1
|
Fukumoto J, Tsuboi T, Takashima E. Ultrastructural expansion microscopy (U-ExM) visualization of malaria parasite dense granules using RESA as a representative marker protein. Parasitol Int 2025; 106:103023. [PMID: 39732432 DOI: 10.1016/j.parint.2024.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Dense granules (DG) are understudied apical organelles in merozoites, the malaria parasite stage that invades erythrocytes. Only six proteins have been identified which localize to DGs, despite that DG proteins play crucial roles in multiple steps of intraerythrocytic parasite development. To develop a tool for investigating DG structure and function, this study applied ultrastructural expansion microscopy (U-ExM) to visualize the ring-infected erythrocyte surface antigen (RESA) in Plasmodium falciparum merozoites. Merozoites were expanded to approximately four times their original size, allowing the identification of DGs without the need for electron microscopy. RESA localization in merozoite DGs was confirmed by staining with a combination of anti-RESA mAb and protein staining by NHS-ester. The translocation of RESA to the infected erythrocyte membrane was also observed in early ring-stage parasites. These results are in good agreement with the RESA localization reported using immunoelectron microscopy (IEM). By using U-ExM, the identification of novel DG proteins will be facilitated without time-consuming IEM, thereby enhancing our understanding of erythrocyte parasitism by P. falciparum.
Collapse
Affiliation(s)
- Junpei Fukumoto
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
2
|
Kumari G, Gupta P, Goswami SG, Jain R, Anand S, Biswas S, Garg S, Thakur P, Saravanakumar V, Arvinden VR, Goswami B, Bhowmick IP, Mohandas N, Burrows J, Ramalingam S, Singh S. CRISPR/Cas9-engineering of Kell null erythrocytes to unveil host targeted irresistible antimalarial. Commun Biol 2025; 8:730. [PMID: 40350476 PMCID: PMC12066708 DOI: 10.1038/s42003-025-07968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 03/19/2025] [Indexed: 05/14/2025] Open
Abstract
Malaria elimination faces challenges from drug resistance, stemming from mutations within the parasite's genetic makeup. Genetic adaptations in key erythrocyte proteins offer malaria protection in endemic regions. Emulating nature's approach, and implementing methodologies to render indispensable host proteins inactive, holds the potential to reshape antimalarial therapy. This study delves into the functional implication of the single-span membrane protein Kell ectodomain, which shares consensus sequence with the zinc endopeptidase family, possesses extracellular enzyme activity crucial for parasite invasion into host erythrocytes. Through generating Kell-null erythrocytes from an erythroid progenitor, BEL-A, we demonstrate the indispensable nature of Kell activity in P. falciparum invasion. Additionally, thiorphan, a metallo-endopeptidase inhibitor, which specifically inhibits Kell activity, inhibited Plasmodium infection at nanomolar concentrations. Interestingly, individuals in malaria-endemic regions exhibit low Kell expression and activity, indicating a plausible Plasmodium-induced evolutionary pressure. Both thiorphan and its prodrug racecadotril, demonstrated potent antimalarial activity in vivo, highlighting Kell's protease role in invasion and proposing thiorphan as a promising host-oriented antimalarial therapeutic.
Collapse
Affiliation(s)
- Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pragya Gupta
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangam G Goswami
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priya Thakur
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinodh Saravanakumar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - V R Arvinden
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bidhan Goswami
- Agartala Government Medical college, Agartala, Tripura, India
| | - Ipsita Pal Bhowmick
- ICMR-Regional Medical Research Centre, Northeast Region (RMRC-NE), Dibrugarh, Assam, India
- Model Rural Health Research Unit (MRHRU), Tripura, India
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, 310 E 67th St, New York, NY, 10065, USA
| | | | - Sivaprakash Ramalingam
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Department of Biological Sciences and Bioengineering, Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Puszko AK, Batista FA, Ejjoummany A, Bouillon A, Maurel M, Adler P, Legru A, Martinez M, Ortega Varga L, Hadjadj M, Alzari PM, Blondel A, Haouz A, Barale JC, Hernandez JF. Towards Improved Peptidic α-Ketoamide Inhibitors of the Plasmodial Subtilisin-Like SUB1: Exploration of N-Terminal Extensions and Cyclic Constraints. ChemMedChem 2025; 20:e202400924. [PMID: 39832214 DOI: 10.1002/cmdc.202400924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
After more than 15 years of decline, the Malaria epidemy has increased again since 2017, reinforcing the need to identify drug candidates active on new targets involved in at least two biological stages of the Plasmodium life cycle. The SUB1 protease, which is essential for parasite egress in both hepatic and blood stages, would meet these criteria. We previously reported the structure-activity relationship analysis of α-ketoamide-containing inhibitors encompassing positions P4-P2'. Despite compounds with high inhibitory potencies were identified, their antiparasitic activity remained limited, probably due to insufficient cell permeability. Here, we present our efforts to improve it through the N-terminal introduction of basic or hydrophobic moieties and/or cyclization. Compared to our previous reference compounds 1/2 (Ac-Ile/Cpg-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we identified analogues with improved Pf-/PvSUB1 inhibition (IC50 values in the 10-20 nM range) and parasite growth inhibition (up to 98 % at 100 μM). The increase in potency was mainly observed when increasing the overall hydrophobicity of the compounds. Conjugation to the cell penetrating peptide octa-arginine was also favorable. Finally, the crystal structure of PvSUB1 in complex with compound 15 has been determined at 1.6 Å resolution. Compared to compound 1, this structure extended to the P5 residue and revealed two additional hydrogen bonds.
Collapse
Affiliation(s)
- Anna K Puszko
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Fernando A Batista
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Abdelaziz Ejjoummany
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Anthony Bouillon
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Manon Maurel
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Pauline Adler
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Alice Legru
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Mariano Martinez
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Laura Ortega Varga
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Margot Hadjadj
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Pedro M Alzari
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Arnaud Blondel
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Ahmed Haouz
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Jean-Christophe Barale
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
4
|
Tachibana Y, Yamamoto M. Recent advances in identifying and characterizing secretory proteins of Toxoplasma gondii by CRISPR-based screening. Parasitol Int 2025; 105:102997. [PMID: 39586398 DOI: 10.1016/j.parint.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The apicomplexan parasite, Toxoplasma gondii, develops unique secretory organelles, such as micronemes, rhoptries, and dense granules, which do not exist in other well-studied eukaryotic organisms. These secretory organelles are key features of apicomplexan parasites and discharge various proteins that are essential for invasion, replication, egress, host-parasite interactions, and virulence. Many studies have therefore focused on identifying and characterizing the proteins secreted by T. gondii that play essential roles in pathology and that can be targeted for therapeutics and vaccine development. The recent development of functional genetic screens based on CRISPR/Cas9 technology has revolutionized this field and has enabled the identification of genes that contribute to parasite fitness in vitro and in vivo. Consequently, characterization of genes identified by unbiased CRISPR screens has revealed novel aspects of apicomplexan biology. In this review, we describe the development of CRIPSR-based screening technology for T. gondii, and recent advances in our understanding of secretory proteins identified and characterized by CRISPR-based screening.
Collapse
Affiliation(s)
- Yuta Tachibana
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan; Center for Advanced Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Seveno M, Loubens MN, Berry L, Graindorge A, Lebrun M, Lavazec C, Lamarque MH. The malaria parasite PP1 phosphatase controls the initiation of the egress pathway of asexual blood-stages by regulating the rounding-up of the vacuole. PLoS Pathog 2025; 21:e1012455. [PMID: 39808636 PMCID: PMC11731718 DOI: 10.1371/journal.ppat.1012455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane. These events are coordinated by two intracellular second messengers, cGMP and calcium ions (Ca2+), that control the activation of their dedicated kinases, PKG and CDPKs respectively, and thus the secretion of parasitic factors that assist membranes rupture. We had previously identified the serine-threonine phosphatase PP1 as an essential enzyme required for the rupture of the surrounding vacuole. Here, we address its precise positioning and function within the egress signaling pathway by combining chemical genetics and live-microscopy. Fluorescent reporters of the parasitophorous vacuole morphology were expressed in the conditional PfPP1-iKO line which allowed to monitor the kinetics of natural and induced egress, as well as the rescue capacity of known egress inducers. Our results underscore a dual function for PP1 in the egress cascade. First, we provide further evidence that PP1 controls the homeostasis of the second messenger cGMP by modulating the basal activity of guanylyl cyclase alpha and consequently the PKG-dependent downstream Ca2+ signaling. Second, we demonstrate that PP1 also regulates the rounding-up of the parasitophorous vacuole, as this step is almost completely abolished in PfPP1-null schizonts. Strikingly, our data show that rounding-up is the step triggered by egress inducers, and support its reliance on Ca2+, as the calcium ionophore A23187 bypasses the egress defect of PfPP1-null schizonts, restores proper egress kinetics and promotes the initiation of the rounding-up step. Therefore, this study places the phosphatase PP1 upstream of the cGMP-PKG signaling pathway, and sheds new light on the regulation of rounding-up, the first step in P. falciparum blood stage egress cascade.
Collapse
Affiliation(s)
- Marie Seveno
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| | - Manon N. Loubens
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| | - Laurence Berry
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| | - Arnault Graindorge
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| | - Maryse Lebrun
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| | - Catherine Lavazec
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, Paris, France
| | - Mauld H. Lamarque
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| |
Collapse
|
6
|
Singer M, Kanatani S, Castillo SG, Frischknecht F, Sinnis P. The Plasmodium circumsporozoite protein. Trends Parasitol 2024; 40:1124-1134. [PMID: 39572325 DOI: 10.1016/j.pt.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
The circumsporozoite protein (CSP) is one of the most studied proteins of the malaria parasite. It is the target of the only licensed malaria vaccines and is essential for sporozoite formation and infectivity. Yet, the mechanisms by which CSP functions and its interactions with other proteins are only beginning to be understood. Here we review the current state of knowledge of CSP structure and function, as sporozoites develop in the mosquito and establish infection in the mammalian host, and outline outstanding questions that need to be addressed.
Collapse
Affiliation(s)
- Mirko Singer
- Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Heidelberg, Germany
| | - Sachie Kanatani
- Johns Hopkins School of Public Health and Johns Hopkins Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD, USA
| | - Stefano Garcia Castillo
- Johns Hopkins School of Public Health and Johns Hopkins Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD, USA
| | - Friedrich Frischknecht
- Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Heidelberg, Germany; German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Photini Sinnis
- Johns Hopkins School of Public Health and Johns Hopkins Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD, USA.
| |
Collapse
|
7
|
Singh MK, Bonnell VA, Tojal Da Silva I, Santiago VF, Moraes MS, Adderley J, Doerig C, Palmisano G, Llinas M, Garcia CRS. A Plasmodium falciparum MORC protein complex modulates epigenetic control of gene expression through interaction with heterochromatin. eLife 2024; 12:RP92201. [PMID: 39412522 PMCID: PMC11483127 DOI: 10.7554/elife.92201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.
Collapse
Affiliation(s)
- Maneesh Kumar Singh
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| | - Victoria Ann Bonnell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Eukaryotic Gene Regulation, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Malaria Research, Pennsylvania State University, University ParkHarrisburgUnited States
| | | | | | - Miriam Santos Moraes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| | - Jack Adderley
- School of Health and Biomedical Sciences, RMIT UniversityBundooraAustralia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT UniversityBundooraAustralia
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Science, University of São PauloSão PauloBrazil
| | - Manuel Llinas
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Eukaryotic Gene Regulation, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Malaria Research, Pennsylvania State University, University ParkHarrisburgUnited States
- Department of Chemistry, Pennsylvania State University, University ParkHarrisburgUnited States
| | - Celia RS Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| |
Collapse
|
8
|
Arora G, Černý J. Plasmodium proteases and their role in development of Malaria vaccines. ADVANCES IN PARASITOLOGY 2024; 126:253-273. [PMID: 39448193 DOI: 10.1016/bs.apar.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Malaria remains a major health hazard for humans, despite the availability of efficacious antimalarial drugs and other interventions. Given that the disease is often deadly for children under 5 years and pregnant women living in malaria-endemic areas, an efficacious vaccine to prevent transmission and clinical disease would be ideal. Plasmodium, the causative agent of malaria, uses proteases and protease inhibitors to control and process to invade host, modulate host immunity, and for pathogenesis. Plasmodium parasites rely on these proteases for their development and survival, including feeding their metabolic needs and invasion of both mosquito and human tissues, and have thus been explored as potential targets for prophylaxis. In this chapter, we have discussed the potential of proteases like ROM4, SUB2, SERA4, SERA5, and others as vaccine candidates. We have also discussed the role of some protease inhibitors of plasmodium and mosquito origin. Inhibition of plasmodium proteases can interrupt the parasite development at many different stages therefore understanding their function is key to developing new drugs and malaria vaccines.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States.
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia
| |
Collapse
|
9
|
Withers-Martinez C, George R, Maslen S, Jean L, Hackett F, Skehel M, Blackman MJ. The malaria parasite egress protease SUB1 is activated through precise, plasmepsin X-mediated cleavage of the SUB1 prodomain. Biochim Biophys Acta Gen Subj 2024; 1868:130665. [PMID: 38969256 DOI: 10.1016/j.bbagen.2024.130665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The malaria parasite Plasmodium falciparum replicates within red blood cells, then ruptures the cell in a process called egress in order to continue its life cycle. Egress is regulated by a proteolytic cascade involving an essential parasite subtilisin-like serine protease called SUB1. Maturation of SUB1 initiates in the parasite endoplasmic reticulum with autocatalytic cleavage of an N-terminal prodomain (p31), which initially remains non-covalently bound to the catalytic domain, p54. Further trafficking of the p31-p54 complex results in formation of a terminal p47 form of the SUB1 catalytic domain. Recent work has implicated a parasite aspartic protease, plasmepsin X (PMX), in maturation of the SUB1 p31-p54 complex through controlled cleavage of the prodomain p31. METHODS Here we use biochemical and enzymatic analysis to examine the activation of SUB1 by PMX. RESULTS We show that both p31 and p31-p54 are largely dimeric under the relatively acidic conditions to which they are likely exposed to PMX in the parasite. We confirm the sites within p31 that are cleaved by PMX and determine the order of cleavage. We find that cleavage by PMX results in rapid loss of the capacity of p31 to act as an inhibitor of SUB1 catalytic activity and we directly demonstrate that exposure to PMX of recombinant p31-p54 complex activates SUB1 activity. CONCLUSIONS Our results confirm that precise, PMX-mediated cleavage of the SUB1 prodomain activates SUB1 enzyme activity. GENERAL SIGNIFICANCE Our findings elucidate the role of PMX in activation of SUB1, a key effector of malaria parasite egress.
Collapse
Affiliation(s)
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Sarah Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Létitia Jean
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
| |
Collapse
|
10
|
Sojka D, Šnebergerová P. Advances in protease inhibition-based chemotherapy: A decade of insights from Malaria research. ADVANCES IN PARASITOLOGY 2024; 126:205-227. [PMID: 39448191 DOI: 10.1016/bs.apar.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Over the last decade, research on the most studied parasite, Plasmodium falciparum, has disclosed significant findings in protease research. Detailed descriptions of the individual roles of protease isoenzymes from various protease classes encoded by the parasite genome have been elucidated, along with their functional and biochemical characterizations. These insights have enabled the development of innovative chemotherapy using low molecular weight inhibitors targeting specific molecular sites. Progress has been made in understanding the proteolytic cascade associated with the apical complex, particularly the roles of aspartyl proteases plasmepsins IX and X as master regulators. Additionally, advancements in direct and alternative methods of proteasome inhibition and expression regulation have been achieved. Research on digestive/food vacuole-associated proteases, with a focus on essential metalloproteases, has also seen significant developments. The rise of extensive genomic datasets and functional genomic tools for other parasitic organisms now allows these approaches to be applied to the study and treatment of other, less known parasitic diseases, aiming to uncover specific biological mechanisms and develop innovative, less toxic chemotherapies.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
| | - Pavla Šnebergerová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
11
|
Withers-Martinez C, Lidumniece E, Hackett F, Collins CR, Taha Z, Blackman MJ, Jirgensons A. Peptidic Boronic Acid Plasmodium falciparum SUB1 Inhibitors with Improved Selectivity over Human Proteasome. J Med Chem 2024; 67:13033-13055. [PMID: 39051854 PMCID: PMC7616463 DOI: 10.1021/acs.jmedchem.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Plasmodium falciparum subtilisin-like serine protease 1 (PfSUB1) is essential for egress of invasive merozoite forms of the parasite, rendering PfSUB1 an attractive antimalarial target. Here, we report studies aimed to improve drug-like properties of peptidic boronic acid PfSUB1 inhibitors including increased lipophilicity and selectivity over human proteasome (H20S). Structure-activity relationship investigations revealed that lipophilic P3 amino acid side chains as well as N-capping groups were well tolerated in retaining PfSUB1 inhibitory potency. At the P1 position, replacing the methyl group with a carboxyethyl substituent led to boralactone PfSUB1 inhibitors with remarkably improved selectivity over H20S. Combining lipophilic end-capping groups with the boralactone reduced the selectivity over H20S. However, compound 4c still showed >60-fold selectivity versus H20S and low nanomolar PfSUB1 inhibitory potency. Importantly, this compound inhibited the growth of a genetically modified P. falciparum line expressing reduced levels of PfSUB1 13-fold more efficiently compared to a wild-type parasite line.
Collapse
Affiliation(s)
| | | | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Zahie Taha
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | | |
Collapse
|
12
|
Frischknecht F, Rayner JC, Waters AP. 20 years of BioMalPar: Building a collaborative malaria research network. Trends Parasitol 2024; 40:657-659. [PMID: 39025766 DOI: 10.1016/j.pt.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
In 2004 the first annual BioMalPar meeting was held at EMBL Heidelberg, bringing together researchers from around the world with the goal of building connections between malaria research groups in Europe. Twenty years on it is time to reflect on what was achieved and to look ahead to the future.
Collapse
Affiliation(s)
- Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany; German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Andrew P Waters
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
13
|
Koussis K, Haase S, Withers-Martinez C, Flynn HR, Kunzelmann S, Christodoulou E, Ibrahim F, Skehel M, Baker DA, Blackman MJ. Activation loop phosphorylation and cGMP saturation of PKG regulate egress of malaria parasites. PLoS Pathog 2024; 20:e1012360. [PMID: 38935780 PMCID: PMC11236177 DOI: 10.1371/journal.ppat.1012360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/10/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The cGMP-dependent protein kinase (PKG) is the sole cGMP sensor in malaria parasites, acting as an essential signalling hub to govern key developmental processes throughout the parasite life cycle. Despite the importance of PKG in the clinically relevant asexual blood stages, many aspects of malarial PKG regulation, including the importance of phosphorylation, remain poorly understood. Here we use genetic and biochemical approaches to show that reduced cGMP binding to cyclic nucleotide binding domain B does not affect in vitro kinase activity but prevents parasite egress. Similarly, we show that phosphorylation of a key threonine residue (T695) in the activation loop is dispensable for kinase activity in vitro but is essential for in vivo PKG function, with loss of T695 phosphorylation leading to aberrant phosphorylation events across the parasite proteome and changes to the substrate specificity of PKG. Our findings indicate that Plasmodium PKG is uniquely regulated to transduce signals crucial for malaria parasite development.
Collapse
Affiliation(s)
- Konstantinos Koussis
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, United Kingdom
| | - Silvia Haase
- Host-Pathogen Interactions in Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Helen R. Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Fairouz Ibrahim
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
14
|
Mahanta PJ, Lhouvum K. Plasmodium falciparum proteases as new drug targets with special focus on metalloproteases. Mol Biochem Parasitol 2024; 258:111617. [PMID: 38554736 DOI: 10.1016/j.molbiopara.2024.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.
Collapse
Affiliation(s)
| | - Kimjolly Lhouvum
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India.
| |
Collapse
|
15
|
Legru A, Batista FA, Puszko AK, Bouillon A, Maurel M, Martinez M, Ejjoummany A, Ortega Varga L, Adler P, Méchaly A, Hadjadj M, Sosnowski P, Hopfgartner G, Alzari PM, Blondel A, Haouz A, Barale JC, Hernandez JF. Insights from structure-activity relationships and the binding mode of peptidic α-ketoamide inhibitors of the malaria drug target subtilisin-like SUB1. Eur J Med Chem 2024; 269:116308. [PMID: 38503166 DOI: 10.1016/j.ejmech.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 μM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 μM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.
Collapse
Affiliation(s)
- Alice Legru
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Fernando A Batista
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Anna K Puszko
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Anthony Bouillon
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Manon Maurel
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Mariano Martinez
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Abdelaziz Ejjoummany
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Laura Ortega Varga
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Pauline Adler
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Ariel Méchaly
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Margot Hadjadj
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Pedro M Alzari
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Arnaud Blondel
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Ahmed Haouz
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Jean-Christophe Barale
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France.
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
16
|
Martinez M, Bouillon A, Brûlé S, Raynal B, Haouz A, Alzari PM, Barale JC. Prodomain-driven enzyme dimerization: a pH-dependent autoinhibition mechanism that controls Plasmodium Sub1 activity before merozoite egress. mBio 2024; 15:e0019824. [PMID: 38386597 PMCID: PMC10936178 DOI: 10.1128/mbio.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Malaria symptoms are associated with the asexual multiplication of Plasmodium falciparum within human red blood cells (RBCs) and fever peaks coincide with the egress of daughter merozoites following the rupture of the parasitophorous vacuole (PV) and the RBC membranes. Over the last two decades, it has emerged that the release of competent merozoites is tightly regulated by a complex cascade of events, including the unusual multi-step activation mechanism of the pivotal subtilisin-like protease 1 (Sub1) that takes place in three different cellular compartments and remains poorly understood. Following an initial auto-maturation in the endoplasmic reticulum (ER) between its pro- and catalytic domains, the Sub1 prodomain (PD) undergoes further cleavages by the parasite aspartic protease plasmepsin X (PmX) within acidic secretory organelles that ultimately lead to full Sub1 activation upon discharge into the PV. Here, we report the crystal structure of full-length P. falciparum Sub1 (PfS1FL) and demonstrate, through structural, biochemical, and biophysical studies, that the atypical Plasmodium-specific Sub1 PD directly promotes the assembly of inactive enzyme homodimers at acidic pH, whereas Sub1 is primarily monomeric at neutral pH. Our results shed new light into the finely tuned Sub1 spatiotemporal activation during secretion, explaining how PmX processing and full activation of Sub1 can occur in different cellular compartments, and uncover a robust mechanism of pH-dependent subtilisin autoinhibition that plays a key role in P. falciparum merozoites egress from infected host cells.IMPORTANCEMalaria fever spikes are due to the rupture of infected erythrocytes, allowing the egress of Plasmodium sp. merozoites and further parasite propagation. This fleeting tightly regulated event involves a cascade of enzymes, culminating with the complex activation of the subtilisin-like protease 1, Sub1. Differently than other subtilisins, Sub1 activation strictly depends upon the processing by a parasite aspartic protease within acidic merozoite secretory organelles. However, Sub1 biological activity is required in the pH neutral parasitophorous vacuole, to prime effectors involved in the rupture of the vacuole and erythrocytic membranes. Here, we show that the unusual, parasite-specific Sub1 prodomain is directly responsible for its acidic-dependent dimerization and autoinhibition, required for protein secretion, before its full activation at neutral pH in a monomeric form. pH-dependent Sub1 dimerization defines a novel, essential regulatory element involved in the finely tuned spatiotemporal activation of the egress of competent Plasmodium merozoites.
Collapse
Affiliation(s)
- Mariano Martinez
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Anthony Bouillon
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Sébastien Brûlé
- Plate-forme de Biophysique Moleculaire-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moleculaire-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Pedro M. Alzari
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Jean-Christophe Barale
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| |
Collapse
|
17
|
Jennison C, Armstrong JM, Dankwa DA, Hertoghs N, Kumar S, Abatiyow BA, Naung M, Minkah NK, Swearingen KE, Moritz R, Barry AE, Kappe SHI, Vaughan AM. Plasmodium GPI-anchored micronemal antigen is essential for parasite transmission through the mosquito host. Mol Microbiol 2024; 121:394-412. [PMID: 37314965 PMCID: PMC11076100 DOI: 10.1111/mmi.15078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.
Collapse
Affiliation(s)
- Charlie Jennison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Janna M. Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Dorender A. Dankwa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Myo Naung
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Victoria, Carlton, Australia
- Department of Global Health, University of Washington, Washington, Seattle, USA
| | - Nana K. Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Kristian E. Swearingen
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Victoria, Geelong, Australia
| | - Robert Moritz
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Victoria, Geelong, Australia
| | - Alyssa E. Barry
- Department of Global Health, University of Washington, Washington, Seattle, USA
- Institute for Systems Biology, Washington, Seattle, USA
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
- Burnet Institute, Victoria, Melbourne, Australia
- Department of Pediatrics, University of Washington, Washington, Seattle, USA
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
- Burnet Institute, Victoria, Melbourne, Australia
- Department of Pediatrics, University of Washington, Washington, Seattle, USA
| |
Collapse
|
18
|
Sassmannshausen J, Bennink S, Distler U, Küchenhoff J, Minns AM, Lindner SE, Burda PC, Tenzer S, Gilberger TW, Pradel G. Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells. Mol Microbiol 2024; 121:431-452. [PMID: 37492994 DOI: 10.1111/mmi.15125] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Transmission of malaria parasites to the mosquito is mediated by sexual precursor cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress from the enveloping erythrocyte while passing through gametogenesis. Egress follows an inside-out mode during which the membrane of the parasitophorous vacuole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies (OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and BioID methods to study the two egress vesicle types in Plasmodium falciparum gametocytes. We show that OB exocytosis precedes discharge of the P-EVs and that exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types exhibit distinct proteomes with the majority of proteins located in the OBs. In addition to known egress-related proteins, we identified novel components of OBs and P-EVs, including vesicle-trafficking proteins. Our data provide insight into the immense molecular machinery required for the inside-out egress of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Juliane Küchenhoff
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
19
|
Scheiner M, Burda PC, Ingmundson A. Moving on: How malaria parasites exit the liver. Mol Microbiol 2024; 121:328-340. [PMID: 37602900 DOI: 10.1111/mmi.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
An essential step in the life cycle of malaria parasites is their egress from hepatocytes, which enables the transition from the asymptomatic liver stage to the pathogenic blood stage of infection. To exit the liver, Plasmodium parasites first disrupt the parasitophorous vacuole membrane that surrounds them during their intracellular replication. Subsequently, parasite-filled structures called merosomes emerge from the infected cell. Shrouded by host plasma membrane, like in a Trojan horse, parasites enter the vasculature undetected by the host immune system and travel to the lung where merosomes rupture, parasites are released, and the blood infection stage begins. This complex, multi-step process must be carefully orchestrated by the parasite and requires extensive manipulation of the infected host cell. This review aims to outline the known signaling pathways that trigger exit, highlight Plasmodium proteins that contribute to the release of liver-stage merozoites, and summarize the accompanying changes to the hepatic host cell.
Collapse
Affiliation(s)
- Mattea Scheiner
- Molecular Parasitology, Humboldt University Berlin, Berlin, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
20
|
Nebie I, Palacpac NMQ, Bougouma EC, Diarra A, Ouédraogo A, D’Alessio F, Houard S, Tiono AB, Cousens S, Horii T, Sirima SB. Persistence of Anti-SE36 Antibodies Induced by the Malaria Vaccine Candidate BK-SE36/CpG in 5-10-Year-Old Burkinabe Children Naturally Exposed to Malaria. Vaccines (Basel) 2024; 12:166. [PMID: 38400149 PMCID: PMC10892924 DOI: 10.3390/vaccines12020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Information on the dynamics and decline/persistence of antibody titres is important in vaccine development. A recent vaccine trial in malaria-exposed, healthy African adults and children living in a malaria hyperendemic and seasonal area (Ouagadougou, Burkina Faso) was the first study in which BK-SE36/CpG was administered to different age groups. In 5- to 10-year-old children, the risk of malaria infection was markedly lower in the BK-SE36/CpG arm compared to the control arm. We report here data on antibody titres measured in this age-group after the high malaria transmission season of 2021 (three years after the first vaccine dose was administered). At Year 3, 83% of children had detectable anti-SE36 total IgG antibodies. Geometric mean antibody titres and the proportion of children with detectable anti-SE36 antibodies were markedly higher in the BK-SE36/CpG arm than the control (rabies) arm. The information obtained in this study will guide investigators on future vaccine/booster schedules for this promising blood-stage malaria vaccine candidate.
Collapse
Affiliation(s)
- Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Edith Christiane Bougouma
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Flavia D’Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| |
Collapse
|
21
|
Sitaraman R. Subversion from Within and Without: Effector Molecule Transfer from Obligate Intracellular Apicomplexan Parasites to Human Host Cells. Results Probl Cell Differ 2024; 73:521-535. [PMID: 39242391 DOI: 10.1007/978-3-031-62036-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Intracellular protozoan pathogens have to negotiate the internal environment of the host cell they find themselves in, as well as manipulate the host cell to ensure their own survival, replication, and dissemination. The transfer of key effector molecules from the pathogen to the host cell is crucial to this interaction and is technically more demanding to study as compared to an extracellular pathogen. While several effector molecules have been identified, the mechanisms and conditions underlying their transfer to the host cell remain partly or entirely unknown. Improvements in experimental systems have revealed tantalizing details of such intercellular transfer, which form the subject of this chapter.
Collapse
|
22
|
Luo AP, Giannangelo C, Siddiqui G, Creek DJ. Promising antimalarial hits from phenotypic screens: a review of recently-described multi-stage actives and their modes of action. Front Cell Infect Microbiol 2023; 13:1308193. [PMID: 38162576 PMCID: PMC10757594 DOI: 10.3389/fcimb.2023.1308193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Over the last two decades, global malaria cases caused by Plasmodium falciparum have declined due to the implementation of effective treatments and the use of insecticides. However, the COVID-19 pandemic caused major disruption in the timely delivery of medical goods and diverted public health resources, impairing malaria control. The emergence of resistance to all existing frontline antimalarials underpins an urgent need for new antimalarials with novel mechanisms of action. Furthermore, the need to reduce malaria transmission and/or prevent malaria infection has shifted the focus of antimalarial research towards the discovery of compounds that act beyond the symptomatic blood stage and also impact other parasite life cycle stages. Phenotypic screening has been responsible for the majority of new antimalarial lead compounds discovered over the past 10 years. This review describes recently reported novel antimalarial hits that target multiple parasite stages and were discovered by phenotypic screening during the COVID-19 pandemic. Their modes of action and targets in blood stage parasites are also discussed.
Collapse
Affiliation(s)
| | | | - Ghizal Siddiqui
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Darren J. Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
23
|
Siau A, Ang JW, Sheriff O, Hoo R, Loh HP, Tay D, Huang X, Yam XY, Lai SK, Meng W, Julca I, Kwan SS, Mutwil M, Preiser PR. Comparative spatial proteomics of Plasmodium-infected erythrocytes. Cell Rep 2023; 42:113419. [PMID: 37952150 DOI: 10.1016/j.celrep.2023.113419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/14/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Plasmodium parasites contribute to one of the highest global infectious disease burdens. To achieve this success, the parasite has evolved a range of specialized subcellular compartments to extensively remodel the host cell for its survival. The information to fully understand these compartments is likely hidden in the so far poorly characterized Plasmodium species spatial proteome. To address this question, we determined the steady-state subcellular location of more than 12,000 parasite proteins across five different species by extensive subcellular fractionation of erythrocytes infected by Plasmodium falciparum, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. This comparison of the pan-species spatial proteomes and their expression patterns indicates increasing species-specific proteins associated with the more external compartments, supporting host adaptations and post-transcriptional regulation. The spatial proteome offers comprehensive insight into the different human, simian, and rodent Plasmodium species, establishing a powerful resource for understanding species-specific host adaptation processes in the parasite.
Collapse
Affiliation(s)
- Anthony Siau
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Jing Wen Ang
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Omar Sheriff
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Regina Hoo
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Han Ping Loh
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Donald Tay
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Ximei Huang
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Xue Yan Yam
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Soak Kuan Lai
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Wei Meng
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Irene Julca
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Sze Siu Kwan
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Peter R Preiser
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore.
| |
Collapse
|
24
|
Ouédraogo A, Bougouma EC, Palacpac NMQ, Houard S, Nebie I, Sawadogo J, Berges GD, Soulama I, Diarra A, Hien D, Ouedraogo AZ, Konaté AT, Kouanda S, Myoui A, Ezoe S, Ishii KJ, Sato T, D’Alessio F, Leroy O, Tiono AB, Cousens S, Horii T, Sirima SB. Safety and immunogenicity of BK-SE36/CpG malaria vaccine in healthy Burkinabe adults and children: a phase 1b randomised, controlled, double-blinded, age de-escalation trial. Front Immunol 2023; 14:1267372. [PMID: 37908361 PMCID: PMC10613650 DOI: 10.3389/fimmu.2023.1267372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Background BK-SE36/CpG is a recombinant blood-stage malaria vaccine candidate based on the N-terminal Plasmodium falciparum serine repeat antigen5 (SE36), adsorbed to aluminium hydroxide gel and reconstituted, prior to administration, with synthetic oligodeoxynucleotides bearing CpG motifs. In healthy Japanese adult males, BK-SE36/CpG was well tolerated. This study assessed its safety and immunogenicity in healthy malaria-exposed African adults and children. Methods A double-blind, randomised, controlled, age de-escalating clinical trial was conducted in an urban area of Ouagadougou, Burkina Faso. Healthy participants (n=135) aged 21-45 years (Cohort 1), 5-10 years (Cohort 2) and 12-24 months (Cohort 3) were randomised to receive three vaccine doses (Day 0, 28 and 112) of BK-SE36/CpG or rabies vaccine by intramuscular injection. Results One hundred thirty-four of 135 (99.2%) subjects received all three scheduled vaccine doses. Vaccinations were well tolerated with no related Grade 3 (severe) adverse events (AEs). Pain/limitation of limb movement, headache in adults and fever in younger children (all mild to moderate in intensity) were the most frequently observed local and systemic AEs. Eighty-three of BK-SE36/CpG (91%) recipients and 37 of control subjects (84%) had Grade 1/2 events within 28 days post vaccination. Events considered by the investigator to be vaccine related were experienced by 38% and 14% of subjects in BK-SE36/CpG and control arms, respectively. Throughout the trial, six Grade 3 events (in 4 subjects), not related to vaccination, were recorded in the BK-SE36/CpG arm: 5 events (in 3 subjects) within 28 days of vaccination. All serious adverse events (SAEs) (n=5) were due to severe malaria (52-226 days post vaccination) and not related to vaccination. In all cohorts, BK-SE36/CpG arm had higher antibody titres after Dose 3 than after Dose 2. Younger cohorts had stronger immune responses (12-24-month-old > 5-10 years-old > 21-45 years-old). Sera predominantly reacted to peptides that lie in intrinsically unstructured regions of SE36. In the control arm, there were no marked fold changes in antibody titres and participants' sera reacted poorly to all peptides spanning SE36. Conclusion BK-SE36/CpG was well-tolerated and immunogenic. These results pave the way for further proof-of-concept studies to demonstrate vaccine efficacy. Clinical trial registration https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=1921, PACTR201701001921166.
Collapse
Affiliation(s)
| | | | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Sophie Houard
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Jean Sawadogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Issiaka Soulama
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Denise Hien
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Amadou T. Konaté
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Seni Kouanda
- Institut de Recherche en Sciences de la Santé, Ouagadougou, Burkina Faso
| | - Akira Myoui
- Medical Center for Translational Research, Osaka University Hospital, Suita, Japan
| | - Sachiko Ezoe
- Medical Center for Translational Research, Osaka University Hospital, Suita, Japan
- Department of Space Infection Control, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | - Ken J. Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
- Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Suita, Japan
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takanobu Sato
- Research and Development Division, Nobelpharma Co., Ltd., Tokyo, Japan
| | - Flavia D’Alessio
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Odile Leroy
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | |
Collapse
|
25
|
Kreutzfeld O, Tumwebaze PK, Okitwi M, Orena S, Byaruhanga O, Katairo T, Conrad MD, Rasmussen SA, Legac J, Aydemir O, Giesbrecht D, Forte B, Campbell P, Smith A, Kano H, Nsobya SL, Blasco B, Duffey M, Bailey JA, Cooper RA, Rosenthal PJ. Susceptibility of Ugandan Plasmodium falciparum Isolates to the Antimalarial Drug Pipeline. Microbiol Spectr 2023; 11:e0523622. [PMID: 37158739 PMCID: PMC10269555 DOI: 10.1128/spectrum.05236-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- University of California, San Francisco, San Francisco, California, USA
| | | | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D. Conrad
- University of California, San Francisco, San Francisco, California, USA
| | | | - Jennifer Legac
- University of California, San Francisco, San Francisco, California, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Peter Campbell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Alasdair Smith
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Hiroki Kano
- Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
He L, Qiu Y, Pang G, Li S, Wang J, Feng Y, Chen L, Zhu L, Liu Y, Cui L, Cao Y, Zhu X. Plasmodium falciparum GAP40 Plays an Essential Role in Merozoite Invasion and Gametocytogenesis. Microbiol Spectr 2023; 11:e0143423. [PMID: 37249423 PMCID: PMC10269477 DOI: 10.1128/spectrum.01434-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cyclic invasion of red blood cells (RBCs) by Plasmodium merozoites is associated with the symptoms and pathology of malaria. Merozoite invasion is powered actively and rapidly by a parasite actomyosin motor called the glideosome. The ability of the glideosome to generate force to support merozoite entry into the host RBCs is thought to rely on its stable anchoring within the inner membrane complex (IMC) through membrane-resident proteins, such as GAP50 and GAP40. Using a conditional knockdown (KD) approach, we determined that PfGAP40 was required for asexual blood-stage replication. PfGAP40 is not needed for merozoite egress from host RBCs or for the attachment of merozoites to new RBCs. PfGAP40 coprecipitates with PfGAP45 and PfGAP50. During merozoite invasion, PfGAP40 is associated strongly with stabilizing the expression levels of PfGAP45 and PfGAP50 in the schizont stage. Although PfGAP40 KD did not influence IMC integrity, it impaired the maturation of gametocytes. In addition, PfGAP40 is phosphorylated, and mutations that block phosphorylation of PfGAP40 at the C-terminal serine residues S370, S372, S376, S405, S409, S420, and S445 reduced merozoite invasion efficiency. Overall, our findings implicate PfGAP40 as an important regulator for the gliding activity of merozoites and suggest that phosphorylation is required for PfGAP40 function. IMPORTANCE Red blood cell invasion is central to the pathogenesis of the malaria parasite, and the parasite proteins involved in this process are potential therapeutic targets. Gliding motility powers merozoite invasion and is driven by a unique molecular motor termed the glideosome. The glideosome is stably anchored to the parasite inner membrane complex (IMC) through membrane-resident proteins. In the present study, we demonstrate the importance of an IMC-resident glideosome component, PfGAP40, that plays a critical role in stabilizing the expression levels of glideosome components in the schizont stage. We determined that phosphorylation of PfGAP40 at C-terminal residues is required for efficient merozoite invasion.
Collapse
Affiliation(s)
- Lu He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yue Qiu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Geping Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Siqi Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jingjing Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
27
|
Mukherjee S, Nasamu AS, Rubiano KC, Goldberg DE. Activation of the Plasmodium Egress Effector Subtilisin-Like Protease 1 Is Mediated by Plasmepsin X Destruction of the Prodomain. mBio 2023; 14:e0067323. [PMID: 37036362 PMCID: PMC10128010 DOI: 10.1128/mbio.00673-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
Following each round of replication, daughter merozoites of the malaria parasite Plasmodium falciparum escape (egress) from the infected host red blood cell (RBC) by rupturing the parasitophorous vacuole membrane (PVM) and the RBC membrane (RBCM). A proteolytic cascade orchestrated by a parasite serine protease, subtilisin-like protease 1 (SUB1), regulates the membrane breakdown. SUB1 activation involves primary autoprocessing of the 82-kDa zymogen to a 54-kDa (p54) intermediate that remains bound to its inhibitory propiece (p31) postcleavage. A second processing step converts p54 to the terminal 47-kDa (p47) form of SUB1. Although the aspartic protease plasmepsin X (PM X) has been implicated in the activation of SUB1, the mechanism remains unknown. Here, we show that upon knockdown of PM X, the inhibitory p31-p54 complex of SUB1 accumulates in the parasites. Using recombinant PM X and SUB1, we show that PM X can directly cleave both p31 and p54. We have mapped the cleavage sites on recombinant p31. Furthermore, we demonstrate that the conversion of p54 to p47 can be effected by cleavage at either SUB1 or PM X cleavage sites that are adjacent to one another. Importantly, once the p31 is removed, p54 is fully functional inside the parasites, suggesting that the conversion to p47 is dispensable for SUB1 activity. Relief of propiece inhibition via a heterologous protease is a novel mechanism for subtilisin activation. IMPORTANCE Malaria parasites replicate inside a parasitophorous vacuole within the host red blood cells. The exit of mature progeny from the infected host cells is essential for further dissemination. Parasite exit is a highly regulated, explosive process that involves membrane breakdown. To do this, the parasite utilizes a serine protease called SUB1 that proteolytically activates various effector proteins. SUB1 activity is dependent on an upstream protease called PM X, although the mechanism was unknown. Here, we describe the molecular basis for PM X-mediated SUB1 activation. PM X proteolytically degrades the inhibitory segment of SUB1, thereby activating it. The involvement of a heterologous protease is a novel mechanism for subtilisin activation.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Armiyaw S. Nasamu
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kelly C. Rubiano
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Comparative Degradome Analysis of the Bovine Piroplasmid Pathogens Babesia bovis and Theileria annulata. Pathogens 2023; 12:pathogens12020237. [PMID: 36839509 PMCID: PMC9965338 DOI: 10.3390/pathogens12020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Babesia bovis and Theileria annulata are tick-borne hemoprotozoans that impact bovine health and are responsible for considerable fatalities in tropical and subtropical regions around the world. Both pathogens infect the same vertebrate host, are closely related, and contain similar-sized genomes; however, they differ in invertebrate host specificity, absence vs. presence of a schizont stage, erythrocyte invasion mechanism, and transovarial vs. transstadial transmission. Phylogenetic analysis and bidirectional best hit (BBH) identified a similar number of aspartic, metallo, and threonine proteinases and nonproteinase homologs. In contrast, a considerably increased number of S54 serine rhomboid proteinases and S9 nonproteinase homologs were identified in B. bovis, whereas C1A cysteine proteinases and A1 aspartic nonproteinase homologs were found to be expanded in T. annulata. Furthermore, a single proteinase of families S8 (subtilisin-like protein) and C12 (ubiquitin carboxyl-terminal hydrolase), as well as four nonproteinase homologs, one with dual domains M23-M23 and three with S9-S9, were exclusively present in B. bovis. Finally, a pronounced difference in species-specific ancillary domains was observed between both species. We hypothesize that the observed degradome differences represent functional correlates of the dissimilar life history features of B. bovis and T. annulata. The presented improved classification of piroplasmid proteinases will facilitate an informed choice for future in-depth functional studies.
Collapse
|
29
|
Mukherjee S, Nasamu AS, Rubiano K, Goldberg DE. Activation of the Plasmodium egress effector subtilisin-like protease 1 is achieved by plasmepsin X destruction of the propiece. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524002. [PMID: 36712005 PMCID: PMC9882241 DOI: 10.1101/2023.01.13.524002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Following each round of replication, daughter merozoites of the malaria parasite Plasmodium falciparum escape (egress) from the infected host red blood cell (RBC) by rupturing the parasitophorous vacuole membrane (PVM) and the RBC membrane (RBCM). A proteolytic cascade orchestrated by the parasite’s serine protease, subtilisin-like protease 1 (SUB1) regulates the membrane breakdown. SUB1 activation involves primary auto-processing of the 82 kDa zymogen to a 54 kDa (p54) intermediate that remains bound to its inhibitory propiece (p31) post cleavage. A second processing step converts p54 to the terminal 47 kDa (p47) form of SUB1. Although the aspartic protease plasmepsin X (PM X) has been implicated in the activation of SUB1, the mechanism remains unknown. Here, we show that upon knockdown of PM X the inhibitory p31/p54 complex of SUB1 accumulates in the parasites. Using recombinant PM X and SUB1, we show that PM X can directly cleave both p31 and p54. We have mapped the cleavage sites on recombinant p31. Furthermore, we demonstrate that the conversion of p54 to p47 can be effected by cleavage at either a SUB1 or PM X cleavage site that are adjacent to one another. Importantly once the p31 is removed, p54 is fully functional inside the parasites suggesting that the conversion to p47 is dispensable for SUB1 activity. Relief of propiece inhibition via a heterologous protease is a novel mechanism for subtilisin activation. Significance Statement Malaria parasites replicate inside a parasitophorous vacuole within the host red blood cells. Exit of mature progeny from the infected host cells is essential for further dissemination. Parasite exit is a highly regulated, explosive process that involves membrane breakdown. To do this, the parasite utilizes a serine protease, called the subtilisin-like protease 1 or SUB1 that proteolytically activates various effector proteins. SUB1 activity is dependent on an upstream protease, called plasmepsin X (PM X), although the mechanism was unknown. Here we describe the molecular basis for PM X mediated SUB1 activation. PM X proteolytically degrades the inhibitory segment of SUB1, thereby activating it. Involvement of a heterologous protease is a novel mechanism for subtilisin activation.
Collapse
|
30
|
Arisue N, Palacpac NMQ, Ntege EH, Yeka A, Balikagala B, Kanoi BN, Bougouma EC, Tiono AB, Nebie I, Diarra A, Houard S, D’Alessio F, Leroy O, Sirima SB, Egwang TG, Horii T. African-specific polymorphisms in Plasmodium falciparum serine repeat antigen 5 in Uganda and Burkina Faso clinical samples do not interfere with antibody response to BK-SE36 vaccination. Front Cell Infect Microbiol 2022; 12:1058081. [PMID: 36590593 PMCID: PMC9802637 DOI: 10.3389/fcimb.2022.1058081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
BK-SE36, based on Plasmodium falciparum serine repeat antigen 5 (SERA5), is a blood-stage malaria vaccine candidate currently being evaluated in clinical trials. Phase 1 trials in Uganda and Burkina Faso have demonstrated promising safety and immunogenicity profiles. However, the genetic diversity of sera5 in Africa and the role of allele/variant-specific immunity remain a major concern. Here, sequence analyses were done on 226 strains collected from the two clinical trial/follow-up studies and 88 strains from two cross-sectional studies in Africa. Compared to other highly polymorphic vaccine candidate antigens, polymorphisms in sera5 were largely confined to the repeat regions of the gene. Results also confirmed a SERA5 consensus sequence with African-specific polymorphisms. Mismatches with the vaccine-type SE36 (BK-SE36) in the octamer repeat, serine repeat, and flanking regions, and single-nucleotide polymorphisms in non-repeat regions could compromise vaccine response and efficacy. However, the haplotype diversity of SERA5 was similar between vaccinated and control participants. There was no marked bias or difference in the patterns of distribution of the SE36 haplotype and no statistically significant genetic differentiation among parasites infecting BK-SE36 vaccinees and controls. Results indicate that BK-SE36 does not elicit an allele-specific immune response.
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan,Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women’s Medical University, Tokyo, Japan,*Correspondence: Nobuko Arisue, ; Nirianne Marie Q. Palacpac,
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan,*Correspondence: Nobuko Arisue, ; Nirianne Marie Q. Palacpac,
| | - Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, University of the Ryukyus, Graduate School of Medicine and Hospital, Okinawa, Japan
| | - Adoke Yeka
- Makerere University School of Public Health, Kampala, Uganda
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Bernard N. Kanoi
- Centre for Malaria Elimination (CME) and Centre for Research in Infectious Diseases (CRID), Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Edith Christiane Bougouma
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Alfred B. Tiono
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Issa Nebie
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Sophie Houard
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Flavia D’Alessio
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Odile Leroy
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany,Sorekara-x consultant, Paris, France
| | - Sodiomon B. Sirima
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
31
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
32
|
Lidumniece E, Withers-Martinez C, Hackett F, Blackman MJ, Jirgensons A. Subtilisin-like Serine Protease 1 (SUB1) as an Emerging Antimalarial Drug Target: Current Achievements in Inhibitor Discovery. J Med Chem 2022; 65:12535-12545. [PMID: 36137276 DOI: 10.1021/acs.jmedchem.2c01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widespread resistance to many antimalarial therapies currently in use stresses the need for the discovery of new classes of drugs with new modes of action. The subtilisin-like serine protease SUB1 controls egress of malaria parasites (merozoites) from the parasite-infected red blood cell. As such, SUB1 is considered a prospective target for drugs designed to interrupt the asexual blood stage life cycle of the malaria parasite. Inhibitors of SUB1 have potential as wide-spectrum antimalarial drugs, as a single orthologue of SUB1 is found in the genomes of all known Plasmodium species. This mini-perspective provides a short overview of the function and structure of SUB1 and summarizes all of the published SUB1 inhibitors. The inhibitors are classified by the methods of their discovery, including both rational design and screening.
Collapse
Affiliation(s)
| | | | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
33
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
34
|
Mukherjee S, Nguyen S, Sharma E, Goldberg DE. Maturation and substrate processing topography of the Plasmodium falciparum invasion/egress protease plasmepsin X. Nat Commun 2022; 13:4537. [PMID: 35927261 PMCID: PMC9352755 DOI: 10.1038/s41467-022-32271-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
The malaria parasite Plasmodium invades a host erythrocyte, multiplies within a parasitophorous vacuole (PV) and then ruptures the PV and erythrocyte membranes in a process known as egress. Both egress and invasion are controlled by effector proteins discharged from specialized secretory organelles. The aspartic protease plasmepsin X (PM X) regulates activity for many of these effectors, but it is unclear how PM X accesses its diverse substrates that reside in different organelles. PM X also autoprocesses to generate different isoforms. The function of this processing is not understood. We have mapped the self-cleavage sites and have constructed parasites with cleavage site mutations. Surprisingly, a quadruple mutant that remains full-length retains in vitro activity, is trafficked normally, and supports normal egress, invasion and parasite growth. The N-terminal half of the prodomain stays bound to the catalytic domain even after processing and is required for proper intracellular trafficking of PM X. We find that this enzyme cleaves microneme and exoneme substrates before discharge, while the rhoptry substrates that are dependent on PM X activity are cleaved after exoneme discharge into the PV. The data give insight into the temporal, spatial and biochemical control of this unusual but important aspartic protease.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Suong Nguyen
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
CDC50 Orthologues in Plasmodium falciparum Have Distinct Roles in Merozoite Egress and Trophozoite Maturation. mBio 2022; 13:e0163522. [PMID: 35862778 PMCID: PMC9426505 DOI: 10.1128/mbio.01635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In model organisms, type IV ATPases (P4-ATPases) require cell division control protein 50 (CDC50) chaperones for their phospholipid flipping activity. In the malaria parasite Plasmodium falciparum, guanylyl cyclase alpha (GCα) is an integral membrane protein that is essential for release (egress) of merozoites from their host erythrocytes. GCα is unusual in that it contains both a C-terminal cyclase domain and an N-terminal P4-ATPase domain of unknown function. We sought to investigate whether any of the three CDC50 orthologues (termed A, B, and C) encoded by P. falciparum are required for GCα function. Using gene tagging and conditional gene disruption, we demonstrate that CDC50B and CDC50C but not CDC50A are expressed in the clinically important asexual blood stages and that CDC50B is a binding partner of GCα whereas CDC50C is the binding partner of another putative P4-ATPase, phospholipid-transporting ATPase 2 (ATP2). Our findings indicate that CDC50B has no essential role for intraerythrocytic parasite maturation but modulates the rate of parasite egress by interacting with GCα for optimal cGMP synthesis. In contrast, CDC50C is essential for blood stage trophozoite maturation. Additionally, we find that the CDC50C-ATP2 complex may influence parasite endocytosis of host cell hemoglobin and consequently hemozoin formation.
Collapse
|
36
|
Gomes PS, Carneiro MPD, Machado PDA, de Andrade-Neto VV, da Fonseca-Martins AM, Goundry A, Pereira da Silva JVM, Gomes DCO, Lima APCDA, Ennes-Vidal V, Sodero ACR, De-Simone SG, de Matos Guedes HL. Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. Curr Issues Mol Biol 2022; 44:2089-2106. [PMID: 35678670 PMCID: PMC9164065 DOI: 10.3390/cimb44050141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.
Collapse
Affiliation(s)
- Pollyanna Stephanie Gomes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Monique Pacheco Duarte Carneiro
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | - Patrícia de Almeida Machado
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Valter Viana de Andrade-Neto
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Alessandra Marcia da Fonseca-Martins
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Amy Goundry
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | | | | | - Ana Paula Cabral de Araujo Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | - Vítor Ennes-Vidal
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Ana Carolina Rennó Sodero
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.V.M.P.d.S.); (A.C.R.S.)
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Diseases Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Herbert L. de Matos Guedes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
37
|
Rajaram K, Tewari SG, Wallqvist A, Prigge ST. Metabolic changes accompanying the loss of fumarate hydratase and malate-quinone oxidoreductase in the asexual blood stage of Plasmodium falciparum. J Biol Chem 2022; 298:101897. [PMID: 35398098 PMCID: PMC9118666 DOI: 10.1016/j.jbc.2022.101897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
In the glucose-rich milieu of red blood cells, asexually replicating malarial parasites mainly rely on glycolysis for ATP production, with limited carbon flux through the mitochondrial tricarboxylic acid (TCA) cycle. By contrast, gametocytes and mosquito-stage parasites exhibit an increased dependence on the TCA cycle and oxidative phosphorylation for more economical energy generation. Prior genetic studies supported these stage-specific metabolic preferences by revealing that six of eight TCA cycle enzymes are completely dispensable during the asexual blood stages of Plasmodium falciparum, with only fumarate hydratase (FH) and malate-quinone oxidoreductase (MQO) being refractory to deletion. Several hypotheses have been put forth to explain the possible essentiality of FH and MQO, including their participation in a malate shuttle between the mitochondrial matrix and the cytosol. However, using newer genetic techniques like CRISPR and dimerizable Cre, we were able to generate deletion strains of FH and MQO in P. falciparum. We employed metabolomic analyses to characterize a double knockout mutant of FH and MQO (ΔFM) and identified changes in purine salvage and urea cycle metabolism that may help to limit fumarate accumulation. Correspondingly, we found that the ΔFM mutant was more sensitive to exogenous fumarate, which is known to cause toxicity by modifying and inactivating proteins and metabolites. Overall, our data indicate that P. falciparum is able to adequately compensate for the loss of FH and MQO, rendering them unsuitable targets for drug development.
Collapse
Affiliation(s)
- Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
38
|
Chaiyawong N, Ishizaki T, Hakimi H, Asada M, Yahata K, Kaneko O. Distinct effects on the secretion of MTRAP and AMA1 in Plasmodium yoelii following deletion of acylated pleckstrin homology domain-containing protein. Parasitol Int 2021; 86:102479. [PMID: 34628068 DOI: 10.1016/j.parint.2021.102479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
Plasmodium, the causative agents of malaria, are obligate intracellular organisms. In humans, pathogenesis is caused by the blood stage parasite, which multiplies within erythrocytes, thus erythrocyte invasion is an essential developmental step. Merozoite form parasites released into the blood stream coordinately secrets a panel of proteins from the microneme secretory organelles for gliding motility, establishment of a tight junction with a target naive erythrocyte, and subsequent internalization. A protein identified in Toxoplasma gondii facilitates microneme fusion with the plasma membrane for exocytosis; namely, acylated pleckstrin homology domain-containing protein (APH). To obtain insight into the differential microneme discharge by malaria parasites, in this study we analyzed the consequences of APH deletion in the rodent malaria model, Plasmodium yoelii, using a DiCre-based inducible knockout method. We found that APH deletion resulted in a reduction in parasite asexual growth and erythrocyte invasion, with some parasites retaining the ability to invade and grow without APH. APH deletion impaired the secretion of microneme proteins, MTRAP and AMA1, and upon contact with erythrocytes the secretion of MTRAP, but not AMA1, was observed. APH-deleted merozoites were able to attach to and deform erythrocytes, consistent with the observed MTRAP secretion. Tight junctions were formed, but echinocytosis after merozoite internalization into erythrocytes was significantly reduced, consistent with the observed absence of AMA1 secretion. Together with our observation that APH largely colocalized with MTRAP, but less with AMA1, we propose that APH is directly involved in MTRAP secretion; whereas any role of APH in AMA1 secretion is indirect in Plasmodium.
Collapse
Affiliation(s)
- Nattawat Chaiyawong
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takahiro Ishizaki
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden.
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Masahito Asada
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Obihiro, Hokkaido 080-0834, Japan.
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Osamu Kaneko
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
39
|
Panda SK, Saxena S, Gupta PSS, Rana MK. Inhibitors of Plasmepsin X Plasmodium falciparum: Structure-based pharmacophore generation and molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Bahl V, Chaddha K, Mian SY, Holder AA, Knuepfer E, Gaur D. Genetic disruption of Plasmodium falciparum Merozoite surface antigen 180 (PfMSA180) suggests an essential role during parasite egress from erythrocytes. Sci Rep 2021; 11:19183. [PMID: 34584166 PMCID: PMC8479079 DOI: 10.1038/s41598-021-98707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum, the parasite responsible for severe malaria, develops within erythrocytes. Merozoite invasion and subsequent egress of intraerythrocytic parasites are essential for this erythrocytic cycle, parasite survival and pathogenesis. In the present study, we report the essential role of a novel protein, P. falciparum Merozoite Surface Antigen 180 (PfMSA180), which is conserved across Plasmodium species and recently shown to be associated with the P. vivax merozoite surface. Here, we studied MSA180 expression, processing, localization and function in P. falciparum blood stages. Initially we examined its role in invasion, a process mediated by multiple ligand-receptor interactions and an attractive step for targeting with inhibitory antibodies through the development of a malaria vaccine. Using antibodies specific for different regions of PfMSA180, together with a parasite containing a conditional pfmsa180-gene knockout generated using CRISPR/Cas9 and DiCre recombinase technology, we demonstrate that this protein is unlikely to play a crucial role in erythrocyte invasion. However, deletion of the pfmsa180 gene resulted in a severe egress defect, preventing schizont rupture and blocking the erythrocytic cycle. Our study highlights an essential role of PfMSA180 in parasite egress, which could be targeted through the development of a novel malaria intervention strategy.
Collapse
Affiliation(s)
- Vanndita Bahl
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Kritika Chaddha
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
41
|
Protein Sorting in Plasmodium Falciparum. Life (Basel) 2021; 11:life11090937. [PMID: 34575086 PMCID: PMC8467625 DOI: 10.3390/life11090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum is a unicellular eukaryote with a very polarized secretory system composed of micronemes rhoptries and dense granules that are required for host cell invasion. P. falciparum, like its relative T. gondii, uses the endolysosomal system to produce the secretory organelles and to ingest host cell proteins. The parasite also has an apicoplast, a secondary endosymbiotic organelle, which depends on vesicular trafficking for appropriate incorporation of nuclear-encoded proteins into the apicoplast. Recently, the central molecules responsible for sorting and trafficking in P. falciparum and T. gondii have been characterized. From these studies, it is now evident that P. falciparum has repurposed the molecules of the endosomal system to the secretory pathway. Additionally, the sorting and vesicular trafficking mechanism seem to be conserved among apicomplexans. This review described the most recent findings on the molecular mechanisms of protein sorting and vesicular trafficking in P. falciparum and revealed that P. falciparum has an amazing secretory machinery that has been cleverly modified to its intracellular lifestyle.
Collapse
|
42
|
Designing antimalarials that break into cells to lock down parasites. Proc Natl Acad Sci U S A 2021; 118:2108103118. [PMID: 34108246 DOI: 10.1073/pnas.2108103118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
43
|
Rashidi S, Tuteja R, Mansouri R, Ali-Hassanzadeh M, Shafiei R, Ghani E, Karimazar M, Nguewa P, Manzano-Román R. The main post-translational modifications and related regulatory pathways in the malaria parasite Plasmodium falciparum: An update. J Proteomics 2021; 245:104279. [PMID: 34089893 DOI: 10.1016/j.jprot.2021.104279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
There are important challenges when investigating individual post-translational modifications (PTMs) or protein interaction network and delineating if PTMs or their changes and cross-talks are involved during infection, disease initiation or as a result of disease progression. Proteomics and in silico approaches now offer the possibility to complement each other to further understand the regulatory involvement of these modifications in parasites and infection biology. Accordingly, the current review highlights key expressed or altered proteins and PTMs are invisible switches that turn on and off the function of most of the proteins. PTMs include phosphorylation, glycosylation, ubiquitylation, palmitoylation, myristoylation, prenylation, acetylation, methylation, and epigenetic PTMs in P. falciparum which have been recently identified. But also other low-abundant or overlooked PTMs that might be important for the parasite's survival, infectivity, antigenicity, immunomodulation and pathogenesis. We here emphasize the PTMs as regulatory pathways playing major roles in the biology, pathogenicity, metabolic pathways, survival, host-parasite interactions and the life cycle of P. falciparum. Further validations and functional characterizations of such proteins might confirm the discovery of therapeutic targets and might most likely provide valuable data for the treatment of P. falciparum, the main cause of severe malaria in human.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008 Pamplona, Spain.
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
44
|
Tan MSY, Koussis K, Withers‐Martinez C, Howell SA, Thomas JA, Hackett F, Knuepfer E, Shen M, Hall MD, Snijders AP, Blackman MJ. Autocatalytic activation of a malarial egress protease is druggable and requires a protein cofactor. EMBO J 2021; 40:e107226. [PMID: 33932049 PMCID: PMC8167364 DOI: 10.15252/embj.2020107226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Malaria parasite egress from host erythrocytes (RBCs) is regulated by discharge of a parasite serine protease called SUB1 into the parasitophorous vacuole (PV). There, SUB1 activates a PV-resident cysteine protease called SERA6, enabling host RBC rupture through SERA6-mediated degradation of the RBC cytoskeleton protein β-spectrin. Here, we show that the activation of Plasmodium falciparum SERA6 involves a second, autocatalytic step that is triggered by SUB1 cleavage. Unexpectedly, autoproteolytic maturation of SERA6 requires interaction in multimolecular complexes with a distinct PV-located protein cofactor, MSA180, that is itself a SUB1 substrate. Genetic ablation of MSA180 mimics SERA6 disruption, producing a fatal block in β-spectrin cleavage and RBC rupture. Drug-like inhibitors of SERA6 autoprocessing similarly prevent β-spectrin cleavage and egress in both P. falciparum and the emerging zoonotic pathogen P. knowlesi. Our results elucidate the egress pathway and identify SERA6 as a target for a new class of antimalarial drugs designed to prevent disease progression.
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
| | | | | | - Steven A Howell
- Protein Analysis and Proteomics PlatformThe Francis Crick InstituteLondonUK
| | - James A Thomas
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK
| | - Fiona Hackett
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
| | - Ellen Knuepfer
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHertfordshireUK
| | - Min Shen
- National Center for Advancing Translational Sciences (NCATS)National Institutes of HealthRockvilleMDUSA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences (NCATS)National Institutes of HealthRockvilleMDUSA
| | | | - Michael J Blackman
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK
| |
Collapse
|
45
|
Peptidic boronic acids are potent cell-permeable inhibitors of the malaria parasite egress serine protease SUB1. Proc Natl Acad Sci U S A 2021; 118:2022696118. [PMID: 33975947 PMCID: PMC8157947 DOI: 10.1073/pnas.2022696118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malaria is a devastating infectious disease, which causes over 400,000 deaths per annum and impacts the lives of nearly half the world's population. The causative agent, a protozoan parasite, replicates within red blood cells (RBCs), eventually destroying the cells in a lytic process called egress to release a new generation of parasites. These invade fresh RBCs to repeat the cycle. Egress is regulated by an essential parasite subtilisin-like serine protease called SUB1. Here, we describe the development and optimization of substrate-based peptidic boronic acids that inhibit Plasmodium falciparum SUB1 with low nanomolar potency. Structural optimization generated membrane-permeable, slow off-rate inhibitors that prevent Pfalciparum egress through direct inhibition of SUB1 activity and block parasite replication in vitro at submicromolar concentrations. Our results validate SUB1 as a potential target for a new class of antimalarial drugs designed to prevent parasite replication and disease progression.
Collapse
|
46
|
Arisue N, Chagaluka G, Palacpac NMQ, Johnston WT, Mutalima N, Peprah S, Bhatia K, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Goedert JJ, Molyneux EM, Newton R, Horii T, Mbulaiteye SM. Assessment of Mixed Plasmodium falciparum sera5 Infection in Endemic Burkitt Lymphoma: A Case-Control Study in Malawi. Cancers (Basel) 2021; 13:1692. [PMID: 33918470 PMCID: PMC8038222 DOI: 10.3390/cancers13071692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Endemic Burkitt lymphoma (eBL) is the most common childhood cancer in Africa and is linked to Plasmodium falciparum (Pf) malaria infection, one of the most common and deadly childhood infections in Africa; however, the role of Pf genetic diversity is unclear. A potential role of Pf genetic diversity in eBL has been suggested by a correlation of age-specific patterns of eBL with the complexity of Pf infection in Ghana, Uganda, and Tanzania, as well as a finding of significantly higher Pf genetic diversity, based on a sensitive molecular barcode assay, in eBL cases than matched controls in Malawi. We examined this hypothesis by measuring diversity in Pf-serine repeat antigen-5 (Pfsera5), an antigenic target of blood-stage immunity to malaria, among 200 eBL cases and 140 controls, all Pf polymerase chain reaction (PCR)-positive, in Malawi. METHODS We performed Pfsera5 PCR and sequencing (~3.3 kb over exons II-IV) to determine single or mixed PfSERA5 infection status. The patterns of Pfsera5 PCR positivity, mixed infection, sequence variants, and haplotypes among eBL cases, controls, and combined/pooled were analyzed using frequency tables. The association of mixed Pfsera5 infection with eBL was evaluated using logistic regression, controlling for age, sex, and previously measured Pf genetic diversity. RESULTS Pfsera5 PCR was positive in 108 eBL cases and 70 controls. Mixed PfSERA5 infection was detected in 41.7% of eBL cases versus 24.3% of controls; the odds ratio (OR) was 2.18, and the 95% confidence interval (CI) was 1.12-4.26, which remained significant in adjusted results (adjusted odds ratio [aOR] of 2.40, 95% CI of 1.11-5.17). A total of 29 nucleotide variations and 96 haplotypes were identified, but these were unrelated to eBL. CONCLUSIONS Our results increase the evidence supporting the hypothesis that infection with mixed Pf infection is increased with eBL and suggest that measuring Pf genetic diversity may provide new insights into the role of Pf infection in eBL.
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (N.M.Q.P.); (T.H.)
| | - W. Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
- Cancer Epidemiology Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Sally Peprah
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Kishor Bhatia
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - George N. Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Collins Mitambo
- National Health Sciences Research Committee, Research Department, Ministry of Health, P.O. Box 30377, Capital City, Lilongwe 3, Malawi;
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Elizabeth M. Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (N.M.Q.P.); (T.H.)
| | - Sam M. Mbulaiteye
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| |
Collapse
|
47
|
Abstract
All intracellular pathogens must escape (egress) from the confines of their host cell to disseminate and proliferate. The malaria parasite only replicates in an intracellular vacuole or in a cyst, and must undergo egress at four distinct phases during its complex life cycle, each time disrupting, in a highly regulated manner, the membranes or cyst wall that entrap the parasites. This Cell Science at a Glance article and accompanying poster summarises our current knowledge of the morphological features of egress across the Plasmodium life cycle, the molecular mechanisms that govern the process, and how researchers are working to exploit this knowledge to develop much-needed new approaches to malaria control. ![]()
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK .,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
48
|
Collins CR, Hackett F, Howell SA, Snijders AP, Russell MRG, Collinson LM, Blackman MJ. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020; 9:e61121. [PMID: 33287958 PMCID: PMC7723409 DOI: 10.7554/elife.61121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.
Collapse
Affiliation(s)
- Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Steven A Howell
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Matthew RG Russell
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Faculty of Infectious Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
49
|
Barylyuk K, Koreny L, Ke H, Butterworth S, Crook OM, Lassadi I, Gupta V, Tromer E, Mourier T, Stevens TJ, Breckels LM, Pain A, Lilley KS, Waller RF. A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions. Cell Host Microbe 2020; 28:752-766.e9. [PMID: 33053376 PMCID: PMC7670262 DOI: 10.1016/j.chom.2020.09.011] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Apicomplexan parasites cause major human disease and food insecurity. They owe their considerable success to highly specialized cell compartments and structures. These adaptations drive their recognition, nondestructive penetration, and elaborate reengineering of the host's cells to promote their growth, dissemination, and the countering of host defenses. The evolution of unique apicomplexan cellular compartments is concomitant with vast proteomic novelty. Consequently, half of apicomplexan proteins are unique and uncharacterized. Here, we determine the steady-state subcellular location of thousands of proteins simultaneously within the globally prevalent apicomplexan parasite Toxoplasma gondii. This provides unprecedented comprehensive molecular definition of these unicellular eukaryotes and their specialized compartments, and these data reveal the spatial organizations of protein expression and function, adaptation to hosts, and the underlying evolutionary trajectories of these pathogens.
Collapse
Affiliation(s)
| | - Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Simon Butterworth
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Oliver M Crook
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB20 0AW, UK; MRC Biostatistics Unit, Cambridge Institute for Public Health, Cambridge CB2 0SR, UK
| | - Imen Lassadi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Vipul Gupta
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Eelco Tromer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Tobias Mourier
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB20 0AW, UK
| | - Arnab Pain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; Global Station for Zoonosis Control, Gi-CoRE, Hokkaido University, Sapporo 060-0808, Japan; Nuffield Division of Clinical Laboratory Sciences (NDCLS), University of Oxford, Oxford OX3 9DU, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB20 0AW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
50
|
Kumar V, Rumaisha, Behl A, Munjal A, Abid M, Singh S. Prefoldin subunit 6 of Plasmodium falciparum binds merozoite surface protein-1 (MSP-1). FEBS Open Bio 2020; 12:1050-1060. [PMID: 33145997 PMCID: PMC9063436 DOI: 10.1002/2211-5463.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
Malaria is a human disease caused by eukaryotic protozoan parasites of the Plasmodium genus. Plasmodium falciparum (Pf) causes the most lethal form of human malaria and is responsible for widespread mortality worldwide. Prefoldin is a heterohexameric molecular complex that binds and delivers unfolded proteins to chaperonin for correct folding. The prefoldin PFD6 is predicted to interact with merozoite surface protein‐1 (MSP‐1), a protein well known to play a pivotal role in erythrocyte binding and invasion by Plasmodium merozoites. We previously found that the P. falciparum (Pf) genome contains six prefoldin genes and a prefoldin‐like gene whose molecular functions are unidentified. Here, we analyzed the expression of PfPFD‐6 during the asexual blood stages of the parasite and investigated its interacting partners. PfPFD‐6 was found to be significantly expressed at the trophozoite and schizont stages. Pull‐down assays suggest PfPFD‐6 interacts with MSP‐1. In silico analysis suggested critical residues involved in the PfPFD‐6‐MSP‐1 interaction. Our data suggest PfPFD‐6 may play a role in stabilizing or trafficking MSP‐1.
Collapse
Affiliation(s)
- Vikash Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha
- Medicinal Chemistry laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Mohammad Abid
- Medicinal Chemistry laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|