to promote cell invasion and tumorigenesis both in vitro and in vivo. Remarkably, CUL4B responded to transformation and migration/invasion stimuli and is essential for multiple epithelial-mesenchymal transition (EMT) signaling pathways such as hypoxia. Furthermore, the transcription of CUL4B is directedly activated by hypoxia-inducible factor 1α (HIF1α) and repressed by the ERα-GATA3 axis. Overexpressing of CUL4B successfully induced CSC-like properties. Strikingly, CUL4B expression is markedly upregulated during breast cancer progression and correlated with poor prognosis. The results suggest that CUL4B lies at a critical crossroads between EMT and stem cell properties, supporting CUL4B as a potential novel target for the development of anti-breast cancer therapy.
Collapse
Affiliation(s)
- Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchAdvanced Innovation Center for Human Brain ProtectionDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
- State Key Laboratory of Molecular OncologyNational Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Jingyao Zhang
- State Key Laboratory of Molecular OncologyNational Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Miaomiao Huo
- State Key Laboratory of Molecular OncologyNational Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Jie Gao
- State Key Laboratory of Molecular OncologyNational Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchAdvanced Innovation Center for Human Brain ProtectionDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchAdvanced Innovation Center for Human Brain ProtectionDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Pei Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchAdvanced Innovation Center for Human Brain ProtectionDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Shuai Leng
- Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Dandan Feng
- Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Yang Chen
- Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Yang Yang
- Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Yan Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchAdvanced Innovation Center for Human Brain ProtectionDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
- State Key Laboratory of Molecular OncologyNational Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| |
Collapse
|
44
|
Zhang C, Cao C, Liu XL, Jun T, Liu P. Cul4b Promotes Progression of Malignant Cutaneous Melanoma Patients by Regulating CDKN2A. TOHOKU J EXP MED 2021; 254:33-39. [PMID: 34011786 DOI: 10.1620/tjem.254.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although several molecular targeted therapy and immunotherapy have been developed, cutaneous melanoma prognosis is still not satisfying. Cul4b promotes the progression of several malignant tumors by regulating cell proliferation. However, its prognostic role in malignant cutaneous melanoma has not been evaluated. In this study, immunohistochemistry was performed to assess the expression of Cul4b in a consecutive patient cohort. The prognostic role of Cul4b was estimated with univariate and multivariate analysis. Cul4b was knocked down in melanoma cell line to evaluate its role in promoting cell proliferation. The results revealed that Cul4b was highly expressed in some of the cutaneous malignant melanoma patients and high expression of Cul4b was associated with poor melanoma-specific overall survival and poor disease-free survival. Cul4b expression was associated with Breslow categories, Clark level, and Ki67 expression. Univariate and multivariate analysis revealed that Cul4b is an independent prognosis risk factor of cutaneous melanoma. Downregulation of Cul4b inhibited the proliferation ability of melanoma cells and downregulated the expression of CDKN2A. These results suggest that Cul4b plays an essential role in cutaneous melanoma progression and may serve as a promising treatment target.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Dermatology, The Second Affiliated Hospital of Shandong First Medical University
| | - Can Cao
- Department of Dermatology, The Second Affiliated Hospital of Shandong First Medical University
| | - Xiu-Li Liu
- Department of Neonatal, Gaotang People's Hospital
| | - Tan Jun
- Department of Dermatology, Shaanxi Provincial People's Hospital
| | - Pei Liu
- Department of Burn and Plastic Surgery, Qilu Hospital of Shandong University
| |
Collapse
|
45
|
Wang Y, Pan X, Li Y, Wang R, Yang Y, Jiang B, Sun G, Shao C, Wang M, Gong Y. CUL4B renders breast cancer cells tamoxifen-resistant via miR-32-5p/ER-α36 axis. J Pathol 2021; 254:185-198. [PMID: 33638154 DOI: 10.1002/path.5657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Tamoxifen (TAM) resistance is a significant clinical challenge in endocrine therapies for estrogen receptor (ER)-positive breast cancer patients. Cullin 4B (CUL4B), which acts as a scaffold protein in CUL4B-RING ubiquitin ligase complexes (CRL4B), is frequently overexpressed in cancer and represses tumor suppressors through diverse epigenetic mechanisms. However, the role and the underlying mechanisms of CUL4B in regulating drug resistance remain unknown. Here, we showed that CUL4B promotes TAM resistance in breast cancer cells through a miR-32-5p/ER-α36 axis. We found that upregulation of CUL4B correlated with decreased TAM sensitivity of breast cancer cells, and knockdown of CUL4B or expression of a dominant-negative CUL4B mutant restored the response to TAM in TAM-resistant MCF7-TAMR and T47D-TAMR cells. Mechanistically, we demonstrated that CUL4B renders breast cancer cells TAM-resistant by upregulating ER-α36 expression, which was mediated by downregulation of miR-32-5p. We further showed that CRL4B epigenetically represses the transcription of miR-32-5p by catalyzing monoubiquitination at H2AK119 and coordinating with PRC2 and HDAC complexes to promote trimethylation at H3K27 at the promoter of miR-32-5p. Pharmacologic or genetic inhibition of CRL4B/PRC2/HDAC complexes significantly increased TAM sensitivity in breast cancer cells in vitro and in vivo. Taken together, our findings thus establish a critical role for the CUL4B-miR-32-5p-ER-α36 axis in the regulation of TAM resistance and have important therapeutic implications for combined application of TAM and the inhibitors of CRL4B/PRC2/HDAC complex in breast cancer treatment. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Yanjun Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuanyuan Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Gongping Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
46
|
Ye X, Liu X, Gao M, Gong L, Tian F, Shen Y, Hu H, Sun G, Zou Y, Gong Y. CUL4B Promotes Temozolomide Resistance in Gliomas by Epigenetically Repressing CDNK1A Transcription. Front Oncol 2021; 11:638802. [PMID: 33869025 PMCID: PMC8050354 DOI: 10.3389/fonc.2021.638802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/19/2021] [Indexed: 01/10/2023] Open
Abstract
Resistance to temozolomide (TMZ), the first-line chemotherapeutic drug for glioblastoma (GBM) and anaplastic gliomas, is one of the most significant obstacles in clinical treatment. TMZ resistance is regulated by complex genetic and epigenetic networks. Understanding the mechanisms of TMZ resistance can help to identify novel drug targets and more effective therapies. CUL4B has been shown to be upregulated and promotes progression and chemoresistance in several cancer types. However, its regulatory effect and mechanisms on TMZ resistance have not been elucidated. The aim of this study was to decipher the role and mechanism of CUL4B in TMZ resistance. Western blot and public datasets analysis showed that CUL4B was upregulated in glioma specimens. CUL4B elevation positively correlated with advanced pathological stage, tumor recurrence, malignant molecular subtype and poor survival in glioma patients receiving TMZ treatment. CUL4B expression was correlated with TMZ resistance in GBM cell lines. Knocking down CUL4B restored TMZ sensitivity, while upregulation of CUL4B promoted TMZ resistance in GBM cells. By employing senescence β-galactosidase staining, quantitative reverse transcription PCR and Chromatin immunoprecipitation experiments, we found that CUL4B coordinated histone deacetylase (HDAC) to co-occupy the CDKN1A promoter and epigenetically silenced CDKN1A transcription, leading to attenuation of TMZ-induced senescence and rendering the GBM cells TMZ resistance. Collectively, our findings identify a novel mechanism by which GBM cells develop resistance to TMZ and suggest that CUL4B inhibition may be beneficial for overcoming resistance.
Collapse
Affiliation(s)
- Xiang Ye
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaochen Liu
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Gao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Gong
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Tian
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yangli Shen
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gongping Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
47
|
FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell 2020; 184:352-369.e23. [PMID: 33357448 DOI: 10.1016/j.cell.2020.11.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Repetitive elements (REs) compose ∼50% of the human genome and are normally transcriptionally silenced, although the mechanism has remained elusive. Through an RNAi screen, we identified FBXO44 as an essential repressor of REs in cancer cells. FBXO44 bound H3K9me3-modified nucleosomes at the replication fork and recruited SUV39H1, CRL4, and Mi-2/NuRD to transcriptionally silence REs post-DNA replication. FBXO44/SUV39H1 inhibition reactivated REs, leading to DNA replication stress and stimulation of MAVS/STING antiviral pathways and interferon (IFN) signaling in cancer cells to promote decreased tumorigenicity, increased immunogenicity, and enhanced immunotherapy response. FBXO44 expression inversely correlated with replication stress, antiviral pathways, IFN signaling, and cytotoxic T cell infiltration in human cancers, while a FBXO44-immune gene signature correlated with improved immunotherapy response in cancer patients. FBXO44/SUV39H1 were dispensable in normal cells. Collectively, FBXO44/SUV39H1 are crucial repressors of RE transcription, and their inhibition selectively induces DNA replication stress and viral mimicry in cancer cells.
Collapse
|
48
|
Chen S, Wang Y, Chen L, Xia Y, Cui J, Wang W, Jiang X, Wang J, Zhu Y, Sun S, Zou Y, Gong Y, Shi B. CUL4B promotes aggressive phenotypes of renal cell carcinoma via upregulating c-Met expression. Int J Biochem Cell Biol 2020; 130:105887. [PMID: 33227394 DOI: 10.1016/j.biocel.2020.105887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Cullin 4B (CUL4B), encoding a scaffold protein in Cullin RING ubiquitin-ligase complexes (CRL4B), is overexpressed and serves as an oncogene in various solid tumors. However, the roles and the underlying mechanisms of CUL4B in renal cell carcinoma (RCC) are still unknown. In this study, we demonstrated that CUL4B was significantly upregulated in RCC cells and clinical specimens, and its overexpression was correlated with poor survival of RCC patients. Knockdown of CUL4B resulted in the inhibition of proliferation, migration and invasion of RCC cells. Furthermore, we found that the expression of CUL4B is positively correlated with c-Met expression in RCC cells and tissues. Konckdown of c-Met or treatment with c-Met inhibitor, SU11274, could block the increase in cell proliferation, migration and invasion induced by CUL4B-overexpression. We also showed that CUL4B overexpression significantly accelerated xenograft tumor growth, and administration of SU11274 could also abrogate the accelerated tumor growth induced by CUL4B overexpression in vivo. These findings shed light on the contribution of CUL4B to tumorigenesis in RCC via activating c-Met signaling and its therapeutic implications in RCC patients.
Collapse
Affiliation(s)
- Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, 250012, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, 250012, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenfu Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Wang
- Department of Urology, The People's Hospital of Laoling City, Dezhou, Shandong, 253600, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
49
|
Meerang M, Kreienbühl J, Orlowski V, Müller SLC, Kirschner MB, Opitz I. Importance of Cullin4 Ubiquitin Ligase in Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:cancers12113460. [PMID: 33233664 PMCID: PMC7699720 DOI: 10.3390/cancers12113460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type 2 (NF2), the tumor suppressor frequently lost in malignant pleural mesothelioma (MPM), suppresses tumorigenesis in part by inhibiting the Cullin4 ubiquitin ligase (CUL4) complex in the nucleus. Here, we evaluated the importance of CUL4 in MPM progression and tested the efficacy of cullin inhibition by pevonedistat, a small molecule inhibiting cullin neddylation. CUL4 paralogs (CUL4A and CUL4B) were upregulated in MPM tumor specimens compared to nonmalignant pleural tissues. High gene and protein expressions of CUL4B was associated with a worse progression-free survival of MPM patients. Among 13 MPM cell lines tested, five (38%) were highly sensitive to pevonedistat (half maximal inhibitory concentration of cell survival IC50 < 0.5 µM). This remained true in a 3D spheroid culture. Pevonedistat treatment caused the accumulation of CDT1 and p21 in both sensitive and resistant cell lines. However, the treatment induced S/G2 cell cycle arrest and DNA rereplication predominantly in the sensitive cell lines. In an in vivo mouse model, the pevonedistat treatment significantly prolonged the survival of mice bearing both sensitive and resistant MPM tumors. Pevonedistat treatment reduced growth in sensitive tumors but increased apoptosis in resistant tumors. The mechanism in the resistant tumor model may be mediated by reduced macrophage infiltration, resulting from the suppression of macrophage chemotactic cytokines, C-C motif chemokine ligand 2 (CCL2), expression in tumor cells.
Collapse
|
50
|
Hu E, Du H, Shang S, Zhang Y, Lu X. Beta-Hydroxybutyrate Enhances BDNF Expression by Increasing H3K4me3 and Decreasing H2AK119ub in Hippocampal Neurons. Front Neurosci 2020; 14:591177. [PMID: 33192276 PMCID: PMC7655964 DOI: 10.3389/fnins.2020.591177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Neurological evidence suggests that beta-hydroxybutyrate (BHBA) has positive effects on the central nervous system. Previous studies have explored the molecular mechanisms by which BHBA affects different brain functions, but the effects of BHBA on epigenetic modifications remain elusive. Here, we showed that BHBA enhanced brain-derived neurotrophic factor (BDNF) expression by increasing H3K4me3 and decreasing H2AK119ub occupancy at the Bdnf promoters I, II, IV, and VI in hippocampal neurons. Moreover, BHBA treatment induced the upregulation of H3K4me3 and downregulation of H2AK119ub on the global level, both of which were dependent on the L-type calcium channel. Additionally, the BHBA-activated L-type calcium channel subsequently triggered the activation of Ca2+/CaMKII/CREB signaling, and promoted the binding of p-CREB and CBP to Bdnf promoters. These results indicate that BHBA regulates cellular signaling and multiple histone modifications to cooperatively modulate BDNF, suggesting a wide range of regulatory effects of BHBA in the central nervous system.
Collapse
Affiliation(s)
- Erling Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Huan Du
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yali Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|