1
|
Ma JX, Li XJ, Li YL, Liu MC, Du RH, Cheng Y, Li LJ, Ai ZY, Jiang JT, Yan SY. Chaperonin-containing tailless complex polypeptide 1 subunit 6A negatively regulates autophagy and protects colorectal cancer cells from cisplatin-induced cytotoxicity. World J Gastroenterol 2025; 31:105729. [DOI: 10.3748/wjg.v31.i18.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND As a member of the chaperonin-containing tailless complex polypeptide 1 (TCP1) complex, which plays a pivotal role in ensuring the accurate folding of numerous proteins, chaperonin-containing TCP1 subunit 6A (CCT6A) participates in various physiological and pathological processes. However, its effects on cell death and cancer therapy and the underlying mechanisms need further exploration in colorectal cancer (CRC) cells.
AIM To explore the effects of CCT6A on cell death and cancer therapy and the underlying mechanisms in CRC.
METHODS Cell proliferation was evaluated using the MTS assay, EdU staining, and colony growth assays. The expression of CCT6A was monitored by immunoblotting and quantitative PCR. CCT6A was knocked out by CRISPR-Cas9, and overexpressed by transfecting plasmids. Autophagy was examined by immunoblotting and the mCherry-GFP-LC3 assay. To monitor apoptosis and necroptosis, immunoblotting, co-immunoprecipitation, and flow cytometry were employed.
RESULTS Cisplatin (DDP) exerted cytotoxic effects on CRC cells while simultaneously downregulating the expression of CCT6A. Depletion of CCT6A amplified the cytotoxic effects of DDP, whereas overexpression of CCT6A attenuated these adverse effects. CCT6A suppressed autophagy, apoptosis, and necroptosis under both basal and DDP-treated conditions. Autophagy inhibitors significantly enhanced the cytotoxic effects of DDP, whereas a necroptosis inhibitor partially reversed the cell viability loss induced by DDP. Furthermore, inhibiting autophagy enhanced both apoptosis and necroptosis induced by DDP.
CONCLUSION CCT6A negatively modulates autophagy, apoptosis, and necroptosis, and CCT6A confers resistance to DDP therapy in CRC, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jian-Xing Ma
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Xiao-Jun Li
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ya-Long Li
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ming-Chan Liu
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Rui-Hang Du
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Yi Cheng
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Liang-Jie Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Zhi-Ying Ai
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Jian-Tao Jiang
- The Second Affiliated Hospital of Xi’an Jiaotong University, Xibei Hospital, Xi’an 710000, Shaanxi Province, China
| | - Si-Yuan Yan
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| |
Collapse
|
2
|
Morgan MJ, Kim YS. RIPK3 in necroptosis and cancer. Mol Cells 2025; 48:100199. [PMID: 40010643 PMCID: PMC11938148 DOI: 10.1016/j.mocell.2025.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Receptor-interacting protein kinase-3 is essential for the cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, leading to significant consequences in inflammation and in diseases, particularly cancer. Necroptosis is highly proinflammatory compared with other modes of cell death because cell membrane integrity is lost, resulting in releases of cytokines and damage-associated molecular patterns that potentiate inflammation and activate the immune system. We discuss various ways that necroptosis is triggered along with its potential role in cancer and therapy.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, USA.
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Ajou University, Suwon 16499, Korea; Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
3
|
Cao P, Jaeschke H, Ni HM, Ding WX. The Ways to Die: Cell Death in Liver Pathophysiology. Semin Liver Dis 2025. [PMID: 40199509 DOI: 10.1055/a-2576-4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Liver diseases are closely associated with various cell death mechanisms, including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis. Each process contributes uniquely to the pathophysiology of liver injury and repair. Importantly, these mechanisms are not limited to hepatocytes; they also significantly involve nonparenchymal cells. This review examines the molecular pathways and regulatory mechanisms underlying these forms of cell death in hepatocytes, emphasizing their roles in several liver diseases, such as ischemia-reperfusion injury, metabolic dysfunction-associated steatotic liver disease, drug-induced liver injury, and alcohol-associated liver disease. Recent insights into ferroptosis and pyroptosis may reveal novel therapeutic targets for managing liver diseases. This review aims to provide a comprehensive overview of these cell death mechanisms in the context of liver diseases, detailing their molecular signaling pathways and implications for potential treatment strategies.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
- Division of Gastroenterology, Hepatology and Mobility, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
4
|
Jin X, Zhu Y, Xing L, Ding X, Liu Z. PANoptosis: a potential target of atherosclerotic cardiovascular disease. Apoptosis 2025:10.1007/s10495-025-02089-x. [PMID: 40285923 DOI: 10.1007/s10495-025-02089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 04/29/2025]
Abstract
PANoptosis is a newly discovered cell death pathway triggered by the innate immunizer, which in turn promotes the assembly of the PANoptosome and activates downstream effectors. As a special cell death mode, it is characterized by apoptosis, pyroptosis, and necroptosis at the same time; therefore, it is not feasible to inhibit PANoptosis by suppressing a single cell death pathway. However, active ingredients targeting the PANoptosome can effectively inhibit PANoptosis.Given the importance of cell death in disease, targeting PANoptosis would be an important therapeutic tool. Previous studies have focused more on infectious diseases and cancer, and the role of PANoptosis in the cardiovascular field has not been comprehensively addressed. While ASCVD is the number one killer of cardiovascular diseases, it is important to explore new targets to determine future research directions. Therefore, this review focuses on the assembly of PANoptosome, the molecular mechanism of PANoptosis, and the related mechanisms of PANoptosis leading to ASCVD such as myocardial infarction, ischemic cardiomyopathy and ischemic stroke, in order to provide a new perspective for the prevention and treatment of ASCVD.
Collapse
Affiliation(s)
- Xiao Jin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yanan Zhu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Lina Xing
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xinyue Ding
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Zongjun Liu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- , No. 164, Lanxi Road, Putuo District, Shanghai, China.
| |
Collapse
|
5
|
Oda H, Annibaldi A, Kastner DL, Aksentijevich I. Genetic Regulation of Cell Death: Insights from Autoinflammatory Diseases. Annu Rev Immunol 2025; 43:313-342. [PMID: 40279314 DOI: 10.1146/annurev-immunol-090222-105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Metazoans have evolved innate antimicrobial defenses that promote cellular survival and proliferation. Countering the inevitable molecular mechanisms by which microbes sabotage these pathways, multicellular organisms rely on an alternative, perhaps more ancient, strategy that is the immune equivalent of suicide bombing: Infection triggers cell death programs that summon localized or even systemic inflammation. The study of human genetics has now unveiled a level of complexity that refutes the naive view that cell death is merely a blunt instrument or an evolutionary afterthought. To the contrary, findings from patients with rare diseases teach us that cell death-induced inflammation is a sophisticated, tightly choreographed process. We herein review the emerging body of evidence describing a group of illnesses-inborn errors of cell death, which define many of the molecular building blocks and regulatory elements controlling cell death-induced inflammation in humans-and provide a possible road map to countering this process across the spectrum of rare and common illnesses.
Collapse
Affiliation(s)
- Hirotsugu Oda
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany;
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Daniel L Kastner
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA;
| | - Ivona Aksentijevich
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA;
| |
Collapse
|
6
|
Hou Y, Feng Q, Wei C, Cao F, Liu D, Pan S, Shi Y, Liu Z, Liu F. Emerging role of PANoptosis in kidney diseases: molecular mechanisms and therapeutic opportunities. Apoptosis 2025; 30:579-596. [PMID: 39833634 DOI: 10.1007/s10495-024-02072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Kidney diseases represent a significant global public health challenge, characterized by complex pathogenesis, high incidence, low awareness, insufficient early screening, and substantial treatment disparities. Effective therapeutic options remain lacking. Programmed cell death (PCD), including apoptosis, pyroptosis, and necroptosis, play pivotal roles in the pathogenesis of various kidney diseases. In 2019, PANoptosis, a novel form of inflammatory cell death, was introduced, providing new insights into innate immunity and PCD research. Although research on PANoptosis in kidney diseases is still limited, identifying key molecules within PANoptosomes and understanding their regulatory roles is critical for disease prevention and management. This review summarizes the various forms of PCD implicated in kidney diseases, along with PANoptosomes activated by Z-DNA binding protein 1 (ZBP1), absent in melanoma 2 (AIM2), receptor-interacting protein kinase 1 (RIPK1), NOD-like receptor family CARD domain containing 12 (NLRP12), and NOD-like receptor family member C5 (NLRC5). It also reviews the advancements in PANoptosis research in the field of kidney diseases, particularly in renal tumors and acute kidney injuries (AKI). The goal is to establish a foundation for future research into the role of PANoptosis in kidney diseases.
Collapse
Affiliation(s)
- Yi Hou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Cien Wei
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Fengyu Cao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yan Shi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Fengxun Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
7
|
Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM. Insights on the crosstalk among different cell death mechanisms. Cell Death Discov 2025; 11:56. [PMID: 39929794 PMCID: PMC11811070 DOI: 10.1038/s41420-025-02328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
The phenomenon of cell death has garnered significant scientific attention in recent years, emerging as a pivotal area of research. Recently, novel modalities of cellular death and the intricate interplay between them have been unveiled, offering insights into the pathogenesis of various diseases. This comprehensive review delves into the intricate molecular mechanisms, inducers, and inhibitors of the underlying prevalent forms of cell death, including apoptosis, autophagy, ferroptosis, necroptosis, mitophagy, and pyroptosis. Moreover, it elucidates the crosstalk and interconnection among the key pathways or molecular entities associated with these pathways, thereby paving the way for the identification of novel therapeutic targets, disease management strategies, and drug repurposing.
Collapse
Affiliation(s)
- Georgette Eskander
- Postgraduate program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Sara A Wahdan
- Pharmacology and toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
8
|
Tian HY, Lei YX, Zhou JT, Liu LJ, Yang T, Zhou Y, Ge JW, Xu C, Mei ZG. Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke. Front Mol Neurosci 2025; 17:1482015. [PMID: 39846000 PMCID: PMC11751022 DOI: 10.3389/fnmol.2024.1482015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay. While mounting evidence hints at a crosstalk between these two processes in IS, the underlying mechanisms remain elusive. Therefore, this review delves into and dissects the intricate mechanisms that underpin the intersection of PANoptosis and autophagy in this devastating condition. In conclusion, the crosstalk between PANoptosis and autophagy in IS presents a promising target for the development of novel stroke therapies. Understanding the interplay between these two pathways offers a much-needed insight into the underlying mechanisms of IS and opens the possibility for new therapeutic strategies.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Yun-Xing Lei
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Jing-Tao Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Long-Jun Liu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Chen Xu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
9
|
Shimizu K, Inuzuka H, Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol 2025; 108:1-16. [PMID: 39557316 DOI: 10.1016/j.semcancer.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cellular senescence is a state of permanent proliferative arrest that occurs in response to DNA damage-inducing endogenous and exogenous stresses, and is often accompanied by dynamic molecular changes such as a senescence-associated secretory phenotype (SASP). Accumulating evidence indicates that age-associated increases in the upstream and downstream signals of regulated cell death, including apoptosis, necroptosis, pyroptosis, and ferroptosis, are closely related to the induction of cellular senescence and its phenotype. Furthermore, elevated levels of pro-inflammatory SASP factors with aging can be both a cause and consequence of several cell death modes, suggesting the reciprocal effects of cellular senescence and cells undergoing regulated cell death. Here, we review the critical molecular pathways of the regulated cell death forms and describe the crosstalk between aging-related signals and cancer. In addition, we discuss how targeting regulated cell death could be harnessed in therapeutic interventions for cancer. ABBREVIATIONS: Abbreviations that are not standard in this field are defined at their first occurrence in the article and are used consistently throughout the article.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, USA
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
10
|
Milosevic M, Magnutzki A, Braun T, Hussain S, Jakschitz T, Kragl M, Soeberdt M, Nausch B, Bonn GK, Huber LA, Valovka T. Anti-inflammatory and cytoprotective polypharmacology of Canephron N reveals targeting of the IKK-NF-κB and p38-MK2-RIPK1 axes. Biomed Pharmacother 2025; 182:117747. [PMID: 39671726 DOI: 10.1016/j.biopha.2024.117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024] Open
Abstract
Urinary tract infections are among the most frequently occurring forms of infection, and inflammation and tissue damage contribute significantly to symptoms, e.g., dysuria and urge. Canephron N is an orally bioavailable herbal medicine with anti-inflammatory, spasmolytic, anti-adhesive, and anti-nociceptive therapeutic effects that is approved for the treatment of uncomplicated urinary tract infections. Here, we used renal tubular epithelial HK-2 cells to study the anti-inflammatory and cytoprotective effects and molecular mechanisms of its active component, BNO 2103. BNO 2103 suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation by lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) and prevented inhibitory κB kinase (IKK)-dependent phosphorylation and degradation of inhibitor of nuclear factor kappa B alpha (IκBα). BNO 2103 also suppressed the inflammation-specific S536 phosphorylation of the NF-κB subunit p65 and the production of a specific set of inflammatory cytokines. Unlike other NF-κB inhibitors, BNO 2103 demonstrated cytoprotection against TNFα-induced cytotoxicity. Our data suggest that BNO 2103 acts primarily through the mitogen-activated protein kinase p38 (p38 MAPK)-MAPK-activated protein kinase 2 (MK2) axis by promoting receptor-interacting serine/threonine protein kinase 1 (RIPK1) phosphorylation at S320. Simultaneously, it suppresses S166 autophosphorylation and subsequent activation of RIPK1, which is required for apoptotic and necroptotic responses to TNFα. This study confirms Canephron N as an effective alternative to traditional anti-inflammatory drugs and provides initial evidence of its ability to inhibit apoptosis and necroptosis in the urogenital system. It also presents a detailed pathway investigation that identifies the specific targets of Canephron N within the NF-κB signaling cascade.
Collapse
Affiliation(s)
- Marija Milosevic
- ADSI-Austrian Drug Screening Institute, Leopold-Franzens University of Innsbruck, Innsbruck 6020, Austria
| | - Alexander Magnutzki
- ADSI-Austrian Drug Screening Institute, Leopold-Franzens University of Innsbruck, Innsbruck 6020, Austria
| | - Theodor Braun
- ADSI-Austrian Drug Screening Institute, Leopold-Franzens University of Innsbruck, Innsbruck 6020, Austria
| | - Shah Hussain
- ADSI-Austrian Drug Screening Institute, Leopold-Franzens University of Innsbruck, Innsbruck 6020, Austria
| | - Thomas Jakschitz
- ADSI-Austrian Drug Screening Institute, Leopold-Franzens University of Innsbruck, Innsbruck 6020, Austria
| | | | | | | | - Günther K Bonn
- ADSI-Austrian Drug Screening Institute, Leopold-Franzens University of Innsbruck, Innsbruck 6020, Austria.
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria; ADSI-Austrian Drug Screening Institute, Leopold-Franzens University of Innsbruck, Innsbruck 6020, Austria.
| | - Taras Valovka
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria; Department of Pediatrics I, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
11
|
Yu X, Lu D, Qi X, Paudel RR, Lin H, Holloman BL, Jin F, Xu L, Ding L, Peng W, Wang MC, Chen X, Wang J. Development of a RIPK1 degrader to enhance antitumor immunity. Nat Commun 2024; 15:10683. [PMID: 39681571 PMCID: PMC11649918 DOI: 10.1038/s41467-024-55006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The scaffolding function of receptor interacting protein kinase 1 (RIPK1) confers intrinsic and extrinsic resistance to immune checkpoint blockades (ICBs) and emerges as a promising target for improving cancer immunotherapies. To address the challenge posed by a poorly defined binding pocket within the intermediate domain of RIPK1, here we harness proteolysis targeting chimera (PROTAC) technology to develop a RIPK1 degrader, LD4172. LD4172 exhibits potent and selective RIPK1 degradation both in vitro and in vivo. Degradation of RIPK1 by LD4172 triggers immunogenic cell death, enhances tumor-infiltrating lymphocyte responses, and sensitizes tumors to anti-PD1 therapy in female C57BL/6J mice. This work reports a RIPK1 degrader that serves as a chemical probe for investigating the scaffolding functions of RIPK1 and as a potential therapeutic agent to enhance tumor responses to ICBs therapy.
Collapse
Affiliation(s)
- Xin Yu
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Dong Lu
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
| | - Xiaoli Qi
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Rishi Ram Paudel
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Hanfeng Lin
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Bryan L Holloman
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Longyong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lang Ding
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Meng C Wang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jin Wang
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Yang CY, Tseng YC, Tu YF, Kuo BJ, Hsu LC, Lien CI, Lin YS, Wang YT, Lu YC, Su TW, Lo YC, Lin SC. Reverse hierarchical DED assembly in the cFLIP-procaspase-8 and cFLIP-procaspase-8-FADD complexes. Nat Commun 2024; 15:8974. [PMID: 39419969 PMCID: PMC11487272 DOI: 10.1038/s41467-024-53306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
cFLIP, a master anti-apoptotic regulator, targets the FADD-induced DED complexes of procaspase-8 in death receptor and ripoptosome signaling pathways. Several tumor cells maintain relatively high levels of cFLIP in achieving their immortality. However, understanding the three-dimensional regulatory mechanism initiated or mediated by elevated levels of cFLIP has been limited by the absence of the atomic coordinates for cFLIP-induced DED complexes. Here we report the crystal plus cryo-EM structures to uncover an unconventional mechanism where cFLIP and procaspase-8 autonomously form a binary tandem DED complex, independent of FADD. This complex gains the ability to recruit FADD, thereby allosterically modulating cFLIP assembly and partially activating caspase-8 for RIPK1 cleavage. Our structure-guided mutagenesis experiments provide critical insights into these regulatory mechanisms, elucidating the resistance to apoptosis and necroptosis in achieving immortality. Finally, this research offers a unified model for the intricate bidirectional hierarchy-based processes using multiprotein helical assembly to govern cell fate decisions.
Collapse
Affiliation(s)
- Chao-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chun Tseng
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Chia-I Lien
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - You-Sheng Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Yin-Ting Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yen-Chen Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Wei Su
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
13
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Magri Z, Jetton D, Muendlein HI, Connolly WM, Russell H, Smirnova I, Sharma S, Bunnell S, Poltorak A. CD14 is a decision-maker between Fas-mediated death and inflammation. Cell Rep 2024; 43:114685. [PMID: 39213151 PMCID: PMC11471008 DOI: 10.1016/j.celrep.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Signaling through classical death receptor Fas was mainly appreciated as a pro-death pathway until recent reports characterized pro-inflammatory outcomes of Fas-mediated activation in pathological contexts. How Fas signaling can switch to pro-inflammatory activation is poorly understood. Herein, we report that in macrophages and neutrophils, the Toll-like receptor (TLR) adapter CD14 determines the inflammatory output of Fas-mediated signaling. Our findings propose CD14 as a crucial chaperone of Fas receptor internalization in macrophages and neutrophils, resulting in Cd14-/- myeloid cells that are protected from FasL-induced apoptosis, activate nuclear factor κB (NF-κB), and release cytokines in response. As in TLR signaling, CD14 is also required for Fas to signal through the adaptor TRIF (TIR-domain-containing adapter-inducing interferon-β) and induce a pro-death complex. Our findings demonstrate that CD14 availability can determine the switch between Fas-mediated pro-death and pro-inflammatory outcomes by internalizing the receptor.
Collapse
Affiliation(s)
- Zoie Magri
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - David Jetton
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Hunter Russell
- Graduate Program in Genetics, Molecular & Cellular Biology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen Bunnell
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
15
|
Li S, Ma L, Li X, Jiang Y, Luo Z, Yin F, Zhang Y, Chen Y, Wan S, Zhou H, Kong L, Wang X. Discovery of Covalent MLKL PROTAC Degraders via Optimization of a Theophylline Derivative Ligand for Treating Necroptosis. J Med Chem 2024; 67:15353-15372. [PMID: 39180479 DOI: 10.1021/acs.jmedchem.4c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Mixed lineage kinase domain-like pseudokinase (MLKL) initiates necroptosis and could serve as a therapeutic target related to a series of human diseases. Proteolysis-targeting chimeras (PROTACs) are useful tools for degrading pathological proteins and blocking disease processes. Using computer-aided modeling and molecular dynamics simulations, we developed a series of covalent MLKL PROTACs by linking and optimizing a theophylline derivative that covalently targets MLKL. Via structure-activity relationship studies, MP-11 was identified as a potent MLKL PROTAC degrader. Furthermore, MP-11 showed lower toxicity than the original MLKL ligand, exhibiting nanomolar-scale antinecroptotic activity on human cell lines. Xenograft model studies showed that MP-11 effectively degraded MLKL in vivo. Importantly, our study demonstrates that the covalent binding strategy is an effective approach for designing MLKL-targeting PROTACs, serving as a model for developing PROTACs to treat future necroptosis-related human diseases.
Collapse
Affiliation(s)
- Shang Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Liangliang Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xinxin Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yuhan Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongwen Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Fucheng Yin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yonglei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Siyuan Wan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Han Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaobing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
16
|
Veli Ö, Kaya Ö, Varanda AB, Hildebrandt X, Xiao P, Estornes Y, Poggenberg M, Wang Y, Pasparakis M, Bertrand MJM, Walczak H, Annibaldi A, Cardozo AK, Peltzer N. RIPK1 is dispensable for cell death regulation in β-cells during hyperglycemia. Mol Metab 2024; 87:101988. [PMID: 39004142 PMCID: PMC11295703 DOI: 10.1016/j.molmet.2024.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVE Receptor-interacting protein kinase 1 (RIPK1) orchestrates the decision between cell survival and cell death in response to tumor necrosis factor (TNF) and other cytokines. Whereas the scaffolding function of RIPK1 is crucial to prevent TNF-induced apoptosis and necroptosis, its kinase activity is required for necroptosis and partially for apoptosis. Although TNF is a proinflammatory cytokine associated with β-cell loss in diabetes, the mechanism by which TNF induces β-cell demise remains unclear. METHODS Here, we dissected the contribution of RIPK1 scaffold versus kinase functions to β-cell death regulation using mice lacking RIPK1 specifically in β-cells (Ripk1β-KO mice) or expressing a kinase-dead version of RIPK1 (Ripk1D138N mice), respectively. These mice were challenged with streptozotocin, a model of autoimmune diabetes. Moreover, Ripk1β-KO mice were further challenged with a high-fat diet to induce hyperglycemia. For mechanistic studies, pancreatic islets were subjected to various killing and sensitising agents. RESULTS Inhibition of RIPK1 kinase activity (Ripk1D138N mice) did not affect the onset and progression of hyperglycemia in a type 1 diabetes model. Moreover, the absence of RIPK1 expression in β-cells did not affect normoglycemia under basal conditions or hyperglycemia under diabetic challenges. Ex vivo, primary pancreatic islets are not sensitised to TNF-induced apoptosis and necroptosis in the absence of RIPK1. Intriguingly, we found that pancreatic islets display high levels of the antiapoptotic cellular FLICE-inhibitory protein (cFLIP) and low levels of apoptosis (Caspase-8) and necroptosis (RIPK3) components. Cycloheximide treatment, which led to a reduction in cFLIP levels, rendered primary islets sensitive to TNF-induced cell death which was fully blocked by caspase inhibition. CONCLUSIONS Unlike in many other cell types (e.g., epithelial, and immune), RIPK1 is not required for cell death regulation in β-cells under physiological conditions or diabetic challenges. Moreover, in vivo and in vitro evidence suggest that pancreatic β-cells do not undergo necroptosis but mainly caspase-dependent death in response to TNF. Last, our results show that β-cells have a distinct mode of regulation of TNF-cytotoxicity that is independent of RIPK1 and that may be highly dependent on cFLIP.
Collapse
Affiliation(s)
- Önay Veli
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Öykü Kaya
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Ana Beatriz Varanda
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ximena Hildebrandt
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Peng Xiao
- Inflammation and Cell Death Signalling group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Yann Estornes
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Matea Poggenberg
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Yuan Wang
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Manolis Pasparakis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Institute for Genetics, University of Cologne, Cologne, Germany
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Henning Walczak
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Alessandro Annibaldi
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alessandra K Cardozo
- Inflammation and Cell Death Signalling group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Nieves Peltzer
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
17
|
Zhu T, Wu BW. Recognition of necroptosis: From molecular mechanisms to detection methods. Biomed Pharmacother 2024; 178:117196. [PMID: 39053418 DOI: 10.1016/j.biopha.2024.117196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Necroptosis is a crucial modality of programmed cell death characterized by distinct morphological and biochemical hallmarks, including cell membrane rupture, organelle swelling, cytoplasmic and nuclear disintegration, cellular contents leakage, and release of damage-associated molecular patterns (DAMPs), accompanied by the inflammatory responses. Studies have shown that necroptosis is involved in the etiology and evolution of a variety of pathologies including organ damage, inflammation disorders, and cancer. Despite its significance, the field of necroptosis research grapples with the challenge of non-standardized detection methodologies. In this review, we introduce the fundamental concepts and molecular mechanisms of necroptosis and critically appraise the principles, merits, and inherent limitations of current detection technologies. This endeavor seeks to establish a methodological framework for necroptosis detection, thereby propelling deeper insights into the research of cell necroptosis.
Collapse
Affiliation(s)
- Ting Zhu
- Department of pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Bo-Wen Wu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Jetton D, Muendlein HI, Connolly WM, Magri Z, Smirnova I, Batorsky R, Mecsas J, Degterev A, Poltorak A. Non-canonical autophosphorylation of RIPK1 drives timely pyroptosis to control Yersinia infection. Cell Rep 2024; 43:114641. [PMID: 39154339 PMCID: PMC11465231 DOI: 10.1016/j.celrep.2024.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Caspase-8-dependent pyroptosis has been shown to mediate host protection from Yersinia infection. For this mode of cell death, the kinase activity of receptor-interacting protein kinase 1 (RIPK1) is required, but the autophosphorylation sites required to drive caspase-8 activation have not been determined. Here, we show that non-canonical autophosphorylation of RIPK1 at threonine 169 (T169) is necessary for caspase-8-mediated pyroptosis. Mice with alanine in the T169 position are highly susceptible to Yersinia dissemination. Mechanistically, the delayed formation of a complex containing RIPK1, ZBP1, Fas-associated protein with death domain (FADD), and caspase-8 abrogates caspase-8 maturation in T169A mice and leads to the eventual activation of RIPK3-dependent necroptosis in vivo; however, this is insufficient to protect the host, suggesting that timely pyroptosis during early response is specifically required to control infection. These results position RIPK1 T169 phosphorylation as a driver of pyroptotic cell death critical for host defense.
Collapse
Affiliation(s)
- David Jetton
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Zoie Magri
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexei Degterev
- Department of Cell, Molecular & Developmental Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexander Poltorak
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA; Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
19
|
Xian S, Yang Y, Nan N, Fu X, Shi J, Wu Q, Zhou S. Inhibition of mitochondrial ROS-mediated necroptosis by Dendrobium nobile Lindl. alkaloids in carbon tetrachloride induced acute liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118253. [PMID: 38679400 DOI: 10.1016/j.jep.2024.118253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium nobile Lindl. (DNL) is a well-known traditional Chinese medicine that has been recorded in the Chinese Pharmacopoeia (2020 edition). The previous data showed that Dendrobium nobile Lindl. alkaloids (DNLA) protect against CCl4-induced liver damage via oxidative stress reduction and mitochondrial function improvement, yet the exact regulatory signaling pathways remain undefined. AIM OF THE STUDY The aim of the present study was to investigate the role of necroptosis in the mode of CCl4-induced liver injury and determine whether DNLA protects against CCl4-induced acute liver injury (ALI) by inhibiting mitochondrial ROS (mtROS)-mediated necroptosis. MATERIALS AND METHODS DNLA was extracted from DNL, and the content was determined using liquid chromatograph mass spectrometer (LC-MS). In vivo experiments were conducted in C57BL/6J mice. Animals were administrated with DNLA (20 mg/kg/day, ig) for 7 days, and then challenged with CCl4 (20 μL/kg, ip). CCl4-induced liver injury in mice was evaluated through the assessment of biochemical indicators in mouse serum and histopathological examination of hepatic tissue using hematoxylin and eosin (H&E) staining. The protein and gene expressions were determined with western blotting and quantitative real-time PCR (RT-qPCR). Reactive oxygen species (ROS) production was detected using the fluorescent probe DCFH-DA, and mitochondrial membrane potential was evaluated using a fluorescent probe JC-1. The mtROS level was assessed using a fluorescence probe MitoSOX. RESULTS DNLA lessened CCl4-induced liver injury, evident by reduced AST and ALT levels and improved liver pathology. DNLA suppressed necroptosis by decreasing RIPK1, RIPK3, and MLKL phosphorylation, concurrently enhancing mitochondrial function. It also broke the positive feedback loop between mtROS and RIPK1/RIPK3/MLKL activation. Similar findings were observed with resveratrol and mitochondrial SOD2 overexpression, both mitigating mtROS and necroptosis. Further mechanistic studies found that DNLA inhibited the oxidation of RIPK1 and reduced its phosphorylation level, whereby lowering the phosphorylation of RIPK3 and MLKL, blocking necroptosis, and alleviating liver injury. CONCLUSIONS This study demonstrates that DNLA inhibits the necroptosis signaling pathway by reducing mtROS mediated oxidation of RIPK1, thereby reducing the phosphorylation of RIPK1, RIPK3, and MLKL, and protecting against liver injury.
Collapse
Affiliation(s)
- Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonggang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Nan Nan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
20
|
Herbert A. Osteogenesis imperfecta type 10 and the cellular scaffolds underlying common immunological diseases. Genes Immun 2024; 25:265-276. [PMID: 38811682 DOI: 10.1038/s41435-024-00277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Osteogenesis imperfecta type 10 (OI10) is caused by loss of function codon variants in the gene SERPINH1 that encodes heat shock protein 47 (HSP47), rather than in a gene specifying bone formation. The HSP47 variants disrupt the folding of both collagen and the endonuclease IRE1α (inositol-requiring enzyme 1α) that splices X-Box Binding Protein 1 (XBP1) mRNA. Besides impairing bone development, variants likely affect osteoclast differentiation. Three distinct biochemical scaffold play key roles in the differentiation and regulated cell death of osteoclasts. These scaffolds consist of non-templated protein modifications, ordered lipid arrays, and protein filaments. The scaffold components are specified genetically, but assemble in response to extracellular perturbagens, pathogens, and left-handed Z-RNA helices encoded genomically by flipons. The outcomes depend on interactions between RIPK1, RIPK3, TRIF, and ZBP1 through short interaction motifs called RHIMs. The causal HSP47 nonsynonymous substitutions occur in a novel variant leucine repeat region (vLRR) that are distantly related to RHIMs. Other vLRR protein variants are causal for a variety of different mendelian diseases. The same scaffolds that drive mendelian pathology are associated with many other complex disease outcomes. Their assembly is triggered dynamically by flipons and other context-specific switches rather than by causal, mendelian, codon variants.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA, USA.
| |
Collapse
|
21
|
Zhang C, Zhou Y, Xi S, Han D, Wang Z, Zhu J, Cai Y, Zhang H, Jin G, Mi Y. The TRIF-RIPK1-Caspase-8 signalling in the regulation of TLR4-driven gene expression. Immunology 2024; 172:566-576. [PMID: 38618995 DOI: 10.1111/imm.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
The inflammatory response is tightly regulated to eliminate invading pathogens and avoid excessive production of inflammatory mediators and tissue damage. Caspase-8 is a cysteine protease that is involved in programmed cell death. Here we show the TRIF-RIPK1-Caspase-8 is required for LPS-induced CYLD degradation in macrophages. TRIF functions in the upstream of RIPK1. The homotypic interaction motif of TRIF and the death domain of RIPK1 are essential for Caspase-8 activation. Caspase-8 cleaves CYLD and the D235A mutant is resistant to the protease activity of Caspase-8. TRIF and RIPK1 serve as substrates of Capase-8 in vitro. cFLIP interacts with Caspase-8 to modulate its protease activity on CYLD and cell death. Deficiency in TRIF, Caspase-8 or CYLD can lead to a decrease or increase in the expression of genes encoding inflammatory cytokines. Together, the TRIF-Caspase-8 and CYLD play opposite roles in the regulation of TLR4 signalling.
Collapse
Affiliation(s)
- Chengyang Zhang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuangtong Xi
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Danlin Han
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ziyu Wang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingwen Zhu
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yizhe Cai
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haifeng Zhang
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ge Jin
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Department of Biochemistry and molecular biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Tang J, Ma Y, Li M, Liu X, Wang Y, Zhang J, Shu H, Liu Z, Zhang C, Fu L, Hu J, Zhang Y, Jia Z, Feng Y. FADD regulates adipose inflammation, adipogenesis, and adipocyte survival. Cell Death Discov 2024; 10:323. [PMID: 39009585 PMCID: PMC11250791 DOI: 10.1038/s41420-024-02089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Adipose tissue, aside from adipocytes, comprises various abundant immune cells. The accumulation of low-grade chronic inflammation in adipose tissue serves as a primary cause and hallmark of insulin resistance. In this study, we investigate the physiological roles of FADD in adipose tissue inflammation, adipogenesis, and adipocyte survival. High levels of Fadd mRNA were observed in mitochondrial-rich organs, particularly brown adipose tissue. To explore its metabolic functions, we generated global Fadd knockout mice, resulting in embryonic lethality, while heterozygous knockout (Fadd+/-) mice did not show any significant changes in body weight or composition. However, Fadd+/- mice exhibited reduced respiratory exchange ratio (RER) and serum cholesterol levels, along with heightened global and adipose inflammatory responses. Furthermore, AT masses and expression levels of adipogenic and lipogenic genes were decreased in Fadd+/- mice. In cellular studies, Fadd inhibition disrupted adipogenic differentiation and suppressed the expression of adipogenic and lipogenic genes in cultured adipocytes. Additionally, Fadd overexpression caused adipocyte death in vitro with decreased RIPK1 and RIPK3 expression, while Fadd inhibition downregulated RIPK3 in iWAT in vivo. These findings collectively underscore the indispensable role of FADD in adipose inflammation, adipogenesis, and adipocyte survival.
Collapse
Affiliation(s)
- Jianlei Tang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Endocrinology Department of the Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Yue Ma
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Meilin Li
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Xiangpeng Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Yuting Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Hui Shu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Chi Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China
| | - Lei Fu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Suzhou Medical School, Soochow University, Suzhou, China.
| | - Yong Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China.
| | - Zhihao Jia
- Cambridge-Suda Genomic Resource Center, Suzhou Medical School, Soochow University, Suzhou, China.
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Suzhou Medical School, Soochow University, Suzhou, China.
| |
Collapse
|
23
|
Imai T, Lin J, Kaya GG, Ju E, Kondylis V, Kelepouras K, Liccardi G, Kim C, Pasparakis M. The RIPK1 death domain restrains ZBP1- and TRIF-mediated cell death and inflammation. Immunity 2024; 57:1497-1513.e6. [PMID: 38744293 DOI: 10.1016/j.immuni.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
RIPK1 is a multi-functional kinase that regulates cell death and inflammation and has been implicated in the pathogenesis of inflammatory diseases. RIPK1 acts in a kinase-dependent and kinase-independent manner to promote or suppress apoptosis and necroptosis, but the underlying mechanisms remain poorly understood. Here, we show that a mutation (R588E) disrupting the RIPK1 death domain (DD) caused perinatal lethality induced by ZBP1-mediated necroptosis. Additionally, these mice developed postnatal inflammatory pathology, which was mediated by necroptosis-independent TNFR1, TRADD, and TRIF signaling, partially requiring RIPK3. Our biochemical mechanistic studies revealed that ZBP1- and TRIF-mediated activation of RIPK3 required RIPK1 kinase activity in wild-type cells but not in Ripk1R588E/R588E cells, suggesting that DD-dependent oligomerization of RIPK1 and its interaction with FADD determine the mechanisms of RIPK3 activation by ZBP1 and TRIF. Collectively, these findings revealed a critical physiological role of DD-dependent RIPK1 signaling that is important for the regulation of tissue homeostasis and inflammation.
Collapse
Affiliation(s)
- Takashi Imai
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Juan Lin
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Research Unit of Cellular Stress of Chinese Academy of Medical Sciences, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Göksu Gökberk Kaya
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Eunjin Ju
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Vangelis Kondylis
- Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany; Institute of Pathology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Konstantinos Kelepouras
- Institute of Biochemistry I, Center for Biochemistry, Faculty of Medicine, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Gianmaria Liccardi
- Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany; Institute of Biochemistry I, Center for Biochemistry, Faculty of Medicine, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Chun Kim
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Department of Medicinal and Life Sciences, Hanyang University (ERICA Campus), Ansan 15588, Republic of Korea
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
24
|
Mannion J, Gifford V, Bellenie B, Fernando W, Ramos Garcia L, Wilson R, John SW, Udainiya S, Patin EC, Tiu C, Smith A, Goicoechea M, Craxton A, Moraes de Vasconcelos N, Guppy N, Cheung KMJ, Cundy NJ, Pierrat O, Brennan A, Roumeliotis TI, Benstead-Hume G, Alexander J, Muirhead G, Layzell S, Lyu W, Roulstone V, Allen M, Baldock H, Legrand A, Gabel F, Serrano-Aparicio N, Starling C, Guo H, Upton J, Gyrd-Hansen M, MacFarlane M, Seddon B, Raynaud F, Roxanis I, Harrington K, Haider S, Choudhary JS, Hoelder S, Tenev T, Meier P. A RIPK1-specific PROTAC degrader achieves potent antitumor activity by enhancing immunogenic cell death. Immunity 2024; 57:1514-1532.e15. [PMID: 38788712 PMCID: PMC11236506 DOI: 10.1016/j.immuni.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.
Collapse
Affiliation(s)
- Jonathan Mannion
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Valentina Gifford
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Benjamin Bellenie
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Winnie Fernando
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Laura Ramos Garcia
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Sidonie Wicky John
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Savita Udainiya
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Emmanuel C Patin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Crescens Tiu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Angel Smith
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Maria Goicoechea
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Cambridge CB2 1QR, UK
| | | | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Kwai-Ming J Cheung
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Nicholas J Cundy
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Olivier Pierrat
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Alfie Brennan
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | | | - Graeme Benstead-Hume
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - John Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Gareth Muirhead
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| | - Wenxin Lyu
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Victoria Roulstone
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Mark Allen
- Biological Services Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Holly Baldock
- Biological Services Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Arnaud Legrand
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Florian Gabel
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | | | - Chris Starling
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Hongyan Guo
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - Jason Upton
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Mads Gyrd-Hansen
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Cambridge CB2 1QR, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| | - Florence Raynaud
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Swen Hoelder
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
25
|
Du J, Wang Z. Regulation of RIPK1 Phosphorylation: Implications for Inflammation, Cell Death, and Therapeutic Interventions. Biomedicines 2024; 12:1525. [PMID: 39062098 PMCID: PMC11275223 DOI: 10.3390/biomedicines12071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) plays a crucial role in controlling inflammation and cell death. Its function is tightly controlled through post-translational modifications, enabling its dynamic switch between promoting cell survival and triggering cell death. Phosphorylation of RIPK1 at various sites serves as a critical mechanism for regulating its activity, exerting either activating or inhibitory effects. Perturbations in RIPK1 phosphorylation status have profound implications for the development of severe inflammatory diseases in humans. This review explores the intricate regulation of RIPK1 phosphorylation and dephosphorylation and highlights the potential of targeting RIPK1 phosphorylation as a promising therapeutic strategy for mitigating human diseases.
Collapse
Affiliation(s)
- Jingchun Du
- Department of Clinical Immunology, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA
| |
Collapse
|
26
|
Gao J, Xiong A, Liu J, Li X, Wang J, Zhang L, Liu Y, Xiong Y, Li G, He X. PANoptosis: bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther 2024; 31:970-983. [PMID: 38553639 PMCID: PMC11257964 DOI: 10.1038/s41417-024-00765-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 07/20/2024]
Abstract
This comprehensive review explores the intricate mechanisms of PANoptosis and its implications in cancer. PANoptosis, a convergence of apoptosis, pyroptosis, and necroptosis, plays a crucial role in cell death and immune response regulation. The study delves into the molecular pathways of each cell death mechanism and their crosstalk within PANoptosis, emphasizing the shared components like caspases and the PANoptosome complex. It highlights the significant role of PANoptosis in various cancers, including respiratory, digestive, genitourinary, gliomas, and breast cancers, showing its impact on tumorigenesis and patient survival rates. We further discuss the interwoven relationship between PANoptosis and the tumor microenvironment (TME), illustrating how PANoptosis influences immune cell behavior and tumor progression. It underscores the dynamic interplay between tumors and their microenvironments, focusing on the roles of different immune cells and their interactions with cancer cells. Moreover, the review presents new breakthroughs in cancer therapy, emphasizing the potential of targeting PANoptosis to enhance anti-tumor immunity. It outlines various strategies to manipulate PANoptosis pathways for therapeutic purposes, such as targeting key signaling molecules like caspases, NLRP3, RIPK1, and RIPK3. The potential of novel treatments like immunogenic PANoptosis-initiated therapies and nanoparticle-based strategies is also explored.
Collapse
Affiliation(s)
- Jie Gao
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Jiliu Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Xiaolan Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, The First Affiliated Hospital of Medical University, Guangzhou, Guangdong, 510120, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan friendship hospital, Chengdu, 610000, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, The First Affiliated Hospital of Medical University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
27
|
Bae H, Jang Y, Karki R, Han JH. Implications of inflammatory cell death-PANoptosis in health and disease. Arch Pharm Res 2024; 47:617-631. [PMID: 38987410 DOI: 10.1007/s12272-024-01506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Regulated cell death (RCD) pathways, such as pyroptosis, apoptosis, and necroptosis, are essential for maintaining the body's balance, defending against pathogens, and eliminating abnormal cells that could lead to diseases like cancer. Although these pathways operate through distinct mechanisms, recent genetic and pharmacological studies have shown that they can interact and influence each other. The concept of "PANoptosis" has emerged, highlighting the interplay between pyroptosis, apoptosis, and necroptosis, especially during cellular responses to infections. This article provides a concise overview of PANoptosis and its molecular mechanisms, exploring its implications in various diseases. The review focuses on the extensive interactions among different RCD pathways, emphasizing the role of PANoptosis in infections, cytokine storms, inflammatory diseases, and cancer. Understanding PANoptosis is crucial for developing novel treatments for conditions involving infections, sterile inflammations, and cancer.
Collapse
Affiliation(s)
- Hyun Bae
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea
| | - Yeonseo Jang
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea.
- Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal.
| | - Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju, 55338, Republic of Korea.
| |
Collapse
|
28
|
Rodriguez DA, Tummers B, Shaw JJP, Quarato G, Weinlich R, Cripps J, Fitzgerald P, Janke LJ, Pelletier S, Crawford JC, Green DR. The interaction between RIPK1 and FADD controls perinatal lethality and inflammation. Cell Rep 2024; 43:114335. [PMID: 38850531 PMCID: PMC11256114 DOI: 10.1016/j.celrep.2024.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/15/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
Perturbation of the apoptosis and necroptosis pathways critically influences embryogenesis. Receptor-associated protein kinase-1 (RIPK1) interacts with Fas-associated via death domain (FADD)-caspase-8-cellular Flice-like inhibitory protein long (cFLIPL) to regulate both extrinsic apoptosis and necroptosis. Here, we describe Ripk1-mutant animals (Ripk1R588E [RE]) in which the interaction between FADD and RIPK1 is disrupted, leading to embryonic lethality. This lethality is not prevented by further removal of the kinase activity of Ripk1 (Ripk1R588E K45A [REKA]). Both Ripk1RE and Ripk1REKA animals survive to adulthood upon ablation of Ripk3. While embryonic lethality of Ripk1RE mice is prevented by ablation of the necroptosis effector mixed lineage kinase-like (MLKL), animals succumb to inflammation after birth. In contrast, Mlkl ablation does not prevent the death of Ripk1REKA embryos, but animals reach adulthood when both MLKL and caspase-8 are removed. Ablation of the nucleic acid sensor Zbp1 largely prevents lethality in both Ripk1RE and Ripk1REKA embryos. Thus, the RIPK1-FADD interaction prevents Z-DNA binding protein-1 (ZBP1)-induced, RIPK3-caspase-8-mediated embryonic lethality, affected by the kinase activity of RIPK1.
Collapse
Affiliation(s)
- Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Bart Tummers
- Centre for Inflammation Biology & Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK.
| | - Jeremy J P Shaw
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Treeline Biosciences, San Diego, CA 92121, USA
| | | | - James Cripps
- Center for Cancer Immunology and Immunotherapy, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Patrick Fitzgerald
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University Genome Editing Center, Indiana University School of Medicine, Indiana University, Indianapolis, IA 46902, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
29
|
Meng X, Song Q, Liu Z, Liu X, Wang Y, Liu J. Neurotoxic β-amyloid oligomers cause mitochondrial dysfunction-the trigger for PANoptosis in neurons. Front Aging Neurosci 2024; 16:1400544. [PMID: 38808033 PMCID: PMC11130508 DOI: 10.3389/fnagi.2024.1400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
As the global population ages, the incidence of elderly patients with dementia, represented by Alzheimer's disease (AD), will continue to increase. Previous studies have suggested that β-amyloid protein (Aβ) deposition is a key factor leading to AD. However, the clinical efficacy of treating AD with anti-Aβ protein antibodies is not satisfactory, suggesting that Aβ amyloidosis may be a pathological change rather than a key factor leading to AD. Identification of the causes of AD and development of corresponding prevention and treatment strategies is an important goal of current research. Following the discovery of soluble oligomeric forms of Aβ (AβO) in 1998, scientists began to focus on the neurotoxicity of AβOs. As an endogenous neurotoxin, the active growth of AβOs can lead to neuronal death, which is believed to occur before plaque formation, suggesting that AβOs are the key factors leading to AD. PANoptosis, a newly proposed concept of cell death that includes known modes of pyroptosis, apoptosis, and necroptosis, is a form of cell death regulated by the PANoptosome complex. Neuronal survival depends on proper mitochondrial function. Under conditions of AβO interference, mitochondrial dysfunction occurs, releasing lethal contents as potential upstream effectors of the PANoptosome. Considering the critical role of neurons in cognitive function and the development of AD as well as the regulatory role of mitochondrial function in neuronal survival, investigation of the potential mechanisms leading to neuronal PANoptosis is crucial. This review describes the disruption of neuronal mitochondrial function by AβOs and elucidates how AβOs may activate neuronal PANoptosis by causing mitochondrial dysfunction during the development of AD, providing guidance for the development of targeted neuronal treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
30
|
Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer 2024; 24:299-315. [PMID: 38454135 DOI: 10.1038/s41568-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.
Collapse
Affiliation(s)
- Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| | - Arnaud J Legrand
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
31
|
Solon M, Ge N, Hambro S, Haller S, Jiang J, Baca M, Preston J, Maltzman A, Wickliffe KE, Liang Y, Reja R, Nickles D, Newton K, Webster JD. ZBP1 and TRIF trigger lethal necroptosis in mice lacking caspase-8 and TNFR1. Cell Death Differ 2024; 31:672-682. [PMID: 38548850 PMCID: PMC11093969 DOI: 10.1038/s41418-024-01286-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/16/2024] Open
Abstract
Necroptosis is a lytic form of cell death that is mediated by the kinase RIPK3 and the pseudokinase MLKL when caspase-8 is inhibited downstream of death receptors, toll-like receptor 3 (TLR3), TLR4, and the intracellular Z-form nucleic acid sensor ZBP1. Oligomerization and activation of RIPK3 is driven by interactions with the kinase RIPK1, the TLR adaptor TRIF, or ZBP1. In this study, we use immunohistochemistry (IHC) and in situ hybridization (ISH) assays to generate a tissue atlas characterizing RIPK1, RIPK3, Mlkl, and ZBP1 expression in mouse tissues. RIPK1, RIPK3, and Mlkl were co-expressed in most immune cell populations, endothelial cells, and many barrier epithelia. ZBP1 was expressed in many immune populations, but had more variable expression in epithelia compared to RIPK1, RIPK3, and Mlkl. Intriguingly, expression of ZBP1 was elevated in Casp8-/- Tnfr1-/- embryos prior to their succumbing to aberrant necroptosis around embryonic day 15 (E15). ZBP1 contributed to this embryonic lethality because rare Casp8-/- Tnfr1-/- Zbp1-/- mice survived until after birth. Necroptosis mediated by TRIF contributed to the demise of Casp8-/- Tnfr1-/- Zbp1-/- pups in the perinatal period. Of note, Casp8-/- Tnfr1-/- Trif-/- Zbp1-/- mice exhibited autoinflammation and morbidity, typically within 5-7 weeks of being born, which is not seen in Casp8-/- Ripk1-/- Trif-/- Zbp1-/-, Casp8-/- Ripk3-/-, or Casp8-/- Mlkl-/- mice. Therefore, after birth, loss of caspase-8 probably unleashes RIPK1-dependent necroptosis driven by death receptors other than TNFR1.
Collapse
Affiliation(s)
- Margaret Solon
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Nianfeng Ge
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Shannon Hambro
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Susan Haller
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jian Jiang
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Miriam Baca
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jessica Preston
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Allie Maltzman
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Katherine E Wickliffe
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuxin Liang
- Department of Microchemistry, Proteomics, Lipidomics, and Next Generation Sequencing, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Rohit Reja
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
- Department of Oncology Bioinformatics, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Dorothee Nickles
- Department of Oncology Bioinformatics, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
- Department of Translational Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
32
|
Lee B, Kim YY, Jeong S, Lee SW, Lee SJ, Rho MC, Kim SH, Lee S. Oleanolic Acid Acetate Alleviates Cisplatin-Induced Nephrotoxicity via Inhibition of Apoptosis and Necroptosis In Vitro and In Vivo. TOXICS 2024; 12:301. [PMID: 38668524 PMCID: PMC11054587 DOI: 10.3390/toxics12040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Cisplatin is a widely used anti-cancer drug for treating solid tumors, but it is associated with severe side effects, including nephrotoxicity. Various studies have suggested that the nephrotoxicity of cisplatin could be overcome; nonetheless, an effective adjuvant drug has not yet been established. Oleanolic acid acetate (OAA), a triterpenoid isolated from Vigna angularis, is commonly used to treat inflammatory and allergic diseases. This study aimed to investigate the protective effects of OAA against cisplatin-induced apoptosis and necroptosis using TCMK-1 cells and a mouse model. In cisplatin-treated TCMK-1 cells, OAA treatment significantly reduced Bax and cleaved-caspase3 expression, whereas it increased Bcl-2 expression. Moreover, in a cisplatin-induced kidney injury mouse model, OAA treatment alleviated weight loss in the body and major organs and also relieved cisplatin-induced nephrotoxicity symptoms. RNA sequencing analysis of kidney tissues identified lipocalin-2 as the most upregulated gene by cisplatin. Additionally, necroptosis-related genes such as receptor-interacting protein kinase (RIPK) and mixed lineage kinase domain-like (MLKL) were identified. In an in vitro study, the phosphorylation of RIPKs and MLKL was reduced by OAA pretreatment in both cisplatin-treated cells and cells boosted via co-treatment with z-VAD-FMK. In conclusion, OAA could protect the kidney from cisplatin-induced nephrotoxicity and may serve as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Bori Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Yeon-Yong Kim
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seungwon Jeong
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seung Woong Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seung-Jae Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Mun-Chual Rho
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Sang-Hyun Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soyoung Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| |
Collapse
|
33
|
Wang J, Lu D, Yu X, Qi X, Lin H, Holloman BL, Jin F, Xu L, Ding L, Peng W, Wang M, Chen X. Development of a First-in-Class RIPK1 Degrader to Enhance Antitumor Immunity. RESEARCH SQUARE 2024:rs.3.rs-4156736. [PMID: 38659866 PMCID: PMC11042424 DOI: 10.21203/rs.3.rs-4156736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The scaffolding function of receptor interacting protein kinase 1 (RIPK1) confers intrinsic and extrinsic resistance to immune checkpoint blockades (ICBs) and has emerged as a promising target for improving cancer immunotherapies. To address the challenge posed by a poorly defined binding pocket within the intermediate domain, we harnessed proteolysis targeting chimera (PROTAC) technology to develop a first-in-class RIPK1 degrader, LD4172. LD4172 exhibited potent and selective RIPK1 degradation both in vitro and in vivo. Degradation of RIPK1 by LD4172 triggered immunogenic cell death (ICD) and enriched tumor-infiltrating lymphocytes and substantially sensitized the tumors to anti-PD1 therapy. This work reports the first RIPK1 degrader that serves as a chemical probe for investigating the scaffolding functions of RIPK1 and as a potential therapeutic agent to enhance tumor responses to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
| | | | - Xin Yu
- Baylor College of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee CH, Hsu KW, Hsieh YY, Li WT, Long Y, Lin CY, Chen SH. Unveiling IL6R and MYC as Targeting Biomarkers in Imatinib-Resistant Chronic Myeloid Leukemia through Advanced Non-Invasive Apoptosis Detection Sensor Version 2 Detection. Cells 2024; 13:616. [PMID: 38607055 PMCID: PMC11011921 DOI: 10.3390/cells13070616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
The management of chronic myelogenous leukemia (CML) has seen significant progress with the introduction of tyrosine kinase inhibitors (TKIs), particularly Imatinib. However, a notable proportion of CML patients develop resistance to Imatinib, often due to the persistence of leukemia stem cells and resistance mechanisms independent of BCR::ABL1 This study investigates the roles of IL6R, IL7R, and MYC in Imatinib resistance by employing CRISPR/Cas9 for gene editing and the Non-Invasive Apoptosis Detection Sensor version 2 (NIADS v2) for apoptosis assessment. The results indicate that Imatinib-resistant K562 cells (K562-IR) predominantly express IL6R, IL7R, and MYC, with IL6R and MYC playing crucial roles in cell survival and sensitivity to Imatinib. Conversely, IL7R does not significantly impact cytotoxicity, either alone or in combination with Imatinib. Further genetic editing experiments confirm the protective functions of IL6R and MYC in K562-IR cells, suggesting their potential as therapeutic targets for overcoming Imatinib resistance in CML. This study contributes to understanding the mechanisms of Imatinib resistance in CML, proposing IL6R and MYC as pivotal targets for therapeutic strategies. Moreover, the utilization of NIADS v2 enhances our capability to analyze apoptosis and drug responses, contributing to a deeper understanding of CML pathogenesis and treatment options.
Collapse
MESH Headings
- Humans
- Apoptosis
- Biomarkers
- Drug Resistance, Neoplasm
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Receptors, Interleukin-6
- Proto-Oncogene Proteins c-myc
Collapse
Affiliation(s)
- Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 23561, Taiwan;
- Ph.D. Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 23561, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan;
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City 40402, Taiwan
- Program for Cancer Biology and Drug Discovery, Drug Development Center, China Medical University, Taichung City 40402, Taiwan
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ting Li
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Yuqing Long
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Chun-Yu Lin
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Shu-Huey Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
35
|
Liu X, Miao M, Sun J, Wu J, Qin X. PANoptosis: a potential new target for programmed cell death in breast cancer treatment and prognosis. Apoptosis 2024; 29:277-288. [PMID: 38001342 PMCID: PMC10873433 DOI: 10.1007/s10495-023-01904-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/26/2023]
Abstract
Breast cancer is a prevalent and severe form of cancer that affects women all over the world. The incidence and mortality of breast cancer continue to rise due to factors such as population growth and the aging of the population. There is a growing area of research focused on a cell death mechanism known as PANoptosis. This mechanism is primarily regulated by the PANoptosome complex and displays important characteristics of cell death, including pyroptosis, apoptosis, and/or necroptosis, without being strictly defined by the cell death pathway. PANoptosis acts as a defensive response to external stimuli and pathogens, contributing to the maintenance of cellular homeostasis and overall stability. Increasing evidence suggests that programmed cell death (PCD) plays an important role in the development of breast cancer, and PANoptosis, as a novel form of PCD, may be a crucial factor in the development of breast cancer, potentially leading to the identification of new therapeutic strategies. Therefore, the concept of PANoptosis not only deepens our understanding of PCD, but also opens up new avenues for treating malignant diseases, including breast cancer. This review aims to provide an overview of the definition of PANoptosis, systematically explore the interplay between PANoptosis and various forms of PCD, and discuss its implications for breast cancer. Additionally, it delves into the current progress and future directions of PANoptosis research in the context of breast cancer, establishing a theoretical foundation for the development of molecular targets within critical signaling pathways related to PANoptosis, as well as multi-target combination therapy approaches, with the goal of inducing PANoptosis as part of breast cancer treatment.
Collapse
Affiliation(s)
- Xinxin Liu
- School of Basic Medical Sciences, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Meiqi Miao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Jijing Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Jianli Wu
- School of Basic Medical Sciences, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| | - Xunyun Qin
- Department of Oncology, Beijing Yao Medicine Hospital, Beijing, 100071, China.
| |
Collapse
|
36
|
Yu X, Lu D, Qi X, Lin H, Holloman BL, Jin F, Xu L, Ding L, Peng W, Wang MC, Chen X, Wang J. Development of a First-in-Class RIPK1 Degrader to Enhance Antitumor Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586133. [PMID: 38590362 PMCID: PMC11000689 DOI: 10.1101/2024.03.25.586133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The scaffolding function of receptor interacting protein kinase 1 (RIPK1) confers intrinsic and extrinsic resistance to immune checkpoint blockades (ICBs) and has emerged as a promising target for improving cancer immunotherapies. To address the challenge posed by a poorly defined binding pocket within the intermediate domain, we harnessed proteolysis targeting chimera (PROTAC) technology to develop a first-in-class RIPK1 degrader, LD4172. LD4172 exhibited potent and selective RIPK1 degradation both in vitro and in vivo . Degradation of RIPK1 by LD4172 triggered immunogenic cell death (ICD) and enriched tumor-infiltrating lymphocytes and substantially sensitized the tumors to anti-PD1 therapy. This work reports the first RIPK1 degrader that serves as a chemical probe for investigating the scaffolding functions of RIPK1 and as a potential therapeutic agent to enhance tumor responses to immune checkpoint blockade therapy.
Collapse
|
37
|
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Webster JD, Guo H, Dixit VM. Caspase cleavage of RIPK3 after Asp 333 is dispensable for mouse embryogenesis. Cell Death Differ 2024; 31:254-262. [PMID: 38191748 PMCID: PMC10850060 DOI: 10.1038/s41418-023-01255-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
The proteolytic activity of caspase-8 suppresses lethal RIPK1-, RIPK3- and MLKL-dependent necroptosis during mouse embryogenesis. Caspase-8 is reported to cleave RIPK3 in addition to the RIPK3-interacting kinase RIPK1, but whether cleavage of RIPK3 is crucial for necroptosis suppression is unclear. Here we show that caspase-8-driven cleavage of endogenous mouse RIPK3 after Asp333 is dependent on downstream caspase-3. Consistent with RIPK3 cleavage being a consequence of apoptosis rather than a critical brake on necroptosis, Ripk3D333A/D333A knock-in mice lacking the Asp333 cleavage site are viable and develop normally. Moreover, in contrast to mice lacking caspase-8 in their intestinal epithelial cells, Ripk3D333A/D333A mice do not exhibit increased sensitivity to high dose tumor necrosis factor (TNF). Ripk3D333A/D333A macrophages died at the same rate as wild-type (WT) macrophages in response to TNF plus cycloheximide, TNF plus emricasan, or infection with murine cytomegalovirus (MCMV) lacking M36 and M45 to inhibit caspase-8 and RIPK3 activation, respectively. We conclude that caspase cleavage of RIPK3 is dispensable for mouse development, and that cleavage of caspase-8 substrates, including RIPK1, is sufficient to prevent necroptosis.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Katherine E Wickliffe
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Allie Maltzman
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Debra L Dugger
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Hongyan Guo
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, 71103, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
38
|
Roderick-Richardson JE, Lim SE, Suzuki S, Ahmad MH, Selway J, Suleiman R, Karna K, Lehman J, O’Donnell J, Castilla LH, Maelfait J, Rehwinkel J, Kelliher MA. ZBP1 activation triggers hematopoietic stem and progenitor cell death resulting in bone marrow failure in mice. Proc Natl Acad Sci U S A 2024; 121:e2309628121. [PMID: 38227660 PMCID: PMC10823230 DOI: 10.1073/pnas.2309628121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024] Open
Abstract
Human bone marrow failure (BMF) syndromes result from the loss of hematopoietic stem and progenitor cells (HSPC), and this loss has been attributed to cell death; however, the cell death triggers, and mechanisms remain unknown. During BMF, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) increase. These ligands are known to induce necroptosis, an inflammatory form of cell death mediated by RIPK1, RIPK3, and MLKL. We previously discovered that mice with a hematopoietic RIPK1 deficiency (Ripk1HEM KO) exhibit inflammation, HSPC loss, and BMF, which is partially ameliorated by a RIPK3 deficiency; however, whether RIPK3 exerts its effects through its function in mediating necroptosis or other forms of cell death remains unclear. Here, we demonstrate that similar to a RIPK3 deficiency, an MLKL deficiency significantly extends survival and like Ripk3 deficiency partially restores hematopoiesis in Ripk1HEM KO mice revealing that both necroptosis and apoptosis contribute to BMF in these mice. Using mouse models, we show that the nucleic acid sensor Z-DNA binding protein 1 (ZBP1) is up-regulated in mouse RIPK1-deficient bone marrow cells and that ZBP1's function in endogenous nucleic acid sensing is necessary for HSPC death and contributes to BMF. We also provide evidence that IFNγ mediates HSPC death in Ripk1HEM KO mice, as ablation of IFNγ but not TNFα receptor signaling significantly extends survival of these mice. Together, these data suggest that RIPK1 maintains hematopoietic homeostasis by preventing ZBP1 activation and induction of HSPC death.
Collapse
Affiliation(s)
| | - Sung-Eun Lim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Sakiko Suzuki
- Department of Medicine, Division of Hematology-Oncology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Mohd Hafiz Ahmad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Jonathan Selway
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Reem Suleiman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Keshab Karna
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Jesse Lehman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Joanne O’Donnell
- School of Biological Sciences, Monash University, Clayton, VIC3800, Australia
| | - Lucio H. Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Jonathan Maelfait
- Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, Ghent9052, Belgium
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OxfordOX3 9DS, United Kingdom
| | - Michelle A. Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| |
Collapse
|
39
|
Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell 2024; 187:235-256. [PMID: 38242081 DOI: 10.1016/j.cell.2023.11.044] [Citation(s) in RCA: 313] [Impact Index Per Article: 313.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Cell death supports morphogenesis during development and homeostasis after birth by removing damaged or obsolete cells. It also curtails the spread of pathogens by eliminating infected cells. Cell death can be induced by the genetically programmed suicide mechanisms of apoptosis, necroptosis, and pyroptosis, or it can be a consequence of dysregulated metabolism, as in ferroptosis. Here, we review the signaling mechanisms underlying each cell-death pathway, discuss how impaired or excessive activation of the distinct cell-death processes can promote disease, and highlight existing and potential therapies for redressing imbalances in cell death in cancer and other diseases.
Collapse
Affiliation(s)
- Kim Newton
- Physiological Chemistry Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Andreas Strasser
- WEHI: Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Vishva M Dixit
- Physiological Chemistry Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
40
|
Chen M, Huang M, Chen X, Lin X, Chen X. Multiomics blueprint of PANoptosis in deciphering immune characteristics and prognosis stratification of glioma patients. J Gene Med 2024; 26:e3621. [PMID: 37997255 DOI: 10.1002/jgm.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND As the most prevalent primary brain tumor in adults, glioma accounts for the majority of all central nervous system malignant tumors. The concept of PANoptosis is a relatively new, underlining the interconnection and synergy among three distinct pathways: pyroptosis, apoptosis and necroptosis. METHODS We performed single-cell annotations of glioma cells and determined crucial signaling pathways through cell chat analysis. Using least absolute shrinkage and selection operator (LASSO) and Cox analyses, we identified a gene set with prognostic values. Our model was validated using independent external cohort. In addition, we employed single-sample gene set enrichment analysis and xCell analyses to describe the detailed profile of infiltrated immune cells and depicted the gene mutation landscape in the two groups. RESULTS We identified seven distinct cell clusters in glioma samples, including oligodendrocyte precursor cells (OPCs), myeloid cells, tumor cells, oligodendrocytes, astrocytes, vascular cells and neuronal cells. We found that myeloid cells showed the highest PANoptosis activity. An intense mutual cell communication pattern between the tumor cells and OPCs and oligodendrocytes was observed. Differentially expressed genes between the high-PANoptosis and low-PANoptosis cell groups were obtained, which were enriched to actin cytoskeleton, cell adhesion molecules and gamma R-mediated phagocytosis pathways. We determined a set of five genes of prognostic significance: SAA1, SLPI, DCX, S100A8 and TNR. The prognostic differences between the two groups in the internal and external sets were found to be statistically significant. We found a marked correlation between S100A8 and activated dendritic cell, macrophage, mast cell, myeloid derived suppressor cell and Treg infiltration. Moreover, we have observed a significant increase of PTEN mutation in the high risk (HR) group of glioma patients. CONCLUSIONS In the present study, we have constructed a prognostic model that is based on the PANoptosis, and we have demonstrated its significant efficacy in stratifying patients with glioma. This innovative prognostic model offers novel insights into precision immune treatments that could be used to combat this disease and improve patient outcomes, thereby providing a new avenue for personalized treatment options.
Collapse
Affiliation(s)
- Maohua Chen
- Department of Neurosurgery, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou Central Hospital, Zhejiang, China
| | - Min Huang
- Department of Obstetrics and Gynecology, E Gang Hospital, Hubei, China
| | - Xiaoxiang Chen
- Department of Neurosurgery, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou Central Hospital, Zhejiang, China
| | - Xiaoyu Lin
- Department of Neurosurgery, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou Central Hospital, Zhejiang, China
| | - Xianglin Chen
- Department of Neurosurgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| |
Collapse
|
41
|
Deng X, Wang L, Zhai Y, Liu Q, Du F, Zhang Y, Zhao W, Wu T, Tao Y, Deng J, Cao Y, Hao P, Ren J, Shen Y, Yu Z, Zheng Y, Zhang H, Wang H. RIPK1 plays a crucial role in maintaining regulatory T-Cell homeostasis by inhibiting both RIPK3- and FADD-mediated cell death. Cell Mol Immunol 2024; 21:80-90. [PMID: 38082146 PMCID: PMC10757712 DOI: 10.1038/s41423-023-01113-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/13/2023] [Indexed: 01/01/2024] Open
Abstract
Regulatory T (Treg) cells play an essential role in maintaining immune balance across various physiological and pathological conditions. However, the mechanisms underlying Treg homeostasis remain incompletely understood. Here, we report that RIPK1 is crucial for Treg cell survival and homeostasis. We generated mice with Treg cell-specific ablation of Ripk1 and found that these mice developed fatal systemic autoimmunity due to a dramatic reduction in the Treg cell compartment caused by excessive cell death. Unlike conventional T cells, Treg cells with Ripk1 deficiency were only partially rescued from cell death by blocking FADD-dependent apoptosis. However, simultaneous removal of both Fadd and Ripk3 completely restored the homeostasis of Ripk1-deficient Treg cells by blocking two cell death pathways. Thus, our study highlights the critical role of RIPK1 in regulating Treg cell homeostasis by controlling both apoptosis and necroptosis, thereby providing novel insights into the mechanisms of Treg cell homeostasis.
Collapse
Affiliation(s)
- Xiaoxue Deng
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunze Zhai
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiuyue Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fengxue Du
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yu Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenxing Zhao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tingtao Wu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiwen Tao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200433, China
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200433, China
| | - Pei Hao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiazi Ren
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yunli Shen
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zuoren Yu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Haikun Wang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
42
|
Deerain JM, Aktepe TE, Trenerry AM, Ebert G, Hyde JL, Charry K, Edgington-Mitchell L, Xu B, Ambrose RL, Sarvestani ST, Lawlor KE, Pearson JS, White PA, Mackenzie JM. Murine norovirus infection of macrophages induces intrinsic apoptosis as the major form of programmed cell death. Virology 2024; 589:109921. [PMID: 37939648 DOI: 10.1016/j.virol.2023.109921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Human norovirus is the leading cause of acute gastroenteritis worldwide, however despite the significance of this pathogen, we have a limited understanding of how noroviruses cause disease, and modulate the innate immune response. Programmed cell death (PCD) is an important part of the innate response to invading pathogens, but little is known about how specific PCD pathways contribute to norovirus replication. Here, we reveal that murine norovirus (MNV) virus-induced PCD in macrophages correlates with the release of infectious virus. We subsequently show, genetically and chemically, that MNV-induced cell death and viral replication occurs independent of the activity of inflammatory mediators. Further analysis revealed that MNV infection promotes the cleavage of apoptotic caspase-3 and PARP. Correspondingly, pan-caspase inhibition, or BAX and BAK deficiency, perturbed viral replication rates and delayed virus release and cell death. These results provide new insights into how MNV harnesses cell death to increase viral burden.
Collapse
Affiliation(s)
- Joshua M Deerain
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia
| | - Turgut E Aktepe
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia
| | - Gregor Ebert
- The Walter and Elisa Hall Institute, Melbourne, VIC, 3052, Australia; Department of Medical Biology, University of Melbourne, VIC, 3050, Australia
| | - Jennifer L Hyde
- Department of Microbiology, School of Medicine, University of Washington, Seattle, USA
| | - Katelyn Charry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia
| | - Laura Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Banyan Xu
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Rebecca L Ambrose
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, 3168, Australia
| | - Soroush T Sarvestani
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia
| | - Kate E Lawlor
- The Walter and Elisa Hall Institute, Melbourne, VIC, 3052, Australia; Department of Medical Biology, University of Melbourne, VIC, 3050, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, 3168, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, 3168, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia; Department of Microbiology, Monash University, Melbourne, VIC, 3168, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia.
| |
Collapse
|
43
|
Wang L, Zhang X, Zhang H, Lu K, Li M, Li X, Ou Y, Zhao X, Wu X, Wu X, Liu J, Xing M, Liu H, Zhang Y, Tan Y, Li F, Deng X, Deng J, Zhang X, Li J, Zhao Y, Ding Q, Wang H, Wang X, Luo Y, Zhou B, Zhang H. Excessive apoptosis of Rip1-deficient T cells leads to premature aging. EMBO Rep 2023; 24:e57925. [PMID: 37965894 PMCID: PMC10702839 DOI: 10.15252/embr.202357925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
In mammals, the most remarkable T cell variations with aging are the shrinking of the naïve T cell pool and the enlargement of the memory T cell pool, which are partially caused by thymic involution. However, the mechanism underlying the relationship between T-cell changes and aging remains unclear. In this study, we find that T-cell-specific Rip1 KO mice show similar age-related T cell changes and exhibit signs of accelerated aging-like phenotypes, including inflammation, multiple age-related diseases, and a shorter lifespan. Mechanistically, Rip1-deficient T cells undergo excessive apoptosis and promote chronic inflammation. Consistent with this, blocking apoptosis by co-deletion of Fadd in Rip1-deficient T cells significantly rescues lymphopenia, the imbalance between naïve and memory T cells, and aging-like phenotypes, and prolongs life span in T-cell-specific Rip1 KO mice. These results suggest that the reduction and hyperactivation of T cells can have a significant impact on organismal health and lifespan, underscoring the importance of maintaining T cell homeostasis for healthy aging and prevention or treatment of age-related diseases.
Collapse
Affiliation(s)
- Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xixi Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Haiwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Kaili Lu
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiaoming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yangjing Ou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiaoming Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiaoxia Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xuanhui Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jianling Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Mingyan Xing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Han Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yue Zhang
- Department of Anesthesiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongchang Tan
- Department of Anesthesiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Li
- Department of Anesthesiology, Shanghai First People's HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Xiaoxue Deng
- CAS Key Laboratory of Molecular Virology and ImmunologyUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jiangshan Deng
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaojie Zhang
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinbao Li
- Department of Anesthesiology, Shanghai First People's HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Yuwu Zhao
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and ImmunologyUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiuzhe Wang
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Luo
- Department of Anesthesiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
44
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
45
|
Chen W, Gullett JM, Tweedell RE, Kanneganti TD. Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease. Eur J Immunol 2023; 53:e2250235. [PMID: 36782083 PMCID: PMC10423303 DOI: 10.1002/eji.202250235] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Regulated cell death (RCD) triggered by innate immune activation is an important strategy for host survival during pathogen invasion and perturbations of cellular homeostasis. There are two main categories of RCD, including nonlytic and lytic pathways. Apoptosis is the most well-characterized nonlytic RCD, and the inflammatory pyroptosis and necroptosis pathways are among the best known lytic forms. While these were historically viewed as independent RCD pathways, extensive evidence of cross-talk among their molecular components created a knowledge gap in our mechanistic understanding of RCD and innate immune pathway components, which led to the identification of PANoptosis. PANoptosis is a unique innate immune inflammatory RCD pathway that is regulated by PANoptosome complexes upon sensing pathogens, pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) or the cytokines produced downstream. Cytosolic innate immune sensors and regulators, such as ZBP1, AIM2 and RIPK1, promote the assembly of PANoptosomes to drive PANoptosis. In this review, we discuss the molecular components of the known PANoptosomes and highlight the mechanisms of PANoptosome assembly, activation and regulation identified to date. We also discuss how PANoptosomes and mutations in PANoptosome components are linked to diseases. Given the impact of RCD, and PANoptosis specifically, across the disease spectrum, improved understanding of PANoptosomes and their regulation will be critical for identifying new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Wen Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jessica M. Gullett
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rebecca E. Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
46
|
Hägglöf T, Parthasarathy R, Liendo N, Dudley EA, Leadbetter EA. RIPK1 deficiency prevents thymic NK1.1 expression and subsequent iNKT cell development. Front Immunol 2023; 14:1103591. [PMID: 37965338 PMCID: PMC10642909 DOI: 10.3389/fimmu.2023.1103591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) and caspase-8 (Casp8) jointly orchestrate apoptosis, a key mechanism for eliminating developing T cells which have autoreactive or improperly arranged T cell receptors. Mutations in the scaffolding domain of Ripk1 gene have been identified in humans with autoinflammatory diseases like Cleavage Resistant RIPK1 Induced Autoinflammatory (CRIA) and Inflammatory Bowel Disease. RIPK1 protein also contributes to conventional T cell differentiation and peripheral T cell homeostasis through its scaffolding domain in a cell death independent context. Ripk1 deficient mice do not survive beyond birth, so we have studied the function of this kinase in vivo against a backdrop Ripk3 and Casp8 deficiency which allows the mice to survive to adulthood. These studies reveal a key role for RIPK1 in mediating NK1.1 expression, including on thymic iNKT cells, which is a key requirement for thymic stage 2 to stage 3 transition as well as iNKT cell precursor development. These results are consistent with RIPK1 mediating responses to TcR engagement, which influence NK1.1 expression and iNKT cell thymic development. We also used in vivo and in vitro stimulation assays to confirm a role for both Casp8 and RIPK1 in mediating iNKT cytokine effector responses. Finally, we also noted expanded and hyperactivated iNKT follicular helper (iNKTFH) cells in both DKO (Casp8-, Ripk3- deficient) and TKO mice (Ripk1-, Casp8-, Ripk3- deficient). Thus, while RIPK1 and Casp8 jointly facilitate iNKT effector function, RIPK1 uniquely influenced thymic iNKT cell development most likely by regulating molecular responses to T cell receptor engagement. iNKT developmental and functional aberrances were not evident in mice expressing a kinase-dead version of RIPK1 (RIPK1kd), indicating that the scaffolding function of this protein exerts the critical regulation of iNKT cells. Our findings suggest that small molecule inhibitors of RIPK1 could be used to regulate iNKT cell development and effector function to alleviate autoinflammatory conditions in humans.
Collapse
Affiliation(s)
- Thomas Hägglöf
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, United States
| | - Raksha Parthasarathy
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Nathaniel Liendo
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
- St Mary’s University, San Antonio, TX, United States
| | - Elizabeth A. Dudley
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Elizabeth A. Leadbetter
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| |
Collapse
|
47
|
Wong CW, Huang YY, Hurlstone A. The role of IFN-γ-signalling in response to immune checkpoint blockade therapy. Essays Biochem 2023; 67:991-1002. [PMID: 37503572 PMCID: PMC10539948 DOI: 10.1042/ebc20230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Treatment with immune checkpoint inhibitors, widely known as immune checkpoint blockade therapy (ICBT), is now the fourth pillar in cancer treatment, offering the chance of durable remission for patients with advanced disease. However, ICBT fails to induce objective responses in most cancer patients with still others progressing after an initial response. It is necessary, therefore, to elucidate the primary and acquired resistance mechanisms to ICBT to improve its efficacy. Here, we highlight the paradoxical role of the cytokine interferon-γ (IFN-γ) in ICBT response: on the one hand induction of IFN-γ signalling in the tumour microenvironment correlates with good ICBT response as it drives the cellular immune responses required for tumour destruction; nonetheless, IFN-γ signalling is implicated in ICBT acquired resistance. We address the negative feedback and immunoregulatory effects of IFN-γ signalling that promote immune evasion and resistance to ICBT and discuss how these can be targeted pharmacologically to restore sensitivity or circumvent resistance.
Collapse
Affiliation(s)
- Chun Wai Wong
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Yang Yu Huang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Adam Hurlstone
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
48
|
Gao R, Tang H, Mao J. Programmed Cell Death in Liver Fibrosis. J Inflamm Res 2023; 16:3897-3910. [PMID: 37674533 PMCID: PMC10478980 DOI: 10.2147/jir.s427868] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Programmed cell death (PCD) is a comprehensive term that encompasses various forms of cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy, which play a crucial role in the pathogenesis of liver fibrosis. PCD facilitates the elimination of aberrant cells, particularly activated hepatic stellate cells (HSCs), which are the primary producers of extracellular matrix (ECM). The removal of HSCs may impede ECM synthesis, thereby mitigating liver fibrosis. As such, PCD has emerged as a promising therapeutic target for the development of novel drugs to treat liver fibrosis. Numerous studies have been conducted to investigate the underlying mechanisms of PCD in the elimination of activated HSCs and other aberrant liver cells in fibrotic liver tissue, including hepatocytes, hepatic sinusoid endothelial cells (LSECs), and Kupffer cells (KCs). The induction of PCD, the interplay between different forms of PCD, and the potential harm or benefit of PCD in liver fibrosis are topics of ongoing research. Evidences suggest that PCD is a complex process with dual effects on liver fibrosis. The purpose of this review is to summarize the most recent advances in PCD and liver fibrosis research.
Collapse
Affiliation(s)
- Ruoyu Gao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Haiying Tang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| |
Collapse
|
49
|
Lee E, Song CH, Bae SJ, Ha KT, Karki R. Regulated cell death pathways and their roles in homeostasis, infection, inflammation, and tumorigenesis. Exp Mol Med 2023; 55:1632-1643. [PMID: 37612410 PMCID: PMC10474065 DOI: 10.1038/s12276-023-01069-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 08/25/2023] Open
Abstract
Pyroptosis, apoptosis, necroptosis, and ferroptosis, which are the most well-studied regulated cell death (RCD) pathways, contribute to the clearance of infected or potentially neoplastic cells, highlighting their importance in homeostasis, host defense against pathogens, cancer, and a wide range of other pathologies. Although these four RCD pathways employ distinct molecular and cellular processes, emerging genetic and biochemical studies have suggested remarkable flexibility and crosstalk among them. The crosstalk among pyroptosis, apoptosis and necroptosis pathways is more evident in cellular responses to infection, which has led to the conceptualization of PANoptosis. In this review, we provide a brief overview of the molecular mechanisms of pyroptosis, apoptosis, necroptosis, and ferroptosis and their importance in maintaining homeostasis. We discuss the intricate crosstalk among these RCD pathways and the current evidence supporting PANoptosis, focusing on infectious diseases and cancer. Understanding the fundamental processes of various cell death pathways is crucial to inform the development of new therapeutics against many diseases, including infection, sterile inflammation, and cancer.
Collapse
Affiliation(s)
- Ein Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Chang-Hyun Song
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, College of Medicine, Kosin University, Busan, 49267, South Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, South Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea.
- Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal.
| |
Collapse
|
50
|
Zhang T, Xu D, Trefts E, Lv M, Inuzuka H, Song G, Liu M, Lu J, Liu J, Chu C, Wang M, Wang H, Meng H, Liu H, Zhuang Y, Xie X, Dang F, Guan D, Men Y, Jiang S, Jiang C, Dai X, Liu J, Wang Z, Yan P, Wang J, Tu Z, Babuta M, Erickson E, Hillis AL, Dibble CC, Asara JM, Szabo G, Sicinski P, Miao J, Lee YR, Pan L, Shaw RJ, Yuan J, Wei W. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1. Science 2023; 380:1372-1380. [PMID: 37384704 PMCID: PMC10617018 DOI: 10.1126/science.abn1725] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/04/2023] [Indexed: 07/01/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) activity is stimulated to promote metabolic adaptation upon energy stress. However, sustained metabolic stress may cause cell death. The mechanisms by which AMPK dictates cell death are not fully understood. We report that metabolic stress promoted receptor-interacting protein kinase 1 (RIPK1) activation mediated by TRAIL receptors, whereas AMPK inhibited RIPK1 by phosphorylation at Ser415 to suppress energy stress-induced cell death. Inhibiting pS415-RIPK1 by Ampk deficiency or RIPK1 S415A mutation promoted RIPK1 activation. Furthermore, genetic inactivation of RIPK1 protected against ischemic injury in myeloid Ampkα1-deficient mice. Our studies reveal that AMPK phosphorylation of RIPK1 represents a crucial metabolic checkpoint, which dictates cell fate response to metabolic stress, and highlight a previously unappreciated role for the AMPK-RIPK1 axis in integrating metabolism, cell death, and inflammation.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elijah Trefts
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mingming Lv
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Guobin Song
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Min Liu
- Transfusion Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jianlin Lu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jianping Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hui Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xingxing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuqin Men
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shuwen Jiang
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, 510632 Guangzhou, China
| | - Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhenbo Tu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Emily Erickson
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alissandra L Hillis
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christian C Dibble
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gyongy Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Reuben J Shaw
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|