1
|
Miller BR, Gonzaga-Jauregui C, Brigatti KW, de Jong J, Breese RS, Ko SY, Puffenberger EG, Van Hout C, Young M, Luna VM, Staples J, First MB, Gregoire HJ, Dwork AJ, Pefanis E, McCarthy S, Brydges S, Rojas J, Ye B, Stahl E, Di Gioia SA, Hen R, Elwood K, Rosoklija G, Li D, Mellis S, Carey D, Croll SD, Overton JD, Macdonald LE, Economides AN, Shuldiner AR, Chuhma N, Rayport S, Amin N, Kushner SA, Alessandri-Haber N, Markx S, Strauss KA. A rare variant in GPR156 associated with depression in a Mennonite pedigree causes habenula hyperactivity and stress sensitivity in mice. Proc Natl Acad Sci U S A 2025; 122:e2404754122. [PMID: 40228124 PMCID: PMC12037005 DOI: 10.1073/pnas.2404754122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Risk for MDD is heritable, and the genetic structure of founder populations enables investigation of rare susceptibility alleles with large effect. In an extended Old Order Mennonite family cohort, we identified a rare missense variant in GPR156 (c.1599G>T, p.Glu533Asp) associated with a two-fold increase in the relative risk of MDD. GPR156 is an orphan G protein-coupled receptor localized in the medial habenula, a region implicated in mood regulation. Insertion of a human sequence containing c.1599G>T into the murine Gpr156 locus induced medial habenula hyperactivity and abnormal stress-related behaviors. This work reveals a human variant that is associated with depression, implicates GPR156 as a target for mood regulation, and introduces informative murine models for investigating the pathophysiology and treatment of affective disorders.
Collapse
Affiliation(s)
- Bradley R. Miller
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Tarrytown, NY10591
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, Mexico
| | | | - Job de Jong
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | | | - Seung Yeon Ko
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Cristopher Van Hout
- Regeneron Genetics Center, Tarrytown, NY10591
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, Mexico
| | - Millie Young
- Clinic for Special Children, Gordonville, PA17529
| | - Victor M. Luna
- Department of Neural Sciences, Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA19140
| | | | - Michael B. First
- Department of Psychiatry, Columbia University, New York, NY10032
| | - Hilledna J. Gregoire
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | - Andrew J. Dwork
- Department of Psychiatry, Columbia University, New York, NY10032
| | | | | | | | - Jose Rojas
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | - Bin Ye
- Regeneron Genetics Center, Tarrytown, NY10591
| | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY10591
| | | | - René Hen
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY10032
| | - Dadong Li
- Regeneron Genetics Center, Tarrytown, NY10591
| | - Scott Mellis
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | - Susan D. Croll
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | | | - Aris N. Economides
- Regeneron Genetics Center, Tarrytown, NY10591
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | - Nao Chuhma
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Stephen Rayport
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Najaf Amin
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam3015 GD, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam3015 GD, The Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Sander Markx
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Kevin A. Strauss
- Clinic for Special Children, Gordonville, PA17529
- Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA17602
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA01655
| |
Collapse
|
2
|
Yu JW, Yoon JG, Han C, Noh SH, Shin DM, Yang YM, Kim YO, Shim KW, Lee MG. Digenic impairments of haploinsufficient genes in patients with craniosynostosis. JCI Insight 2025; 10:e176985. [PMID: 39989454 PMCID: PMC11949007 DOI: 10.1172/jci.insight.176985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2025] [Indexed: 02/25/2025] Open
Abstract
Craniosynostosis (CRS) is characterized by the development of abnormal cranial suture ossification and premature fusion. Despite the identification of several associated genetic disorders, the genetic determinants of CRS remain poorly understood. In this study, we conducted integrative analyses on 225 exomes, comprising 121 CRS probands and 104 parental exomes (52 trios). These analyses encompassed de novo and pathogenic variants, and digenic combinations within haploinsufficient genes harboring rare variants. Our analysis unveils a shared molecular network between genes associated with CRS and those linked to skeletal and neurodevelopmental disorders, with a notable enrichment of deleterious variants within haploinsufficient genes. Additionally, we identified a unique digenic pair (IL6ST and TRPS1) within haploinsufficient genes that was present in 2 patients with nonsyndromic CRS but absent in parents or 1,048 population controls. In vitro experiments provided evidence that the identified missense variants were hypomorphs, and accelerated bone mineralization could result from the additive effects of diminished IL6ST and TRPS1 activities in osteoblasts. Overall, our study underscores the important role of rare variations in haploinsufficient genes and suggests that in a subset of undiagnosed patients, the CRS phenotype may arise from multiple genetic variations.
Collapse
Affiliation(s)
- Jung Woo Yu
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic
| | - Jihoon G. Yoon
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
- Department of Laboratory Medicine, Gangnam Severance Hospital, and
| | - Chaerim Han
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yu-Mi Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yong Oock Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Won Shim
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic
| | - Min Goo Lee
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
| |
Collapse
|
3
|
Bender A, Ranea-Robles P, Williams EG, Mirzaian M, Heimel JA, Levelt CN, Wanders RJ, Aerts JM, Zhu J, Auwerx J, Houten SM, Argmann CA. A multiomic network approach uncovers disease modifying mechanisms of inborn errors of metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639093. [PMID: 40027804 PMCID: PMC11870498 DOI: 10.1101/2025.02.19.639093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
For many inborn errors of metabolism (IEM) the understanding of disease mechanisms remains limited in part explaining their unmet medical needs. We hypothesize that the expressivity of IEM disease phenotypes is affected by the activity of specific modifier pathways, which is controlled by rare and common polygenic variation. To identify these modulating pathways, we used RNA sequencing to generate molecular signatures of IEM in disease relevant tissues. We then integrated these disease signatures with multiomic data and gene regulatory networks generated from animal and human populations without overt IEM. We identified and subsequently validated glucocorticoid signaling as a candidate modifier of mitochondrial fatty acid oxidation disorders, and we re-capitulated complement signaling as a modifier of inflammation in Gaucher disease. Our work describes a novel approach that can overcome the rare disease-rare data dilemma, and reveal new IEM pathophysiology and potential drug targets using multiomics data in seemingly healthy populations.
Collapse
Affiliation(s)
- Aaron Bender
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Ranea-Robles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan G. Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Esch-sur-Alzette, Luxembourg
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J. Alexander Heimel
- Circuits Structure and Function Group, Netherlands Institute for Neuroscience, Netherlands
| | - Christiaan N. Levelt
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Netherlands
| | - Ronald J. Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Johannes M. Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Netherlands
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne CH-1015, Switzerland
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen A. Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Dawood M, Heavner B, Wheeler MM, Ungar RA, LoTempio J, Wiel L, Berger S, Bernstein JA, Chong JX, Délot EC, Eichler EE, Gibbs RA, Lupski JR, Shojaie A, Talkowski ME, Wagner AH, Wei CL, Wellington C, Wheeler MT, Carvalho CMB, Gifford CA, May S, Miller DE, Rehm HL, Sedlazeck FJ, Vilain E, O'Donnell-Luria A, Posey JE, Chadwick LH, Bamshad MJ, Montgomery SB. GREGoR: Accelerating Genomics for Rare Diseases. ARXIV 2024:arXiv:2412.14338v1. [PMID: 39764392 PMCID: PMC11702807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Rare diseases are collectively common, affecting approximately one in twenty individuals worldwide. In recent years, rapid progress has been made in rare disease diagnostics due to advances in DNA sequencing, development of new computational and experimental approaches to prioritize genes and genetic variants, and increased global exchange of clinical and genetic data. However, more than half of individuals suspected to have a rare disease lack a genetic diagnosis. The Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) Consortium was initiated to study thousands of challenging rare disease cases and families and apply, standardize, and evaluate emerging genomics technologies and analytics to accelerate their adoption in clinical practice. Further, all data generated, currently representing ~7500 individuals from ~3000 families, is rapidly made available to researchers worldwide via the Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) to catalyze global efforts to develop approaches for genetic diagnoses in rare diseases (https://gregorconsortium.org/data). The majority of these families have undergone prior clinical genetic testing but remained unsolved, with most being exome-negative. Here, we describe the collaborative research framework, datasets, and discoveries comprising GREGoR that will provide foundational resources and substrates for the future of rare disease genomics.
Collapse
Affiliation(s)
- Moez Dawood
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Ben Heavner
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Marsha M Wheeler
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Rachel A Ungar
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Center for Biomedical Ethics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jonathan LoTempio
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Laurens Wiel
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Seth Berger
- Division of Genetics and Metabolism, Children's National Rare Disease Institute, Washington, DC, USA
- Center for Genetic Medicine Research, Children's National Rare Disease Institute, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jessica X Chong
- Department of Pediatrics, Dvision of Genetic Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Emmanuèle C Délot
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Evan E Eichler
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Alex H Wagner
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Chia-Lin Wei
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christopher Wellington
- Office of Genomic Data Science, National Human Genome Research Institute, Bethesda, MD, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Casey A Gifford
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susanne May
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Heidi L Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Anne O'Donnell-Luria
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lisa H Chadwick
- Division of Genome Sciences, National Human Genome Research Institute, Bethesda, MD, USA
| | - Michael J Bamshad
- Department of Pediatrics, Dvision of Genetic Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Stephen B Montgomery
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Jee YH, Lui JC, Marafi D, Xia ZJ, Bhatia R, Zhou E, Herman I, Temnycky A, Whalen P, Elliot G, Leschek EW, Wijngaard R, van Beek R, de Vreugd A, de Vries MC, van Karnebeek CD, Oud MM, Markello TC, Barnes KM, Alrohaif H, Freeze HH, Gahl WA, Malicdan MCV, Posey JE, Lupski JR, Baron J. Variants in WASHC3, a component of the WASH complex, cause short stature, variable neurodevelopmental abnormalities, and distinctive facial dysmorphism. GENETICS IN MEDICINE OPEN 2024; 3:101915. [PMID: 40129681 PMCID: PMC11932664 DOI: 10.1016/j.gimo.2024.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 03/26/2025]
Abstract
Purpose Genetic defects that impair growth plate chondrogenesis cause a phenotype that varies from skeletal dysplasia to mild short stature with or without other syndromic features. In many individuals with impaired skeletal growth, the genetic causes remain unknown. Method Exome sequence was performed in 3 unrelated families with short stature, distinctive facies, and neurodevelopmental abnormalities. The impact of identified variants was studied in vitro. Results Exome sequencing identified variants in WASHC3, a component of the WASH complex. In the first family, a de-novo-dominant missense variant (p.L69F) impaired WASHC3 participation in the WASH complex, altered PTH1R endosomal trafficking, diminished PTH1R signaling, and affected growth plate chondrocyte hypertrophic differentiation, providing a likely explanation for the short stature. Knockdown of other WASH complex components also diminished PTH1R signaling. In the second and third families, a homozygous variant in the start codon (p.M1?) markedly reduced WASHC3 protein expression. Conclusion In combination with prior studies of WASH complex proteins, our findings provide evidence that the WASH complex is required for normal skeletal growth and that, consequently, genetic abnormalities impairing the function of the WASH complex (WASHopathy) cause short stature, as well as distinctive facies and variable neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Youn Hee Jee
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD
- Department of Pediatrics, Center for Genetic Medicine Research, The George Washington University School of Medicine and Health Sciences, Washington, DC
- Division of Endocrinology, Children’s National Hospital, Washington, DC
| | - Julian C. Lui
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD
| | - Dana Marafi
- Department of Pediatrics, College of Medicine, Kuwait University, Safat, Kuwait
| | - Zhi-Jie Xia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Ruchika Bhatia
- Department of Pediatrics, Center for Genetic Medicine Research, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Elaine Zhou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Neurosciences, Neurogenetics and Rare Diseases, Boys Town National Research Hospital, Boys Town, NE
- Texas Children’s Hospital, Houston, TX
| | - Adrian Temnycky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD
| | - Philip Whalen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD
| | - Gene Elliot
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Ellen W. Leschek
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| | - Robin Wijngaard
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald van Beek
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemarie de Vreugd
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maaike C. de Vries
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Clara D.M. van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Machteld M. Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas C. Markello
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Undiagnosed Diseases Research Program, National Institutes of Health, Bethesda, MD
| | - Kevin M. Barnes
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD
| | - Hadil Alrohaif
- Kuwait Medical Genetics Centre, AlSabah Hospital, Kuwait
| | - Hudson H. Freeze
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - William A. Gahl
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Undiagnosed Diseases Research Program, National Institutes of Health, Bethesda, MD
| | - May Christine V. Malicdan
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Undiagnosed Diseases Research Program, National Institutes of Health, Bethesda, MD
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Jeffrey Baron
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
6
|
Lee Y, Gu S, Al-Hashimi HM. Insights into the A-C Mismatch Conformational Ensemble in Duplex DNA and its Role in Genetic Processes through a Structure-based Review. J Mol Biol 2024; 436:168710. [PMID: 39009073 PMCID: PMC12034297 DOI: 10.1016/j.jmb.2024.168710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Knowing the conformational ensembles formed by mismatches is crucial for understanding how they are generated and repaired and how they contribute to genomic instability. Here, we review structural and energetic studies of the A-C mismatch in duplex DNA and use the information to identify critical conformational states in its ensemble and their significance in genetic processes. In the 1970s, Topal and Fresco proposed the A-C wobble stabilized by two hydrogen bonds, one requiring protonation of adenine-N1. Subsequent NMR and X-ray crystallography studies showed that the protonated A-C wobble was in dynamic equilibrium with a neutral inverted wobble. The mismatch was shown to destabilize duplex DNA in a sequence- and pH-dependent manner by 2.4-3.8 kcal/mol and to have an apparent pKa ranging between 7.2 and 7.7. The A-C mismatch conformational repertoire expanded as structures were determined for damaged and protein-bound DNA. These structures included Watson-Crick-like conformations forming through tautomerization of the bases that drive replication errors, the reverse wobble forming through rotation of the entire nucleotide proposed to increase the fidelity of DNA replication, and the Hoogsteen base-pair forming through the flipping of the adenine base which explained the unusual specificity of DNA polymerases that bypass DNA damage. Thus, the A-C mismatch ensemble encompasses various conformational states that can be selectively stabilized in response to environmental changes such as pH shifts, intermolecular interactions, and chemical modifications, and these adaptations facilitate critical biological processes. This review also highlights the utility of existing 3D structures to build ensemble models for nucleic acid motifs.
Collapse
Affiliation(s)
- Yeongjoon Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America
| | - Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America.
| |
Collapse
|
7
|
Underwood M, Bidlack C, Desch KC. Venous thromboembolic disease genetics: from variants to function. J Thromb Haemost 2024; 22:2393-2403. [PMID: 38908832 PMCID: PMC11934295 DOI: 10.1016/j.jtha.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
Venous thromboembolic disease (VTE) is a prevalent and potentially life-threatening vascular disease, including both deep vein thrombosis and pulmonary embolism. This review will focus on recent insights into the heritable factors that influence an individual's risk for VTE. Here, we will explore not only the discovery of new genetic risk variants but also the importance of functional characterization of these variants. These genome-wide studies should lead to a better understanding of the biological role of genes inside and outside of the canonical coagulation system in thrombus formation and lead to an improved ability to predict an individual's risk of VTE. Further understanding of the molecular mechanisms altered by genetic variation in VTE risk will be accelerated by further human genome sequencing efforts and the use of functional genetic screens.
Collapse
Affiliation(s)
- Mary Underwood
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Bidlack
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Karl C Desch
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
8
|
Layalle S, Aimond F, Brugioti V, Guissart C, Raoul C, Soustelle L. The ALS-associated KIF5A P986L variant is not pathogenic for Drosophila motoneurons. Sci Rep 2024; 14:19540. [PMID: 39174694 PMCID: PMC11341546 DOI: 10.1038/s41598-024-70543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by the death of motoneurons. Several mutations in the KIF5A gene have been identified in patients with ALS. Some mutations affect the splicing sites of exon 27 leading to its deletion (Δ27 mutation). KIF5A Δ27 is aggregation-prone and pathogenic for motoneurons due to a toxic gain of function. Another mutation found to be enriched in ALS patients is a proline/leucine substitution at position 986 (P986L mutation). Bioinformatic analyses strongly suggest that this variant is benign. Our study aims to conduct functional studies in Drosophila to classify the KIF5A P986L variant. When expressed in motoneurons, KIF5A P986L does not modify the morphology of larval NMJ or the synaptic transmission. In addition, KIF5A P986L is uniformly distributed in axons and does not disturb mitochondria distribution. Locomotion at larval and adult stages is not affected by KIF5A P986L. Finally, both KIF5A WT and P986L expression in adult motoneurons extend median lifespan compared to control flies. Altogether, our data show that the KIF5A P986L variant is not pathogenic for motoneurons and may represent a hypomorphic allele, although it is not causative for ALS.
Collapse
Affiliation(s)
- Sophie Layalle
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France.
| | - Franck Aimond
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
| | - Véronique Brugioti
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
| | - Claire Guissart
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
- Service de Biochimie et Biologie Moléculaire, CHU Nîmes, Université Montpellier, Nîmes, France
| | - Cédric Raoul
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
- ALS Reference Center, CHU Montpellier, Université Montpellier, Montpellier, France
| | - Laurent Soustelle
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Srivastava K, Yin Q, Makuria AT, Rios M, Gebremedhin A, Flegel WA. CD59 gene: 143 haplotypes of 22,718 nucleotides length by computational phasing in 113 individuals from different ethnicities. Transfusion 2024; 64:1296-1305. [PMID: 38817044 PMCID: PMC11251854 DOI: 10.1111/trf.17869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND CD59 deficiency due to rare germline variants in the CD59 gene causes disabilities, ischemic strokes, neuropathy, and hemolysis. CD59 deficiency due to common somatic variants in the PIG-A gene in hematopoietic stem cells causes paroxysmal nocturnal hemoglobinuria. The ISBT database lists one nonsense and three missense germline variants that are associated with the CD59-null phenotype. To analyze the genetic diversity of the CD59 gene, we determined long-range CD59 haplotypes among individuals from different ethnicities. METHODS We determined a 22.7 kb genomic fragment of the CD59 gene in 113 individuals using next-generation sequencing (NGS), which covered the whole NM_203330.2 mRNA transcript of 7796 base pairs. Samples came from an FDA reference repository and our Ethiopia study cohorts. The raw genotype data were computationally phased into individual haplotype sequences. RESULTS Nucleotide sequencing of the CD59 gene of 226 chromosomes identified 216 positions with single nucleotide variants. Only three haplotypes were observed in homozygous form, which allowed us to assign them unambiguously as experimentally verified CD59 haplotypes. They were also the most frequent haplotypes among both cohorts. An additional 140 haplotypes were imputed computationally. DISCUSSION We provided a large set of haplotypes and proposed three verified long-range CD59 reference sequences, based on a population approach, using a generalizable rationale for our choice. Correct long-range haplotypes are useful as template sequences for allele calling in high-throughput NGS and precision medicine approaches, thus enhancing the reliability of clinical diagnostics. Long-range haplotypes can also be used to evaluate the influence of genetic variation on the risk of transfusion reactions or diseases.
Collapse
Affiliation(s)
- Kshitij Srivastava
- Department of Transfusion MedicineNIH Clinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Qinan Yin
- Department of Transfusion MedicineNIH Clinical Center, National Institutes of HealthBethesdaMarylandUSA
- Present address:
Henan Engineering Research Center of Digital Pathology and Artificial Intelligence DiagnosisThe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangPeople's Republic of China
- Present address:
Precision Medicine Laboratory, School of Medical Technology and EngineeringHenan University of Science and TechnologyLuoyangPeople's Republic of China
| | - Addisalem Taye Makuria
- Department of Transfusion MedicineNIH Clinical Center, National Institutes of HealthBethesdaMarylandUSA
- Department of Pathology and Laboratory ServicesECU Health Medical CenterGreenvilleNorth CarolinaUSA
| | - Maria Rios
- Office of Blood Research and Review, Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Amha Gebremedhin
- School of MedicineCollege of Health Sciences, Addis Ababa UniversityAddis AbabaEthiopia
| | - Willy Albert Flegel
- Department of Transfusion MedicineNIH Clinical Center, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
10
|
Laurent R, Gineau L, Utge J, Lafosse S, Phoeung CL, Hegay T, Olaso R, Boland A, Deleuze JF, Toupance B, Heyer E, Leutenegger AL, Chaix R. Measuring the Efficiency of Purging by non-random Mating in Human Populations. Mol Biol Evol 2024; 41:msae094. [PMID: 38839045 PMCID: PMC11184347 DOI: 10.1093/molbev/msae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
Human populations harbor a high concentration of deleterious genetic variants. Here, we tested the hypothesis that non-random mating practices affect the distribution of these variants, through exposure in the homozygous state, leading to their purging from the population gene pool. To do so, we produced whole-genome sequencing data for two pairs of Asian populations exhibiting different alliance rules and rates of inbreeding, but with similar effective population sizes. The results show that populations with higher rates of inbred matings do not purge deleterious variants more efficiently. Purging therefore has a low efficiency in human populations, and different mating practices lead to a similar mutational load.
Collapse
Affiliation(s)
- Romain Laurent
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
| | - Laure Gineau
- IRD, MERIT, Université Paris Cité, 75006 Paris, France
| | - José Utge
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
| | - Sophie Lafosse
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
| | | | - Tatyana Hegay
- Laboratory of Genome-cell technology, Institute of Immunology and Human genomics, Academy of Sciences, Tashkent, Uzbekistan
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Université Paris-Saclay, 91057, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Université Paris-Saclay, 91057, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Université Paris-Saclay, 91057, Evry, France
| | - Bruno Toupance
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
- Eco-Anthropologie, Université Paris Cité, 75006 Paris, France
| | - Evelyne Heyer
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
| | | | - Raphaëlle Chaix
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
| |
Collapse
|
11
|
Venner E, Patterson K, Kalra D, Wheeler MM, Chen YJ, Kalla SE, Yuan B, Karnes JH, Walker K, Smith JD, McGee S, Radhakrishnan A, Haddad A, Empey PE, Wang Q, Lichtenstein L, Toledo D, Jarvik G, Musick A, Gibbs RA. The frequency of pathogenic variation in the All of Us cohort reveals ancestry-driven disparities. Commun Biol 2024; 7:174. [PMID: 38374434 PMCID: PMC10876563 DOI: 10.1038/s42003-023-05708-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/13/2023] [Indexed: 02/21/2024] Open
Abstract
Disparities in data underlying clinical genomic interpretation is an acknowledged problem, but there is a paucity of data demonstrating it. The All of Us Research Program is collecting data including whole-genome sequences, health records, and surveys for at least a million participants with diverse ancestry and access to healthcare, representing one of the largest biomedical research repositories of its kind. Here, we examine pathogenic and likely pathogenic variants that were identified in the All of Us cohort. The European ancestry subgroup showed the highest overall rate of pathogenic variation, with 2.26% of participants having a pathogenic variant. Other ancestry groups had lower rates of pathogenic variation, including 1.62% for the African ancestry group and 1.32% in the Latino/Admixed American ancestry group. Pathogenic variants were most frequently observed in genes related to Breast/Ovarian Cancer or Hypercholesterolemia. Variant frequencies in many genes were consistent with the data from the public gnomAD database, with some notable exceptions resolved using gnomAD subsets. Differences in pathogenic variant frequency observed between ancestral groups generally indicate biases of ascertainment of knowledge about those variants, but some deviations may be indicative of differences in disease prevalence. This work will allow targeted precision medicine efforts at revealed disparities.
Collapse
Affiliation(s)
- Eric Venner
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - Karynne Patterson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Marsha M Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yi-Ju Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Sara E Kalla
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Bo Yuan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jason H Karnes
- University of Arizona, R Ken Coit College of Pharmacy, Department of Pharmacy Practice and Science, Tucson, AZ, USA
- Vanderbilt University Medical Center, Department of Biomedical Informatics, Boston, MA, USA
| | - Kimberly Walker
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sean McGee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Andrew Haddad
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Qiaoyan Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Diana Toledo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gail Jarvik
- Department of Medicine (Medical Genetics), University of Washington School of Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Anjene Musick
- NIH All of Us Research Program, National Institutes of Health Office of the Director, Bethesda, MD, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Coban-Akdemir Z, Song X, Ceballos FC, Pehlivan D, Karaca E, Bayram Y, Mitani T, Gambin T, Bozkurt-Yozgatli T, Jhangiani SN, Muzny DM, Lewis RA, Liu P, Boerwinkle E, Hamosh A, Gibbs RA, Sutton VR, Sobreira N, Carvalho CM, Shaw CA, Posey JE, Valle D, Lupski JR. The impact of the Turkish population variome on the genomic architecture of rare disease traits. GENETICS IN MEDICINE OPEN 2024; 2:101830. [PMID: 39669594 PMCID: PMC11613692 DOI: 10.1016/j.gimo.2024.101830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 12/14/2024]
Abstract
Purpose The variome of the Turkish (TK) population, a population with a considerable history of admixture and consanguinity, has not been deeply investigated for insights on the genomic architecture of disease. Methods We generated and analyzed a database of variants derived from exome sequencing data of 773 TK unrelated, clinically affected individuals with various suspected Mendelian disease traits and 643 unaffected relatives. Results Using uniform manifold approximation and projection, we showed that the TK genomes are more similar to those of Europeans and consist of 2 main subpopulations: clusters 1 and 2 (N = 235 and 1181, respectively), which differ in admixture proportion and variome (https://turkishvariomedb.shinyapps.io/tvdb/). Furthermore, the higher inbreeding coefficient values observed in the TK affected compared with unaffected individuals correlated with a larger median span of long-sized (>2.64 Mb) runs of homozygosity (ROH) regions (P value = 2.09e-18). We show that long-sized ROHs are more likely to be formed on recently configured haplotypes enriched for rare homozygous deleterious variants in the TK affected compared with TK unaffected individuals (P value = 3.35e-11). Analysis of genotype-phenotype correlations reveals that genes with rare homozygous deleterious variants in long-sized ROHs provide the most comprehensive set of molecular diagnoses for the observed disease traits with a systematic quantitative analysis of Human Phenotype Ontology terms. Conclusion Our findings support the notion that novel rare variants on newly configured haplotypes arising within the recent past generations of a family or clan contribute significantly to recessive disease traits in the TK population.
Collapse
Affiliation(s)
- Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pathology, Baylor University Medical Center, Dallas, TX
- Texas A&M School of Medicine, Texas A&M University, Dallas, TX
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Tugce Bozkurt-Yozgatli
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pacific Northwest Research Institute, Seattle, WA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Baylor Genetics, Houston, TX
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| |
Collapse
|
13
|
Yoshida H. Dissecting the Immune System through Gene Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:219-235. [PMID: 38467983 DOI: 10.1007/978-981-99-9781-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The immune system plays a dual role in human health, functioning both as a protector against pathogens and, at times, as a contributor to disease. This feature emphasizes the importance to uncover the underlying causes of its malfunctions, necessitating an in-depth analysis in both pathological and physiological conditions to better understand the immune system and immune disorders. Recent advances in scientific technology have enabled extensive investigations into gene regulation, a crucial mechanism governing cellular functionality. Studying gene regulatory mechanisms within the immune system is a promising avenue for enhancing our understanding of immune cells and the immune system as a whole. The gene regulatory mechanisms, revealed through various methodologies, and their implications in the field of immunology are discussed in this chapter.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
14
|
Scorrano G, Battaglia L, Spiaggia R, Basile A, Palmucci S, Foti PV, David E, Marinangeli F, Mascilini I, Corsello A, Comisi F, Vittori A, Salpietro V. Neuroimaging in PRUNE1 syndrome: a mini-review of the literature. Front Neurol 2023; 14:1301147. [PMID: 38178891 PMCID: PMC10764560 DOI: 10.3389/fneur.2023.1301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Prune exopolyphosphatase 1 (PRUNE1) is a short-chain phosphatase that is part of the aspartic acid-histidine-histidine (DHH) family of proteins. PRUNE1 is highly expressed in the central nervous system and is crucially involved in neurodevelopment, cytoskeletal rearrangement, cell migration, and proliferation. Recently, biallelic PRUNE1 variants have been identified in patients with neurodevelopmental disorders, hypotonia, microcephaly, variable cerebral anomalies, and other features. PRUNE1 hypomorphic mutations mainly affect the DHH1 domain, leading to an impactful decrease in enzymatic activity with a loss-of-function mechanism. In this review, we explored both the clinical and radiological spectrum related to PRUNE1 pathogenic variants described to date. Specifically, we focused on neuroradiological findings that, together with clinical phenotypes and genetic data, allow us to best characterize affected children with diagnostic and potential prognostic implications.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Mascilini
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
15
|
Smolen C, Jensen M, Dyer L, Pizzo L, Tyryshkina A, Banerjee D, Rohan L, Huber E, El Khattabi L, Prontera P, Caberg JH, Van Dijck A, Schwartz C, Faivre L, Callier P, Mosca-Boidron AL, Lefebvre M, Pope K, Snell P, Lockhart PJ, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Luana Mandarà GM, Bruccheri MG, Pichon O, Le Caignec C, Stoeva R, Cuinat S, Mercier S, Bénéteau C, Blesson S, Nordsletten A, Martin-Coignard D, Sistermans E, Kooy RF, Amor DJ, Romano C, Isidor B, Juusola J, Girirajan S. Assortative mating and parental genetic relatedness contribute to the pathogenicity of variably expressive variants. Am J Hum Genet 2023; 110:2015-2028. [PMID: 37979581 PMCID: PMC10716518 DOI: 10.1016/j.ajhg.2023.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023] Open
Abstract
We examined more than 97,000 families from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents contributing to neurodevelopmental disease risk in children. We identified within- and cross-disorder correlations between six phenotypes in parents and children, such as obsessive-compulsive disorder (R = 0.32-0.38, p < 10-126). We also found that measures of sub-clinical autism features in parents are associated with several autism severity measures in children, including biparental mean Social Responsiveness Scale scores and proband Repetitive Behaviors Scale scores (regression coefficient = 0.14, p = 3.38 × 10-4). We further describe patterns of phenotypic similarity between spouses, where spouses show correlations for six neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R = 0.24-0.68, p < 0.001) and a cross-disorder correlation between anxiety and bipolar disorder (R = 0.09-0.22, p < 10-92). Using a simulated population, we also found that assortative mating can lead to increases in disease liability over generations and the appearance of "genetic anticipation" in families carrying rare variants. We identified several families in a neurodevelopmental disease cohort where the proband inherited multiple rare variants in disease-associated genes from each of their affected parents. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse relationship with variant pathogenicity and propose that parental relatedness modulates disease risk by increasing genome-wide homozygosity in children (R = 0.05-0.26, p < 0.05). Our results highlight the utility of assessing parent phenotypes and genotypes toward predicting features in children who carry rare variably expressive variants and implicate assortative mating as a risk factor for increased disease severity in these families.
Collapse
Affiliation(s)
- Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Rohan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laila El Khattabi
- Assistance Publique-Hôpitaux de Paris, Department of Medical Genetics, Armand Trousseau and Pitié-Salpêtrière Hospitals, Paris, France
| | - Paolo Prontera
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia", Perugia, Italy
| | - Jean-Hubert Caberg
- Centre Hospitalier Universitaire de Liège. Domaine Universitaire du Sart Tilman, Liège, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | | | - Laurence Faivre
- Centre de Genetique et Cenre de Référence Anomalies du développement et syndromes malformatifs, Hôpital d'Enfants, CHU Dijon, Dijon, France; GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Patrick Callier
- Centre de Genetique et Cenre de Référence Anomalies du développement et syndromes malformatifs, Hôpital d'Enfants, CHU Dijon, Dijon, France; GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | | | - Mathilde Lefebvre
- GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Kate Pope
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Penny Snell
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Paul J Lockhart
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Bruce Lefroy Center, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Lucia Castiglia
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ornella Galesi
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Emanuela Avola
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Teresa Mattina
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marco Fichera
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy; Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Maria Grazia Bruccheri
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Olivier Pichon
- CHU Nantes, Department of Medical Genetics, Nantes, France
| | - Cedric Le Caignec
- CHU Toulouse, Department of Medical Genetics, Toulouse, France; ToNIC, Toulouse Neuro Imaging, Center, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - Radka Stoeva
- Service de Cytogenetique, CHU de Le Mans, Le Mans, France
| | | | - Sandra Mercier
- CHU Nantes, Department of Medical Genetics, Nantes, France
| | | | - Sophie Blesson
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | | | | | - Erik Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, the Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - David J Amor
- Bruce Lefroy Center, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Corrado Romano
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; Medical Genetics, ASP Ragusa, Ragusa, Italy
| | | | | | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, USA; Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
16
|
Renaux A, Terwagne C, Cochez M, Tiddi I, Nowé A, Lenaerts T. A knowledge graph approach to predict and interpret disease-causing gene interactions. BMC Bioinformatics 2023; 24:324. [PMID: 37644440 PMCID: PMC10463539 DOI: 10.1186/s12859-023-05451-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Understanding the impact of gene interactions on disease phenotypes is increasingly recognised as a crucial aspect of genetic disease research. This trend is reflected by the growing amount of clinical research on oligogenic diseases, where disease manifestations are influenced by combinations of variants on a few specific genes. Although statistical machine-learning methods have been developed to identify relevant genetic variant or gene combinations associated with oligogenic diseases, they rely on abstract features and black-box models, posing challenges to interpretability for medical experts and impeding their ability to comprehend and validate predictions. In this work, we present a novel, interpretable predictive approach based on a knowledge graph that not only provides accurate predictions of disease-causing gene interactions but also offers explanations for these results. RESULTS We introduce BOCK, a knowledge graph constructed to explore disease-causing genetic interactions, integrating curated information on oligogenic diseases from clinical cases with relevant biomedical networks and ontologies. Using this graph, we developed a novel predictive framework based on heterogenous paths connecting gene pairs. This method trains an interpretable decision set model that not only accurately predicts pathogenic gene interactions, but also unveils the patterns associated with these diseases. A unique aspect of our approach is its ability to offer, along with each positive prediction, explanations in the form of subgraphs, revealing the specific entities and relationships that led to each pathogenic prediction. CONCLUSION Our method, built with interpretability in mind, leverages heterogenous path information in knowledge graphs to predict pathogenic gene interactions and generate meaningful explanations. This not only broadens our understanding of the molecular mechanisms underlying oligogenic diseases, but also presents a novel application of knowledge graphs in creating more transparent and insightful predictors for genetic research.
Collapse
Affiliation(s)
- Alexandre Renaux
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chloé Terwagne
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Michael Cochez
- Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Discovery Lab, Elsevier, Amsterdam, The Netherlands
| | - Ilaria Tiddi
- Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ann Nowé
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
17
|
Colvin A, Petukhova L. Inborn Errors of Immunity in Hidradenitis Suppurativa Pathogenesis and Disease Burden. J Clin Immunol 2023; 43:1040-1051. [PMID: 37204644 DOI: 10.1007/s10875-023-01518-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Hidradenitis suppurativa (HS), also known as Verneuil's disease and acne inversa, is a prevalent, debilitating, and understudied inflammatory skin disease. It is marked by repeated bouts of pathological inflammation causing pain, hyperplasia, aberrant healing, and fibrosis. HS is difficult to manage and has many unmet medical needs. There is clinical and pharmacological evidence for extensive etiological heterogeneity with HS, suggesting that this clinical diagnosis is capturing a spectrum of disease entities. Human genetic studies provide robust insight into disease pathogenesis. They also can be used to resolve etiological heterogeneity and to identify drug targets. However, HS has not been extensively investigated with well-powered genetic studies. Here, we review what is known about its genetic architecture. We identify overlap in molecular, cellular, and clinical features between HS and inborn errors of immunity (IEI). This evidence indicates that HS may be an underrecognized component of IEI and suggests that undiagnosed IEI are present in HS cohorts. Inborn errors of immunity represent a salient opportunity for rapidly resolving the immunological landscape of HS pathogenesis, for prioritizing drug repurposing studies, and for improving the clinical management of HS.
Collapse
Affiliation(s)
- Annelise Colvin
- Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Lynn Petukhova
- Department of Dermatology, Vagelos College of Physicians & Surgeons, Columbia University, New York City, NY, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, #527, York City, NY, USA.
| |
Collapse
|
18
|
Smolen C, Jensen M, Dyer L, Pizzo L, Tyryshkina A, Banerjee D, Rohan L, Huber E, El Khattabi L, Prontera P, Caberg JH, Van Dijck A, Schwartz C, Faivre L, Callier P, Mosca-Boidron AL, Lefebvre M, Pope K, Snell P, Lockhart PJ, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Mandarà GML, Bruccheri MG, Pichon O, Le Caignec C, Stoeva R, Cuinat S, Mercier S, Bénéteau C, Blesson S, Nordsletten A, Martin-Coignard D, Sistermans E, Kooy RF, Amor DJ, Romano C, Isidor B, Juusola J, Girirajan S. Assortative mating and parental genetic relatedness drive the pathogenicity of variably expressive variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.18.23290169. [PMID: 37292616 PMCID: PMC10246151 DOI: 10.1101/2023.05.18.23290169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We examined more than 38,000 spouse pairs from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents associated with neurodevelopmental disease risk in children. We identified correlations between six phenotypes in parents and children, including correlations of clinical diagnoses such as obsessive-compulsive disorder (R=0.31-0.49, p<0.001), and two measures of sub-clinical autism features in parents affecting several autism severity measures in children, such as bi-parental mean Social Responsiveness Scale (SRS) scores affecting proband SRS scores (regression coefficient=0.11, p=0.003). We further describe patterns of phenotypic and genetic similarity between spouses, where spouses show both within- and cross-disorder correlations for seven neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R=0.25-0.72, p<0.001) and a cross-disorder correlation between schizophrenia and personality disorder (R=0.20-0.57, p<0.001). Further, these spouses with similar phenotypes were significantly correlated for rare variant burden (R=0.07-0.57, p<0.0001). We propose that assortative mating on these features may drive the increases in genetic risk over generations and the appearance of "genetic anticipation" associated with many variably expressive variants. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse correlations with burden and pathogenicity of rare variants and propose that parental relatedness drives disease risk by increasing genome-wide homozygosity in children (R=0.09-0.30, p<0.001). Our results highlight the utility of assessing parent phenotypes and genotypes in predicting features in children carrying variably expressive variants and counseling families carrying these variants.
Collapse
Affiliation(s)
- Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Neuroscience Graduate program, Pennsylvania State University, University Park, PA 16802
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Rohan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laila El Khattabi
- Assistance Publique–Hôpitaux de Paris, Department of Medical Genetics, Armand Trousseau and Pitié-Salpêtrière Hospitals, Paris, France
| | - Paolo Prontera
- Medical Genetics Unit, Hospital “Santa Maria della Misericordia”, Perugia, Italy
| | - Jean-Hubert Caberg
- Centre Hospitalier Universitaire de Liège. Domaine Universitaire du Sart Tilman, Liège, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | | | - Laurence Faivre
- Centre de Genetique et Cenre de Référence Anomalies du développement et syndromes malformatifs, Hôpital d’Enfants, CHU Dijon, Dijon, France
- GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Patrick Callier
- Centre de Genetique et Cenre de Référence Anomalies du développement et syndromes malformatifs, Hôpital d’Enfants, CHU Dijon, Dijon, France
- GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | | | - Mathilde Lefebvre
- GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Kate Pope
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Penny Snell
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Paul J. Lockhart
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Bruce Lefroy Center, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Lucia Castiglia
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ornella Galesi
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Emanuela Avola
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Teresa Mattina
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marco Fichera
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Maria Grazia Bruccheri
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Olivier Pichon
- CHU Nantes, Department of Medical Genetics, Nantes, France
| | - Cedric Le Caignec
- CHU Toulouse, Department of Medical Genetics, Toulouse, France
- ToNIC, Toulouse Neuro Imaging, Center, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - Radka Stoeva
- Service de Cytogenetique, CHU de Le Mans, Le Mans, France
| | | | - Sandra Mercier
- CHU Nantes, Department of Medical Genetics, Nantes, France
| | | | - Sophie Blesson
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | | | | | - Erik Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - R. Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - David J. Amor
- Bruce Lefroy Center, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Corrado Romano
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Medical Genetics, ASP Ragusa, Ragusa, Italy
| | | | | | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
- Neuroscience Graduate program, Pennsylvania State University, University Park, PA 16802
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Kucuk E, van der Sanden BPGH, O'Gorman L, Kwint M, Derks R, Wenger AM, Lambert C, Chakraborty S, Baybayan P, Rowell WJ, Brunner HG, Vissers LELM, Hoischen A, Gilissen C. Comprehensive de novo mutation discovery with HiFi long-read sequencing. Genome Med 2023; 15:34. [PMID: 37158973 PMCID: PMC10169305 DOI: 10.1186/s13073-023-01183-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Long-read sequencing (LRS) techniques have been very successful in identifying structural variants (SVs). However, the high error rate of LRS made the detection of small variants (substitutions and short indels < 20 bp) more challenging. The introduction of PacBio HiFi sequencing makes LRS also suited for detecting small variation. Here we evaluate the ability of HiFi reads to detect de novo mutations (DNMs) of all types, which are technically challenging variant types and a major cause of sporadic, severe, early-onset disease. METHODS We sequenced the genomes of eight parent-child trios using high coverage PacBio HiFi LRS (~ 30-fold coverage) and Illumina short-read sequencing (SRS) (~ 50-fold coverage). De novo substitutions, small indels, short tandem repeats (STRs) and SVs were called in both datasets and compared to each other to assess the accuracy of HiFi LRS. In addition, we determined the parent-of-origin of the small DNMs using phasing. RESULTS We identified a total of 672 and 859 de novo substitutions/indels, 28 and 126 de novo STRs, and 24 and 1 de novo SVs in LRS and SRS respectively. For the small variants, there was a 92 and 85% concordance between the platforms. For the STRs and SVs, the concordance was 3.6 and 0.8%, and 4 and 100% respectively. We successfully validated 27/54 LRS-unique small variants, of which 11 (41%) were confirmed as true de novo events. For the SRS-unique small variants, we validated 42/133 DNMs and 8 (19%) were confirmed as true de novo event. Validation of 18 LRS-unique de novo STR calls confirmed none of the repeat expansions as true DNM. Confirmation of the 23 LRS-unique SVs was possible for 19 candidate SVs of which 10 (52.6%) were true de novo events. Furthermore, we were able to assign 96% of DNMs to their parental allele with LRS data, as opposed to just 20% with SRS data. CONCLUSIONS HiFi LRS can now produce the most comprehensive variant dataset obtainable by a single technology in a single laboratory, allowing accurate calling of substitutions, indels, STRs and SVs. The accuracy even allows sensitive calling of DNMs on all variant levels, and also allows for phasing, which helps to distinguish true positive from false positive DNMs.
Collapse
Affiliation(s)
- Erdi Kucuk
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart P G H van der Sanden
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luke O'Gorman
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Michael Kwint
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Internal Medicine, Radboud University Medical Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Saffari A, Kellner M, Jordan C, Rosengarten H, Mo A, Zhang B, Strelko O, Neuser S, Davis MY, Yoshikura N, Futamura N, Takeuchi T, Nabatame S, Ishiura H, Tsuji S, Aldeen HS, Cali E, Rocca C, Houlden H, Efthymiou S, Assmann B, Yoon G, Trombetta BA, Kivisäkk P, Eichler F, Nan H, Takiyama Y, Tessa A, Santorelli FM, Sahin M, Blackstone C, Yang E, Schüle R, Ebrahimi-Fakhari D. The clinical and molecular spectrum of ZFYVE26-associated hereditary spastic paraplegia: SPG15. Brain 2023; 146:2003-2015. [PMID: 36315648 PMCID: PMC10411936 DOI: 10.1093/brain/awac391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the field of hereditary spastic paraplegia (HSP), progress in molecular diagnostics needs to be translated into robust phenotyping studies to understand genetic and phenotypic heterogeneity and to support interventional trials. ZFYVE26-associated hereditary spastic paraplegia (HSP-ZFYVE26, SPG15) is a rare, early-onset complex HSP, characterized by progressive spasticity and a variety of other neurological symptoms. While prior reports, often in populations with high rates of consanguinity, have established a general phenotype, there is a lack of systematic investigations and a limited understanding of age-dependent manifestation of symptoms. Here we delineate the clinical, neuroimaging and molecular features of 44 individuals from 36 families, the largest cohort assembled to date. Median age at last follow-up was 23.8 years covering a wide age range (11-61 years). While symptom onset often occurred in early childhood [median: 24 months, interquartile range (IQR) = 24], a molecular diagnosis was reached at a median age of 18.8 years (IQR = 8), indicating significant diagnostic delay. We demonstrate that most patients present with motor and/or speech delay or learning disabilities. Importantly, these developmental symptoms preceded the onset of motor symptoms by several years. Progressive spasticity in the lower extremities, the hallmark feature of HSP-ZFYVE26, typically presents in adolescence and involves the distal lower limbs before progressing proximally. Spasticity in the upper extremities was seen in 64%. We found a high prevalence of extrapyramidal movement disorders including cerebellar ataxia (64%) and dystonia (11%). Parkinsonism (16%) was present in a subset and showed no sustained response to levodopa. Cognitive decline and neurogenic bladder dysfunction progressed over time in most patients. A systematic analysis of brain MRI features revealed a common diagnostic signature consisting of thinning of the anterior corpus callosum, signal changes of the anterior forceps and non-specific cortical and cerebellar atrophy. The molecular spectrum included 45 distinct variants, distributed across the protein structure without mutational hotspots. Spastic Paraplegia Rating Scale scores, SPATAX Disability Scores and the Four Stage Functional Mobility Score showed moderate strength in representing the proportion of variation between disease duration and motor dysfunction. Plasma neurofilament light chain levels were significantly elevated in all patients (Mann-Whitney U-test, P < 0.0001) and were correlated inversely with age (Spearman's rank correlation coefficient r = -0.65, P = 0.01). In summary, our systematic cross-sectional analysis of HSP-ZFYVE26 patients across a wide age-range, delineates core clinical, neuroimaging and molecular features and identifies markers of disease severity. These results raise awareness to this rare disease, facilitate an early diagnosis and create clinical trial readiness.
Collapse
Affiliation(s)
- Afshin Saffari
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Melanie Kellner
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Catherine Jordan
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Helena Rosengarten
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alisa Mo
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Zhang
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- ICCTR Biostatistics and Research Design Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleksandr Strelko
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Marie Y Davis
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Neurology, VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Nobuaki Yoshikura
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naonobu Futamura
- Department of Neurology, National Hospital Organization Hyogo-Chuo National Hospital, Ohara, Sanda, Japan
| | - Tomoya Takeuchi
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Aichi, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Huda Shujaa Aldeen
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Birgit Assmann
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Grace Yoon
- Divisions of Clinical and Metabolic Genetics and Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Bianca A Trombetta
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Pia Kivisäkk
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Haitian Nan
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
- Department of Neurology, Fuefuki Central Hospital, Yamanashi, Japan
| | - Alessandra Tessa
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo M Santorelli
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig Blackstone
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
21
|
Dawood M, Akay G, Mitani T, Marafi D, Fatih JM, Gezdirici A, Najmabadi H, Kahrizi K, Punetha J, Grochowski CM, Du H, Jolly A, Li H, Coban-Akdemir Z, Sedlazeck FJ, Hunter JV, Jhangiani SN, Muzny D, Pehlivan D, Posey JE, Carvalho CM, Gibbs RA, Lupski JR. A biallelic frameshift indel in PPP1R35 as a cause of primary microcephaly. Am J Med Genet A 2023; 191:794-804. [PMID: 36598158 PMCID: PMC9928800 DOI: 10.1002/ajmg.a.63080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/05/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023]
Abstract
Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.753_*3delGGAAGCGTAGACCinsCG (p.Trp251Cysfs*22)]; the variant allele maps in a 3.7 Mb block of absence of heterozygosity (AOH) in a proband with severe MCPH (-4.3 SD at birth, -6.1 SD by 42 months), pachygyria, and global developmental delay from a consanguineous Turkish kindred. Droplet digital PCR (ddPCR) confirmed mutant mRNA expression in fibroblasts. In silico prediction of the translation of mutant PPP1R35 is expected to be elongated by 18 amino acids before encountering a downstream stop codon. This complex indel allele is absent in public databases (ClinVar, gnomAD, ARIC, 1000 genomes) and our in-house database of 14,000+ exomes including 1800+ Turkish exomes supporting predicted pathogenicity. Comprehensive literature searches for PPP1R35 variants yielded two probands affected with severe microcephaly (-15 SD and -12 SD) with the same homozygous indel from a single, consanguineous, Iranian family from a cohort of 404 predominantly Iranian families. The lack of heterozygous cases in two large cohorts representative of the genetic background of these two families decreased our suspicion of a founder allele and supports the contention of a recurrent mutation. We propose two potential secondary structure mutagenesis models for the origin of this variant allele mediated by hairpin formation between complementary GC rich segments flanking the stop codon via secondary structure mutagenesis.
Collapse
Affiliation(s)
- Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - He Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fritz J. Sedlazeck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jill V. Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, 77030, USA
- E.B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
22
|
Bragina EY, Puzyrev VP. Genetic outline of the hermeneutics of the diseases connection phenomenon in human. Vavilovskii Zhurnal Genet Selektsii 2023; 27:7-17. [PMID: 36923482 PMCID: PMC10009484 DOI: 10.18699/vjgb-23-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 03/11/2023] Open
Abstract
The structure of diseases in humans is heterogeneous, which is manifested by various combinations of diseases, including comorbidities associated with a common pathogenetic mechanism, as well as diseases that rarely manifest together. Recently, there has been a growing interest in studying the patterns of development of not individual diseases, but entire families associated with common pathogenetic mechanisms and common genes involved in their development. Studies of this problem make it possible to isolate an essential genetic component that controls the formation of disease conglomerates in a complex way through functionally interacting modules of individual genes in gene networks. An analytical review of studies on the problems of various aspects of the combination of diseases is the purpose of this study. The review uses the metaphor of a hermeneutic circle to understand the structure of regular relationships between diseases, and provides a conceptual framework related to the study of multiple diseases in an individual. The existing terminology is considered in relation to them, including multimorbidity, polypathies, comorbidity, conglomerates, families, "second diseases", syntropy and others. Here we summarize the key results that are extremely useful, primarily for describing the genetic architecture of diseases of a multifactorial nature. Summaries of the research problem of the disease connection phenomenon allow us to approach the systematization and natural classification of diseases. From practical healthcare perspective, the description of the disease connection phenomenon is crucial for expanding the clinician's interpretive horizon and moving beyond narrow, disease-specific therapeutic decisions.
Collapse
Affiliation(s)
- E Yu Bragina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - V P Puzyrev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
23
|
Larson JK, Hunter‐Schlichting DN, Crowgey EL, Mills LJ, Druley TE, Marcotte EL. KMT2A‐D
pathogenicity, prevalence, and variation according to a population database. Cancer Med 2022; 12:7234-7245. [PMID: 36479909 PMCID: PMC10067056 DOI: 10.1002/cam4.5443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The KMT2 family of genes is essential epigenetic regulators promoting gene expression. The gene family contains three subgroups, each with two paralogues: KMT2A and KMT2B; KMT2C and KMT2D; KMT2F and KMT2G. KMT2A-D are among the most frequent somatically altered genes in several different cancer types. Somatic KMT2A rearrangements are well-characterized in infant leukemia (IL), and growing evidence supports the role of additional family members (KMT2B, KMT2C, and KMT2D) in leukemogenesis. Enrichment of rare heterozygous frameshift variants in KMT2A and C has been reported in acute myeloid leukemia (AML), IL, and solid tumors. Currently, the non-synonymous variation, prevalence, and penetrance of these four genes are unknown. METHODS This study determined the prevalence of pathogenic/likely pathogenic (P/LP) germline KMT2A-D variants in a cancer-free adult population from the Genome Aggregation Database (gnomAD). Two methods of variant interpretation were utilized: a manual genomic variant interpretation and an automated ACMG pipeline. RESULTS The ACMG pipeline identified considerably fewer P/LP variants (n = 89) compared to the manual method (n = 660) in all 4 genes. Consequently, the total P/LP prevalence and allele frequency (AF) were higher in the manual method (1:112, AF = 4.46E-03) than in ACMG (1:832, AF = 6.01E-04). Multiple ancestry-exclusive P/LP variants were identified along with an increased frequency in males compared to females. Many of these variants identified in this population database are also associated with severe juvenile conditions. CONCLUSION These data demonstrate that putatively functional germline variation in these developmentally important genes is more common than previously appreciated and identification in cancer-free adults may indicate incomplete penetrance for many of these variants. Future research should examine a genetic predisposing role in IL and other pediatric cancers.
Collapse
Affiliation(s)
- Jenna K. Larson
- Deparatment of Genetic Counseling University of Minnesota Minneapolis Minnesota USA
| | - DeVon N. Hunter‐Schlichting
- Masonic Cancer Center University of Minnesota Minneapolis Minnesota USA
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics University of Minnesota Minneapolis Minnesota USA
| | | | - Lauren J. Mills
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics University of Minnesota Minneapolis Minnesota USA
| | | | - Erin L. Marcotte
- Masonic Cancer Center University of Minnesota Minneapolis Minnesota USA
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics University of Minnesota Minneapolis Minnesota USA
- Brain Tumor Program University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
24
|
Doleschall M, Darvasi O, Herold Z, Doleschall Z, Nyirő G, Somogyi A, Igaz P, Patócs A. Quantitative PCR from human genomic DNA: The determination of gene copy numbers for congenital adrenal hyperplasia and RCCX copy number variation. PLoS One 2022; 17:e0277299. [PMID: 36454796 PMCID: PMC9714944 DOI: 10.1371/journal.pone.0277299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022] Open
Abstract
Quantitative PCR (qPCR) is used for the determination of gene copy number (GCN). GCNs contribute to human disorders, and characterize copy number variation (CNV). The single laboratory method validations of duplex qPCR assays with hydrolysis probes on CYP21A1P and CYP21A2 genes, residing a CNV (RCCX CNV) and related to congenital adrenal hyperplasia, were performed using 46 human genomic DNA samples. We also performed the verifications on 5 qPCR assays for the genetic elements of RCCX CNV; C4A, C4B, CNV breakpoint, HERV-K(C4) CNV deletion and insertion alleles. Precision of each qPCR assay was under 1.01 CV%. Accuracy (relative error) ranged from 4.96±4.08% to 9.91±8.93%. Accuracy was not tightly linked to precision, but was significantly correlated with the efficiency of normalization using the RPPH1 internal reference gene (Spearman's ρ: 0.793-0.940, p>0.0001), ambiguity (ρ = 0.671, p = 0.029) and misclassification (ρ = 0.769, p = 0.009). A strong genomic matrix effect was observed, and target-singleplex (one target gene in one assay) qPCR was able to appropriately differentiate 2 GCN from 3 GCN at best. The analysis of all GCNs from the 7 qPCR assays using a multiplex approach increased the resolution of differentiation, and produced 98% of GCNs unambiguously, and all of which were in 100% concordance with GCNs measured by Southern blot, MLPA and aCGH. We conclude that the use of an internal (in one assay with the target gene) reference gene, the use of allele-specific primers or probes, and the multiplex approach (in one assay or different assays) are crucial for GCN determination using qPCR or other methods.
Collapse
Affiliation(s)
- Márton Doleschall
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
| | - Ottó Darvasi
- Hereditary Tumours Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
| | - Zoltán Herold
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Doleschall
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - Gábor Nyirő
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Somogyi
- Department of Internal Medicine and Hematology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Igaz
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Hereditary Tumours Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Hematology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
25
|
Poot M. Expanded Phenotypic Spectrum or Multiple Syndromes? Mol Syndromol 2022; 13:361-362. [PMID: 36588758 PMCID: PMC9801313 DOI: 10.1159/000526893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
|
26
|
Spedicati B, Morgan A, Pianigiani G, Musante L, Rubinato E, Santin A, Nardone GG, Faletra F, Girotto G. Challenging Occam’s Razor: Dual Molecular Diagnoses Explain Entangled Clinical Pictures. Genes (Basel) 2022; 13:genes13112023. [PMID: 36360260 PMCID: PMC9690221 DOI: 10.3390/genes13112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Dual molecular diagnoses are defined as the presence of pathogenic variants at two distinct and independently segregating loci that cause two different Mendelian conditions. In this study, we report the identification of double genetic disorders in a series of patients with complex clinical features. In the last 24 months, 342 syndromic patients have been recruited and clinically characterised. Whole Exome Sequencing analysis has been performed on the proband and on both parents and identified seven patients affected by a dual molecular diagnosis. Upon a detailed evaluation of both their clinical and molecular features, subjects are able to be divided into two groups: (A) five patients who present distinct phenotypes, due to each of the two different underlying genetic diseases; (B) two patients with overlapping clinical features that may be underpinned by both the identified genetic variations. Notably, only in one case a multilocus genomic variation was already suspected during the clinical evaluation. Overall, our findings highlight how dual molecular diagnoses represent a challenging model of complex inheritance that should always be considered whenever a patient shows atypical clinical features. Indeed, an accurate genetic characterisation is of the utmost importance to provide patients with a personalised and safe clinical management.
Collapse
Affiliation(s)
- Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Giulia Pianigiani
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
- Correspondence: ; Tel.: +39-040-3785539
| | - Luciana Musante
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Elisa Rubinato
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | | | - Flavio Faletra
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| |
Collapse
|
27
|
Dornbos P, Koesterer R, Ruttenburg A, Nguyen T, Cole JB, Leong A, Meigs JB, Florez JC, Rotter JI, Udler MS, Flannick J. A combined polygenic score of 21,293 rare and 22 common variants improves diabetes diagnosis based on hemoglobin A1C levels. Nat Genet 2022; 54:1609-1614. [PMID: 36280733 PMCID: PMC9995082 DOI: 10.1038/s41588-022-01200-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
Polygenic scores (PGSs) combine the effects of common genetic variants1,2 to predict risk or treatment strategies for complex diseases3-7. Adding rare variation to PGSs has largely unknown benefits and is methodically challenging. Here, we developed a method for constructing rare variant PGSs and applied it to calculate genetically modified hemoglobin A1C thresholds for type 2 diabetes (T2D) diagnosis7-10. The resultant rare variant PGS is highly polygenic (21,293 variants across 154 genes), depends on ultra-rare variants (72.7% observed in fewer than three people) and identifies significantly more undiagnosed T2D cases than expected by chance (odds ratio = 2.71; P = 1.51 × 10-6). A PGS combining common and rare variants is expected to identify 4.9 million misdiagnosed T2D cases in the United States-nearly 1.5-fold more than the common variant PGS alone. These results provide a method for constructing complex trait PGSs from rare variants and suggest that rare variants will augment common variants in precision medicine approaches for common disease.
Collapse
Affiliation(s)
- Peter Dornbos
- Programs in Metabolism Program, Broad Institute, Cambridge, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ryan Koesterer
- Programs in Metabolism Program, Broad Institute, Cambridge, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
| | - Andrew Ruttenburg
- Programs in Metabolism Program, Broad Institute, Cambridge, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
| | - Trang Nguyen
- Programs in Metabolism Program, Broad Institute, Cambridge, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
| | - Joanne B Cole
- Programs in Metabolism Program, Broad Institute, Cambridge, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron Leong
- Programs in Metabolism Program, Broad Institute, Cambridge, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James B Meigs
- Programs in Metabolism Program, Broad Institute, Cambridge, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jose C Florez
- Programs in Metabolism Program, Broad Institute, Cambridge, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Miriam S Udler
- Programs in Metabolism Program, Broad Institute, Cambridge, MA, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jason Flannick
- Programs in Metabolism Program, Broad Institute, Cambridge, MA, USA.
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Bonnefond A, Semple RK. Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes. Diabetologia 2022; 65:1782-1795. [PMID: 35618782 PMCID: PMC9522735 DOI: 10.1007/s00125-022-05720-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
Integration of genomic and other data has begun to stratify type 2 diabetes in prognostically meaningful ways, but this has yet to impact on mainstream diabetes practice. The subgroup of diabetes caused by single gene defects thus provides the best example to date of the vision of 'precision diabetes'. Monogenic diabetes may be divided into primary pancreatic beta cell failure, and primary insulin resistance. In both groups, clear examples of genotype-selective responses to therapy have been advanced. The benign trajectory of diabetes due to pathogenic GCK mutations, and the sulfonylurea-hyperresponsiveness conferred by activating KCNJ11 or ABCC8 mutations, or loss-of-function HNF1A or HNF4A mutations, often decisively guide clinical management. In monogenic insulin-resistant diabetes, subcutaneous leptin therapy is beneficial in some severe lipodystrophy. Increasing evidence also supports use of 'obesity therapies' in lipodystrophic people even without obesity. In beta cell diabetes the main challenge is now implementation of the precision diabetes vision at scale. In monogenic insulin-resistant diabetes genotype-specific benefits are proven in far fewer patients to date, although further genotype-targeted therapies are being evaluated. The conceptual paradigm established by the insulin-resistant subgroup with 'adipose failure' may have a wider influence on precision therapy for common type 2 diabetes, however. For all forms of monogenic diabetes, population-wide genome sequencing is currently forcing reappraisal of the importance assigned to pathogenic mutations when gene sequencing is uncoupled from prior suspicion of monogenic diabetes.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Université de Lille, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
29
|
Duan R, Hijazi H, Gulec EY, Eker HK, Costa SR, Sahin Y, Ocak Z, Isikay S, Ozalp O, Bozdogan S, Aslan H, Elcioglu N, Bertola DR, Gezdirici A, Du H, Fatih JM, Grochowski CM, Akay G, Baylor-Hopkins Center for Mendelian Genomics, Jhangiani SN, Karaca E, Gu S, Coban-Akdemir Z, Posey JE, Bayram Y, Sutton VR, Carvalho CM, Pehlivan D, Gibbs RA, Lupski JR. Developmental genomics of limb malformations: Allelic series in association with gene dosage effects contribute to the clinical variability. HGG ADVANCES 2022; 3:100132. [PMID: 36035248 PMCID: PMC9403727 DOI: 10.1016/j.xhgg.2022.100132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Genetic heterogeneity, reduced penetrance, and variable expressivity, the latter including asymmetric body axis plane presentations, have all been described in families with congenital limb malformations (CLMs). Interfamilial and intrafamilial heterogeneity highlight the complexity of the underlying genetic pathogenesis of these developmental anomalies. Family-based genomics by exome sequencing (ES) and rare variant analyses combined with whole-genome array-based comparative genomic hybridization were implemented to investigate 18 families with limb birth defects. Eleven of 18 (61%) families revealed explanatory variants, including 7 single-nucleotide variant alleles and 3 copy number variants (CNVs), at previously reported "disease trait associated loci": BHLHA9, GLI3, HOXD cluster, HOXD13, NPR2, and WNT10B. Breakpoint junction analyses for all three CNV alleles revealed mutational signatures consistent with microhomology-mediated break-induced replication, a mechanism facilitated by Alu/Alu-mediated rearrangement. Homozygous duplication of BHLHA9 was observed in one Turkish kindred and represents a novel contributory genetic mechanism to Gollop-Wolfgang Complex (MIM: 228250), where triplication of the locus has been reported in one family from Japan (i.e., 4n = 2n + 2n versus 4n = 3n + 1n allelic configurations). Genes acting on limb patterning are sensitive to a gene dosage effect and are often associated with an allelic series. We extend an allele-specific gene dosage model to potentially assist, in an adjuvant way, interpretations of interconnections among an allelic series, clinical severity, and reduced penetrance of the BHLHA9-related CLM spectrum.
Collapse
Affiliation(s)
- Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hadia Hijazi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | | | - Silvia R. Costa
- Human Genome and Stem Cell Research Center, Institute of Bioscience, Universidade de São Paulo, São Paulo, Brazil
| | - Yavuz Sahin
- Medical Genetics, Genoks Genetics Center, Ankara, Turkey
| | - Zeynep Ocak
- Department of Medical Genetics, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Sedat Isikay
- Department of Pediatric Neurology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ozge Ozalp
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana, Turkey
| | - Sevcan Bozdogan
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Huseyin Aslan
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana, Turkey
| | - Nursel Elcioglu
- Department of Pediatric Genetics, School of Medicine, Marmara University, Istanbul, Turkey
- Eastern Mediterranean University Medical School, Magosa, 10 Mersin, Turkey
| | - Débora R. Bertola
- Human Genome and Stem Cell Research Center, Institute of Bioscience, Universidade de São Paulo, São Paulo, Brazil
- Genetics Unit, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Baylor-Hopkins Center for Mendelian Genomics
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Medical Genetics, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
- Department of Medical Genetics, Konya City Hospital, Konya, Turkey
- Human Genome and Stem Cell Research Center, Institute of Bioscience, Universidade de São Paulo, São Paulo, Brazil
- Medical Genetics, Genoks Genetics Center, Ankara, Turkey
- Department of Medical Genetics, Faculty of Medicine, Istinye University, Istanbul, Turkey
- Department of Pediatric Neurology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana, Turkey
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Genetics, School of Medicine, Marmara University, Istanbul, Turkey
- Eastern Mediterranean University Medical School, Magosa, 10 Mersin, Turkey
- Genetics Unit, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Nazarenko MS, Sleptcov AA, Puzyrev VP. “Mendelian Code” in the Genetic Structure of Common Multifactorial Diseases. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Boschann F, Cogulu MÖ, Pehlivan D, Balachandran S, Vallecillo-Garcia P, Grochowski CM, Hansmeier NR, Coban Akdemir ZH, Prada-Medina CA, Aykut A, Fischer-Zirnsak B, Badura S, Durmaz B, Ozkinay F, Hägerling R, Posey JE, Stricker S, Gillessen-Kaesbach G, Spielmann M, Horn D, Brockmann K, Lupski JR, Kornak U, Schmidt J. Biallelic variants in ADAMTS15 cause a novel form of distal arthrogryposis. Genet Med 2022; 24:2187-2193. [PMID: 35962790 PMCID: PMC9982667 DOI: 10.1016/j.gim.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022] Open
Abstract
PURPOSE We aimed to identify the underlying genetic cause for a novel form of distal arthrogryposis. METHODS Rare variant family-based genomics, exome sequencing, and disease-specific panel sequencing were used to detect ADAMTS15 variants in affected individuals. Adamts15 expression was analyzed at the single-cell level during murine embryogenesis. Expression patterns were characterized using in situ hybridization and RNAscope. RESULTS We identified homozygous rare variant alleles of ADAMTS15 in 5 affected individuals from 4 unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. Radiographic investigations showed physiological interphalangeal joint morphology. Additional features included knee, Achilles tendon, and toe contractures, spinal stiffness, scoliosis, and orthodontic abnormalities. Analysis of mouse whole-embryo single-cell sequencing data revealed a tightly regulated Adamts15 expression in the limb mesenchyme between embryonic stages E11.5 and E15.0. A perimuscular and peritendinous expression was evident in in situ hybridization in the developing mouse limb. In accordance, RNAscope analysis detected a significant coexpression with Osr1, but not with markers for skeletal muscle or joint formation. CONCLUSION In aggregate, our findings provide evidence that rare biallelic recessive trait variants in ADAMTS15 cause a novel autosomal recessive connective tissue disorder, resulting in a distal arthrogryposis syndrome.
Collapse
Affiliation(s)
- Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Muhsin Ö Cogulu
- Department of Pediatric Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Saranya Balachandran
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Human Genetics, Kiel University, Kiel, Germany
| | | | | | - Nils R Hansmeier
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Zeynep H Coban Akdemir
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, The University of Texas, Houston, TX
| | - Cesar A Prada-Medina
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ayca Aykut
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simon Badura
- Interdisciplinary Pediatric Center for Children With Developmental Disabilities and Severe Chronic Disorders, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Burak Durmaz
- Department of Pediatric Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Ozkinay
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - René Hägerling
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Sigmar Stricker
- Institute of Biochemistry, Freie University Berlin, Berlin, Germany
| | | | - Malte Spielmann
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Human Genetics, Kiel University, Kiel, Germany
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children With Developmental Disabilities and Severe Chronic Disorders, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| | - Julia Schmidt
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Yuan B, Schulze KV, Assia Batzir N, Sinson J, Dai H, Zhu W, Bocanegra F, Fong CT, Holder J, Nguyen J, Schaaf CP, Yang Y, Bi W, Eng C, Shaw C, Lupski JR, Liu P. Sequencing individual genomes with recurrent genomic disorder deletions: an approach to characterize genes for autosomal recessive rare disease traits. Genome Med 2022; 14:113. [PMID: 36180924 PMCID: PMC9526336 DOI: 10.1186/s13073-022-01113-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In medical genetics, discovery and characterization of disease trait contributory genes and alleles depends on genetic reasoning, study design, and patient ascertainment; we suggest a segmental haploid genetics approach to enhance gene discovery and molecular diagnostics. METHODS We constructed a genome-wide map for nonallelic homologous recombination (NAHR)-mediated recurrent genomic deletions and used this map to estimate population frequencies of NAHR deletions based on large-scale population cohorts and region-specific studies. We calculated recessive disease carrier burden using high-quality pathogenic or likely pathogenic variants from ClinVar and gnomAD. We developed a NIRD (NAHR deletion Impact to Recessive Disease) score for recessive disorders by quantifying the contribution of NAHR deletion to the overall allele load that enumerated all pairwise combinations of disease-causing alleles; we used a Punnett square approach based on an assumption of random mating. Literature mining was conducted to identify all reported patients with defects in a gene with a high NIRD score; meta-analysis was performed on these patients to estimate the representation of NAHR deletions in recessive traits from contemporary human genomics studies. Retrospective analyses of extant clinical exome sequencing (cES) were performed for novel rare recessive disease trait gene and allele discovery from individuals with NAHR deletions. RESULTS We present novel genomic insights regarding the genome-wide impact of NAHR recurrent segmental variants on recessive disease burden; we demonstrate the utility of NAHR recurrent deletions to enhance discovery in the challenging context of autosomal recessive (AR) traits and biallelic variation. Computational results demonstrate new mutations mediated by NAHR, involving recurrent deletions at 30 genomic regions, likely drive recessive disease burden for over 74% of loci within these segmental deletions or at least 2% of loci genome-wide. Meta-analyses on 170 literature-reported patients implicate that NAHR deletions are depleted from the ascertained pool of AR trait alleles. Exome reanalysis of personal genomes from subjects harboring recurrent deletions uncovered new disease-contributing variants in genes including COX10, ERCC6, PRRT2, and OTUD7A. CONCLUSIONS Our results demonstrate that genomic sequencing of personal genomes with NAHR deletions could dramatically improve allele and gene discovery and enhance clinical molecular diagnosis. Moreover, results suggest NAHR events could potentially enable human haploid genetic screens as an approach to experimental inquiry into disease biology.
Collapse
Affiliation(s)
- Bo Yuan
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Katharina V. Schulze
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Nurit Assia Batzir
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Jefferson Sinson
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Hongzheng Dai
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Wenmiao Zhu
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | | | - Chin-To Fong
- grid.412750.50000 0004 1936 9166Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Jimmy Holder
- grid.39382.330000 0001 2160 926XDepartment of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Joanne Nguyen
- grid.267308.80000 0000 9206 2401Department of Pediatrics, University of Texas Health Science Center, Houston, TX USA
| | - Christian P. Schaaf
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.7700.00000 0001 2190 4373Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Yaping Yang
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Weimin Bi
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Christine Eng
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Chad Shaw
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA
| | - James R. Lupski
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Pediatrics, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Texas Children’s Hospital, Houston, TX USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Baylor Genetics, Houston, TX, USA.
| |
Collapse
|
33
|
Marafi D, Kozar N, Duan R, Bradley S, Yokochi K, Al Mutairi F, Saadi NW, Whalen S, Brunet T, Kotzaeridou U, Choukair D, Keren B, Nava C, Kato M, Arai H, Froukh T, Faqeih EA, AlAsmari AM, Saleh MM, Pinto e Vairo F, Pichurin PN, Klee EW, Schmitz CT, Grochowski CM, Mitani T, Herman I, Calame DG, Fatih JM, Du H, Coban-Akdemir Z, Pehlivan D, Jhangiani SN, Gibbs RA, Miyatake S, Matsumoto N, Wagstaff LJ, Posey JE, Lupski JR, Meijer D, Wagner M. A reverse genetics and genomics approach to gene paralog function and disease: Myokymia and the juxtaparanode. Am J Hum Genet 2022; 109:1713-1723. [PMID: 35948005 PMCID: PMC9502070 DOI: 10.1016/j.ajhg.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.
Collapse
Affiliation(s)
- Dana Marafi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nina Kozar
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen Bradley
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kenji Yokochi
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Aichi 441-8570, Japan,Department of Pediatrics, Seirei Mikatahara General Hospital, Shizuoka 433-8558, Japan
| | - Fuad Al Mutairi
- Genetics and Precision Medicine Department, King Abdullah Specialized Children’s Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Kingdom of Saudi Arabia,King Abdullah International Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Nebal Waill Saadi
- College of Medicine, University of Baghdad, Baghdad 10001, Iraq,Children Welfare Teaching Hospital, Medical City Complex, Baghdad 10001, Iraq
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Reference Anomalies du Développement et Syndromes Malformatifs, APHP, Sorbonne Université, Hôpital Trousseau, 75005 Paris, France
| | - Theresa Brunet
- Institute of Human Genetics, Faculty of Medicine, Technical University Munich, Munich, Germany,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Division of Pediatric Endocrinology, Centre for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Paris 75013, France
| | - Caroline Nava
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Paris 75013, France
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Hiroshi Arai
- Department of Pediatric Neurology, Bobath Memorial Hospital, Osaka 536-0023, Japan
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Eissa Ali Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children’s Specialist Hospital, Riyadh, Saudi Arabia
| | - Ali M. AlAsmari
- Section of Medical Genetics, King Fahad Medical City, Children’s Specialist Hospital, Riyadh, Saudi Arabia
| | - Mohammed M. Saleh
- Section of Medical Genetics, King Fahad Medical City, Children’s Specialist Hospital, Riyadh, Saudi Arabia
| | - Filippo Pinto e Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA,Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA,Texas Children’s Hospital, Houston, TX 77030, USA
| | - Daniel G. Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA,Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA,Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Laura J. Wagstaff
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Texas Children’s Hospital, Houston, TX 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA,Corresponding author
| | - Dies Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Matias Wagner
- Institute for Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany,Institute of Human Genetics, Technical University Munich, Munich, Germany
| |
Collapse
|
34
|
Calame DG, Herman I, Marshall AE, Maroofian R, Donis KC, Fatih JM, Mitani T, Du H, Grochowski CM, Sousa S, Bakhtiari S, Ito YA, Rocca C, Hunter JV, Sutton VR, Emrick LT, Boycott KM, Lossos A, Fellig Y, Prus E, Kalish Y, Meiner V, Suerink M, Ruivenkamp C, Muirhead K, Saadi NW, Zaki MS, Skidmore DL, Osmond M, Silva TO, Houlden H, Murphy D, Ghayoorarimiani E, Jamshidi Y, Jaddoa AG, Tajsharghi H, Jin SC, Coban-Akdemir Z, Travaglini L, Nicita F, Jhangiani SN, Gibbs RA, Posey JE, Kruer MC, Kernohan KD, Morales Saute JA, Vanderver A, Pehlivan D, Marafi D, Lupski JR. Biallelic Variants in the Ectonucleotidase ENTPD1 Cause a Complex Neurodevelopmental Disorder with Intellectual Disability, Distinct White Matter Abnormalities, and Spastic Paraplegia. Ann Neurol 2022; 92:304-321. [PMID: 35471564 PMCID: PMC10054521 DOI: 10.1002/ana.26381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.
Collapse
Affiliation(s)
- Daniel G. Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Aren E. Marshall
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Karina Carvalho Donis
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, 85016, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine–Phoenix, Phoenix, AZ, USA
| | - Yoko A. Ito
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Jill V. Hunter
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Division of Neuroradiology, Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Lisa T. Emrick
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Alexander Lossos
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Eugenia Prus
- Hematology and Bone Marrow Transplantation Division, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Yosef Kalish
- Hematology and Bone Marrow Transplantation Division, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kayla Muirhead
- Division of Neurology, Children’s Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Nebal W. Saadi
- College of Medicine / University of Baghdad, Children Welfare Teaching Hospital, Medical City Complex, Baghdad 10001, Iraq
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - David L. Skidmore
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Thiago Oliveira Silva
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Ehsan Ghayoorarimiani
- Genetics Section, Molecular and Clinical Sciences Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Yalda Jamshidi
- Genetics Section, Molecular and Clinical Sciences Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | - Homa Tajsharghi
- School of Health Sciences, Division Biomedicine, University of Skovde, Skovde, Sweden
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, 85016, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine–Phoenix, Phoenix, AZ, USA
| | - Kristin D. Kernohan
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
- Newborn Screening Ontario, Ottawa, Canada, K1H 8L1, Canada
| | - Jonas A. Morales Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
35
|
Lima AR, Ferreira BM, Zhang C, Jolly A, Du H, White JJ, Dawood M, Lins TC, Chiabai MA, van Beusekom E, Cordoba MS, Caldas Rosa EC, Kayserili H, Kimonis V, Wu E, Mellado C, Aggarwal V, Richieri-Costa A, Brunoni D, Canó TM, Jorge AAL, Kim CA, Honjo R, Bertola DR, Dandalo-Girardi RM, Bayram Y, Gezdirici A, Yilmaz-Gulec E, Gumus E, Yilmaz GC, Okamoto N, Ohashi H, Coban–Akdemir Z, Mitani T, Jhangiani SN, Muzny DM, Regattieri NA, Pogue R, Pereira RW, Otto PA, Gibbs RA, Ali BR, van Bokhoven H, Brunner HG, Sutton VR, Lupski JR, Vianna-Morgante AM, Carvalho CMB, Mazzeu JF. Phenotypic and mutational spectrum of ROR2-related Robinow syndrome. Hum Mutat 2022; 43:900-918. [PMID: 35344616 PMCID: PMC9177636 DOI: 10.1002/humu.24375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023]
Abstract
Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.
Collapse
Affiliation(s)
- Ariadne R. Lima
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil
| | - Barbara M. Ferreira
- Programa de Pós-Graduação em Ciências Médicas, Universidade de Brasília, Brasília, DF, Brasil
| | - Chaofan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Janson J. White
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Tulio C. Lins
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brasil
| | - Marcela A. Chiabai
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brasil
| | | | - Mara S. Cordoba
- Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brasil
- Hospital Universitário de Brasília, Brasília, Brasil
| | - Erica C.C. Caldas Rosa
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil
| | - Hulya Kayserili
- Koç University School of Medicine (KUSoM), Medical Genetics Department, Istanbul, Turkey
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Erica Wu
- Stanford University, Obstetrics and Gynecology, Stanford CA, USA
| | - Cecilia Mellado
- Unidad de Genética, División de Pediatría, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vineet Aggarwal
- Department of Orthopedics, Indira Gandhi Medical College, Snowdon, Shimla-1, India
| | | | - Décio Brunoni
- Universidade Presbiteriana Mackenzie – UPM, São Paulo, SP, Brasil
| | - Talyta M. Canó
- Programa de Pós-Graduação em Ciências Médicas, Universidade de Brasília, Brasília, DF, Brasil
- Núcleo de Genética – SESDF, Brasília, DF, Brasil
| | - Alexander A. L. Jorge
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Chong A. Kim
- Unidade de Genética, Instituto da Criança - Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rachel Honjo
- Unidade de Genética, Instituto da Criança - Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Débora R. Bertola
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Raissa M. Dandalo-Girardi
- Programa de Mestrado Profissional em Aconselhamento Genético e Genômica Humana, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Yavuz Bayram
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | | | - Evren Gumus
- Medical Genetics Department, Medicine Faculty, Mugla Sitki Kocman University, Mugla, Turkey
| | - Gülay C. Yilmaz
- Medical Genetics Department, Medicine Faculty, Mugla Sitki Kocman University, Mugla, Turkey
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children’s Medical Center, Saitama 330-8777, Japan
| | - Zeynep Coban–Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, UT Health, Houston, TX, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Robert Pogue
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Rinaldo W. Pereira
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Paulo A. Otto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Hans van Bokhoven
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brasil
| | - Han G. Brunner
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brasil
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Angela M. Vianna-Morgante
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Claudia M. B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Pacific Northwest Research Institute, Seattle, WA, USA
| | - Juliana F. Mazzeu
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil
- Programa de Pós-Graduação em Ciências Médicas, Universidade de Brasília, Brasília, DF, Brasil
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Robinow Syndrome Foundation, Anoka, MN, USA
| |
Collapse
|
36
|
Basmanav FB, Betz RC. Translational impact of omics studies in alopecia areata: recent advances and future perspectives. Expert Rev Clin Immunol 2022; 18:845-857. [PMID: 35770930 DOI: 10.1080/1744666x.2022.2096590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alopecia areata (AA) is a non-scarring, hair loss disorder and a common autoimmune-mediated disease with an estimated lifetime risk of about 2%. To date, the treatment of AA is mainly based on suppression or stimulation of the immune response. Genomics and transcriptomics studies generated important insights into the underlying pathophysiology, enabled discovery of molecular disease signatures, which were used in some of the recent clinical trials to monitor drug response and substantiated the consideration of new therapeutic modalities for the treatment of AA such as abatacept, dupilumab, ustekinumab and Janus Kinase (JAK) inhibitors. AREAS COVERED In this review, genomics and transcriptomics studies in AA are discussed in detail with particular emphasis on their past and prospective translational impacts. Microbiome studies are also briefly introduced. EXPERT OPINION The generation of large datasets using the new high-throughput technologies has revolutionized medical research and AA has also benefited from the wave of omics studies. However, the limitations associated with JAK inhibitors and clinical heterogeneity in AA patients underscore the necessity for continuing omics research in AA for discovery of novel therapeutic modalities and development of clinical tools for precision medicine.
Collapse
Affiliation(s)
- F Buket Basmanav
- Medical Faculty & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Regina C Betz
- Medical Faculty & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
37
|
Lupski JR. Biology in balance: human diploid genome integrity, gene dosage, and genomic medicine. Trends Genet 2022; 38:554-571. [PMID: 35450748 PMCID: PMC9222541 DOI: 10.1016/j.tig.2022.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/01/2023]
Abstract
The path to completion of the functional annotation of the haploid human genome reference build, exploration of the clan genomics hypothesis, understanding human gene and genome functional biology, and gene genome and organismal evolution, is in reach.
Collapse
Affiliation(s)
- James R Lupski
- Genetics & Genomics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Harnish JM, Li L, Rogic S, Poirier-Morency G, Kim SY, Undiagnosed Diseases Network, Boycott KM, Wangler MF, Bellen HJ, Hieter P, Pavlidis P, Liu Z, Yamamoto S. ModelMatcher: A scientist-centric online platform to facilitate collaborations between stakeholders of rare and undiagnosed disease research. Hum Mutat 2022; 43:743-759. [PMID: 35224820 PMCID: PMC9133126 DOI: 10.1002/humu.24364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 11/08/2022]
Abstract
Next-generation sequencing is a prevalent diagnostic tool for undiagnosed diseases and has played a significant role in rare disease gene discovery. Although this technology resolves some cases, others are given a list of possibly damaging genetic variants necessitating functional studies. Productive collaborations between scientists, clinicians, and patients (affected individuals) can help resolve such medical mysteries and provide insights into in vivo function of human genes. Furthermore, facilitating interactions between scientists and research funders, including nonprofit organizations or commercial entities, can dramatically reduce the time to translate discoveries from bench to bedside. Several systems designed to connect clinicians and researchers with a shared gene of interest have been successful. However, these platforms exclude some stakeholders based on their role or geography. Here we describe ModelMatcher, a global online matchmaking tool designed to facilitate cross-disciplinary collaborations, especially between scientists and other stakeholders of rare and undiagnosed disease research. ModelMatcher is integrated into the Rare Diseases Models and Mechanisms Network and Matchmaker Exchange, allowing users to identify potential collaborators in other registries. This living database decreases the time from when a scientist or clinician is making discoveries regarding their genes of interest, to when they identify collaborators and sponsors to facilitate translational and therapeutic research.
Collapse
Affiliation(s)
- J. Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, 77030, USA
| | - Lucian Li
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, 77030, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX, 77030, USA
| | - Sanja Rogic
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Guillaume Poirier-Morency
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Seon-Young Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, 77030, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX, 77030, USA
| | | | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H8L1, Canada
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
- Department of Neuroscience, BCM, Houston, TX, 77030, USA
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, 77030, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX, 77030, USA
- Quantitative and Computational Biosciences Graduate Program, BCM, Houston, TX, 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
- Department of Neuroscience, BCM, Houston, TX, 77030, USA
| |
Collapse
|
39
|
Wang L, Scherer SE, Bielinski SJ, Muzny DM, Jones LA, Black JL, Moyer AM, Giri J, Sharp RR, Matey ET, Wright JA, Oyen LJ, Nicholson WT, Wiepert M, Sullard T, Curry TB, Vitek CRR, McAllister TM, Sauver JL, Caraballo PJ, Lazaridis KN, Venner E, Qin X, Hu J, Kovar CL, Korchina V, Walker K, Doddapaneni H, Wu TJ, Raj R, Denson S, Liu W, Chandanavelli G, Zhang L, Wang Q, Kalra D, Karow MB, Harris KJ, Sicotte H, Peterson SE, Barthel AE, Moore BE, Skierka JM, Kluge ML, Kotzer KE, Kloke K, Vander Pol JM, Marker H, Sutton JA, Kekic A, Ebenhoh A, Bierle DM, Schuh MJ, Grilli C, Erickson S, Umbreit A, Ward L, Crosby S, Nelson EA, Levey S, Elliott M, Peters SG, Pereira N, Frye M, Shamoun F, Goetz MP, Kullo IJ, Wermers R, Anderson JA, Formea CM, El Melik RM, Zeuli JD, Herges JR, Krieger CA, Hoel RW, Taraba JL, Thomas SR, Absah I, Bernard ME, Fink SR, Gossard A, Grubbs PL, Jacobson TM, Takahashi P, Zehe SC, Buckles S, Bumgardner M, Gallagher C, Fee-Schroeder K, Nicholas NR, Powers ML, Ragab AK, Richardson DM, Stai A, Wilson J, Pacyna JE, Olson JE, Sutton EJ, Beck AT, Horrow C, et alWang L, Scherer SE, Bielinski SJ, Muzny DM, Jones LA, Black JL, Moyer AM, Giri J, Sharp RR, Matey ET, Wright JA, Oyen LJ, Nicholson WT, Wiepert M, Sullard T, Curry TB, Vitek CRR, McAllister TM, Sauver JL, Caraballo PJ, Lazaridis KN, Venner E, Qin X, Hu J, Kovar CL, Korchina V, Walker K, Doddapaneni H, Wu TJ, Raj R, Denson S, Liu W, Chandanavelli G, Zhang L, Wang Q, Kalra D, Karow MB, Harris KJ, Sicotte H, Peterson SE, Barthel AE, Moore BE, Skierka JM, Kluge ML, Kotzer KE, Kloke K, Vander Pol JM, Marker H, Sutton JA, Kekic A, Ebenhoh A, Bierle DM, Schuh MJ, Grilli C, Erickson S, Umbreit A, Ward L, Crosby S, Nelson EA, Levey S, Elliott M, Peters SG, Pereira N, Frye M, Shamoun F, Goetz MP, Kullo IJ, Wermers R, Anderson JA, Formea CM, El Melik RM, Zeuli JD, Herges JR, Krieger CA, Hoel RW, Taraba JL, Thomas SR, Absah I, Bernard ME, Fink SR, Gossard A, Grubbs PL, Jacobson TM, Takahashi P, Zehe SC, Buckles S, Bumgardner M, Gallagher C, Fee-Schroeder K, Nicholas NR, Powers ML, Ragab AK, Richardson DM, Stai A, Wilson J, Pacyna JE, Olson JE, Sutton EJ, Beck AT, Horrow C, Kalari KR, Larson NB, Liu H, Wang L, Lopes GS, Borah BJ, Freimuth RR, Zhu Y, Jacobson DJ, Hathcock MA, Armasu SM, McGree ME, Jiang R, Koep TH, Ross JL, Hilden M, Bosse K, Ramey B, Searcy I, Boerwinkle E, Gibbs RA, Weinshilboum RM. Implementation of preemptive DNA sequence-based pharmacogenomics testing across a large academic medical center: The Mayo-Baylor RIGHT 10K Study. Genet Med 2022; 24:1062-1072. [PMID: 35331649 PMCID: PMC9272414 DOI: 10.1016/j.gim.2022.01.022] [Show More Authors] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The Mayo-Baylor RIGHT 10K Study enabled preemptive, sequence-based pharmacogenomics (PGx)-driven drug prescribing practices in routine clinical care within a large cohort. We also generated the tools and resources necessary for clinical PGx implementation and identified challenges that need to be overcome. Furthermore, we measured the frequency of both common genetic variation for which clinical guidelines already exist and rare variation that could be detected by DNA sequencing, rather than genotyping. METHODS Targeted oligonucleotide-capture sequencing of 77 pharmacogenes was performed using DNA from 10,077 consented Mayo Clinic Biobank volunteers. The resulting predicted drug response-related phenotypes for 13 genes, including CYP2D6 and HLA, affecting 21 drug-gene pairs, were deposited preemptively in the Mayo electronic health record. RESULTS For the 13 pharmacogenes of interest, the genomes of 79% of participants carried clinically actionable variants in 3 or more genes, and DNA sequencing identified an average of 3.3 additional conservatively predicted deleterious variants that would not have been evident using genotyping. CONCLUSION Implementation of preemptive rather than reactive and sequence-based rather than genotype-based PGx prescribing revealed nearly universal patient applicability and required integrated institution-wide resources to fully realize individualized drug therapy and to show more efficient use of health care resources.
Collapse
Affiliation(s)
- Liewei Wang
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN,Division of Clinical Pharmacology, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Steven E. Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Suzette J. Bielinski
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Donna M. Muzny
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Leila A. Jones
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - John Logan Black
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ann M. Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Jyothsna Giri
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | | | - Wayne T. Nicholson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Mathieu Wiepert
- Department of Information Technology, Mayo Clinic, Rochester, MN
| | - Terri Sullard
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Timothy B. Curry
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Jennifer L. Sauver
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN,Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Pedro J. Caraballo
- Division of General Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Konstantinos N. Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Eric Venner
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jianhong Hu
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Christie L. Kovar
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Viktoriya Korchina
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Kimberly Walker
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | | | - Tsung-Jung Wu
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Ritika Raj
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Shawn Denson
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Wen Liu
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Gauthami Chandanavelli
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Lan Zhang
- Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX
| | - Qiaoyan Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Mary Beth Karow
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Hugues Sicotte
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Sandra E. Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Amy E. Barthel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Brenda E. Moore
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Michelle L. Kluge
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Katrina E. Kotzer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Karen Kloke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Heather Marker
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Joseph A. Sutton
- Department of Information Technology, Mayo Clinic, Rochester, MN
| | | | | | - Dennis M. Bierle
- Division of General Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | - Audrey Umbreit
- Department of Pharmacy, Mayo Clinic Health System, Mankato, MN
| | - Leah Ward
- Department of Pharmacy, Mayo Clinic, Jacksonville, FL
| | - Sheena Crosby
- Department of Pharmacy, Mayo Clinic, Jacksonville, FL
| | | | - Sharon Levey
- Department of Clinical Genomics, Mayo Clinic, Scottsdale, AZ
| | - Michelle Elliott
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Steve G. Peters
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Naveen Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Mark Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
| | - Fadi Shamoun
- Department of Cardiovascular Medicine Mayo Clinic, Phoenix, AZ
| | - Matthew P. Goetz
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN
| | | | - Robert Wermers
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | | | | - Scott R. Thomas
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Imad Absah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Stephanie R. Fink
- Division of Community Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Andrea Gossard
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Paul Takahashi
- Division of Community Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Susan Buckles
- Department of Public Affairs, Mayo Clinic, Rochester, MN
| | | | | | | | | | - Melody L. Powers
- Biospecimens Accessioning and Processing Laboratory, Mayo Clinic, Rochester, MN
| | - Ahmed K. Ragab
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | - Anthony Stai
- Department of Information Technology, Mayo Clinic, Rochester, MN
| | - Jaymi Wilson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Joel E. Pacyna
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN
| | - Janet E. Olson
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN,Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN
| | - Erica J. Sutton
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN
| | - Annika T. Beck
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN
| | - Caroline Horrow
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN
| | - Krishna R. Kalari
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Nicholas B. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Hongfang Liu
- Division of Digital Health Sciences, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Liwei Wang
- Division of Digital Health Sciences, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Guilherme S. Lopes
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN,Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Bijan J. Borah
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN,Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Robert R. Freimuth
- Division of Digital Health Sciences, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Ye Zhu
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Debra J. Jacobson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Matthew A. Hathcock
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Sebastian M. Armasu
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Michaela E. McGree
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Ruoxiang Jiang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX,Human Genome Sequencing Center Clinical Laboratory, Baylor College of Medicine, Houston, TX,School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,Corresponding Authors (), ()
| | - Richard M. Weinshilboum
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN,Division of Clinical Pharmacology, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN,Corresponding Authors (), ()
| |
Collapse
|
40
|
Münch J, Engesser M, Schönauer R, Hamm JA, Hartig C, Hantmann E, Akay G, Pehlivan D, Mitani T, Coban Akdemir Z, Tüysüz B, Shirakawa T, Dateki S, Claus LR, van Eerde AM, Smol T, Devisme L, Franquet H, Attié-Bitach T, Wagner T, Bergmann C, Höhn AK, Shril S, Pollack A, Wenger T, Scott AA, Paolucci S, Buchan J, Gabriel GC, Posey JE, Lupski JR, Petit F, McCarthy AA, Pazour GJ, Lo CW, Popp B, Halbritter J. Biallelic pathogenic variants in roundabout guidance receptor 1 associate with syndromic congenital anomalies of the kidney and urinary tract. Kidney Int 2022; 101:1039-1053. [PMID: 35227688 PMCID: PMC10010616 DOI: 10.1016/j.kint.2022.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals. Although Slit-Robo signaling is pivotal for kidney development, diagnostic ROBO1 variants have not been reported in viable CAKUT to date. By next-generation-sequencing methods, we identified six unrelated individuals and two non-viable fetuses with biallelic truncating or combined missense and truncating variants in ROBO1. Kidney and genitourinary manifestation included unilateral or bilateral kidney agenesis, vesicoureteral junction obstruction, vesicoureteral reflux, posterior urethral valve, genital malformation, and increased kidney echogenicity. Further clinical characteristics were remarkably heterogeneous, including neurodevelopmental defects, intellectual impairment, cerebral malformations, eye anomalies, and cardiac defects. By in silico analysis, we determined the functional significance of identified missense variants and observed absence of kidney ROBO1 expression in both human and murine mutant tissues. While its expression in multiple tissues may explain heterogeneous organ involvement, variability of the kidney disease suggests gene dosage effects due to a combination of null alleles with mild hypomorphic alleles. Thus, comprehensive genetic analysis in CAKUT should include ROBO1 as a new cause of recessively inherited disease. Hence, in patients with already established ROBO1-associated cardiac or neuronal disorders, screening for kidney involvement is indicated.
Collapse
Affiliation(s)
- Johannes Münch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Marie Engesser
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ria Schönauer
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - J Austin Hamm
- East Tennessee Children's Hospital, Genetic Center, Knoxville, Tennessee, USA
| | - Christin Hartig
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Elena Hantmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, University of Utah, Salt Lake, Utah, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Hospital, Houston, Texas, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
| | | | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Laura R Claus
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Thomas Smol
- Centre Hospitalier Universitaire de Lille, Institut de Génétique Médicale, Lille, France
| | - Louise Devisme
- Centre Hospitalier Universitaire de Lille, Institut de Pathologie, Lille, France
| | - Hélène Franquet
- Centre Hospitalier Universitaire de Lille, Institut de Pathologie, Lille, France
| | - Tania Attié-Bitach
- Laboratoire de biologie médicale multisites SeqOIA, Paris, France; Service de Médecine Génomique des Maladies Rares, APHP.Centre, Université de Paris, Paris, France
| | - Timo Wagner
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Department of Medicine, Nephrology, University Hospital Freiburg, Freiburg, Germany
| | - Anne Kathrin Höhn
- Division of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Shirlee Shril
- Division of Nephrology, Boston Children's Hospital, Boston, USA
| | - Ari Pollack
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Tara Wenger
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Abbey A Scott
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Sarah Paolucci
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jillian Buchan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Hospital, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Florence Petit
- Centre Hospitalier Universitaire de Lille, Clinique de Génétique Guy Fontaine, Lille, France
| | | | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - Bernt Popp
- Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
41
|
Nachtegael C, Gravel B, Dillen A, Smits G, Nowé A, Papadimitriou S, Lenaerts T. Scaling up oligogenic diseases research with OLIDA: the Oligogenic Diseases Database. Database (Oxford) 2022; 2022:6566807. [PMID: 35411390 PMCID: PMC9216476 DOI: 10.1093/database/baac023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022]
Abstract
Improving the understanding of the oligogenic nature of diseases requires access to high-quality, well-curated Findable, Accessible, Interoperable, Reusable (FAIR) data. Although first steps were taken with the development of the Digenic Diseases Database, leading to novel computational advancements to assist the field, these were also linked with a number of limitations, for instance, the ad hoc curation protocol and the inclusion of only digenic cases. The OLIgogenic diseases DAtabase (OLIDA) presents a novel, transparent and rigorous curation protocol, introducing a confidence scoring mechanism for the published oligogenic literature. The application of this protocol on the oligogenic literature generated a new repository containing 916 oligogenic variant combinations linked to 159 distinct diseases. Information extracted from the scientific literature is supplemented with current knowledge support obtained from public databases. Each entry is an oligogenic combination linked to a disease, labelled with a confidence score based on the level of genetic and functional evidence that supports its involvement in this disease. These scores allow users to assess the relevance and proof of pathogenicity of each oligogenic combination in the database, constituting markers for reporting improvements on disease-causing oligogenic variant combinations. OLIDA follows the FAIR principles, providing detailed documentation, easy data access through its application programming interface and website, use of unique identifiers and links to existing ontologies.
Collapse
Affiliation(s)
- Charlotte Nachtegael
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212, Brussels 1050, Belgium
| | - Barbara Gravel
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212, Brussels 1050, Belgium
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Arnau Dillen
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
- Human Physiology and Sports Physiotherapy research group, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Avenue Jean Joseph Crocq 15, Brussels 1020, Belgium
- Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, Brussels 1070, Belgium
| | - Ann Nowé
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212, Brussels 1050, Belgium
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212, Brussels 1050, Belgium
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| |
Collapse
|
42
|
Taşdelen E, Calame DG, Akay G, Mitani T, Fatih JM, Herman I, Du H, Coban-Akdemir Z, Marafi D, Jhangiani SN, Posey JE, Gibbs RA, Altıparmak T, Kutlay NY, Lupski JR, Pehlivan D. Novel RETREG1 (FAM134B) founder allele is linked to HSAN2B and renal disease in a Turkish family. Am J Med Genet A 2022; 188:2153-2161. [PMID: 35332675 DOI: 10.1002/ajmg.a.62727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 11/06/2022]
Abstract
Hereditary sensory and autonomic neuropathy type 2B (HSAN2B) is a rare autosomal recessive peripheral neuropathy caused by biallelic variants in RETREG1 (formerly FAM134B). HSAN2B is characterized by sensory impairment resulting in skin ulcerations, amputations, and osteomyelitis as well as variable weakness, spasticity, and autonomic dysfunction. Here, we report four affected individuals with recurrent osteomyelitis, ulceration, and amputation of hands and feet, sensory neuropathy, hyperhidrosis, urinary incontinence, and renal failure from a family without any known shared parental ancestry. Due to the history of chronic recurrent multifocal osteomyelitis and microcytic anemia, a diagnosis of Majeed syndrome was considered; however, sequencing of LPIN2 was negative. Family-based exome sequencing (ES) revealed a novel homozygous ultrarare RETREG1 variant NM_001034850.2:c.321G>A;p.Trp107Ter. Electrophysiological studies of the proband demonstrated axonal sensorimotor neuropathy predominantly in the lower extremities. Consistent with the lack of shared ancestry, the coefficient of inbreeding calculated from ES data was low (F = 0.002), but absence of heterozygosity (AOH) analysis demonstrated a 7.2 Mb AOH block surrounding the variant consistent with a founder allele. Two of the four affected individuals had unexplained renal failure which has not been reported in HSAN2B cases to date. Therefore, this report describes a novel RETREG1 founder allele and suggests renal failure may be an unrecognized feature of the RETREG1-disease spectrum.
Collapse
Affiliation(s)
- Elifcan Taşdelen
- Department of Medical Genetics, Sanliurfa Education and Research Hospital, Şanlıurfa, Turkey.,Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Daniel G Calame
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, University of Utah, Salt Lake, Utah, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Isabella Herman
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Nüket Yürür Kutlay
- Department of Medical Genetics, Sanliurfa Education and Research Hospital, Şanlıurfa, Turkey
| | - James R Lupski
- Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Davut Pehlivan
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
43
|
Liu J, Zhao H, Zheng Y, Dong L, Zhao S, Huang Y, Huang S, Qian T, Zou J, Liu S, Li J, Yan Z, Li Y, Zhang S, Huang X, Wang W, Li Y, Wang J, Ming Y, Li X, Xing Z, Qin L, Zhao Z, Jia Z, Li J, Liu G, Zhang M, Feng K, Wu J, Zhang J, Yang Y, Wu Z, Liu Z, Ying J, Wang X, Su J, Wang X, Wu N. DrABC: deep learning accurately predicts germline pathogenic mutation status in breast cancer patients based on phenotype data. Genome Med 2022; 14:21. [PMID: 35209950 PMCID: PMC8876403 DOI: 10.1186/s13073-022-01027-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Identifying breast cancer patients with DNA repair pathway-related germline pathogenic variants (GPVs) is important for effectively employing systemic treatment strategies and risk-reducing interventions. However, current criteria and risk prediction models for prioritizing genetic testing among breast cancer patients do not meet the demands of clinical practice due to insufficient accuracy. Methods The study population comprised 3041 breast cancer patients enrolled from seven hospitals between October 2017 and 11 August 2019, who underwent germline genetic testing of 50 cancer predisposition genes (CPGs). Associations among GPVs in different CPGs and endophenotypes were evaluated using a case-control analysis. A phenotype-based GPV risk prediction model named DNA-repair Associated Breast Cancer (DrABC) was developed based on hierarchical neural network architecture and validated in an independent multicenter cohort. The predictive performance of DrABC was compared with currently used models including BRCAPRO, BOADICEA, Myriad, PENN II, and the NCCN criteria. Results In total, 332 (11.3%) patients harbored GPVs in CPGs, including 134 (4.6%) in BRCA2, 131 (4.5%) in BRCA1, 33 (1.1%) in PALB2, and 37 (1.3%) in other CPGs. GPVs in CPGs were associated with distinct endophenotypes including the age at diagnosis, cancer history, family cancer history, and pathological characteristics. We developed a DrABC model to predict the risk of GPV carrier status in BRCA1/2 and other important CPGs. In predicting GPVs in BRCA1/2, the performance of DrABC (AUC = 0.79 [95% CI, 0.74–0.85], sensitivity = 82.1%, specificity = 63.1% in the independent validation cohort) was better than that of previous models (AUC range = 0.57–0.70). In predicting GPVs in any CPG, DrABC (AUC = 0.74 [95% CI, 0.69–0.79], sensitivity = 83.8%, specificity = 51.3% in the independent validation cohort) was also superior to previous models in their current versions (AUC range = 0.55–0.65). After training these previous models with the Chinese-specific dataset, DrABC still outperformed all other methods except for BOADICEA, which was the only previous model with the inclusion of pathological features. The DrABC model also showed higher sensitivity and specificity than the NCCN criteria in the multi-center validation cohort (83.8% and 51.3% vs. 78.8% and 31.2%, respectively, in predicting GPVs in any CPG). The DrABC model implementation is available online at http://gifts.bio-data.cn/. Conclusions By considering the distinct endophenotypes associated with different CPGs in breast cancer patients, a phenotype-driven prediction model based on hierarchical neural network architecture was created for identification of hereditary breast cancer. The model achieved superior performance in identifying GPV carriers among Chinese breast cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01027-9.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yu Zheng
- Fintech Innovation Center, Southwestern University of Finance and Economics, Chengdu, 611130, China
| | - Lin Dong
- Department of Pathology, National Cancer Center /National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yukuan Huang
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, 325027, China.,School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shengkai Huang
- Department of Laboratory Medicine, National Cancer Center /National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyi Qian
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiali Zou
- Department of Breast Surgery, Guiyang Maternal and Child Healthcare Hospital, Guiyang, 550001, China
| | - Shu Liu
- Department of Breast Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jun Li
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yalun Li
- Department of Breast Surgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Shuo Zhang
- Department of Breast Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050019, Hebei, China
| | - Xin Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wenyan Wang
- Department of Breast Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yiqun Li
- Department of Oncology, National Cancer Center /National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Wang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Ming
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoxin Li
- Medical Research Center, Beijing Key Laboratory for Genetic Research of Skeletal Deformity & Key Laboratory of Big Data for Spinal Deformities, All at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zeyu Xing
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ling Qin
- Department of Breast Surgical Oncology, Cancer Hospital of HuanXing, Beijing, 100021, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ziqi Jia
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiaxin Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Menglu Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kexin Feng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiang Wu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yongxin Yang
- Machine Intelligence Group, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Medical Research Center, Beijing Key Laboratory for Genetic Research of Skeletal Deformity & Key Laboratory of Big Data for Spinal Deformities, All at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center /National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianzhong Su
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, 325027, China. .,School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. .,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China.
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
44
|
Stroke Genomics: Current Knowledge, Clinical Applications and Future Possibilities. Brain Sci 2022; 12:brainsci12030302. [PMID: 35326259 PMCID: PMC8946102 DOI: 10.3390/brainsci12030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
The pathophysiology of stoke involves many complex pathways and risk factors. Though there are several ongoing studies on stroke, treatment options are limited, and the prevalence of stroke is continuing to increase. Understanding the genomic variants and biological pathways associated with stroke could offer novel therapeutic alternatives in terms of drug targets and receptor modulations for newer treatment methods. It is challenging to identify individual causative mutations in a single gene because many alleles are responsible for minor effects. Therefore, multiple factorial analyses using single nucleotide polymorphisms (SNPs) could be used to gain new insight by identifying potential genetic risk factors. There are many studies, such as Genome-Wide Association Studies (GWAS) and Phenome-Wide Association Studies (PheWAS) which have identified numerous independent loci associated with stroke, which could be instrumental in developing newer drug targets and novel therapies. Additionally, using analytical techniques, such as meta-analysis and Mendelian randomization could help in evaluating stroke risk factors and determining treatment priorities. Combining SNPs into polygenic risk scores and lifestyle risk factors could detect stroke risk at a very young age and help in administering preventive interventions.
Collapse
|
45
|
Narasimhan U, Janakiraman A, Puskur D, Anitha FS, Paul SFD, Koshy T. Case Report: A Disease Phenotype of Rett Syndrome and Neurofibromatosis Resulting from A Bilocus Variant Combination. J Autism Dev Disord 2022; 53:2138-2142. [PMID: 35122187 DOI: 10.1007/s10803-022-05458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Udayakumar Narasimhan
- Department of Pediatrics, Karthikeyan Child Development Unit, Sri Ramachandra Institute of Higher Education and Research, #1, Ramachandra Nagar, Porur, Chennai, 600116, Tamil Nadu, India
| | - Abhinayaa Janakiraman
- Department of Pediatrics, Karthikeyan Child Development Unit, Sri Ramachandra Institute of Higher Education and Research, #1, Ramachandra Nagar, Porur, Chennai, 600116, Tamil Nadu, India
| | - Dedeepya Puskur
- Department of Pediatrics, Karthikeyan Child Development Unit, Sri Ramachandra Institute of Higher Education and Research, #1, Ramachandra Nagar, Porur, Chennai, 600116, Tamil Nadu, India
| | - Fatima Shirly Anitha
- Department of Pediatrics, Karthikeyan Child Development Unit, Sri Ramachandra Institute of Higher Education and Research, #1, Ramachandra Nagar, Porur, Chennai, 600116, Tamil Nadu, India
| | - Solomon Franklin Durairaj Paul
- Department of Human Genetics, Faculty of Biomedical Science and Technology, Sri Ramachandra Institute of Higher Education and Research, #1, Ramachandra Nagar, Porur, Chennai, 600116, Tamil Nadu, India
| | - Teena Koshy
- Department of Human Genetics, Faculty of Biomedical Science and Technology, Sri Ramachandra Institute of Higher Education and Research, #1, Ramachandra Nagar, Porur, Chennai, 600116, Tamil Nadu, India.
| |
Collapse
|
46
|
Zug R. Developmental disorders caused by haploinsufficiency of transcriptional regulators: a perspective based on cell fate determination. Biol Open 2022; 11:bio058896. [PMID: 35089335 PMCID: PMC8801891 DOI: 10.1242/bio.058896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many human birth defects and neurodevelopmental disorders are caused by loss-of-function mutations in a single copy of transcription factor (TF) and chromatin regulator genes. Although this dosage sensitivity has long been known, how and why haploinsufficiency (HI) of transcriptional regulators leads to developmental disorders (DDs) is unclear. Here I propose the hypothesis that such DDs result from defects in cell fate determination that are based on disrupted bistability in the underlying gene regulatory network (GRN). Bistability, a crucial systems biology concept to model binary choices such as cell fate decisions, requires both positive feedback and ultrasensitivity, the latter often achieved through TF cooperativity. The hypothesis explains why dosage sensitivity of transcriptional regulators is an inherent property of fate decisions, and why disruption of either positive feedback or cooperativity in the underlying GRN is sufficient to cause disease. I present empirical and theoretical evidence in support of this hypothesis and discuss several issues for which it increases our understanding of disease, such as incomplete penetrance. The proposed framework provides a mechanistic, systems-level explanation of HI of transcriptional regulators, thus unifying existing theories, and offers new insights into outstanding issues of human disease. This article has an associated Future Leader to Watch interview with the author of the paper.
Collapse
Affiliation(s)
- Roman Zug
- Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
47
|
Musacchia F, Karali M, Torella A, Laurie S, Policastro V, Pizzo M, Beltran S, Casari G, Nigro V, Banfi S. VarGenius-HZD Allows Accurate Detection of Rare Homozygous or Hemizygous Deletions in Targeted Sequencing Leveraging Breadth of Coverage. Genes (Basel) 2021; 12:genes12121979. [PMID: 34946927 PMCID: PMC8701221 DOI: 10.3390/genes12121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Homozygous deletions (HDs) may be the cause of rare diseases and cancer, and their discovery in targeted sequencing is a challenging task. Different tools have been developed to disentangle HD discovery but a sensitive caller is still lacking. We present VarGenius-HZD, a sensitive and scalable algorithm that leverages breadth-of-coverage for the detection of rare homozygous and hemizygous single-exon deletions (HDs). To assess its effectiveness, we detected both real and synthetic rare HDs in fifty exomes from the 1000 Genomes Project obtaining higher sensitivity in comparison with state-of-the-art algorithms that each missed at least one event. We then applied our tool on targeted sequencing data from patients with Inherited Retinal Dystrophies and solved five cases that still lacked a genetic diagnosis. We provide VarGenius-HZD either stand-alone or integrated within our recently developed software, enabling the automated selection of samples using the internal database. Hence, it could be extremely useful for both diagnostic and research purposes.
Collapse
Affiliation(s)
- Francesco Musacchia
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
- Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Correspondence:
| | - Marianthi Karali
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Annalaura Torella
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy;
| | - Steve Laurie
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; (S.L.); (S.B.)
| | - Valeria Policastro
- Institute for Applied Mathematics “Mauro Picone” (IAC), National Research Council, 80131 Naples, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; (S.L.); (S.B.)
- Universitat Pompeu Fabra (UPF), 08017 Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Giorgio Casari
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
- Neurogenomics Unit, Center for Genomics, Bioinformatics and Biostatistics, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy;
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (M.K.); (M.P.); (G.C.); (V.N.); (S.B.)
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy;
| |
Collapse
|
48
|
Lupski JR. Clan genomics: From OMIM phenotypic traits to genes and biology. Am J Med Genet A 2021; 185:3294-3313. [PMID: 34405553 PMCID: PMC8530976 DOI: 10.1002/ajmg.a.62434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical characterization of a patient phenotype has been the quintessential approach for elucidating a differential diagnosis and a hypothesis to explore a potential clinical diagnosis. This has resulted in a language of medicine and a semantic ontology, with both specialty- and subspecialty-specific lexicons, that can be challenging to translate and interpret. There is no 'Rosetta Stone' of clinical medicine such as the genetic code that can assist translation and interpretation of the language of genetics. Nevertheless, the information content embodied within a clinical diagnosis can guide management, therapeutic intervention, and potentially prognostic outlook of disease enabling anticipatory guidance for patients and families. Clinical genomics is now established firmly in medical practice. The granularity and informative content of a personal genome is immense. Yet, we are limited in our utility of much of that personal genome information by the lack of functional characterization of the overwhelming majority of computationally annotated genes in the haploid human reference genome sequence. Whereas DNA and the genetic code have provided a 'Rosetta Stone' to translate genetic variant information, clinical medicine, and clinical genomics provide the context to understand human biology and disease. A path forward will integrate deep phenotyping, such as available in a clinical synopsis in the Online Mendelian Inheritance in Man (OMIM) entries, with personal genome analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
49
|
Vysotskiy M, Zhong X, Miller-Fleming TW, Zhou D, Cox NJ, Weiss LA. Integration of genetic, transcriptomic, and clinical data provides insight into 16p11.2 and 22q11.2 CNV genes. Genome Med 2021; 13:172. [PMID: 34715901 PMCID: PMC8557010 DOI: 10.1186/s13073-021-00972-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Deletions and duplications of the multigenic 16p11.2 and 22q11.2 copy number variant (CNV) regions are associated with brain-related disorders including schizophrenia, intellectual disability, obesity, bipolar disorder, and autism spectrum disorder (ASD). The contribution of individual CNV genes to each of these identified phenotypes is unknown, as well as the contribution of these CNV genes to other potentially subtler health implications for carriers. Hypothesizing that DNA copy number exerts most effects via impacts on RNA expression, we attempted a novel in silico fine-mapping approach in non-CNV carriers using both GWAS and biobank data. METHODS We first asked whether gene expression level in any individual gene in the CNV region alters risk for a known CNV-associated behavioral phenotype(s). Using transcriptomic imputation, we performed association testing for CNV genes within large genotyped cohorts for schizophrenia, IQ, BMI, bipolar disorder, and ASD. Second, we used a biobank containing electronic health data to compare the medical phenome of CNV carriers to controls within 700,000 individuals in order to investigate the full spectrum of health effects of the CNVs. Third, we used genotypes for over 48,000 individuals within the biobank to perform phenome-wide association studies between imputed expressions of individual 16p11.2 and 22q11.2 genes and over 1500 health traits. RESULTS Using large genotyped cohorts, we found individual genes within 16p11.2 associated with schizophrenia (TMEM219, INO80E, YPEL3), BMI (TMEM219, SPN, TAOK2, INO80E), and IQ (SPN), using conditional analysis to identify upregulation of INO80E as the driver of schizophrenia, and downregulation of SPN and INO80E as increasing BMI. We identified both novel and previously observed over-represented traits within the electronic health records of 16p11.2 and 22q11.2 CNV carriers. In the phenome-wide association study, we found seventeen significant gene-trait pairs, including psychosis (NPIPB11, SLX1B) and mood disorders (SCARF2), and overall enrichment of mental traits. CONCLUSIONS Our results demonstrate how integration of genetic and clinical data aids in understanding CNV gene function and implicates pleiotropy and multigenicity in CNV biology.
Collapse
Affiliation(s)
- Mikhail Vysotskiy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 513 Parnassus Ave., Health Sciences East 9th floor HSE901E, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Tyne W Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Dan Zhou
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Lauren A Weiss
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 513 Parnassus Ave., Health Sciences East 9th floor HSE901E, San Francisco, CA, 94143, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
50
|
Mitani T, Isikay S, Gezdirici A, Gulec EY, Punetha J, Fatih JM, Herman I, Akay G, Du H, Calame DG, Ayaz A, Tos T, Yesil G, Aydin H, Geckinli B, Elcioglu N, Candan S, Sezer O, Erdem HB, Gul D, Demiral E, Elmas M, Yesilbas O, Kilic B, Gungor S, Ceylan AC, Bozdogan S, Ozalp O, Cicek S, Aslan H, Yalcintepe S, Topcu V, Bayram Y, Grochowski CM, Jolly A, Dawood M, Duan R, Jhangiani SN, Doddapaneni H, Hu J, Muzny DM, Marafi D, Akdemir ZC, Karaca E, Carvalho CMB, Gibbs RA, Posey JE, Lupski JR, Pehlivan D. High prevalence of multilocus pathogenic variation in neurodevelopmental disorders in the Turkish population. Am J Hum Genet 2021; 108:1981-2005. [PMID: 34582790 PMCID: PMC8546040 DOI: 10.1016/j.ajhg.2021.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.
Collapse
Affiliation(s)
- Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sedat Isikay
- Department of Pediatric Neurology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, 34303 Istanbul, Turkey
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akif Ayaz
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey; Departments of Medical Genetics, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Tulay Tos
- University of Health Sciences Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Department of Medical Genetics, Ankara 06080, Turkey
| | - Gozde Yesil
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul 34093, Turkey
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Private Reyap Istanbul Hospital, Istanbul 34515, Turkey
| | - Bilgen Geckinli
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Department of Medical Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey
| | - Nursel Elcioglu
- Department of Pediatric Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey; Eastern Mediterranean University Medical School, Magosa, Mersin 10, Turkey
| | - Sukru Candan
- Medical Genetics Section, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Ozlem Sezer
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun 55100, Turkey
| | - Haktan Bagis Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey
| | - Davut Gul
- Department of Medical Genetics, Gulhane Military Medical School, Ankara 06010, Turkey
| | - Emine Demiral
- Department of Medical Genetics, School of Medicine, University of Inonu, Malatya 44280, Turkey
| | - Muhsin Elmas
- Department of Medical Genetics, Afyon Kocatepe University, School of Medicine, Afyon 03218, Turkey
| | - Osman Yesilbas
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Bezmialem Foundation University, Istanbul 34093, Turkey; Department of Pediatrics, Division of Pediatric Critical Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Betul Kilic
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Serdal Gungor
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Ahmet C Ceylan
- Department of Medical Genetics, University of Health Sciences, Ankara Training and Research Hospital, Ankara 06110, Turkey
| | - Sevcan Bozdogan
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana 01330, Turkey
| | - Ozge Ozalp
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Salih Cicek
- Department of Medical Genetics, Konya Training and Research Hospital, Konya 42250, Turkey
| | - Huseyin Aslan
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, School of Medicine, Trakya University, Edirne 22130, Turkey
| | - Vehap Topcu
- Department of Medical Genetics, Ankara City Hospital, Ankara 06800, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|