1
|
Holthaus KB, Steinbinder J, Sachslehner AP, Eckhart L. Skin Appendage Proteins of Tetrapods: Building Blocks of Claws, Feathers, Hair and Other Cornified Epithelial Structures. Animals (Basel) 2025; 15:457. [PMID: 39943227 PMCID: PMC11816140 DOI: 10.3390/ani15030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Reptiles, birds, mammals and amphibians, together forming the clade tetrapods, have a large diversity of cornified skin appendages, such as scales, feathers, hair and claws. The skin appendages consist of dead epithelial cells that are tightly packed with specific structural proteins. Here, we review the molecular diversity and expression patterns of major types of skin appendage proteins, namely keratin intermediate filament proteins, keratin-associated proteins (KRTAPs) and proteins encoded by genes of the epidermal differentiation complex (EDC), including corneous beta-proteins, also known as beta-keratins. We summarize the current knowledge about the components of skin appendages with a focus on keratins and EDC proteins that have recently been identified in reptiles and birds. We discuss gaps of knowledge and suggest directions of future research.
Collapse
Affiliation(s)
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.H.)
| |
Collapse
|
2
|
Kosztyo BS, Richards EJ. Structural Diversity and Distribution of Nuclear Matrix Constituent Protein Class Nuclear Lamina Proteins in Streptophytic Algae. Genome Biol Evol 2024; 16:evae244. [PMID: 39539009 PMCID: PMC11604088 DOI: 10.1093/gbe/evae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Nuclear matrix constituent proteins in plants function like animal lamins, providing the structural foundation of the nuclear lamina and regulating nuclear organization and morphology. Although they are well characterized in angiosperms, the presence and structure of nuclear matrix constituent proteins in more distantly related species, such as streptophytic algae, are relatively unknown. The rapid evolution of nuclear matrix constituent proteins throughout the plant lineage has caused a divergence in protein sequence that makes similarity-based searches less effective. Structural features are more likely to be conserved compared to primary amino acid sequence; therefore, we developed a filtration protocol to search for diverged nuclear matrix constituent proteins based on four physical characteristics: intrinsically disordered content, isoelectric point, number of amino acids, and the presence of a central coiled-coil domain. By setting parameters to recognize the properties of bona fide nuclear matrix constituent protein proteins in angiosperms, we filtered eight complete proteomes from streptophytic algae species and identified strong nuclear matrix constituent protein candidates in six taxa in the Classes Zygnematophyceae, Charophyceae, and Klebsormidiophyceae. Through analysis of these proteins, we observed structural variance in domain size between nuclear matrix constituent proteins in algae and land plants, as well as a single block of amino acid conservation. Our analysis indicates that nuclear matrix constituent proteins are absent in the Mesostigmatophyceae. The presence versus absence of nuclear matrix constituent protein proteins does not correlate with the distribution of different forms of mitosis (e.g. closed/semi-closed/open) but does correspond to the transition from unicellularity to multicellularity in the streptophytic algae, suggesting that a nuclear matrix constituent protein-based nucleoskeleton plays important roles in supporting cell-to-cell interactions.
Collapse
Affiliation(s)
- Brendan S Kosztyo
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
3
|
Lometto S, Sparvoli D, Malengo G, Heimerl T, Hochberg GKA. The mitochondrial citrate synthase from Tetrahymena thermophila does not form an intermediate filament. Eur J Protistol 2024; 96:126121. [PMID: 39432950 DOI: 10.1016/j.ejop.2024.126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
The mitochondrial citrate synthase (mCS) purified from the ciliate Tetrahymena thermophila has been reported to form intermediate-filament-like structures during conjugation and to self-assemble into fibers when recombinantly expressed. This would represent a rare example of a tractable and recent origin of a novel cytoskeletal element. In an attempt to investigate the evolutionary emergence of this behavior, we re-investigated the ability of Tetrahymena's mCS to form filaments in vivo. Using strep-tagged mCS in Tetrahymena and monoclonal antibodies, we found no evidence of filamentous structures during conjugation or starvation. Extensive biochemical characterization of mCS revealed that the self-assembly of recombinant protein is triggered by a specific chemical moiety shared by MES and HEPES buffers used in previous studies. The absence of indicative phenotypes in fiber-deficient GFP-tagged mutants indicates that Tetrahymena mCS did not evolve a structural role in sexual reproduction or metabolic regulation.
Collapse
Affiliation(s)
- Stefano Lometto
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniela Sparvoli
- Laboratory of Pathogen Host Interactions, UMR5294, Université de Montpellier, INSERM, CNRS, Montpellier, Pl E. Bataillon Bat. 24 2et, CC107, Montpellier 34095, France
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany; Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany.
| |
Collapse
|
4
|
Ramirez MD, Bui TN, Katz PS. Cellular-resolution gene expression mapping reveals organization in the head ganglia of the gastropod, Berghia stephanieae. J Comp Neurol 2024; 532:e25628. [PMID: 38852042 PMCID: PMC11198006 DOI: 10.1002/cne.25628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024]
Abstract
Gastropod molluscs such as Aplysia, Lymnaea, and Tritonia have been important for determining fundamental rules of motor control, learning, and memory because of their large, individually identifiable neurons. Yet only a small number of gastropod neurons have known molecular markers, limiting the ability to establish brain-wide structure-function relations. Here we combine high-throughput, single-cell RNA sequencing with in situ hybridization chain reaction in the nudibranch Berghia stephanieae to identify and visualize the expression of markers for cell types. Broad neuronal classes were characterized by genes associated with neurotransmitters, like acetylcholine, glutamate, serotonin, and GABA, as well as neuropeptides. These classes were subdivided by other genes including transcriptional regulators and unannotated genes. Marker genes expressed by neurons and glia formed discrete, previously unrecognized regions within and between ganglia. This study provides the foundation for understanding the fundamental cellular organization of gastropod nervous systems.
Collapse
Affiliation(s)
| | - Thi N. Bui
- Department of Biology, University of Massachusetts Amherst
| | - Paul S. Katz
- Department of Biology, University of Massachusetts Amherst
| |
Collapse
|
5
|
Murthy O G, Lau J, Balasubramaniam R, Frydrych AM, Kujan O. Unraveling the Keratin Expression in Oral Leukoplakia: A Scoping Review. Int J Mol Sci 2024; 25:5597. [PMID: 38891785 PMCID: PMC11172080 DOI: 10.3390/ijms25115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Intermediate filaments are one of three polymeric structures that form the cytoskeleton of epithelial cells. In the epithelium, these filaments are made up of a variety of keratin proteins. Intermediate filaments complete a wide range of functions in keratinocytes, including maintaining cell structure, cell growth, cell proliferation, cell migration, and more. Given that these functions are intimately associated with the carcinogenic process, and that hyperkeratinization is a quintessential feature of oral leukoplakias, the utility of keratins in oral leukoplakia is yet to be fully explored. This scoping review aims to outline the current knowledge founded on original studies on human tissues regarding the expression and utility of keratins as diagnostic, prognostic, and predictive biomarkers in oral leukoplakias. After using a search strategy developed for several scientific databases, namely, PubMed, Scopus, Web of Science, and OVID, 42 papers met the inclusion and exclusion criteria. One more article was added when it was identified through manually searching the list of references. The included papers were published between 1989 and 2024. Keratins 1-20 were investigated in the 43 included studies, and their expression was assessed in oral leukoplakia and dysplasia cases. Only five studies investigated the prognostic role of keratins in relation to malignant transformation. No studies evaluated keratins as a diagnostic adjunct or predictive tool. Evidence supports the idea that dysplasia disrupts the terminal differentiation pathway of primary keratins. Gain of keratin 17 expression and loss of keratin 13 were significantly observed in differentiated epithelial dysplasia. Also, the keratin 19 extension into suprabasal cells has been associated with the evolving features of dysplasia. The loss of keratin1/keratin 10 has been significantly associated with high-grade dysplasia. The prognostic value of cytokeratins has shown conflicting results, and further studies are required to ascertain their role in predicting the malignant transformation of oral leukoplakia.
Collapse
Affiliation(s)
| | | | | | | | - Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia; (G.M.O.); (J.L.); (R.B.); (A.M.F.)
| |
Collapse
|
6
|
Coulombe PA, Pineda CM, Jacob JT, Nair RR. Nuclear roles for non-lamin intermediate filament proteins. Curr Opin Cell Biol 2024; 86:102303. [PMID: 38113712 PMCID: PMC11056187 DOI: 10.1016/j.ceb.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
The nuclear-localized lamins have long been thought to be the only intermediate filaments (IFs) with an impact on the architecture, properties, and functions of the nucleus. Recent studies, however, uncovered significant roles for IFs other than lamins (here referred to as "non-lamin IFs") in regulating key properties of the nucleus in various cell types and biological settings. In the cytoplasm, IFs often occur in the perinuclear space where they contribute to local stiffness and impact the shape and/or the integrity of the nucleus, particularly in cells under stress. In addition, selective non-lamin IF proteins can occur inside the nucleus where they partake in fundamental processes including nuclear architecture and chromatin organization, regulation of gene expression, cell cycle progression, and the repair of DNA damage. This text reviews the evidence supporting a role for non-lamin IF proteins in regulating various properties of the nucleus and highlights opportunities for further study.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christopher M Pineda
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin T Jacob
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, DC 20024, USA
| | - Raji R Nair
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Reber S, Singer M, Frischknecht F. Cytoskeletal dynamics in parasites. Curr Opin Cell Biol 2024; 86:102277. [PMID: 38048658 DOI: 10.1016/j.ceb.2023.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Cytoskeletal dynamics are essential for cellular homeostasis and development for both metazoans and protozoans. The function of cytoskeletal elements in protozoans can diverge from that of metazoan cells, with microtubules being more stable and actin filaments being more dynamic. This is particularly striking in protozoan parasites that evolved to enter metazoan cells. Here, we review recent progress towards understanding cytoskeletal dynamics in protozoan parasites, with a focus on divergent properties compared to classic model organisms.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Odell J, Gräf R, Lammerding J. Heterologous expression of Dictyostelium discoideum NE81 in mouse embryo fibroblasts reveals conserved mechanoprotective roles of lamins. Mol Biol Cell 2024; 35:ar7. [PMID: 37910203 PMCID: PMC10881167 DOI: 10.1091/mbc.e23-05-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
Lamins are nuclear intermediate filament proteins that are ubiquitously found in metazoan cells, where they contribute to nuclear morphology, stability, and gene expression. Lamin-like sequences have recently been identified in distantly related eukaryotes, but it remains unclear whether these proteins share conserved functions with the lamins found in metazoans. Here, we investigate conserved features between metazoan and amoebozoan lamins using a genetic complementation system to express the Dictyostelium discoideum lamin-like protein NE81 in mammalian cells lacking either specific lamins or all endogenous lamins. We report that NE81 localizes to the nucleus in cells lacking Lamin A/C, and that NE81 expression improves nuclear circularity, reduces nuclear deformability, and prevents nuclear envelope rupture in these cells. However, NE81 did not completely rescue loss of Lamin A/C, and was unable to restore normal distribution of metazoan lamin interactors, such as emerin and nuclear pore complexes, which are frequently displaced in Lamin A/C deficient cells. Collectively, our results indicate that the ability of lamins to modulate the morphology and mechanical properties of nuclei may have been a feature present in the common ancestor of Dictyostelium and animals, whereas other, more specialized interactions may have evolved more recently in metazoan lineages.
Collapse
Affiliation(s)
- Jacob Odell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Ralph Gräf
- Department of Cell Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| |
Collapse
|
9
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
10
|
Odell J, Lammerding J. Lamins as structural nuclear elements through evolution. Curr Opin Cell Biol 2023; 85:102267. [PMID: 37871500 PMCID: PMC10841731 DOI: 10.1016/j.ceb.2023.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Lamins are nuclear intermediate filament proteins with important, well-established roles in humans and other vertebrates. Lamins interact with DNA and numerous proteins at the nuclear envelope to determine the mechanical properties of the nucleus, coordinate chromatin organization, and modulate gene expression. Many of these functions are conserved in the lamin homologs found in basal metazoan organisms, including Drosophila and Caenorhabditis elegans. Lamin homologs have also been recently identified in non-metazoans, like the amoeba Dictyostelium discoideum, yet how these proteins compare functionally to the metazoan isoforms is only beginning to emerge. A better understanding of these distantly related lamins is not only valuable for a more complete picture of eukaryotic evolution, but may also provide new insights into the function of vertebrate lamins.
Collapse
Affiliation(s)
- Jacob Odell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Karabinos A. The long protostomic-type cytoplasmic intermediate filament (cIF) protein in Branchiostoma supports the phylogenetic transition between the protostomic- and the chordate-type cIFs. PROTOPLASMA 2023; 260:1493-1500. [PMID: 37209173 DOI: 10.1007/s00709-023-01865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
We identified 23 and 20 cytoplasmic IF (cIF) genes in the two Branchiostoma belcheri and Branchiostoma lanceolatum cephalochordates, respectively. Combining these results with earlier data on the related Branchiostoma floridae, the following conclusions can be drawn. First, the Branchiostoma N4 protein with a long lamin-like coil 1B segment is the only protostomic-type cIF found so far in any analysed chordate or vertebrate organism. Second, Branchiostoma is the only organism known so far containing both the long protostomic- and the short chordate-prototypes of cIFs. This finding provides so far missing molecular evidence for the phylogenetic transition between the protostomic- and the chordate-type IF sequences at the base of the cephalochordates and vertebrates. Third, this finding also brings some support for another hypothesis, that the long protostomic-type cIF is subjected to evolutionary constraints in order to preclude inappropriate interactions with lamin and that the latter complexes might be prevented by a several heptad-long rod deletion, which released the selective constraints on it and promoted, at least in part, its expansion in nematodes, cephalochordates, and in vertebrates. Finally, here-presented data confirmed our previous results that cephalochordates do not have any vertebrate type III or type IV IF homolog.
Collapse
Affiliation(s)
- Anton Karabinos
- Medirex, a.s., Kosice, Magnezitarska 2/C, 04013, Kosice, Slovakia.
| |
Collapse
|
12
|
Odell J, Gräf R, Lammerding J. Heterologous expression of Dictyostelium discoideum NE81 in mouse embryo fibroblasts reveals conserved mechanoprotective roles of lamins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543154. [PMID: 37398420 PMCID: PMC10312578 DOI: 10.1101/2023.05.31.543154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lamins are nuclear intermediate filament proteins that are ubiquitously found in metazoan cells, where they contribute to nuclear morphology, stability, and gene expression. Lamin-like sequences have recently been identified in distantly related eukaryotes, but it remains unclear if these proteins share conserved functions with the lamins found in metazoans. Here, we investigate conserved features between metazoan and amoebozoan lamins using a genetic complementation system to express the Dictyostelium discoideum lamin-like protein NE81 in mammalian cells lacking either specific lamins or all endogenous lamins. We report that NE81 localizes to the nucleus in cells lacking Lamin A/C, and that NE81 expression improves nuclear circularity, reduces nuclear deformability, and prevents nuclear envelope rupture in these cells. However, NE81 did not completely rescue loss of Lamin A/C, and was unable to restore normal distribution of metazoan lamin interactors, such as emerin and nuclear pore complexes, which are frequently displaced in Lamin A/C deficient cells. Collectively, our results indicate that the ability of lamins to modulate the morphology and mechanical properties of nuclei may have been a feature present in the common ancestor of Dictyostelium and animals, whereas other, more specialized interactions may have evolved more recently in metazoan lineages.
Collapse
|
13
|
Doganyigit Z, Eroglu E, Okan A. Intermediate filament proteins are reliable immunohistological biomarkers to help diagnose multiple tissue-specific diseases. Anat Histol Embryol 2023; 52:655-672. [PMID: 37329162 DOI: 10.1111/ahe.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cytoskeletal networks are proteins that effectively maintain cell integrity and provide mechanical support to cells by actively transmitting mechanical signals. Intermediate filaments, which are from the cytoskeleton family and are 10 nanometres in diameter, are unlike actin and microtubules, which are highly dynamic cytoskeletal elements. Intermediate filaments are flexible at low strain, harden at high strain and resist breaking. For this reason, these filaments fulfil structural functions by providing mechanical support to the cells through their different strain-hardening properties. Intermediate filaments are suitable in that cells both cope with mechanical forces and modulate signal transmission. These filaments are composed of fibrous proteins that exhibit a central α-helical rod domain with a conserved substructure. Intermediate filament proteins are divided into six groups. Type I and type II include acidic and basic keratins, type III, vimentin, desmin, peripheralin and glial fibrillary acidic protein (GFAP), respectively. Type IV intermediate filament group includes neurofilament proteins and a fourth neurofilament subunit, α-internexin proteins. Type V consists of lamins located in the nucleus, and the type VI group consists of lens-specific intermediate filaments, CP49/phakinin and filen. Intermediate filament proteins show specific immunoreactivity in differentiating cells and mature cells of various types. Various carcinomas such as colorectal, urothelial and ovarian, diseases such as chronic pancreatitis, cirrhosis, hepatitis and cataract have been associated with intermediate filaments. Accordingly, this section reviews available immunohistochemical antibodies to intermediate filament proteins. Identification of intermediate filament proteins by methodological methods may contribute to the understanding of complex diseases.
Collapse
Affiliation(s)
- Zuleyha Doganyigit
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
14
|
Ríos-Valencia DG, Ambrosio J, Tirado-Mendoza R, Carrero JC, Laclette JP. What about the Cytoskeletal and Related Proteins of Tapeworms in the Host's Immune Response? An Integrative Overview. Pathogens 2023; 12:840. [PMID: 37375530 DOI: 10.3390/pathogens12060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advances have increased our understanding of the molecular machinery in the cytoskeleton of mammalian cells, in contrast to the case of tapeworm parasites, where cytoskeleton remains poorly characterized. The pertinence of a better knowledge of the tapeworm cytoskeleton is linked to the medical importance of these parasitic diseases in humans and animal stock. Moreover, its study could offer new possibilities for the development of more effective anti-parasitic drugs, as well as better strategies for their surveillance, prevention, and control. In the present review, we compile the results of recent experiments on the cytoskeleton of these parasites and analyze how these novel findings might trigger the development of new drugs or the redesign of those currently used in addition to supporting their use as biomarkers in cutting-edge diagnostic tests.
Collapse
Affiliation(s)
- Diana G Ríos-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Javier Ambrosio
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Julio César Carrero
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Juan Pedro Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
15
|
Ghose A, Pullarkat P. The role of mechanics in axonal stability and development. Semin Cell Dev Biol 2023; 140:22-34. [PMID: 35786351 PMCID: PMC7615100 DOI: 10.1016/j.semcdb.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 01/28/2023]
Abstract
Much of the focus of neuronal cell biology has been devoted to growth cone guidance, synaptogenesis, synaptic activity, plasticity, etc. The axonal shaft too has received much attention, mainly for its astounding ability to transmit action potentials and the transport of material over long distances. For these functions, the axonal cytoskeleton and membrane have been often assumed to play static structural roles. Recent experiments have changed this view by revealing an ultrastructure much richer in features than previously perceived and one that seems to be maintained at a dynamic steady state. The role of mechanics in this is only beginning to be broadly appreciated and appears to involve passive and active modes of coupling different biopolymer filaments, filament turnover dynamics and membrane biophysics. Axons, being unique cellular processes in terms of high aspect ratios and often extreme lengths, also exhibit unique passive mechanical properties that might have evolved to stabilize them under mechanical stress. In this review, we summarize the experiments that have exposed some of these features. It is our view that axonal mechanics deserves much more attention not only due to its significance in the development and maintenance of the nervous system but also due to the susceptibility of axons to injury and neurodegeneration.
Collapse
Affiliation(s)
- Aurnab Ghose
- Indian Institute of Science Education and Research, Pune 411 008, India.
| | - Pramod Pullarkat
- Raman Research Institute, C. V. Raman Avenue, Bengaluru 560 080, India.
| |
Collapse
|
16
|
Stick R, Peter A. CaaX-less lamins: Lophotrochozoa provide a glance at the playground of evolution. PROTOPLASMA 2023; 260:741-756. [PMID: 36102949 PMCID: PMC10125929 DOI: 10.1007/s00709-022-01809-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
Nuclear lamins are the main components of the nuclear lamina in many eukaryotes. They are members of the intermediate filament (IF) protein family. Lamins differ from cytoplasmic IF proteins by the presence of a nuclear localisation sequence (NLS) and a C-terminal tetrapeptide, the CaaX motif. The CaaX motif is target of post-translational modifications including isoprenylation, proteolytic processing, and carboxyl-methylation. These modifications, in conjunction with the NLS, direct lamins to the inner nuclear membrane where they assemble into filaments. Lamins lacking a CaaX motif are unable to associate independently with nuclear membranes and remain in the nucleoplasm. So far, three species have been reported to exclusively express CaaX-less lamins. All three belong to the lophotrochozoan lineage. To find out whether they represent rare exceptions, we analysed lamins of representatives of 17 lophotrochozoan phyla. Here we report that all four clades of Rotifera as well as individual taxa of Mollusca and Annelida lack CaaX-lamins, but express lamins with alternative C-termini. Of note, the respective mollusc and annelid groups occupy very different phylogenetic ranks. Most of these alternative C-termini are rich in aromatic residues. A possible function of these residues in membrane association is discussed. Alternative splicing of terebellid lamin transcripts gives rise to two lamin variants, one with a CaaX motif and one with an alternative C-terminus. A similar situation is found in Arenicolidae, Opheliidae, Capitellidae, and Echiura. This points a way, how the switch from lamins carrying a CaaX motif to lamins with alternative C-termini may have occurred.
Collapse
Affiliation(s)
- Reimer Stick
- Department of Cell Biology, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
| | - Annette Peter
- Department of Cell Biology, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| |
Collapse
|
17
|
Tanaka A, Nakano T, Watanabe K, Masuda K, Honda G, Kamata S, Yasui R, Kozuka-Hata H, Watanabe C, Chinen T, Kitagawa D, Sawai S, Oyama M, Yanagisawa M, Kunieda T. Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel. PLoS Biol 2022; 20:e3001780. [PMID: 36067153 PMCID: PMC9592077 DOI: 10.1371/journal.pbio.3001780] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Tardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective proteins. Cytoplasmic-abundant heat-soluble (CAHS) proteins are uniquely invented in the lineage of eutardigrades, a major class of the phylum Tardigrada and are essential for their anhydrobiotic survival. However, the precise mechanisms of their action in this protective role are not fully understood. In the present study, we first postulated the presence of tolerance proteins that form protective condensates via phase separation in a stress-dependent manner and searched for tardigrade proteins that reversibly form condensates upon dehydration-like stress. Through a comprehensive search using a desolvating agent, trifluoroethanol (TFE), we identified 336 proteins, collectively dubbed "TFE-Dependent ReversiblY condensing Proteins (T-DRYPs)." Unexpectedly, we rediscovered CAHS proteins as highly enriched in T-DRYPs, 3 of which were major components of T-DRYPs. We revealed that these CAHS proteins reversibly polymerize into many cytoskeleton-like filaments depending on hyperosmotic stress in cultured cells and undergo reversible gel-transition in vitro. Furthermore, CAHS proteins increased cell stiffness in a hyperosmotic stress-dependent manner and counteract the cell shrinkage caused by osmotic pressure, and even improved the survival against hyperosmotic stress. The conserved putative helical C-terminal region is necessary and sufficient for filament formation by CAHS proteins, and mutations disrupting the secondary structure of this region impaired both the filament formation and the gel transition. On the basis of these results, we propose that CAHS proteins are novel cytoskeleton-like proteins that form filamentous networks and undergo gel-transition in a stress-dependent manner to provide on-demand physical stabilization of cell integrity against deformative forces during dehydration and could contribute to the exceptional physical stability in a dehydrated state.
Collapse
Affiliation(s)
- Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomomi Nakano
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kento Watanabe
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazutoshi Masuda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shuichi Kamata
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Reitaro Yasui
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The
University of Tokyo, Minato-ku, Tokyo, Japan
| | - Chiho Watanabe
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Sawai
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The
University of Tokyo, Minato-ku, Tokyo, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Ancient Origins of Cytoskeletal Crosstalk: Spectraplakin-like Proteins Precede the Emergence of Cortical Microtubule Stabilization Complexes as Crosslinkers. Int J Mol Sci 2022; 23:ijms23105594. [PMID: 35628404 PMCID: PMC9145010 DOI: 10.3390/ijms23105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Adhesion between cells and the extracellular matrix (ECM) is one of the prerequisites for multicellularity, motility, and tissue specialization. Focal adhesions (FAs) are defined as protein complexes that mediate signals from the ECM to major components of the cytoskeleton (microtubules, actin, and intermediate filaments), and their mutual communication determines a variety of cellular processes. In this study, human cytoskeletal crosstalk proteins were identified by comparing datasets with experimentally determined cytoskeletal proteins. The spectraplakin dystonin was the only protein found in all datasets. Other proteins (FAK, RAC1, septin 9, MISP, and ezrin) were detected at the intersections of FAs, microtubules, and actin cytoskeleton. Homology searches for human crosstalk proteins as queries were performed against a predefined dataset of proteomes. This analysis highlighted the importance of FA communication with the actin and microtubule cytoskeleton, as these crosstalk proteins exhibit the highest degree of evolutionary conservation. Finally, phylogenetic analyses elucidated the early evolutionary history of spectraplakins and cortical microtubule stabilization complexes (CMSCs) as model representatives of the human cytoskeletal crosstalk. While spectraplakins probably arose at the onset of opisthokont evolution, the crosstalk between FAs and microtubules is associated with the emergence of metazoans. The multiprotein complexes contributing to cytoskeletal crosstalk in animals gradually gained in complexity from the onset of metazoan evolution.
Collapse
|
19
|
Kural Mangit E, Boustanabadimaralan Düz N, Dinçer P. A cytoplasmic escapee: desmin is going nuclear. Turk J Biol 2022; 45:711-719. [PMID: 35068951 PMCID: PMC8733954 DOI: 10.3906/biy-2107-54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022] Open
Abstract
It has been a long time since researchers have focused on the cytoskeletal proteins' unconventional functions in the nucleus. Subcellular localization of a protein not only affects its functions but also determines the accessibility for cellular processes. Desmin is a muscle-specific, cytoplasmic intermediate filament protein, the cytoplasmic roles of which are defined. Yet, there is some evidence pointing out nuclear functions for desmin. In silico and wet lab analysis shows that desmin can enter and function in the nucleus. Furthermore, the candidate nuclear partners of desmin support the notion that desmin can serve as a transcriptional regulator inside the nucleus. Uncovering the nuclear functions and partners of desmin will provide a new insight into the biological significance of desmin.
Collapse
Affiliation(s)
- Ecem Kural Mangit
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara Turkey.,Laboratory Animals Research and Application Centre, Hacettepe University, Ankara Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara Turkey
| |
Collapse
|
20
|
Uceda-Castro R, van Asperen JV, Vennin C, Sluijs JA, van Bodegraven EJ, Margarido AS, Robe PAJ, van Rheenen J, Hol EM. GFAP splice variants fine-tune glioma cell invasion and tumour dynamics by modulating migration persistence. Sci Rep 2022; 12:424. [PMID: 35013418 PMCID: PMC8748899 DOI: 10.1038/s41598-021-04127-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
Glioma is the most common form of malignant primary brain tumours in adults. Their highly invasive nature makes the disease incurable to date, emphasizing the importance of better understanding the mechanisms driving glioma invasion. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is characteristic for astrocyte- and neural stem cell-derived gliomas. Glioma malignancy is associated with changes in GFAP alternative splicing, as the canonical isoform GFAPα is downregulated in higher-grade tumours, leading to increased dominance of the GFAPδ isoform in the network. In this study, we used intravital imaging and an ex vivo brain slice invasion model. We show that the GFAPδ and GFAPα isoforms differentially regulate the tumour dynamics of glioma cells. Depletion of either isoform increases the migratory capacity of glioma cells. Remarkably, GFAPδ-depleted cells migrate randomly through the brain tissue, whereas GFAPα-depleted cells show a directionally persistent invasion into the brain parenchyma. This study shows that distinct compositions of the GFAPnetwork lead to specific migratory dynamics and behaviours of gliomas.
Collapse
Affiliation(s)
- Rebeca Uceda-Castro
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Claire Vennin
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Emma J van Bodegraven
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Andreia S Margarido
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Ho M, Thompson B, Fisk JN, Nebert DW, Bruford EA, Vasiliou V, Bunick CG. Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders. Hum Genomics 2022; 16:1. [PMID: 34991727 PMCID: PMC8733776 DOI: 10.1186/s40246-021-00374-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Intermediate filament (IntFil) genes arose during early metazoan evolution, to provide mechanical support for plasma membranes contacting/interacting with other cells and the extracellular matrix. Keratin genes comprise the largest subset of IntFil genes. Whereas the first keratin gene appeared in sponge, and three genes in arthropods, more rapid increases in keratin genes occurred in lungfish and amphibian genomes, concomitant with land animal-sea animal divergence (~ 440 to 410 million years ago). Human, mouse and zebrafish genomes contain 18, 17 and 24 non-keratin IntFil genes, respectively. Human has 27 of 28 type I "acidic" keratin genes clustered at chromosome (Chr) 17q21.2, and all 26 type II "basic" keratin genes clustered at Chr 12q13.13. Mouse has 27 of 28 type I keratin genes clustered on Chr 11, and all 26 type II clustered on Chr 15. Zebrafish has 18 type I keratin genes scattered on five chromosomes, and 3 type II keratin genes on two chromosomes. Types I and II keratin clusters-reflecting evolutionary blooms of keratin genes along one chromosomal segment-are found in all land animal genomes examined, but not fishes; such rapid gene expansions likely reflect sudden requirements for many novel paralogous proteins having divergent functions to enhance species survival following sea-to-land transition. Using data from the Genotype-Tissue Expression (GTEx) project, tissue-specific keratin expression throughout the human body was reconstructed. Clustering of gene expression patterns revealed similarities in tissue-specific expression patterns for previously described "keratin pairs" (i.e., KRT1/KRT10, KRT8/KRT18, KRT5/KRT14, KRT6/KRT16 and KRT6/KRT17 proteins). The ClinVar database currently lists 26 human disease-causing variants within the various domains of keratin proteins.
Collapse
Affiliation(s)
- Minh Ho
- Department of Dermatology, Yale University, 333 Cedar St., LCI 501, PO Box 208059, New Haven, CT, 06520-8059, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Jeffrey Nicholas Fisk
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA
| | - Daniel W Nebert
- Departments of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, Cincinnati, OH, 45229, USA
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University, 333 Cedar St., LCI 501, PO Box 208059, New Haven, CT, 06520-8059, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
22
|
Pulling the springs of a cell by single-molecule force spectroscopy. Emerg Top Life Sci 2021; 5:77-87. [PMID: 33284963 DOI: 10.1042/etls20200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
The fundamental unit of the human body comprises of the cells which remain embedded in a fibrillar network of extracellular matrix proteins which in turn provides necessary anchorage the cells. Tissue repair, regeneration and reprogramming predominantly involve a traction force mediated signalling originating in the ECM and travelling deep into the cell including the nucleus via circuitry of spring-like filamentous proteins like microfilaments or actin, intermediate filaments and microtubules to elicit a response in the form of mechanical movement as well as biochemical changes. The 'springiness' of these proteins is highlighted in their extension-contraction behaviour which is manifested as an effect of differential traction force. Atomic force microscope (AFM) provides the magic eye to visualize and quantify such force-extension/indentation events in these filamentous proteins as well as in whole cells. In this review, we have presented a summary of the current understanding and advancement of such measurements by AFM based single-molecule force spectroscopy in the context of cytoskeletal and nucleoskeletal proteins which act in tandem to facilitate mechanotransduction.
Collapse
|
23
|
Ehrlich F, Lachner J, Hermann M, Tschachler E, Eckhart L. Convergent Evolution of Cysteine-Rich Keratins in Hard Skin Appendages of Terrestrial Vertebrates. Mol Biol Evol 2021; 37:982-993. [PMID: 31822906 PMCID: PMC7086170 DOI: 10.1093/molbev/msz279] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Terrestrial vertebrates have evolved hard skin appendages, such as scales, claws, feathers, and hair that play crucial roles in defense, predation, locomotion, and thermal insulation. The mechanical properties of these skin appendages are largely determined by cornified epithelial components. So-called "hair keratins," cysteine-rich intermediate filament proteins that undergo covalent cross-linking via disulfide bonds, are the crucial structural proteins of hair and claws in mammals and hair keratin orthologs are also present in lizard claws, indicating an evolutionary origin in a hairless common ancestor of amniotes. Here, we show that reptiles and birds have also other cysteine-rich keratins which lack cysteine-rich orthologs in mammals. In addition to hard acidic (type I) sauropsid-specific (HAS) keratins, we identified hard basic (type II) sauropsid-specific (HBS) keratins which are conserved in lepidosaurs, turtles, crocodilians, and birds. Immunohistochemical analysis with a newly made antibody revealed expression of chicken HBS1 keratin in the cornifying epithelial cells of feathers. Molecular phylogenetics suggested that the high cysteine contents of HAS and HBS keratins evolved independently from the cysteine-rich sequences of hair keratin orthologs, thus representing products of convergent evolution. In conclusion, we propose an evolutionary model in which HAS and HBS keratins evolved as structural proteins in epithelial cornification of reptiles and at least one HBS keratin was co-opted as a component of feathers after the evolutionary divergence of birds from reptiles. Thus, cytoskeletal proteins of hair and feathers are products of convergent evolution and evolutionary co-option to similar biomechanical functions in clade-specific hard skin appendages.
Collapse
Affiliation(s)
- Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Julia Lachner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Yamamoto A, Matsunaga KI, Anai T, Kawano H, Ueda T, Matsumoto T, Ando S. Characterization of an Intermediate Filament Protein from the Platyhelminth, Dugesia japonica. Protein Pept Lett 2020; 27:432-446. [PMID: 31652112 DOI: 10.2174/0929866526666191025102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intermediate Filaments (IFs) are major constituents of the cytoskeletal systems in animal cells. OBJECTIVE To gain insights into the structure-function relationship of invertebrate cytoplasmic IF proteins, we characterized an IF protein from the platyhelminth, Dugesia japonica, termed Dif-1. METHODS cDNA cloning, in situ hybridization, immunohistochemical analysis, and IF assembly experiments in vitro using recombinant Dif-1, were performed for protein characterization. RESULTS The structure deduced from the cDNA sequence showed that Djf-1 comprises 568 amino acids and has a tripartite domain structure (N-terminal head, central rod, and C-terminal tail) that is characteristic of IF proteins. Similar to nuclear IF lamins, Djf-1 contains an extra 42 residues in the coil 1b subdomain of the rod domain that is absent from vertebrate cytoplasmic IF proteins and a nuclear lamin-homology segment of approximately 105 residues in the tail domain; however, it contains no nuclear localization signal. In situ hybridization analysis showed that Djf-1 mRNA is specifically expressed in cells located within the marginal region encircling the worm body. Immunohistochemical analysis showed that Djf-1 protein forms cytoplasmic IFs located close to the microvilli of the cells. In vitro IF assembly experiments using recombinant proteins showed that Djf-1 alone polymerizes into IFs. Deletion of the extra 42 residues in the coil 1b subdomain resulted in the failure of IF formation. CONCLUSION Together with data from other histological studies, our results suggest that Djf- 1 is expressed specifically in anchor cells within the glandular adhesive organs of the worm and that Djf-1 IFs may play a role in protecting the cells from mechanical stress.
Collapse
Affiliation(s)
- Akiko Yamamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan
| | - Ken-Ichiro Matsunaga
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, 1 Honjo-cho, Saga, Saga Prefecture 840-8502, Japan
| | - Hitoshi Kawano
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan
| | - Toshihisa Ueda
- Faculty of Agriculture, Saga University, 1 Honjo-cho, Saga, Saga Prefecture 840-8502, Japan
| | - Toshihiko Matsumoto
- Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Kumamoto Prefecture 860-0082, Japan
| | - Shoji Ando
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan.,Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Kumamoto Prefecture 860-0082, Japan
| |
Collapse
|
25
|
Patteson AE, Carroll RJ, Iwamoto DV, Janmey PA. The vimentin cytoskeleton: when polymer physics meets cell biology. Phys Biol 2020; 18:011001. [PMID: 32992303 PMCID: PMC8240483 DOI: 10.1088/1478-3975/abbcc2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proper functions of tissues depend on the ability of cells to withstand stress and maintain shape. Central to this process is the cytoskeleton, comprised of three polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). IF proteins are among the most abundant cytoskeletal proteins in cells; yet they remain some of the least understood. Their structure and function deviate from those of their cytoskeletal partners, F-actin and microtubules. IF networks show a unique combination of extensibility, flexibility and toughness that confers mechanical resilience to the cell. Vimentin is an IF protein expressed in mesenchymal cells. This review highlights exciting new results on the physical biology of vimentin intermediate filaments and their role in allowing whole cells and tissues to cope with stress.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Robert J Carroll
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Daniel V Iwamoto
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Redmond CJ, Coulombe PA. Intermediate filaments as effectors of differentiation. Curr Opin Cell Biol 2020; 68:155-162. [PMID: 33246268 DOI: 10.1016/j.ceb.2020.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
After the initial discovery of intermediate filament (IF)-forming proteins in 1968, a decade would elapse before they were revealed to comprise a diverse group of proteins which undergo tissue-, developmental stage-, differentiation-, and context-dependent regulation. Our appreciation for just how large (n = 70), conserved, complex, and dynamic IF genes and proteins are became even sharper upon completion of the human genome project. While there has been extraordinary progress in understanding the multimodal roles of IFs in cells and tissues, even revealing them as direct causative agents in a broad array of human genetic disorders, the link between individual IFs and cell differentiation has remained elusive. Here, we review evidence that demonstrates a role for IFs in lineage determination, cell differentiation, and tissue homeostasis. A major theme in this review is the function of IFs as sensors and transducers of mechanical forces, intersecting microenvironmental cues and fundamental processes through cellular redox balance.
Collapse
Affiliation(s)
- Catherine J Redmond
- Graduate Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Pierre A Coulombe
- Graduate Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
27
|
Prokop A. Cytoskeletal organization of axons in vertebrates and invertebrates. J Cell Biol 2020; 219:e201912081. [PMID: 32369543 PMCID: PMC7337489 DOI: 10.1083/jcb.201912081] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The maintenance of axons for the lifetime of an organism requires an axonal cytoskeleton that is robust but also flexible to adapt to mechanical challenges and to support plastic changes of axon morphology. Furthermore, cytoskeletal organization has to adapt to axons of dramatically different dimensions, and to their compartment-specific requirements in the axon initial segment, in the axon shaft, at synapses or in growth cones. To understand how the cytoskeleton caters to these different demands, this review summarizes five decades of electron microscopic studies. It focuses on the organization of microtubules and neurofilaments in axon shafts in both vertebrate and invertebrate neurons, as well as the axon initial segments of vertebrate motor- and interneurons. Findings from these ultrastructural studies are being interpreted here on the basis of our contemporary molecular understanding. They strongly suggest that axon architecture in animals as diverse as arthropods and vertebrates is dependent on loosely cross-linked bundles of microtubules running all along axons, with only minor roles played by neurofilaments.
Collapse
Affiliation(s)
- Andreas Prokop
- School of Biology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell 2020; 31:1315-1323. [PMID: 32530796 PMCID: PMC7353140 DOI: 10.1091/mbc.e18-10-0636] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
The nuclear envelope (NE) is continuous with the endoplasmic reticulum (ER), yet the NE carries out many functions distinct from those of bulk ER. This functional specialization depends on a unique protein composition that defines NE identity and must be both established and actively maintained. The NE undergoes extensive remodeling in interphase and mitosis, so mechanisms that seal NE holes and protect its unique composition are critical for maintaining its functions. New evidence shows that closure of NE holes relies on regulated de novo lipid synthesis, providing a link between lipid metabolism and generating and maintaining NE identity. Here, we review regulation of the lipid bilayers of the NE and suggest ways to generate lipid asymmetry across the NE despite its direct continuity with the ER. We also discuss the elusive mechanism of membrane fusion during nuclear pore complex (NPC) biogenesis. We propose a model in which NPC biogenesis is carefully controlled to ensure that a permeability barrier has been established before membrane fusion, thereby avoiding a major threat to compartmentalization.
Collapse
Affiliation(s)
- Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
29
|
Russell MA. Synemin Redefined: Multiple Binding Partners Results in Multifunctionality. Front Cell Dev Biol 2020; 8:159. [PMID: 32258037 PMCID: PMC7090255 DOI: 10.3389/fcell.2020.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Historically synemin has been studied as an intermediate filament protein. However, synemin also binds the type II regulatory (R) subunit α of protein kinase A (PKA) and protein phosphatase type 2A, thus participating in the PKA and phosphoinositide 3-kinase (PI3K)-Akt and signaling pathways. In addition, recent studies using transgenic mice indicate that a significant function of synemin is its role in signaling pathways in various tissues, including the heart. Recent clinical reports have shown that synemin mutations led to multiple cases of dilated cardiomyopathy. Additionally, a single case of the rare condition ulnar-mammary-like syndrome with left ventricular tachycardia due to a mutation in the synemin gene (SYNM) has been reported. Therefore, this review uses these recent studies to provide a new framework for detailed discussions on synemin tissue distribution, binding partners and synemin in disease. Differences between α- and β-synemin are highlighted. The studies presented here indicate that while synemin does function as an intermediate filament protein, it is unique among this large family of proteins as it is also a regulator of signaling pathways and a crosslinker. Also evident is that the dominant function(s) are isoform-, developmental-, and tissue-specific.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Biological Sciences, Kent State University at Trumbull, Warren, OH, United States
| |
Collapse
|
30
|
Strouhalova K, Přechová M, Gandalovičová A, Brábek J, Gregor M, Rosel D. Vimentin Intermediate Filaments as Potential Target for Cancer Treatment. Cancers (Basel) 2020; 12:E184. [PMID: 31940801 PMCID: PMC7017239 DOI: 10.3390/cancers12010184] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Intermediate filaments constitute the third component of the cellular skeleton. Unlike actin and microtubule cytoskeletons, the intermediate filaments are composed of a wide variety of structurally related proteins showing distinct expression patterns in tissues and cell types. Changes in the expression patterns of intermediate filaments are often associated with cancer progression; in particular with phenotypes leading to increased cellular migration and invasion. In this review we will describe the role of vimentin intermediate filaments in cancer cell migration, cell adhesion structures, and metastasis formation. The potential for targeting vimentin in cancer treatment and the development of drugs targeting vimentin will be reviewed.
Collapse
Affiliation(s)
- Katerina Strouhalova
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Magdalena Přechová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Aneta Gandalovičová
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Daniel Rosel
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| |
Collapse
|
31
|
Lateral A11 type tetramerization in lamins. J Struct Biol 2020; 209:107404. [DOI: 10.1016/j.jsb.2019.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
|
32
|
Abstract
Lamin proteins are major constituents of the nuclear lamina. They are required for fundamental nuclear activities, as evidenced by the large number of laminopathies. Mutations in the human lamin A/C gene exhibit a broad spectrum of clinical manifestations. Most non-vertebrates including the nearest relatives of the vertebrates have only a single lamin gene. In jawed vertebrates (Gnathostomata), four lamin subtypes (B1, B2, LIII, and A) are found. Lampreys and hagfish form the two orders of jawless vertebrates, Agnatha, which represent the sister group of the Gnathostomata at the base of the vertebrate lineage. Lamin sequence information of lampreys and hagfish sheds light on the evolution of the lamin protein family at the base of the vertebrate lineage. In the genomes of the lamprey (Petromyzon marinus) and the hagfish (Eptatretus burgeri), only three lamin genes are present, a lamin A gene is lacking. The presence of an LIII gene in both, lampreys and hagfish, proves that the distinguishing features of this gene had been established before the agnathan/gnathostome split. The other two agnathan lamins, LmnI and LmnII, deviate strongly in their sequences from those of the gnathostome lamins. For none of these two agnathan lamins can orthology be established to one of the gnathostome lamin types. In the direct chromosomal neighbourhood of all three hagfish lamin genes, a MARCH3 paralog is found. This can be interpreted as further evidence that the vertebrate lamin genes have arisen in the course of the two rounds of whole genome duplication that took place at the base of the vertebrate lineage.
Collapse
|
33
|
Karabinos A, Schulze E, Baumeister R. Analysis of the novel excretory cell expressed ECP-1 protein and its proposed ECP-1/IFC-2 fusion protein EXC-2 in the nematode Caenorhabditis elegans. Gene Expr Patterns 2019; 34:119061. [DOI: 10.1016/j.gep.2019.119061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
|
34
|
Karabinos A, Schünemann J, Parry DAD. Promiscuous Dimerization Between the Caenorhabditis elegans IF Proteins and a Hypothesis to Explain How Multiple IFs Persist Over Evolutionary Time. J Mol Evol 2019; 87:221-230. [PMID: 31407015 DOI: 10.1007/s00239-019-09904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/01/2019] [Indexed: 11/28/2022]
Abstract
Our previous calculations of ionic interactions indicated that the Caenorhabditis elegans intermediate filament (IF) IFA proteins, in addition to IFA/IFB-1 heterodimers, may also form homodimers. In order to prove the significance of these calculations, we analysed the dimerization potential of the IFA chains in blot overlays. Unexpectedly, we found here that the dimerization of the IFA-1 protein was of both homotypic and heterotypic nature, and involved all proteins immobilized on the membrane (IFA-1, IFA-2, IFA-4, IFB-1, IFB-2, IFC-1, IFC-2, IFD-1, IFD-2 and IFP-1). A similar interaction profile, though less complex, was observed for two biotinylated proteins (IFA-2 and IFA-4). These and previous results indicate that the IFA proteins are able to form many different heteropolymeric and homopolymeric complexes in the C. elegans tissue, but that only those triggered by the IFA-specific IFB-1 protein result in mature IFs. Moreover, the calculations of the possible ionic interactions between the individual rod sequences as well as their various deletion variants indicated a special role in this process for the middle part of the C. elegans IF coil 1B segment that is deleted in all vertebrate cytoplasmic IFs. We hypothesized here, therefore, that the striking promiscuity of the C. elegans IFs originally involved a nuclear lamin which, due to a two-heptad-long rod deletion, prevented formation of a functional lamin/cIF dimer. This, in concert with an efficient dimerization and a strict tissue-specific co-expression, may allow expansion and maintenance of the multiple Caenorhabditis IFs. A possible implication for evolution of chordate IFs proteins is also discussed.
Collapse
Affiliation(s)
- Anton Karabinos
- SEMBID,s.r.o.-Research Centre of Applied Biomedical Diagnostics, Magnezitarska 2/C, 04013, Kosice, Slovakia.
| | - Jürgen Schünemann
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Goettingen, Germany
| | - David A D Parry
- School of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| |
Collapse
|
35
|
Ehrlich F, Fischer H, Langbein L, Praetzel-Wunder S, Ebner B, Figlak K, Weissenbacher A, Sipos W, Tschachler E, Eckhart L. Differential Evolution of the Epidermal Keratin Cytoskeleton in Terrestrial and Aquatic Mammals. Mol Biol Evol 2019; 36:328-340. [PMID: 30517738 PMCID: PMC6367960 DOI: 10.1093/molbev/msy214] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Keratins are the main intermediate filament proteins of epithelial cells. In keratinocytes of the mammalian epidermis they form a cytoskeleton that resists mechanical stress and thereby are essential for the function of the skin as a barrier against the environment. Here, we performed a comparative genomics study of epidermal keratin genes in terrestrial and fully aquatic mammals to determine adaptations of the epidermal keratin cytoskeleton to different environments. We show that keratins K5 and K14 of the innermost (basal), proliferation-competent layer of the epidermis are conserved in all mammals investigated. In contrast, K1 and K10, which form the main part of the cytoskeleton in the outer (suprabasal) layers of the epidermis of terrestrial mammals, have been lost in whales and dolphins (cetaceans) and in the manatee. Whereas in terrestrial mammalian epidermis K6 and K17 are expressed only upon stress-induced epidermal thickening, high levels of K6 and K17 are consistently present in dolphin skin, indicating constitutive expression and substitution of K1 and K10. K2 and K9, which are expressed in a body site-restricted manner in human and mouse suprabasal epidermis, have been lost not only in cetaceans and manatee but also in some terrestrial mammals. The evolution of alternative splicing of K10 and differentiation-dependent upregulation of K23 have increased the complexity of keratin expression in the epidermis of terrestrial mammals. Taken together, these results reveal evolutionary diversification of the epidermal cytoskeleton in mammals and suggest a complete replacement of the quantitatively predominant epidermal proteins of terrestrial mammals by originally stress-inducible keratins in cetaceans.
Collapse
Affiliation(s)
- Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Lutz Langbein
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Silke Praetzel-Wunder
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Bettina Ebner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Figlak
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | | | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Abstract
Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur Paris, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Paris Cedex 15, France;
| |
Collapse
|
37
|
Pollard TD, Goldman RD. Overview of the Cytoskeleton from an Evolutionary Perspective. Cold Spring Harb Perspect Biol 2018; 10:10/7/a030288. [PMID: 29967009 DOI: 10.1101/cshperspect.a030288] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organisms in the three domains of life depend on protein polymers to form a cytoskeleton that helps to establish their shapes, maintain their mechanical integrity, divide, and, in many cases, move. Eukaryotes have the most complex cytoskeletons, comprising three cytoskeletal polymers-actin filaments, intermediate filaments, and microtubules-acted on by three families of motor proteins (myosin, kinesin, and dynein). Prokaryotes have polymers of proteins homologous to actin and tubulin but no motors, and a few bacteria have a protein related to intermediate filament proteins.
Collapse
Affiliation(s)
- Thomas D Pollard
- Departments of Molecular Cellular and Developmental Biology, Molecular Biophysics and Biochemistry, and Cell Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
38
|
Bernal A, Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci 2018; 75:2177-2195. [PMID: 29541793 PMCID: PMC5948302 DOI: 10.1007/s00018-018-2794-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 02/06/2023]
Abstract
The neuroepithelial stem cell protein, or Nestin, is a cytoskeletal intermediate filament initially characterized in neural stem cells. However, current extensive evidence obtained in in vivo models and humans shows presence of Nestin+ cells with progenitor and/or regulatory functions in a number of additional tissues, remarkably bone marrow. This review presents the current knowledge on the role of Nestin in essential stem cell functions, including self-renewal/proliferation, differentiation and migration, in the context of the cytoskeleton. We further discuss the available in vivo models for the study of Nestin+ cells and their progeny, their function and elusive nature in nervous system and bone marrow, and their potential mechanistic role and promising therapeutic value in preclinical models of disease. Future improved in vivo models and detection methods will allow to determine the true essence of Nestin+ cells and confirm their potential application as therapeutic target in a range of diseases.
Collapse
Affiliation(s)
- Aurora Bernal
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, MH Building Level 6, 9019, Tromsø, Norway
| | - Lorena Arranz
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, MH Building Level 6, 9019, Tromsø, Norway.
- Department of Hematology, University Hospital of North Norway, Tromsø, Norway.
- Young Associate Investigator, Norwegian Center for Molecular Medicine (NCMM), Oslo, Norway.
| |
Collapse
|
39
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
40
|
Maraldi NM. The lamin code. Biosystems 2018; 164:68-75. [DOI: 10.1016/j.biosystems.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
41
|
Abstract
The evolution of keratins was closely linked to the evolution of epithelia and epithelial appendages such as hair. The characterization of keratins in model species and recent comparative genomics studies have led to a comprehensive scenario for the evolution of keratins including the following key events. The primordial keratin gene originated as a member of the ancient gene family encoding intermediate filament proteins. Gene duplication and changes in the exon-intron structure led to the origin of type I and type II keratins which evolved further by nucleotide sequence modifications that affected both the amino acid sequences of the encoded proteins and the gene expression patterns. The diversification of keratins facilitated the emergence of new and epithelium type-specific properties of the cytoskeleton. In a common ancestor of reptiles, birds, and mammals, a rise in the number of cysteine residues facilitated extensive disulfide bond-mediated cross-linking of keratins in claws. Subsequently, these cysteine-rich keratins were co-opted for an additional function in epidermal follicular structures that evolved into hair, one of the key events in the evolution of mammals. Further diversification of keratins occurred during the evolution of the complex multi-layered organisation of hair follicles. Thus, together with the evolution of other structural proteins, epithelial patterning mechanisms, and development programmes, the evolution of keratins underlied the evolution of the mammalian integument.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
43
|
Gullmets J, Torvaldson E, Lindqvist J, Imanishi SY, Taimen P, Meinander A, Eriksson JE. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin. FASEB J 2017; 31:5332-5341. [PMID: 28778974 DOI: 10.1096/fj.201700332r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/25/2017] [Indexed: 11/11/2022]
Abstract
Cytoplasmic intermediate filaments (cIFs) are found in all eumetazoans, except arthropods. To investigate the compatibility of cIFs in arthropods, we expressed human vimentin (hVim), a cIF with filament-forming capacity in vertebrate cells and tissues, transgenically in Drosophila Transgenic hVim could be recovered from whole-fly lysates by using a standard procedure for intermediate filament (IF) extraction. When this procedure was used to test for the possible presence of IF-like proteins in flies, only lamins and tropomyosin were observed in IF-enriched extracts, thereby providing biochemical reinforcement to the paradigm that arthropods lack cIFs. In Drosophila, transgenic hVim was unable to form filament networks in S2 cells and mesenchymal tissues; however, cage-like vimentin structures could be observed around the nuclei in internal epithelia, which suggests that Drosophila retains selective competence for filament formation. Taken together, our results imply that although the filament network formation competence is partially lost in Drosophila, a rudimentary filament network formation ability remains in epithelial cells. As a result of the observed selective competence for cIF assembly in Drosophila, we hypothesize that internal epithelial cIFs were the last cIFs to disappear from arthropods.-Gullmets, J., Torvaldson, E., Lindqvist, J., Imanishi, S. Y., Taimen, P., Meinander, A., Eriksson, J. E. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin.
Collapse
Affiliation(s)
- Josef Gullmets
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, Turku, Finland
| | - Elin Torvaldson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Julia Lindqvist
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, Turku, Finland
| | - Annika Meinander
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
44
|
Ni T, Gilbert RJC. Repurposing a pore: highly conserved perforin-like proteins with alternative mechanisms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160212. [PMID: 28630152 PMCID: PMC5483515 DOI: 10.1098/rstb.2016.0212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/02/2022] Open
Abstract
Pore-forming proteins play critical roles in pathogenic attack and immunological defence. The membrane attack complex/perforin (MACPF) group of homologues represents, with cholesterol-dependent cytolysins, the largest family of such proteins. In this review, we begin by describing briefly the structure of MACPF proteins, outlining their common mechanism of pore formation. We subsequently discuss some examples of MACPF proteins likely implicated in pore formation or other membrane-remodelling processes. Finally, we focus on astrotactin and bone morphogenetic protein and retinoic acid-induced neural-specific proteins, highly conserved MACPF family members involved in developmental processes, which have not been well studied to date or observed to form a pore-and which data suggest may act by alternative mechanisms.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
45
|
Abstract
Previously thought to reside exclusively in the cytoplasm, the cytoskeletal protein keratin 17 (K17) has been recently identified inside the nucleus of tumor epithelial cells with a direct impact on cell proliferation and gene expression. We comment on fundamental questions raised by this new finding and the associated significance.
Collapse
Affiliation(s)
- Ryan P Hobbs
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Justin T Jacob
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Ohashi K, Fujiwara S, Mizuno K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem 2017; 161:245-254. [PMID: 28082721 DOI: 10.1093/jb/mvw082] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/13/2016] [Indexed: 11/13/2022] Open
Abstract
All cells sense and respond to various mechanical forces in and mechanical properties of their environment. To respond appropriately, cells must be able to sense the location, direction, strength and duration of these forces. Recent progress in mechanobiology has provided a better understanding of the mechanisms of mechanoresponses underlying many cellular and developmental processes. Various roles of mechanoresponses in development and tissue homeostasis have been elucidated, and many molecules involved in mechanotransduction have been identified. However, the whole picture of the functions and molecular mechanisms of mechanotransduction remains to be understood. Recently, novel mechanisms for sensing and transducing mechanical stresses via the cytoskeleton, cell-substrate and cell-cell adhesions and related proteins have been identified. In this review, we outline the roles of the cytoskeleton, cell-substrate and cell-cell adhesions, and related proteins in mechanosensing and mechanotransduction. We also describe the roles and regulation of Rho-family GTPases in mechanoresponses.
Collapse
Affiliation(s)
- Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Sachiko Fujiwara
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.,Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan Osaka
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
47
|
Abstract
The nuclear lamina is involved in fundamental nuclear functions and provides mechanical stability to the nucleus. Lamin filaments form a meshwork closely apposed to the inner nuclear membrane and a small fraction of lamins exist in the nuclear interior. Mutations in lamin genes cause severe hereditary diseases, the laminopathies. During vertebrate evolution the lamin protein family has expanded. While most vertebrate genomes contain 4 lamin genes, encoding the lamins A, B1, B2, and LIII, the majority of non-vertebrate genomes harbor only a single lamin gene. We have collected lamin gene and cDNA sequence information for representatives of the major vertebrate lineages. With the help of RNA-seq data we have determined relative lamin expression levels for representative tissues for species of 9 different gnathostome lineages. Here we report that the level of lamin A expression is low in cartilaginous fishes and ancient fishes and increases toward the mammals. Lamin B1 expression shows an inverse tendency to that of lamin A. Possible implications for the change in the lamin A to B ratio is discussed in the light of its role in nuclear mechanics.
Collapse
Affiliation(s)
- Reimer Stick
- a FB2 Biology/Chemistry, University of Bremen , Bremen , Germany
| | - Annette Peter
- a FB2 Biology/Chemistry, University of Bremen , Bremen , Germany
| |
Collapse
|
48
|
Abstract
Intermediate filaments (IFs), together with microtubules and actin microfilaments, are the three main cytoskeletal components in metazoan cells. IFs are formed by a distinct protein family, which is made up of 70 members in humans. Most IF proteins are tissue- or organelle-specific, which includes lamins, the IF proteins of the nucleus. The building block of IFs is an elongated dimer, which consists of a central α-helical 'rod' domain flanked by flexible N- and C-terminal domains. The conserved rod domain is the 'signature feature' of the IF family. Bioinformatics analysis reveals that the rod domain of all IF proteins contains three α-helical segments of largely conserved length, interconnected by linkers. Moreover, there is a conserved pattern of hydrophobic repeats within each segment, which includes heptads and hendecads. This defines the presence of both left-handed and almost parallel coiled-coil regions along the rod length. Using X-ray crystallography on multiple overlapping fragments of IF proteins, the atomic structure of the nearly complete rod domain has been determined. Here, we discuss some specific challenges of this procedure, such as crystallization and diffraction data phasing by molecular replacement. Further insights into the structure of the coiled coil and the terminal domains have been obtained using electron paramagnetic resonance measurements on the full-length protein, with spin labels attached at specific positions. This atomic resolution information, as well as further interesting findings, such as the variation of the coiled-coil stability along the rod length, provide clues towards interpreting the data on IF assembly, collected by a range of methods. However, a full description of this process at the molecular level is not yet at hand.
Collapse
Affiliation(s)
- Dmytro Guzenko
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anastasia A Chernyatina
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
49
|
|
50
|
Abstract
Proteins of the intermediate filament (IF) supergene family are ubiquitous structural components that comprise, in a cell type-specific manner, the cytoskeleton proper in animal tissues. All IF proteins show a distinctly organized, extended α-helical conformation prone to form two-stranded coiled coils, which are the basic building blocks of these highly flexible, stress-resistant cytoskeletal filaments. IF proteins are highly charged, thus representing versatile polyampholytes with multiple functions. Taking vimentin, keratins, and the nuclear lamins as our prime examples, we present an overview of their molecular and structural parameters. These, in turn, document the ability of IF proteins to form distinct, highly diverse supramolecular assemblies and biomaterials found, for example, at the inner nuclear membrane, throughout the cytoplasm, and in highly complex extracellular appendages, such as hair and nails, of vertebrate organisms. Ultimately, our aim is to set the stage for a more rational understanding of the immediate effects that missense mutations in IF genes have on cellular functions and for their far-reaching impact on the development of the numerous IF diseases caused by them.
Collapse
Affiliation(s)
- Harald Herrmann
- Functional Architecture of the Cell (B065), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany, and Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|