1
|
Kim S, Choi C, Son Y, Lee J, Joo S, Lee YH. BNIP3-mediated mitophagy in macrophages regulates obesity-induced adipose tissue metaflammation. Autophagy 2025:1-19. [PMID: 40195021 DOI: 10.1080/15548627.2025.2487035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Adipose tissue macrophages (ATMs) are key cellular components that respond to nutritional excess, contributing to obesity-induced inflammation and insulin resistance. However, the mechanisms underlying macrophage polarization and recruitment in adipose tissue during obesity remain unclear. In this study, we investigated mitophagy-dependent metabolic reprogramming in ATMs and identified a crucial role of the mitophagy receptor BNIP3 in regulating macrophage polarization in response to obesity. Mitophagic flux in ATMs increased following 12 weeks of high-fat diet (HFD) feeding, with Bnip3 levels upregulated in a HIF1A dependent manner, without affecting other mitophagy receptors. Macrophage-specific bnip3 knockout reduced HFD-induced adipose tissue inflammation and improved glucose tolerance and insulin sensitivity. Mechanistically, hypoxic conditions in vitro induced HIF1A-BNIP3-mediated mitophagy and glycolytic shift in macrophages. Furthermore, HIF1A-BNIP3 signaling-enhanced lipopolysaccharide-induced pro-inflammatory activation in macrophages. These findings demonstrate that BNIP3-mediated mitophagy regulates the glycolytic shift and pro-inflammatory polarization in macrophages and suggest that BNIP3 could be a therapeutical target for obesity-related metabolic diseases.Abbreviation: 2-DG: 2-deoxyglucose; ACADM/MCAD: acyl-CoA dehydrogenase medium chain; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATMs: adipose tissue macrophages; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CLS: crown-like structure; CoCl2: cobalt(II) chloride; COX4/COXIV: cytochrome c oxidase subunit 4; ECAR: extracellular acidification rate; ECM: extraceullular matrix; gWAT: gonadal white adipose tissue; HFD: high-fat diet; HIF1A/HIF-1 α: hypoxia inducible factor 1 subunit alpha; IL1B/IL-1β: interleukin 1 beta; ITGAM/CD11B: integrin subunit alpha M; KO: knockout; LAMs: lipid-associated macrophages; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MRC1/CD206: mannose receptor C-type 1; mtDNA: mitochondrial DNA; NCD: normal chow diet; OCR: oxygen consumption rate; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PTPRC/CD45: protein tyrosine phosphatase receptor type C; SVFs: stromal vascular fractions; TEM: transmission electron microscopy; TMRM: tetramethylrhodamine methyl ester; TOMM20: Translocase of outer mitochondrial membrane 20; TREM2: triggering receptor expressed on myeloid cells 2; WT: wild-type.
Collapse
Affiliation(s)
- Sangseob Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junhyuck Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungug Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Antonopoulou S. Platelet-Activating Factor-Induced Inflammation in Obesity: A Two-Sided Coin of Protection and Risk. Cells 2025; 14:471. [PMID: 40214425 PMCID: PMC11987740 DOI: 10.3390/cells14070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity, marked by excessive fat accumulation, especially abdominal, is a global health concern with significant public impact. While obesity-associated chronic unresolved inflammation contributes to metabolic dysfunctions, acute inflammation supports healthy adipose tissue remodeling and expansion. Platelet-activating factor (PAF), a "primitive" signaling molecule, is among the key mediators involved in the acute phase of inflammation and in various pathophysiological processes. This article explores the role of PAF in fat accumulation and obesity by reviewing experimental data from cell cultures, animals, and humans. It proposes an emerging biochemical mechanism in an attempt to explain its dual role in the healthy and obese adipose tissue, including also data on PAF's potential involvement in epigenetic mechanisms that may be linked to the "obesity memory". Finally, it highlights the potential of natural PAF modulators in promoting functional adipose tissue, thermogenesis, and obesity prevention through a healthy lifestyle, including a Mediterranean diet rich in PAF weak agonists/PAF receptor antagonists and regular exercise, which help maintain controlled PAF levels. Conversely, in cases of obesity-related systemic inflammation with excessive PAF levels, potent PAF inhibitors like ginkgolide B and rupatadine may help mitigate metabolic dysfunctions with PAFR antagonists potentially enhancing their effects synergistically.
Collapse
Affiliation(s)
- Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17671 Athens, Greece
| |
Collapse
|
3
|
Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev 2025; 83:e1209-e1224. [PMID: 38954563 DOI: 10.1093/nutrit/nuae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.
Collapse
Affiliation(s)
- Ruhan Wang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Yan Deng
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Rong Shuang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| |
Collapse
|
4
|
Zhen D, Wang S, Liu Z, Xi Y, Du H, Wang N, Gao X, Lin Z, Wu F. Fibroblast Growth Factor 20 Attenuates Colitis by Restoring Impaired Intestinal Epithelial Barrier Integrity and Modulating Macrophage Polarization via S100A9 in an NF-κB-Dependent Manner. Cell Mol Gastroenterol Hepatol 2025; 19:101486. [PMID: 40024533 DOI: 10.1016/j.jcmgh.2025.101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND & AIMS Exogenous recombinant fibroblast growth factor 20 (FGF20) protein has been proved to treat ulcerative colitis; however, its mechanism of action remains unclear. This study aimed to explore the role and mechanism of action of FGF20 in ulcerative colitis. METHODS Data from patients with ulcerative colitis were analyzed using the Gene Expression Omnibus dataset. A murine colitis model was established by administering 2% dextran sodium sulfate. FGF20 knockout mice and Adenoassociated viruses (AAV)-FGF20-treated mice were used to elucidate the specific mechanisms. Proteomic analysis was conducted to identify differentially expressed genes. RESULTS FGF20 levels were significantly elevated in the colonic tissues of subjects and mice with colitis. FGF20 deficiency exacerbated dextran sodium sulfate-induced colitis; in contrast, FGF20 replenishment alleviated colitis through 2 principal mechanisms: restoration of impaired intestinal epithelial barrier integrity, and inhibition of M1 macrophage polarization. Notably, S100A9 was identified as a pivotal downstream target of FGF20, which was further demonstrated by pharmacologic inhibition and overexpression experiments of S100A9 using paquinimod (a specific inhibitor of S100A9) and AAV-S100A9 in FGF20 knockout and AAV-FGF20 mice with colitis, respectively. Additionally, the nuclear factor-κB pathway was found to be involved in the process by which FGF20 regulates S100A9 to counteract colitis. CONCLUSIONS These results suggest that FGF20 acts as a negative regulator of S100A9 and nuclear factor-κB, thereby inhibiting M1 macrophage polarization and restoring intestinal epithelial barrier integrity in mice with dextran sodium sulfate-induced colitis. FGF20 may serve as a potential therapeutic target for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Dong Zhen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhen Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiyuan Xi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanlin Du
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ningrui Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaotang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhuofeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; The Affiliated Songshan Lake Center Hospital, Guangdong Medical University, Dongguan, China.
| | - Fan Wu
- The Affiliated Songshan Lake Center Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
5
|
Chen B, Guan L, Wu C, Gong Y, Wu L, Zhang M, Cao Z, Chen Y, Yang C, Wang B, Li Y, Li B, Bi Y, Ning G, Wang J, Wang W, Liu R. Gut Microbiota-Butyrate-PPARγ Axis Modulates Adipose Regulatory T Cell Population. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411086. [PMID: 39998325 DOI: 10.1002/advs.202411086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/18/2025] [Indexed: 02/26/2025]
Abstract
Gut microbiota is essential for the function of peripherally-induced regulatory T (pTreg) cells. However, how commensal bacteria affect thymically derived fat-resident Treg cells that harbor a unique expression of peroxisome proliferator-activated receptor (PPAR)-γ and suppress inflammation in visceral adipose tissue (VAT), is not well defined. Here it is revealed that microbiota depletion causes a drastic decline in Treg cell population in VAT, particularly those expressing ST2 (ST2+ Treg), which are largely restored after gut microbiome reconstruction. Mechanistically, gut microbiota-derived butyrate increases VAT ST2+ Treg cells through binding PPARγ. Butyrate supplementation and high fiber diet increase VAT ST2+ Treg population in obese mice, and ameliorated glucose tolerance and visceral inflammation. Furthermore, human omental adipose Treg cells show positive correlation with fecal butyrate and certain butyrate-producing microbes. This study identifies the critical role of gut microbiota-butyrate-PPARγ axis in maintaining VAT Treg population, pinpointing a potential approach to augment VAT Treg population and ameliorate inflammation.
Collapse
Affiliation(s)
- Banru Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lizhi Guan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiwen Gong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Minchun Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiwen Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yufei Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengcan Yang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bing Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yunqi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
6
|
Wang Y, Liu L, Zhao Y, Ren Y, Miao X, Dong Y, Liu L, Li X. Transcriptomic and proteomic analysis reveals the mechanism of chicken cecum response to Salmonella enterica serovar Enteritidis inoculation. iScience 2025; 28:111571. [PMID: 39845417 PMCID: PMC11750581 DOI: 10.1016/j.isci.2024.111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Salmonella enterica serovar Enteritidis (SE) incurs foodborne illnesses and poses a severe threat to poultry industry and human health. However, the molecular mechanisms underlying chicken responding to SE inoculation remain elusive. Here, we characterized the transcriptome and proteome of chicken cecum 3 days post SE inoculation. Totally, there were 332 differentially expressed genes and 563 differentially expressed protein identified. The upregulated genes were enriched in immune-related processes. The downregulated proteins mainly correlated with metabolic process. The correlation coefficient between the transcriptome and proteome was 0.14. Collectively, we characterized the landscape of mRNAs and proteins in chicken cecum following SE inoculation and found SE inoculation induced chicken immune system at transcriptomic level but impaired the metabolism at protein level. The differences may be caused by complex post-transcriptional regulatory mechanisms or time-dependent delays. Our findings would extend the understanding of the molecular mechanisms underlying chicken responding to SE inoculation.
Collapse
Affiliation(s)
- Yuanmei Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Taián 271018, China
| | - Yanan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Yanru Ren
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Xiuxiu Miao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Yaning Dong
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Lewen Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| |
Collapse
|
7
|
Elkins C, Ye C, Sivasami P, Mulpur R, Diaz-Saldana PP, Peng A, Xu M, Chiang YP, Moll S, Rivera-Rodriguez DE, Cervantes-Barragan L, Wu T, Au-Yeung BB, Scharer CD, Ford ML, Kissick H, Li C. Obesity reshapes regulatory T cells in the visceral adipose tissue by disrupting cellular cholesterol homeostasis. Sci Immunol 2025; 10:eadl4909. [PMID: 39792637 PMCID: PMC11786953 DOI: 10.1126/sciimmunol.adl4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/08/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025]
Abstract
Regulatory T cells (Tregs) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT Tregs under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2hi VAT Treg subsets. Treg-specific deletion of Srebf2, the master regulator of cholesterol homeostasis, selectively reduced ST2hi VAT Tregs, increasing VAT inflammation and insulin resistance. Single-cell RNA/T cell receptor (TCR) sequencing revealed a specific loss and reduced clonal expansion of ST2hi VAT Treg subsets after Srebf2 deletion. Srebf2-mediated cholesterol homeostasis potentiated strong TCR signaling, which preferentially promoted ST2hi VAT Treg accumulation. However, long-term high-fat diet feeding disrupted VAT Treg cholesterol homeostasis and impaired clonal expansion of the ST2hi subset. Restoring Treg cholesterol homeostasis rescued VAT Treg accumulation in obese mice, suggesting that modulation of cholesterol homeostasis could be a promising strategy for Treg-targeted therapies in obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Cody Elkins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chengyu Ye
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pulavendran Sivasami
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Roy Mulpur
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela P. Diaz-Saldana
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Amy Peng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Miaoer Xu
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yeun-po Chiang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Samara Moll
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dormarie E. Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Byron B. Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L. Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haydn Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
9
|
Jindal J, Hill J, Harte J, Dunachie SJ, Kronsteiner B. Starvation and infection: The role of sickness-associated anorexia in metabolic adaptation during acute infection. Metabolism 2024; 161:156035. [PMID: 39326837 DOI: 10.1016/j.metabol.2024.156035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Sickness-associated anorexia, the reduction in appetite seen during infection, is a widely conserved and well-recognized symptom of acute infection, yet there is very little understanding of its functional role in recovery. Anorexic sickness behaviours can be understood as an evolutionary strategy to increase tolerance to pathogen-mediated illness. In this review we explore the evidence for mechanisms and potential metabolic benefits of sickness-associated anorexia. Energy intake can impact on the immune response, control of inflammation and tissue stress, and on pathogen fitness. Fasting mediators including hormone-sensitive lipase, peroxisome proliferator-activated receptor-alpha (PPAR-α) and ketone bodies are potential facilitators of infection recovery through multiple pathways including suppression of inflammation, adaptation to lipid utilising pathways, and resistance to pathogen-induced cellular stress. However, the effect and benefit of calorie restriction is highly heterogeneous depending on both the infection and the metabolic status of the host, which has implications regarding clinical recommendations for feeding during different infections.
Collapse
Affiliation(s)
- Jessy Jindal
- The Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Jennifer Hill
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jodie Harte
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| | - Barbara Kronsteiner
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Ye J, Yin J. Type 2 diabetes: a sacrifice program handling energy surplus. LIFE METABOLISM 2024; 3:loae033. [PMID: 39873003 PMCID: PMC11748514 DOI: 10.1093/lifemeta/loae033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/30/2024] [Accepted: 09/12/2024] [Indexed: 01/30/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is closely associated with obesity, while interactions between the two diseases remain to be fully elucidated. To this point, we offer this perspective to introduce a set of new insights into the interpretation of T2DM spanning the etiology, pathogenesis, and treatment approaches. These include a definition of T2DM as an energy surplus-induced diabetes characterized by the gradual decline of β cell insulin secretion function, which ultimately aims to prevent the onset of severe obesity through mechanisms of weight loss. The body employs three adaptive strategies in response to energy surplus: the first one is adipose tissue expansion to store the energy for weight gain under normal weight conditions; the second one is insulin resistance to slow down adipose tissue expansion and weight gain under overweight conditions; and the third one is the onset of T2DM following β cell failure to reverse the weight gain in obese conditions. The primary signaling molecules driving the compensatory responses are adenosine derivatives, such as adenosine triphosphate (ATP), acetyl coenzyme A (acetyl-CoA), and reduced nicotinamide adenine dinucleotide (NADH). These molecules exert their effects through allosteric, post-translational, and transcriptional regulation of metabolic pathways. The insights suggest that insulin resistance and T2DM are protective mechanisms in the defense against excessive adiposity to avert severe obesity. The perspective provides a unified framework explaining the interactions between the two diseases and opens new avenues in the study of T2DM.
Collapse
Affiliation(s)
- Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Key Laboratory of Obesity Research, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| |
Collapse
|
11
|
Wang L, Wu J, Sramek M, Obayomi SMB, Gao P, Li Y, Matveyenko AV, Wei Z. Heterogeneous enhancer states orchestrate β cell responses to metabolic stress. Nat Commun 2024; 15:9361. [PMID: 39472434 PMCID: PMC11522703 DOI: 10.1038/s41467-024-53717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Obesity-induced β cell dysfunction contributes to the onset of type 2 diabetes. Nevertheless, elucidating epigenetic mechanisms underlying islet dysfunction at single cell level remains challenging. Here we profile single-nuclei RNA along with enhancer marks H3K4me1 or H3K27ac in islets from lean or obese mice. Our study identifies distinct gene signatures and enhancer states correlating with β cell dysfunction trajectory. Intriguingly, while many metabolic stress-induced genes exhibit concordant changes in both H3K4me1 and H3K27ac at their enhancers, expression changes of specific subsets are solely attributable to either H3K4me1 or H3K27ac dynamics. Remarkably, a subset of H3K4me1+H3K27ac- primed enhancers prevalent in lean β cells and occupied by FoxA2 are largely absent after metabolic stress. Lastly, cell-cell communication analysis identified the nerve growth factor (NGF) as protective paracrine signaling for β cells through repressing ER stress. In summary, our findings define the heterogeneous enhancer responses to metabolic challenges in individual β cells.
Collapse
Affiliation(s)
- Liu Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Jie Wu
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Madeline Sramek
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - S M Bukola Obayomi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Peidong Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering and Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA.
- Division of Endocrinology, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
12
|
Park MY, Tu CL, Perie L, Verma N, Serdan TDA, Shamsi F, Shapses S, Heffron S, Gamallo-Lana B, Mar AC, Alemán JO, Mueller E, Chang W, Sitara D. Targeted Deletion of Fibroblast Growth Factor 23 Rescues Metabolic Dysregulation of Diet-induced Obesity in Female Mice. Endocrinology 2024; 165:bqae141. [PMID: 39446375 PMCID: PMC11538792 DOI: 10.1210/endocr/bqae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/07/2024]
Abstract
Fibroblast growth factor 23 (FGF23) is a bone-secreted protein widely recognized as a critical regulator of skeletal and mineral metabolism. However, little is known about the nonskeletal production of FGF23 and its role in tissues other than bone. Growing evidence indicates that circulating FGF23 levels rise with a high-fat diet (HFD) and they are positively correlated with body mass index (BMI) in humans. In the present study, we show for the first time that increased circulating FGF23 levels in obese humans correlate with increased expression of adipose Fgf23 and both positively correlate with BMI. To understand the role of adipose-derived Fgf23, we generated adipocyte-specific Fgf23 knockout mice (AdipoqFgf23Δfl/Δfl) using the adiponectin-Cre driver, which targets mature white, beige, and brown adipocytes. Our data show that targeted ablation of Fgf23 in adipocytes prevents HFD-fed female mice from gaining body weight and fat mass while preserving lean mass but has no effect on male mice, indicating the presence of sexual dimorphism. These effects are observed in the absence of changes in food and energy intake. Adipose Fgf23 inactivation also prevents dyslipidemia, hyperglycemia, and hepatic steatosis in female mice. Moreover, these changes are associated with decreased respiratory exchange ratio and increased brown fat Ucp1 expression in knockout mice compared to HFD-fed control mice (Fgf23fl/fl). In conclusion, this is the first study highlighting that targeted inactivation of Fgf23 is a promising therapeutic strategy for weight loss and lean mass preservation in humans.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Chia-Ling Tu
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Luce Perie
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Narendra Verma
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Sue Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-RWJ Medical School, New Brunswick, NJ 08903, USA
| | - Sean Heffron
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Begona Gamallo-Lana
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Adam C Mar
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - José O Alemán
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elisabetta Mueller
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Wenhan Chang
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Despina Sitara
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Hameed M, Daamen AR, Hossain MS, Coutermarsh-Ott S, Lipsky PE, Weger-Lucarelli J. Obesity-Associated Changes in Immune Cell Dynamics During Alphavirus Infection Revealed by Single Cell Transcriptomic Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617696. [PMID: 39416014 PMCID: PMC11482886 DOI: 10.1101/2024.10.10.617696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Obesity induces diverse changes in host immunity, resulting in worse disease outcomes following infection with various pathogens, including arthritogenic alphaviruses. However, the impact of obesity on the functional landscape of immune cells during arthritogenic alphavirus infection remains unexplored. Here, we used single-cell RNA sequencing (scRNA-seq) to dissect the blood and tissue immune responses to Mayaro virus (MAYV) infection in lean and obese mice. Footpad injection of MAYV caused significant shifts in immune cell populations and induced robust expression of interferon response and proinflammatory cytokine genes and related pathways in both blood and tissue. In MAYV-infected lean mice, analysis of the local tissue response revealed a unique macrophage subset with high expression of IFN response genes that was not found in obese mice. This was associated with less severe inflammation in lean mice. These results provide evidence for a unique macrophage population that may contribute to the superior capacity of lean mice to control arthritogenic alphavirus infection.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Pathology & Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Md Shakhawat Hossain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Hill KB, Mullen GP, Nagareddy PR, Zimmerman KA, Rudolph MC. Key questions and gaps in understanding adipose tissue macrophages and early-life metabolic programming. Am J Physiol Endocrinol Metab 2024; 327:E478-E497. [PMID: 39171752 PMCID: PMC11482221 DOI: 10.1152/ajpendo.00140.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
The global obesity epidemic, with its associated comorbidities and increased risk of early mortality, underscores the urgent need for enhancing our understanding of the origins of this complex disease. It is increasingly clear that metabolism is programmed early in life and that metabolic programming can have life-long health consequences. As a critical metabolic organ sensitive to early-life stimuli, proper development of adipose tissue (AT) is crucial for life-long energy homeostasis. Early-life nutrients, especially fatty acids (FAs), significantly influence the programming of AT and shape its function and metabolism. Of growing interest are the dynamic responses during pre- and postnatal development to proinflammatory omega-6 (n6) and anti-inflammatory omega-3 (n3) FA exposures in AT. In the US maternal diet, the ratio of "pro-inflammatory" n6- to "anti-inflammatory" n3-FAs has grown dramatically due to the greater prevalence of n6-FAs. Notably, AT macrophages (ATMs) form a significant population within adipose stromal cells, playing not only an instrumental role in AT formation and maintenance but also acting as key mediators of cell-to-cell lipid and cytokine signaling. Despite rapid advances in ATM and immunometabolism fields, research has focused on responses to obesogenic diets and during adulthood. Consequently, there is a significant gap in identifying the mechanisms contributing metabolic health, especially regarding lipid exposures during the establishment of ATM physiology. Our review highlights the current understanding of ATM diversity, their critical role in AT, their potential role in early-life metabolic programming, and the broader implications for metabolism and health.
Collapse
Affiliation(s)
- Kaitlyn B Hill
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Gregory P Mullen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Cardiovascular Section, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael C Rudolph
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
15
|
Qiu L, Ren Y, Li J, Li M, Li W, Qin L, Ning C, Zhang J, Gao F. Association of systemic immune inflammatory index with obesity and abdominal obesity: A cross-sectional study from NHANES. Nutr Metab Cardiovasc Dis 2024; 34:2409-2419. [PMID: 39069464 DOI: 10.1016/j.numecd.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIM Our aim was to explore the potential relationship between SII and obesity, as well as abdominal obesity. METHODS AND RESULTS We utilized a weighted multivariable logistic regression model to investigate the relationship between SII and obesity, as well as abdominal obesity. Generalized additive models were employed to test for non-linear associations. Subsequently, we constructed a two-piecewise linear regression model and conducted a recursive algorithm to calculate inflection points. Additionally, subgroup analyses and interaction tests were performed. A total of 7,880 U.S. adult participants from NHANES 2011-2018 were recruited for this study. In the regression model adjusted for all confounding variables, the odds ratios (95% confidence intervals) for the association between SII/100 and obesity, as well as abdominal obesity, were 1.03 (1.01, 1.06) and 1.04 (1.01, 1.08) respectively. There was a non-linear and reverse U-shaped association between SII/100 and obesity, as well as abdominal obesity, with inflection points at 7.32 and 9.98 respectively. Significant positive correlations were observed before the inflection points, while significant negative correlations were found after the inflection points. There was a statistically significant interaction in the analysis of age, hypertension, and diabetes. Moreover, a notable interaction is observed between SII/100 and abdominal obesity within non-Hispanic Asian populations. CONCLUSIONS In adults from the United States, there is a positive correlation between SII and the high risk of obesity, as well as abdominal obesity. Further large-scale prospective studies are needed to analyze the role of SII in obesity and abdominal obesity.
Collapse
Affiliation(s)
- Linjie Qiu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Ren
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meijie Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Li
- Shanxi University of Chinese Medicine, Shanxi, China
| | - Lingli Qin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunhui Ning
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Jiao H, Kalsbeek A, Yi CX. Microglia, circadian rhythm and lifestyle factors. Neuropharmacology 2024; 257:110029. [PMID: 38852838 DOI: 10.1016/j.neuropharm.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Microglia, a vital homeostasis-keeper of the central nervous system, perform critical functions such as synaptic pruning, clearance of cellular debris, and participation in neuroinflammatory processes. Recent research has shown that microglia exhibit strong circadian rhythms that not only actively regulate their own immune activity, but also affect neuronal function. Disruptions of the circadian clock have been linked to a higher risk of developing a variety of diseases. In this article we will provide an overview of how lifestyle factors impact microglial function, with a focus on disruptions caused by irregular sleep-wake patterns, reduced physical activity, and eating at the wrong time-of-day. We will also discuss the potential connection between these lifestyle factors, disrupted circadian rhythms, and the role of microglia in keeping brain health. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Han Jiao
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Mohammadi S, Khorasani M. Implications of the cGAS-STING pathway in diabetes: Risk factors and therapeutic strategies. Int J Biol Macromol 2024; 278:134210. [PMID: 39069057 DOI: 10.1016/j.ijbiomac.2024.134210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Diabetes mellitus is an increasingly prevalent metabolic disorder characterized by chronic hyperglycemia and impaired insulin action. Although the pathogenesis of diabetes is multifactorial, emerging evidence suggests that chronic low-grade inflammation plays a significant role in the development and progression of the disease. The cyclic GMP-AMP synthase (cGAS) and its downstream signaling pathway, the stimulator of interferon genes (STING), have recently gained attention in the field of diabetes research. This article aims to provide an overview of the role of cGAS-STING in diabetes, focusing on its involvement in the regulation of immune responses, inflammation, insulin resistance, and β-cell dysfunction. Understanding the contribution of cGAS-STING signaling in diabetes may lead to the development of targeted therapeutic strategies for this prevalent metabolic disorder. The results section presents key findings from multiple studies on the impact of STING in diabetes. It discusses the influence of STING on inflammation levels within a diabetic environment, its effect on insulin resistance, and its implications for the development and progression of diabetes. The cGAS-STING signaling pathway plays a crucial role in the development and progression of diabetes.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, 611, Oman
| | - Milad Khorasani
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran; Department of Biochemistry and Nutrition, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
18
|
Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab 2024; 36:1945-1962. [PMID: 39232280 PMCID: PMC11586076 DOI: 10.1016/j.cmet.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
Collapse
Affiliation(s)
- Stefano Biffo
- National Institute of Molecular Genetics and Biosciences Department, University of Milan, Milan, Italy.
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
19
|
Esteves JV, Stanford KI. Exercise as a tool to mitigate metabolic disease. Am J Physiol Cell Physiol 2024; 327:C587-C598. [PMID: 38981607 PMCID: PMC11427015 DOI: 10.1152/ajpcell.00144.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Metabolic diseases, notably obesity and type 2 diabetes (T2D), have reached alarming proportions and constitute a significant global health challenge, emphasizing the urgent need for effective preventive and therapeutic strategies. In contrast, exercise training emerges as a potent intervention, exerting numerous positive effects on metabolic health through adaptations to the metabolic tissues. Here, we reviewed the major features of our current understanding with respect to the intricate interplay between metabolic diseases and key metabolic tissues, including adipose tissue, skeletal muscle, and liver, describing some of the main underlying mechanisms driving pathogenesis, as well as the role of exercise to combat and treat obesity and metabolic disease.
Collapse
Affiliation(s)
- Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
20
|
Moqaddam MA, Nemati M, Dara MM, Hoteit M, Sadek Z, Ramezani A, Rand MK, Abbassi-Daloii A, Pashaei Z, Almaqhawi A, Razi O, Escobar KA, Supriya R, Saeidi A, Zouhal H. Exploring the Impact of Astaxanthin Supplementation in Conjunction with a 12-Week CrossFit Training Regimen on Selected Adipo-Myokines Levels in Obese Males. Nutrients 2024; 16:2857. [PMID: 39275173 PMCID: PMC11397083 DOI: 10.3390/nu16172857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
OBJECTIVE Obesity is associated with an exacerbated metabolic condition that is mediated through impairing balance in the secretion of some adipo-myokines. Therefore, the objective of the present study was to explore the impact of astaxanthin supplementation in conjunction with a 12-week CrossFit training regimen on some selected adipo-myokines, insulin insensitivity, and serum lipid levels in obese males. MATERIAL AND METHODS This study is a randomized control trial design; 60 obese males were randomly divided into four groups of 15, including the control group (CG), supplement group (SG), training group (TG), and combined training and supplement group (TSG). The participants were subjected to 12 weeks of astaxanthin (AST) supplementation [20 mg/d capsule, once/d] or CrossFit training or a combination of both interventions. The training regimen comprised 36 sessions of CrossFit, each lasting 60 min, conducted three times per week. The metabolic indices, body composition, anthropometrical, cardio-respiratory, and also some plasma adipo-myokine factors, including decorin (DCN), activin A, myostatin (MST), transforming growth factor (TGF)-β1, and follistatin (FST), were examined 12 and 72 h before the initiation of the main interventional protocols, and then 72 h after the final session of the training protocol. RESULTS There was no significant difference in the baseline data between the groups (p > 0.05). There were significant interactions between group x time for DCN (η2 = 0.82), activin A (η2 = 0.50), FST (η2 = 0.92), MST (η2 = 0.75), and TGFB-1 (η2 = 0.67) (p < 0.001 for all the variables). Significantly changes showed for DCN in TSG compared to TG and SG and also TG compared to SG (p = 0.0001); for activin A in SG compared to TG (p = 0.01) and TSG (p = 0.002); for FST in SG compared to TG and TSG (p = 0.0001), also in TSG compared to TG (p = 0.0001); for MST in SG, TG, and TSG compared to CG (p = 0.0001) and also in TSG compared to SG (p = 0.0001) and TG (p = 0.001); for TGFB-1 in SG, TG, and TSG compared to CG (p = 0.0001) and also TSG compared to SG (p = 0.0001) and TG (p = 0.001). CONCLUSIONS The 12-week CrossFit training concurrent with AST supplementation reduced anthropometric and metabolic factors and also serum lipid levels while producing positive changes in body composition and cardiovascular factors. Increased FST and DCN and reduced activin A, MST, and TGF-β1 were other affirmative responses to both interventions.
Collapse
Affiliation(s)
- Mohammad Ahmadi Moqaddam
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Morteza Nemati
- Department of Biomechanics and Sports Injuries, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Marjan Mansouri Dara
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Maha Hoteit
- Food Science Unit, National Council for Scientific Research of Lebanon (CNRS-L), Beirut 11-8281, Lebanon
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
| | - Zahra Sadek
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
- Laboratory of Motor System, Handicap and Rehabilitation (MOHAR), Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
| | - Akbar Ramezani
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran
| | - Mahboubeh Khak Rand
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran
| | - Asieh Abbassi-Daloii
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran
| | - Zhaleh Pashaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz 5166616471, Iran
| | - Abdullah Almaqhawi
- Department of Family Medicine and Community, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Razi University, Kermanshah 6714414971, Iran
| | - Kurt A Escobar
- Department of Kinesiology, California State University, Long Beach, CA 90840, USA
| | - Rashmi Supriya
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
- Academy of Wellness and Human Development, Faculty of Arts and Social Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj 1517566177, Iran
| | - Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé)-EA 1274, Université Rennes, 35044 Rennes, France
- Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France
| |
Collapse
|
21
|
Yu Y, Tan T, Yang W, Xu Z, Liu Y. Association between the systemic immune-inflammation index and obesity among adults: Insights from the NHANES 2017-2018. PLoS One 2024; 19:e0308288. [PMID: 39116149 PMCID: PMC11309425 DOI: 10.1371/journal.pone.0308288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Inflammation is an important causative factor of obesity. This study aimed to explore the possible association between the systemic immune-inflammatory index, a novel indicator of inflammation, and obesity. METHODS Data were collected from 4395 participants of the National Health and Nutrition Examination Survey 2017-2018 aged ≥ 20 years. The systemic immune-inflammatory index was calculated by multiplying the platelet count by the neutrophil-to-lymphocyte ratio. Obesity was defined as a body mass index ≥ 30 kg/m2. RESULTS A significant positive correlation was observed between the systemic immune-inflammatory index and body mass index following multivariate linear regression analysis (β = 1.75; 95% confidence interval = 1.16-2.33), which was greatest in adults aged < 60 years without hypertension and diabetes. Smoothed curve fitting and threshold effect analysis were used to characterize the nonlinear association between the systemic immune-inflammatory index and body mass index, and the inflection point was found to be 729.3. CONCLUSIONS The systemic immune-inflammatory index is positively associated with body mass index among adults in the United States and has the potential to enhance efforts to prevent adult obesity.
Collapse
Affiliation(s)
- Yanmei Yu
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tongcai Tan
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Yang
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhitao Xu
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yong Liu
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Piacenza Florezi G, Pereira Barone F, Izidoro MA, Soares-Jr JM, Coutinho-Camillo CM, Lourenço SV. Targeted saliva metabolomics in Sjögren's syndrome. Clinics (Sao Paulo) 2024; 79:100459. [PMID: 39098147 PMCID: PMC11334732 DOI: 10.1016/j.clinsp.2024.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Abstract
OBJECTIVE Sjögren's Syndrome (SS) is a chronic inflammatory autoimmune exocrinopathy, and although, the role of metabolism in the autoimmune responses has been discussed in diseases such as lupus erythematosus, rheumatoid arthritis, psoriasis and scleroderma. There is a lack of information regarding the metabolic implications of SS. Considering that the disease affects primarily salivary glands; the aim of this study is to evaluate the metabolic changes in the salivary glands' microenvironment using a targeted metabolomics approach. METHODS The saliva from 10 patients diagnosed with SS by the American-European consensus and 10 healthy volunteers was analyzed in an Ultra-high Performance Liquid Chromatograph Coupled Mass Spectrometry (UPLC-MS). RESULTS The results showed an increased concentration in SS of metabolites involved in oxidative stress such as lactate, alanine and malate, and amino acids involved in the growth and proliferation of T-cells, such as arginine, leucine valine and isoleucine. CONCLUSIONS These results revealed that is possible to differentiate the metabolic profile of SS and healthy individuals using a small amount of saliva, which in its turn may reflect the cellular changes observed in the microenvironments of damaged salivary glands from these patients.
Collapse
Affiliation(s)
- Giovanna Piacenza Florezi
- Stomatology Department, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brazil; Tropical Medicine Institute, LIM-06, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Felippe Pereira Barone
- Stomatology Department, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mario Augusto Izidoro
- Laboratório de Espectrometria de Massas do Hospital São Paulo, São Paulo, SP, Brazil
| | - José Maria Soares-Jr
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clnicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Silvia Vanessa Lourenço
- Stomatology Department, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brazil; Tropical Medicine Institute, LIM-06, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Lai HC, Chen PH, Tang CH, Chen LW. IL-10 Enhances the Inhibitory Effect of Adipose-Derived Stromal Cells on Insulin Resistance/Liver Gluconeogenesis by Treg Cell Induction. Int J Mol Sci 2024; 25:8088. [PMID: 39125659 PMCID: PMC11311376 DOI: 10.3390/ijms25158088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The modulation of cellular phenotypes within adipose tissue provides a potential means for therapeutic intervention for diabetes. Endogenous interleukin-10 (IL-10) protects against diet-induced insulin resistance. We examined the effects and mechanisms of action of IL-10-treated adipose-derived stromal cells on diabetes-induced insulin resistance and liver gluconeogenesis. We harvested stromal vascular fractions (SVFs) from the adipose tissue of diabetic (Leprdb/db) mice and treated them with IL-10 in vitro. SVFs treated with 10 or 100 ng of IL-10 were injected into the inguinal adipose tissue of Leprdb/db mice. IL-10 treatment suppressed the mRNA expression of IL-6, IL-33, CCL2, TNF-α, and IL-1β. Additionally, it suppressed the protein expression of IL-6, pmTOR, pJNK, and pNF-κB but enhanced Foxp3 mRNA expression in SVFs from diabetic mice. Meanwhile, IL-10 treatment repressed CCL2 and PDGFRα expression in adipose tissue macrophages (ATMs) and IL-6 expression in non-ATMs but increased the Foxp3 and IL-10 mRNA expression of ATMs from diabetic mice. Injection of IL-10-treated SVFs decreased the IL-6, IL-33, CCL2, IL-1β, and CCL2 but enhanced the Foxp3 and IL-10 mRNA expression of adipose tissue from Leprdb/db mice. Furthermore, injection of IL-10-treated SVFs increased CD4+ regulatory T cells (Tregs) in SVFs and adipose IL-10 levels and suppressed plasma adiponectin levels and DPP4 activity in diabetic mice. Injection of IL-10-treated SVFs decreased hepatic G6PC and PCK1 mRNA expression and increased Akt activation, STAT3 phosphorylation in the liver, and glucose tolerance in diabetic mice. Our data suggest that IL-10 treatment decreases inflammation in adipose SVFs of diabetic mice. Injection of IL-10-treated SVFs into the adipose tissue decreased diabetes-induced gluconeogenesis gene expression, DPP4 activity, and insulin resistance by enhancing Treg cells in diabetic mice. These data suggest that IL-10-treated adipose stromal vascular cells could be a promising therapeutic strategy for diabetes mellitus.
Collapse
Affiliation(s)
- Hsiao-Chi Lai
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Pei-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Hua Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
| | - Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
24
|
Wang L, Sun Y, Yang L, Wang S, Liu C, Wang Y, Niu Y, Huang Z, Zhang J, Wang C, Dong L. Engineering an energy-dissipating hybrid tissue in vivo for obesity treatment. Cell Rep 2024; 43:114425. [PMID: 38970789 DOI: 10.1016/j.celrep.2024.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
Obesity is a global health challenge with limited therapeutic solutions. Here, we demonstrate the engineering of an energy-dissipating hybrid tissue (EDHT) in the body for weight control. EDHT is constructed by implanting a synthetic gel matrix comprising immunomodulatory signals and functional cells into the recipient mouse. The immunomodulatory signals induce the host stromal cells to create an immunosuppressive niche that protects the functional cells, which are overexpressing the uncoupling protein 1 (UCP1), from immune rejection. Consequently, these endogenous and exogenous cells co-develop a hybrid tissue that sustainedly produces UCP1 to accelerate the host's energy expenditure. Systematic experiments in high-fat diet (HFD) and transgenic (ob/ob) mice show that EDHT efficiently reduces body weight and relieves obesity-associated pathological conditions. Importantly, an 18-month observation for safety assessment excludes cell leakage from EDHT and reports no adverse physiological responses. Overall, EDHT demonstrates convincing efficacy and safety in controlling body weight.
Collapse
Affiliation(s)
- Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yajie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Lifang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Shaocong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Chunyan Liu
- Medical School, Nanjing University, Nanjing 210093, China
| | - Yulian Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Medical School, Nanjing University, Nanjing 210093, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China; National Resource Center for Mutant Mice, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
25
|
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C, Benea SN. The Interplay between Obesity and Inflammation. Life (Basel) 2024; 14:856. [PMID: 39063610 PMCID: PMC11277997 DOI: 10.3390/life14070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is an important condition affecting the quality of life of numerous patients and increasing their associated risk for multiple diseases, including tumors and immune-mediated disorders. Inflammation appears to play a major role in the development of obesity and represents a central point for the activity of cellular and humoral components in the adipose tissue. Macrophages play a key role as the main cellular component of the adipose tissue regulating the chronic inflammation and modulating the secretion and differentiation of various pro- and anti-inflammatory cytokines. Inflammation also involves a series of signaling pathways that might represent the focus for new therapies and interventions. Weight loss is essential in decreasing cardiometabolic risks and the degree of associated inflammation; however, the latter can persist for long after the excess weight is lost, and can involve changes in macrophage phenotypes that can ensure the metabolic adjustment. A clear understanding of the pathophysiological processes in the adipose tissue and the interplay between obesity and chronic inflammation can lead to a better understanding of the development of comorbidities and may ensure future targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Razvan Mihalcea
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. Matei Balș” National Institute for Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|
26
|
Elkins C, Li C. Deciphering visceral adipose tissue regulatory T cells: Key contributors to metabolic health. Immunol Rev 2024; 324:52-67. [PMID: 38666618 PMCID: PMC11262988 DOI: 10.1111/imr.13336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Regulatory T cells (Tregs) within the visceral adipose tissue (VAT) play a crucial role in controlling tissue inflammation and maintaining metabolic health. VAT Tregs display a unique transcriptional profile and T cell receptor (TCR) repertoire, and closely interact with adipocytes, stromal cells, and other immune components within the local VAT microenvironment. However, in the context of obesity, there is a notable decline in VAT Tregs, resulting in heightened VAT inflammation and insulin resistance. A comprehensive understanding of the biology of VAT Tregs is essential for the development of Treg-based therapies for mitigating obesity-associated metabolic diseases. Recent advancements in lineage tracing tools, genetic mouse models, and various single cell "omics" techniques have significantly progressed our understandings of the origin, differentiation, and regulation of this unique VAT Treg population at steady state and during obesity. The identification of VAT-Treg precursor cells in the secondary lymphoid organs has also provided important insights into the timing, location, and mechanisms through which VAT Tregs acquire their distinctive phenotype that enables them to function within a lipid-rich microenvironment. In this review, we highlight key recent breakthroughs in the VAT-Treg field while discussing pivotal questions that remain unanswered.
Collapse
Affiliation(s)
- Cody Elkins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Basuray N, Deehan EC, Vieira FT, Avedzi HM, Duke RL, Colín-Ramírez E, Tun HM, Zhang Z, Wine E, Madsen KL, Field CJ, Haqq AM. Dichotomous effect of dietary fiber in pediatrics: a narrative review of the health benefits and tolerance of fiber. Eur J Clin Nutr 2024; 78:557-568. [PMID: 38480843 DOI: 10.1038/s41430-024-01429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Dietary fibers are associated with favorable gastrointestinal, immune, and metabolic health outcomes when consumed at sufficient levels. Despite the well-described benefits of dietary fibers, children and adolescents continue to fall short of daily recommended levels. This gap in fiber intake (i.e., "fiber gap") might increase the risk of developing early-onset pediatric obesity and obesity-related comorbidities such as type 2 diabetes mellitus into adulthood. The structure-dependent physicochemical properties of dietary fiber are diverse. Differences in solubility, viscosity, water-holding capacity, binding capability, bulking effect, and fermentability influence the physiological effects of dietary fibers that aid in regulating appetite, glycemic and lipidemic responses, and inflammation. Of growing interest is the fermentation of fibers by the gut microbiota, which yields both beneficial and less favorable end-products such as short-chain fatty acids (e.g., acetate, propionate, and butyrate) that impart metabolic and immunomodulatory properties, and gases (e.g., hydrogen, carbon dioxide, and methane) that cause gastrointestinal symptoms, respectively. This narrative review summarizes (1) the implications of fibers on the gut microbiota and the pathophysiology of pediatric obesity, (2) some factors that potentially contribute to the fiber gap with an emphasis on undesirable gastrointestinal symptoms, (3) some methods to alleviate fiber-induced symptoms, and (4) the therapeutic potential of whole foods and commonly marketed fiber supplements for improved health in pediatric obesity.
Collapse
Affiliation(s)
- Nandini Basuray
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Flávio T Vieira
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hayford M Avedzi
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Reena L Duke
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Hein M Tun
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Eytan Wine
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Andrea M Haqq
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
29
|
Adibi L, Yaghmaei P, Maghami P, Ebrahim-Habibi A. Phenylalanine as an effective stabilizer and aggregation inhibitor of Bacillus amyloliquefaciens alpha-amylase. AMB Express 2024; 14:69. [PMID: 38850460 PMCID: PMC11162409 DOI: 10.1186/s13568-024-01712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/28/2024] [Indexed: 06/10/2024] Open
Abstract
Aromatic compounds are known anti-amyloid aggregates. Their effect on amorphous aggregates of proteins is, however, less studied. We chose aromatic amino acids Trp, Tyr, and Phe, as well as another known stabilizer (i.e. Arg), as potential compatible solvents to be tested on Bacillus amyloliquefaciens alpha-amylase (BAA). Among these additives, Phe was the only one to be effective on the thermal inactivation and amorphous aggregation of BAA, while preserving its intrinsic activity. A concentration of 50 mM Phe was used to test its potential in counteracting the deleterious effect of BAA amorphous aggregates in vivo. After 21 days of daily subcutaneous injections of the native enzyme to mice, amorphous aggregates of BAA, as well as aggregates produced in presence of 50 mM Phe, the tissues located at the site of injection were studied histologically. Amorphous aggregates caused an increase in macrophages and lipid droplets. Serum levels of IL6 and TNF-α were also accordingly elevated and indicative of an inflammation state. Aggregates also resulted into increased levels of glucose, triglycerides and cholesterol, as well as liver enzymes SGOT and SGPT. On the other hand, the presence of Phe prevented this exacerbated inflammatory state and the subsequent impairment of biochemical parameters. In conclusion, Phe is an interesting compound for both stabilizing proteins and counteracting the pathological effect of amorphous aggregates.
Collapse
Affiliation(s)
- Leila Adibi
- Department of Biology, Science and Research Branch, Islamic Azad University, North Sattaree Avenue, 1477893855, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, North Sattaree Avenue, 1477893855, Tehran, Iran.
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, North Sattaree Avenue, 1477893855, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Jalal-al-Ahmad Street, Chamran Highway, 1411713137, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran.
| |
Collapse
|
30
|
Rios FJ, de Ciuceis C, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Lopreiato M, Mavraganis G, Mengozzi A, Montezano AC, Stavropoulos K, Winklewski PJ, Wolf J, Costantino S, Doumas M, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Virdis A. Mechanisms of Vascular Inflammation and Potential Therapeutic Targets: A Position Paper From the ESH Working Group on Small Arteries. Hypertension 2024; 81:1218-1232. [PMID: 38511317 DOI: 10.1161/hypertensionaha.123.22483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - George Pavlidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
| | - Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Marcin Hellmann
- Cardiac Diagnostics (M.H.), Medical University of Gdansk, Poland
| | - Stefano Masi
- Institute of Cardiovascular Science, University College London, United Kingdom (S.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Mariarosaria Lopreiato
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa (A.M.)
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Konstantinos Stavropoulos
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Greece (K. Stavropoulos)
| | - Pawel J Winklewski
- Departments of Human Physiology (P.J.W.), Medical University of Gdansk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Sarah Costantino
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
| | - Michael Doumas
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - Ignatios Ikonomidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
- Department of Research and Education (F.P.), University Hospital Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
- Division of Medicine, Spedali Civili di Brescia, Italy (D.R.)
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim (K. Stellos), Heidelberg University, Germany
- Department of Cardiology, University Hospital Mannheim (K. Stellos), Heidelberg University, Germany
- German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site (K. Stellos)
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| |
Collapse
|
31
|
Li Y, Hao J, Kong X, Yuan W, Shen Y, Hui Z, Lu X. Rabeprazole mitigates obesity-induced chronic inflammation and insulin resistance associated with increased M2-type macrophage polarization. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167142. [PMID: 38565384 DOI: 10.1016/j.bbadis.2024.167142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Macrophage polarization is closely associated with obesity-induced chronic inflammation and insulin resistance. Proton pump inhibitor Rabeprazole has long been used to treat gastritis and gastric ulcers. However, whether Rabeprazole plays a role in macrophage polarization during obesity is unknown. Here, we show that Rabeprazole suppresses M1-type macrophage-mediated inflammation, leads to increased M2-type macrophages and alters the polarization status from M1 to M2 in vitro. Mechanistically, Rabe-regulated macrophage polarization is associated with inhibition of NF-κB and activation of STAT6 signaling pathways. Furthermore, Rabeprazole induces M2-type adipose tissue macrophages and alleviates chronic inflammation, improving glucose tolerance and insulin sensitivity in high-fat diet-fed mice. In addition, Rabeprazole increases CD206+ M2-type liver macrophages and relieves liver inflammation, alleviating liver injury and lipid accumulation. Thus, our findings show that Rabeprazole effectively regulates macrophage polarization and controls obesity-associated chronic inflammation and insulin resistance, thus providing a potential therapeutic strategy against obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Yunfang Li
- Hangzhou Children's Hospital, 310014 Hangzhou, China
| | - Jiayue Hao
- Institute of Immunology, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Xianghui Kong
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Weiyi Yuan
- Institute of Immunology, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Yingying Shen
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Zhaoyuan Hui
- Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, Shanxi 719000, China.
| | - Xinliang Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China.
| |
Collapse
|
32
|
Zhao YN, Liu ZD, Yan T, Xu TX, Jin TY, Jiang YS, Zuo W, Lee KY, Huang LJ, Wang Y. Macrophage-specific FGFR1 deletion alleviates high-fat-diet-induced liver inflammation by inhibiting the MAPKs/TNF pathways. Acta Pharmacol Sin 2024; 45:988-1001. [PMID: 38279043 PMCID: PMC11053141 DOI: 10.1038/s41401-024-01226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease that is substantially associated with obesity-induced chronic inflammation. Macrophage activation and macrophage-medicated inflammation play crucial roles in the development and progression of NAFLD. Furthermore, fibroblast growth factor receptor 1 (FGFR1) has been shown to be essentially involved in macrophage activation. This study investigated the role of FGFR1 in the NAFLD pathogenesis and indicated that a high-fat diet (HFD) increased p-FGFR1 levels in the mouse liver, which is associated with increased macrophage infiltration. In addition, macrophage-specific FGFR1 knockout or administration of FGFR1 inhibitor markedly protected the liver from HFD-induced lipid accumulation, fibrosis, and inflammatory responses. The mechanistic study showed that macrophage-specific FGFR1 knockout alleviated HFD-induced liver inflammation by suppressing the activation of MAPKs and TNF signaling pathways and reduced fat deposition in hepatocytes, thereby inhibiting the activation of hepatic stellate cells. In conclusion, the results of this research revealed that FGFR1 could protect the liver of HFD-fed mice by inhibiting MAPKs/TNF-mediated inflammatory responses in macrophages. Therefore, FGFR1 can be employed as a target to prevent the development and progression of NAFLD.
Collapse
Affiliation(s)
- Yan-Ni Zhao
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Zhou-di Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tao Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ting-Xin Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tian-Yang Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong-Sheng Jiang
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China
| | - Wei Zuo
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea.
| | - Li-Jiang Huang
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China.
| | - Yi Wang
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China.
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
33
|
Nakamura M. Lipotoxicity as a therapeutic target in obesity and diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12568. [PMID: 38706718 PMCID: PMC11066298 DOI: 10.3389/jpps.2024.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Unhealthy sources of fats, ultra-processed foods with added sugars, and a sedentary lifestyle make humans more susceptible to developing overweight and obesity. While lipids constitute an integral component of the organism, excessive and abnormal lipid accumulation that exceeds the storage capacity of lipid droplets disrupts the intracellular composition of fatty acids and results in the release of deleterious lipid species, thereby giving rise to a pathological state termed lipotoxicity. This condition induces endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory responses, and cell death. Recent advances in omics technologies and analytical methodologies and clinical research have provided novel insights into the mechanisms of lipotoxicity, including gut dysbiosis, epigenetic and epitranscriptomic modifications, dysfunction of lipid droplets, post-translational modifications, and altered membrane lipid composition. In this review, we discuss the recent knowledge on the mechanisms underlying the development of lipotoxicity and lipotoxic cardiometabolic disease in obesity, with a particular focus on lipotoxic and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, United States
| |
Collapse
|
34
|
Zhang Y, Zhang B, Sun X. The molecular mechanism of macrophage-adipocyte crosstalk in maintaining energy homeostasis. Front Immunol 2024; 15:1378202. [PMID: 38650945 PMCID: PMC11033412 DOI: 10.3389/fimmu.2024.1378202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between macrophages and adipocytes in adipose tissue are critical for the regulation of energy metabolism and obesity. Macrophage polarization induced by cold or other stimulations can drive metabolic reprogramming of adipocytes, browning, and thermogenesis. Accordingly, investigating the roles of macrophages and adipocytes in the maintenance of energy homeostasis is critical for the development of novel therapeutic approaches specifically targeting macrophages in metabolic disorders such as obesity. Current review outlines macrophage polarization not only regulates the release of central nervous system and inflammatory factors, but controls mitochondrial function, and other factor that induce metabolic reprogramming of adipocytes and maintain energy homeostasis. We also emphasized on how the adipocytes conversely motivate the polarization of macrophage. Exploring the interactions between adipocytes and macrophages may provide new therapeutic strategies for the management of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yudie Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
Liu Y, Lin Z, Wang Y, Chen L, Wang Y, Luo C. Nanotechnology in inflammation: cutting-edge advances in diagnostics, therapeutics and theranostics. Theranostics 2024; 14:2490-2525. [PMID: 38646646 PMCID: PMC11024862 DOI: 10.7150/thno.91394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 04/23/2024] Open
Abstract
Inflammatory dysregulation is intimately associated with the occurrence and progression of many life-threatening diseases. Accurate detection and timely therapeutic intervention on inflammatory dysregulation are crucial for the effective therapy of inflammation-associated diseases. However, the clinical outcomes of inflammation-involved disorders are still unsatisfactory. Therefore, there is an urgent need to develop innovative anti-inflammatory strategies by integrating emerging technological innovations with traditional therapeutics. Biomedical nanotechnology is one of the promising fields that can potentially transform the diagnosis and treatment of inflammation. In this review, we outline recent advances in biomedical nanotechnology for the diagnosis and treatment of inflammation, with special attention paid to nanosensors and nanoprobes for precise diagnosis of inflammation-related diseases, emerging anti-inflammatory nanotherapeutics, as well as nanotheranostics and combined anti-inflammatory applications. Moreover, the prospects and challenges for clinical translation of nanoprobes and anti-inflammatory nanomedicines are highlighted.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ziqi Lin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Liuhui Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
36
|
Liu Y, Su W, Liu Z, Hu Z, Shen J, Zheng Z, Ding D, Huang W, Li W, Cai G, Wei S, Li N, Fang X, Li H, Qin J, Zhang H, Xiao Y, Bi Y, Cui A, Zhang C, Li Y. Macrophage CREBZF Orchestrates Inflammatory Response to Potentiate Insulin Resistance and Type 2 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306685. [PMID: 38286660 PMCID: PMC10987118 DOI: 10.1002/advs.202306685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/23/2023] [Indexed: 01/31/2024]
Abstract
Chronic adipose tissue inflammation accompanied by macrophage accumulation and activation is implicated in the pathogenesis of insulin resistance and type 2 diabetes in humans. The transcriptional coregulator CREBZF is a key factor in hepatic metabolism, yet its role in modulating adipose tissue inflammation and type 2 diabetes remains elusive. The present study demonstrates that overnutrition-induced CREBZF links adipose tissue macrophage (ATM) proinflammatory activation to insulin resistance. CREBZF deficiency in macrophages, not in neutrophils, attenuates macrophage infiltration in adipose, proinflammatory activation, and hyperglycemia in diet-induced insulin-resistant mice. The coculture assays show that macrophage CREBZF deficiency improves insulin sensitivity in primary adipocytes and adipose tissue. Mechanistically, CREBZF competitively inhibits the binding of IκBα to p65, resulting in enhanced NF-κB activity. In addition, bromocriptine is identified as a small molecule inhibitor of CREBZF in macrophages, which suppresses the proinflammatory phenotype and improves metabolic dysfunction. Furthermore, CREBZF is highly expressed in ATM of obese humans and mice, which is positively correlated with proinflammatory genes and insulin resistance in humans. This study identifies a previously unknown role of CREBZF coupling ATM activation to systemic insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Yuxiao Liu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Weitong Su
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zhengshuai Liu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zhimin Hu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jiaxin Shen
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zengpeng Zheng
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Dong Ding
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Wei Huang
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityMetabolic Vascular Diseases Key Laboratory of Sichuan ProvinceLuzhouSichuan646000China
| | - Wenjing Li
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Genxiang Cai
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shuang Wei
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xia Fang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityMetabolic Vascular Diseases Key Laboratory of Sichuan ProvinceLuzhouSichuan646000China
| | - Hong Li
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Haibing Zhang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yan Bi
- Affiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingJiangsu210008China
| | - Aoyuan Cui
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Chunxiang Zhang
- Metabolic Vascular Disease Key Laboratory of Sichuan ProvinceThe Affiliated Hospital of Southwest Medical UniversityKey Laboratory of Medical ElectrophysiologyMinistry of EducationSouthwest Medical UniversityLuzhou646000China
| | - Yu Li
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
37
|
Yeudall S, Upchurch CM, Leitinger N. The clinical relevance of heme detoxification by the macrophage heme oxygenase system. Front Immunol 2024; 15:1379967. [PMID: 38585264 PMCID: PMC10995405 DOI: 10.3389/fimmu.2024.1379967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Heme degradation by the heme oxygenase (HMOX) family of enzymes is critical for maintaining homeostasis and limiting heme-induced tissue damage. Macrophages express HMOX1 and 2 and are critical sites of heme degradation in healthy and diseased states. Here we review the functions of the macrophage heme oxygenase system and its clinical relevance in discrete groups of pathologies where heme has been demonstrated to play a driving role. HMOX1 function in macrophages is essential for limiting oxidative tissue damage in both acute and chronic hemolytic disorders. By degrading pro-inflammatory heme and releasing anti-inflammatory molecules such as carbon monoxide, HMOX1 fine-tunes the acute inflammatory response with consequences for disorders of hyperinflammation such as sepsis. We then discuss divergent beneficial and pathological roles for HMOX1 in disorders such as atherosclerosis and metabolic syndrome, where activation of the HMOX system sits at the crossroads of chronic low-grade inflammation and oxidative stress. Finally, we highlight the emerging role for HMOX1 in regulating macrophage cell death via the iron- and oxidation-dependent form of cell death, ferroptosis. In summary, the importance of heme clearance by macrophages is an active area of investigation with relevance for therapeutic intervention in a diverse array of human diseases.
Collapse
Affiliation(s)
- Scott Yeudall
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Clint M. Upchurch
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
38
|
Li Y, Wang X, Zhang Z, Shi L, Cheng L, Zhang X. Effect of the gut microbiome, plasma metabolome, peripheral cells, and inflammatory cytokines on obesity: a bidirectional two-sample Mendelian randomization study and mediation analysis. Front Immunol 2024; 15:1348347. [PMID: 38558794 PMCID: PMC10981273 DOI: 10.3389/fimmu.2024.1348347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background Obesity is a metabolic and chronic inflammatory disease involving genetic and environmental factors. This study aimed to investigate the causal relationship among gut microbiota abundance, plasma metabolomics, peripheral cell (blood and immune cell) counts, inflammatory cytokines, and obesity. Methods Summary statistics of 191 gut microbiota traits (N = 18,340), 1,400 plasma metabolite traits (N = 8,299), 128 peripheral cell counts (blood cells, N = 408,112; immune cells, N = 3,757), 41 inflammatory cytokine traits (N = 8,293), and 6 obesity traits were obtained from publicly available genome-wide association studies. Two-sample Mendelian randomization (MR) analysis was applied to infer the causal links using inverse variance-weighted, maximum likelihood, MR-Egger, weighted median, weighted mode, and Wald ratio methods. Several sensitivity analyses were also utilized to ensure reliable MR results. Finally, we used mediation analysis to identify the pathway from gut microbiota to obesity mediated by plasma metabolites, peripheral cells, and inflammatory cytokines. Results MR revealed a causal effect of 44 gut microbiota taxa, 281 plasma metabolites, 27 peripheral cells, and 8 inflammatory cytokines on obesity. Among them, five shared causal gut microbiota taxa belonged to the phylum Actinobacteria, order Bifidobacteriales, family Bifidobacteriaceae, genus Lachnospiraceae UCG008, and species Eubacterium nodatum group. Furthermore, we screened 42 shared causal metabolites, 7 shared causal peripheral cells, and 1 shared causal inflammatory cytokine. Based on known causal metabolites, we observed that the metabolic pathways of D-arginine, D-ornithine, linoleic acid, and glycerophospholipid metabolism were closely related to obesity. Finally, mediation analysis revealed 20 mediation relationships, including the causal pathway from gut microbiota to obesity, mediated by 17 metabolites, 2 peripheral cells, and 1 inflammatory cytokine. Sensitivity analysis represented no heterogeneity or pleiotropy in this study. Conclusion Our findings support a causal relationship among gut microbiota, plasma metabolites, peripheral cells, inflammatory cytokines, and obesity. These biomarkers provide new insights into the mechanisms underlying obesity and contribute to its prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ying Li
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Xin Wang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liang Cheng
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xue Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Zhang Y, Du C, Wang W, Qiao W, Li Y, Zhang Y, Sheng S, Zhou X, Zhang L, Fan H, Yu Y, Chen Y, Liao Y, Chen S, Chang Y. Glucocorticoids increase adiposity by stimulating Krüppel-like factor 9 expression in macrophages. Nat Commun 2024; 15:1190. [PMID: 38331933 PMCID: PMC10853261 DOI: 10.1038/s41467-024-45477-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The mechanisms underlying glucocorticoid (GC)-induced obesity are poorly understood. Macrophages are the primary targets by which GCs exert pharmacological effects and perform critical functions in adipose tissue homeostasis. Here, we show that macrophages are essential for GC-induced obesity. Dexamethasone (Dex) strongly induced Krüppel-like factor 9 (Klf9) expression in macrophages. Similar to Dex, lentivirus-mediated Klf9 overexpression inhibits M1 and M2a markers expression, causing macrophage deactivation. Furthermore, the myeloid-specific Klf9 transgene promotes obesity. Conversely, myeloid-specific Klf9-knockout (mKlf9KO) mice are lean. Moreover, myeloid Klf9 knockout largely blocks obesity induced by chronic GC treatment. Mechanistically, GC-inducible KLF9 recruits the SIN3A/HDAC complex to the promoter regions of Il6, Ptgs2, Il10, Arg1, and Chil3 to inhibit their expression, subsequently reducing thermogenesis and increasing lipid accumulation by inhibiting STAT3 signaling in adipocytes. Thus, KLF9 in macrophages integrates the beneficial anti-inflammatory and adverse metabolic effects of GCs and represents a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Yinliang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Chunyuan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Wei Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Yuhui Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Sufang Sheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Xuenan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Lei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Heng Fan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yong Chen
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China.
| | - Yongsheng Chang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
40
|
Eberhart T, Stanley FU, Ricci L, Chirico T, Ferrarese R, Sisti S, Scagliola A, Baj A, Badurek S, Sommer A, Culp-Hill R, Dzieciatkowska M, Shokry E, Sumpton D, D'Alessandro A, Clementi N, Mancini N, Cardaci S. ACOD1 deficiency offers protection in a mouse model of diet-induced obesity by maintaining a healthy gut microbiota. Cell Death Dis 2024; 15:105. [PMID: 38302438 PMCID: PMC10834593 DOI: 10.1038/s41419-024-06483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Aconitate decarboxylase 1 (ACOD1) is the enzyme synthesizing itaconate, an immuno-regulatory metabolite tuning host-pathogen interactions. Such functions are achieved by affecting metabolic pathways regulating inflammation and microbe survival. However, at the whole-body level, metabolic roles of itaconate remain largely unresolved. By using multiomics-integrated approaches, here we show that ACOD1 responds to high-fat diet consumption in mice by promoting gut microbiota alterations supporting metabolic disease. Genetic disruption of itaconate biosynthesis protects mice against obesity, alterations in glucose homeostasis and liver metabolic dysfunctions by decreasing meta-inflammatory responses to dietary lipid overload. Mechanistically, fecal metagenomics and microbiota transplantation experiments demonstrate such effects are dependent on an amelioration of the intestinal ecosystem composition, skewed by high-fat diet feeding towards obesogenic phenotype. In particular, unbiased fecal microbiota profiling and axenic culture experiments point towards a primary role for itaconate in inhibiting growth of Bacteroidaceae and Bacteroides, family and genus of Bacteroidetes phylum, the major gut microbial taxon associated with metabolic health. Specularly to the effects imposed by Acod1 deficiency on fecal microbiota, oral itaconate consumption enhances diet-induced gut dysbiosis and associated obesogenic responses in mice. Unveiling an unrecognized role of itaconate, either endogenously produced or exogenously administered, in supporting microbiota alterations underlying diet-induced obesity in mice, our study points ACOD1 as a target against inflammatory consequences of overnutrition.
Collapse
Affiliation(s)
- Tanja Eberhart
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federico Uchenna Stanley
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luisa Ricci
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Tiziana Chirico
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Roberto Ferrarese
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
- Synlab Italia, Castenedolo, BS, Italy
| | - Sofia Sisti
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
| | - Alessandra Scagliola
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Sylvia Badurek
- Preclinical Phenotyping Facility, Vienna BioCenter Core Facilities (VBCF), member of the Vienna BioCenter (VBC), Vienna, Austria
| | - Andreas Sommer
- Next Generation Sequencing Facility, Vienna BioCenter Core Facilities (VBCF), member of the Vienna BioCenter (VBC), Vienna, Austria
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Laboratory of Medical Microbiology and Virology, Fondazione Macchi University Hospital, Varese, Italy
| | - Simone Cardaci
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
41
|
Yin M, Zhang Y, Li X, Liu S, Huang J, Yu H, Li X. Adverse effects of gestational diabetes mellitus on fetal monocytes revealed by single-cell RNA sequencing. iScience 2024; 27:108637. [PMID: 38188508 PMCID: PMC10770529 DOI: 10.1016/j.isci.2023.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Gestational diabetes mellitus (GDM), the most prevalent metabolic disorder during pregnancy, has long-term risks of metabolic diseases in offspring. However, the underlying mechanisms remain unclear. Here, we analyzed single-cell transcriptional data of cord blood mononuclear cells (CBMCs) from fetuses of healthy and GDM mothers, peripheral blood mononuclear cells from children and adolescents, and coronary plaques myeloid cells from atherosclerosis. Our results demonstrated that monocytes in cord blood were characterized with down-regulated proinflammatory-related pathways and up-regulated proliferation-related pathways. And monocytes in cord blood from GDM mothers were featured with expanded CXCL8+IL1B+ subclusters, enhanced crosstalk with neutrophil granulocytes and augmented adhesive and phagocytic abilities. Interestingly, CXCL8+IL1B+ monocytes influenced by GDM had transcriptome similarity with those of coronary plaques myeloid cells from individuals with atherosclerotic cardiovascular disease. Collectively, our data reveal adverse impact of maternal GDM environment on fetal monocytes and propose potential mechanisms between maternal GDM and offspring atherosclerosis.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Research Center of Cell Therapy for Diabetes, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
42
|
Zhang H, Lu J, Gao J, Sha W, Cai X, Rouzi MRYM, Xu Y, Tang W, Lei T. Association of Monocyte-to-HDL Cholesterol Ratio with Endothelial Dysfunction in Patients with Type 2 Diabetes. J Diabetes Res 2024; 2024:5287580. [PMID: 38239233 PMCID: PMC10796180 DOI: 10.1155/2024/5287580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Aims To explore the relationship between monocyte-to-HDL cholesterol ratio (MHR) and endothelial function in patients with type 2 diabetes (T2DM). Methods 243 patients diagnosed with T2DM were enrolled in this cross-sectional study. Patients were divided into two groups by flow-mediated dilation (FMD) quintile as nonendothelial dysfunction (FMD ≥ 6.4%) and endothelial dysfunction (FMD < 6.4%). The relationship between MHR and FMD was analyzed using Spearman's correlation, partial correlation, and multiple logistic regression analysis. ROC curve was fitted to evaluate the ability of MHR to predict endothelial dysfunction. Results Endothelial dysfunction was present in 193 (79%) patients. Patients with endothelial dysfunction had higher MHR (p < 0.05) than those without endothelial dysfunction. Furthermore, MHR had a significantly positive correlation with endothelial dysfunction (r = 0.17, p < 0.05), and the positive association persisted even after controlling for confounding factors (r = 0.14, p < 0.05). Logistic regression showed that MHR was an independent contributor for endothelial dysfunction (OR: 1.35 (1.08, 1.70), p < 0.05) and the risk of endothelial dysfunction increases by 61% with each standard deviation increase in MHR (OR: 1.61 (1.12, 2.30), p < 0.05) (model 1). After adjusting for sex, age, BMI, disease course, hypertension, smoking, and drinking (model 2) as well as HbA1c, HOMA-IR, C-reactive protein, and TG (model 3), similar results were obtained. In ROC analysis, the area of under the ROC curve (AUC) for MHR was 0.60 (95% CI 0.52-0.69, p < 0.05). Conclusion MHR was independently associated with endothelial dysfunction in T2DM patients. It could be a new biomarker for vascular endothelial function assessment.
Collapse
Affiliation(s)
- Huihui Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Gao
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Sha
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhua Cai
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mai Re Yan Mu Rouzi
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanying Xu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Tang
- Heart Function Examination Room, Tongji Hospital, Tongji University, Shanghai, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
43
|
Cao M, Kuthiala S, Jean KJ, Liu HL, Courchesne M, Nygard K, Burns P, Desrochers A, Fecteau G, Faure C, Frasch MG. The Vagus Nerve Regulates Immunometabolic Homeostasis in the Ovine Fetus near Term: The Impact on Terminal Ileum. BIOLOGY 2024; 13:38. [PMID: 38248469 PMCID: PMC10812930 DOI: 10.3390/biology13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Glucosensing elements are widely distributed throughout the body and relay information about circulating glucose levels to the brain via the vagus nerve. However, while anatomical wiring has been established, little is known about the physiological role of the vagus nerve in glucosensing. The contribution of the vagus nerve to inflammation in the fetus is poorly understood. Increased glucose levels and inflammation act synergistically when causing organ injury, but their interplay remains incompletely understood. We hypothesized that vagotomy (Vx) will trigger a rise in systemic glucose levels and this will be enhanced during systemic and organ-specific inflammation. Efferent vagus nerve stimulation (VNS) should reverse this phenotype. METHODS Near-term fetal sheep (n = 57) were surgically prepared using vascular catheters and ECG electrodes as the control and treatment groups (lipopolysaccharide (LPS), Vx + LPS, Vx + LPS + selective efferent VNS). The experiment was started 72 h postoperatively to allow for post-surgical recovery. Inflammation was induced with LPS bolus intravenously (LPS group, 400 ng/fetus/day for 2 days; n = 23). For the Vx + LPS group (n = 11), a bilateral cervical vagotomy was performed during surgery; of these n = 5 received double the LPS dose, LPS800. The Vx + LPS + efferent VNS group (n = 8) received cervical VNS probes bilaterally distal from Vx in eight animals. Efferent VNS was administered for 20 min on days 1 and 2 +/10 min around the LPS bolus. Fetal arterial blood samples were drawn on each postoperative day of recovery (-72 h, -48 h, and -24 h) as well as at the baseline and seven selected time points (3-54 h) to profile inflammation (ELISA IL-6, pg/mL), insulin (ELISA), blood gas, and metabolism (glucose). At 54 h post-LPS, a necropsy was performed, and the terminal ileum macrophages' CD11c (M1 phenotype) immunofluorescence was quantified to detect inflammation. The results are reported for p < 0.05 and for Spearman R2 > 0.1. The results are presented as the median (IQR). RESULTS Across the treatment groups, blood gas and cardiovascular changes indicated mild septicemia. At 3 h in the LPS group, IL-6 peaked. That peak was decreased in the Vx + LPS400 group and doubled in the Vx + LPS800 group. The efferent VNS sped up the reduction in the inflammatory response profile over 54 h. The M1 macrophage activity was increased in the LPS and Vx + LPS800 groups only. The glucose and insulin concentrations in the Vx + LPS group were, respectively, 1.3-fold (throughout the experiment) and 2.3-fold higher vs. control (at 3 h). The efferent VNS normalized the glucose concentrations. CONCLUSIONS The complete withdrawal of vagal innervation resulted in a 72-h delayed onset of a sustained increase in glucose for at least 54 h and intermittent hyperinsulinemia. Under the conditions of moderate fetal inflammation, this was related to higher levels of gut inflammation. The efferent VNS reduced the systemic inflammatory response as well as restored both the concentrations of glucose and the degree of terminal ileum inflammation, but not the insulin concentrations. Supporting our hypothesis, these findings revealed a novel regulatory, hormetic, role of the vagus nerve in the immunometabolic response to endotoxin in near-term fetuses.
Collapse
Affiliation(s)
- Mingju Cao
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Shikha Kuthiala
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Keven Jason Jean
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Hai Lun Liu
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Marc Courchesne
- Biotron Microscopy, Western University, London, ON N6A 3K7, Canada
| | - Karen Nygard
- Biotron Microscopy, Western University, London, ON N6A 3K7, Canada
| | - Patrick Burns
- Clinical Sciences, CHUV, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada (A.D.)
| | - André Desrochers
- Clinical Sciences, CHUV, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada (A.D.)
| | - Gilles Fecteau
- Clinical Sciences, CHUV, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada (A.D.)
| | - Christophe Faure
- Department of Pediatrics, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Martin G. Frasch
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
- Centre de Recherche en Reproduction Animale, l’Université de Montréal, St-Hyacinthe, QC H3T 1J4, Canada
- Department of Obstetrics and Gynecology and Institute on Human Development and Disability, School of Medicine, University of Washington, 1959 NE Pacific St Box 356460, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Zhao J, Zeng L, Liang G, Dou Y, Zhou G, Pan J, Yang W, Hong K, Liu J, Zhao L. Higher systemic immune-inflammation index is associated with sarcopenia in individuals aged 18-59 years: a population-based study. Sci Rep 2023; 13:22156. [PMID: 38092854 PMCID: PMC10719257 DOI: 10.1038/s41598-023-49658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
The association between the systemic immune-inflammation index (SII) and the risk of sarcopenia has not yet been revealed. The purpose of this study was to investigate the relationship between the SII and sarcopenia in individuals aged 18-59 years. All data for this study are from the National Health and Nutrition Examination Survey (NHANES) database, including 7258 participants (age range: 18-59 years). We divided SII values by quartiles (quartiles 1-4: 0.3-3.1, 3.2-4.4, 4.4-6.2, and 6.2-58.5). We constructed a multivariate logistic regression model to assess the association between the SII and the risk of sarcopenia, and an interaction test was run to test the stability of the model and identify high-risk individuals with sarcopenia. Compared to nonsarcopenia participants, sarcopenia patients had a significantly higher SII value (weighted average: 6.65 vs. 5.16) (P = 0.002). Multivariate logistic regression results showed a positive linear relationship between the SII and sarcopenia (OR [odds ratio] = 1.12, 95% CI [confidence interval] 1.03-1.21). Compared to the quartile 1 group, the quartile 4 group was associated with a higher risk of sarcopenia (OR = 3.94, 95% CI 1.42-10.94). Compared with the quartile 1 group, the OR value of the quartile 2 to quartile 4 groups showed an upwards trend (Ptrend < 0.001) as the level of SII increased. Subgroup analysis also indicate that the correlation between higher SII values and the risk of sarcopenia was stable. There was a significant positive linear relationship between SII and sarcopenia, indicating that higher SII values can increase the risk of sarcopenia in individuals aged 18-59 in the United States. The findings of this study will be beneficial in promoting the use of SII alone or in combination with other tools for the risk screening of sarcopenia in communities or large populations.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Lingfeng Zeng
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Guihong Liang
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yaoxing Dou
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Guanghui Zhou
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jianke Pan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Kunhao Hong
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, No.12, Jichang Road, Baiyun District, Guangzhou City, 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Jun Liu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, No.12, Jichang Road, Baiyun District, Guangzhou City, 510405, China.
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China.
| | - Li Zhao
- Guangdong Provincial Hospital of Chinese Medicine, No.53, Jingle Road, Xiangzhou District, Zhuhai, 519015, Guangdong Province, China.
| |
Collapse
|
45
|
Tian J, Fan J, Zhang T. Mitochondria as a target for exercise-mitigated type 2 diabetes. J Mol Histol 2023; 54:543-557. [PMID: 37874501 DOI: 10.1007/s10735-023-10158-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of most common metabolic diseases and continues to be a leading cause of death worldwide. Although great efforts have been made to elucidate the pathogenesis of diabetes, the underlying mechanism still remains unclear. Notably, overwhelming evidence has demonstrated that mitochondria are tightly correlated with the development of T2DM, and the defects of mitochondrial function in peripheral insulin-responsive tissues, such as skeletal muscle, liver and adipose tissue, are crucial drivers of T2DM. Furthermore, exercise training is considered as an effective stimulus for improving insulin sensitivity and hence is regarded as the best strategy to prevent and treat T2DM. Although the precise mechanisms by which exercise alleviates T2DM are not fully understood, mitochondria may be critical for the beneficial effects of exercise.
Collapse
Affiliation(s)
- Jingjing Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China.
| |
Collapse
|
46
|
Hildreth AD, Padilla ET, Gupta M, Wong YY, Sun R, Legala AR, O'Sullivan TE. Adipose cDC1s contribute to obesity-associated inflammation through STING-dependent IL-12 production. Nat Metab 2023; 5:2237-2252. [PMID: 37996702 DOI: 10.1038/s42255-023-00934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Obesity is associated with chronic low-grade white adipose tissue (WAT) inflammation that can contribute to the development of insulin resistance in mammals. Previous studies have identified interleukin (IL)-12 as a critical upstream regulator of WAT inflammation and metabolic dysfunction during obesity. However, the cell types and mechanisms that initiate WAT IL-12 production remain unclear. Here we show that conventional type 1 dendritic cells (cDC1s) are the cellular source of WAT IL-12 during obesity through analysis of mouse and human WAT single-cell transcriptomic datasets, IL-12 reporter mice and IL-12p70 protein levels by enzyme-linked immunosorbent assay. We demonstrate that cDC1s contribute to obesity-associated inflammation by increasing group 1 innate lymphocyte interferon-γ production and inflammatory macrophage accumulation. Inducible depletion of cDC1s increased WAT insulin sensitivity and systemic glucose tolerance during diet-induced obesity. Mechanistically, endocytosis of apoptotic bodies containing self-DNA by WAT cDC1s drives stimulator of interferon genes (STING)-dependent IL-12 production. Together, these results suggest that WAT cDC1s act as critical regulators of adipose tissue inflammation and metabolic dysfunction during obesity.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eddie T Padilla
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Meha Gupta
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yung Yu Wong
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan Sun
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Akshara R Legala
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Ma M, Yang Y, Chen Z, Li X, Yang Z, Wang K, Li X, Fang H, Cheng Y, Qiao T, Zou X, Lu Z, Wang X, Wu D. T-cell senescence induced by peripheral phospholipids. Cell Biol Toxicol 2023; 39:2937-2952. [PMID: 37261679 DOI: 10.1007/s10565-023-09811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
We present an integrated analysis of the clinical measurements, immune cells, and plasma lipidomics of 2000 individuals representing different age stages. In the study, we explore the interplay of systemic lipids metabolism and circulating immune cells through in-depth analysis of immune cell phenotype and function in peripheral dynamic lipids environment. The population makeup of circulation lymphocytes and lipid metabolites changes dynamically with age. We identified a major shift between young group and middle age group, at which point elevated, immune response is accompanied by the elevation of specific classes of peripheral phospholipids. We tested the effects in mouse model and found that 10-month-dietary added phospholipids induced T-cell senescence. However, the chronic malignant disease, the crosstalk between systemic metabolism and immunity, is completely changed. In cancer patients, the unusual plasma cholesteryl esters emerged, and free fatty acids decreased. The study reveals how immune cell classes and peripheral metabolism coordinate during age acceleration and suggests immune senescence is not isolated, and thus, system effect is the critical point for cell- and function-specific immune-metabolic targeting. • The study identifies a major shift of immune phenotype between young group and middle age group, and the immune response is accompanied by the elevation of specific classes of peripheral phospholipids; • The study suggests potential implications for translational studies such as using metabolic drug to regulate immune activity.
Collapse
Affiliation(s)
- Mingyue Ma
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhicheng Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Ke Wang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xusuo Li
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunfeng Cheng
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Tiankui Qiao
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Zhiqiang Lu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xiangdong Wang
- Respiratory Medicine Department of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Duojiao Wu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Respiratory Medicine Department of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Alghamdi A, Wani K, Alnaami AM, Al-Daghri NM. Dose Intervals and Time since Final Dose on Changes in Metabolic Indices after COVID-19 Vaccination. Vaccines (Basel) 2023; 11:1746. [PMID: 38140151 PMCID: PMC10748310 DOI: 10.3390/vaccines11121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The rapid development and implementation of COVID-19 vaccines merit understanding its effects on metabolic indices. This retrospective longitudinal study investigated the influence of first-to-second-dose intervals and time since the final dose on the metabolic indices of individuals receiving COVID-19 vaccinations. A total of 318 Saudi subjects (59.7% females) aged 12-60 years received COVID-19 vaccines via the national vaccination program. We collected the anthropometric data and fasting blood samples at specific time points before vaccination and after the final vaccination dose, and biochemical metabolic indices, including glucose and lipid profile, were measured. We also collected the dates of vaccination and COVID-19 history during the study period. The participants were stratified into groups based on first-to-second-dose intervals and time since the final dose to compare pre-and post-vaccination changes in metabolic indices between the groups. Logistic regression analysis revealed no differences in pre- to post-vaccination metabolic status between groups based on first-to-second-dose intervals in either adolescents or adults. However, shorter intervals (≤6 months) between the final dose and follow-up were associated with a decrease in total cardiometabolic components, especially triglyceride levels (OR = 0.39, 95% CI: (0.22-0.68), p < 0.001) than longer intervals (>6 months) in adults. In conclusion, time duration since final dose was associated with pre- to post-vaccination changes in metabolic indices, especially triglyceride levels, indicating that post-vaccination improvements wane over time. Further research is needed to validate the observed relationship, as it may contribute to optimizing vaccine effectiveness and safety in the future.
Collapse
Affiliation(s)
- Amani Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser M. Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
49
|
Guo C, Chi H. Immunometabolism of dendritic cells in health and disease. Adv Immunol 2023; 160:83-116. [PMID: 38042587 PMCID: PMC11086980 DOI: 10.1016/bs.ai.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Dendritic cells (DCs) are crucial mediators that bridge the innate and adaptive immune responses. Cellular rewiring of metabolism is an emerging regulator of the activation, migration, and functional specialization of DC subsets in specific microenvironments and immunological conditions. DCs undergo metabolic adaptation to exert immunogenic or tolerogenic effects in different contexts. Also, beyond their intracellular metabolic and signaling roles, metabolites and nutrients mediate the intercellular crosstalk between DCs and other cell types, and such crosstalk orchestrates DC function and immune responses. Here, we provide a comprehensive review of the metabolic regulation of DC biology in various contexts and summarize the current understanding of such regulation in directing immune homeostasis and inflammation, specifically with respect to infections, autoimmunity, tolerance, cancer, metabolic diseases, and crosstalk with gut microbes. Understanding context-specific metabolic alterations in DCs may identify mechanisms for physiological and pathological functions of DCs and yield potential opportunities for therapeutic targeting of DC metabolism in many diseases.
Collapse
Affiliation(s)
- Chuansheng Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States.
| |
Collapse
|
50
|
Liu H, Zeng L, Pan M, Huang L, Li H, Liu M, Niu X, Zhang C, Wang H. Bcl-3 regulates T cell function through energy metabolism. BMC Immunol 2023; 24:35. [PMID: 37794349 PMCID: PMC10552310 DOI: 10.1186/s12865-023-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Bcl-3 is a member of the IκB protein family and an essential modulator of NF-κB activity. It is well established that Bcl-3 is critical for the normal development, survival and differentiation of adaptive immune cells, especially T cells. However, the regulation of immune cell function by Bcl-3 through metabolic pathways has rarely been studied. RESULTS In this study, we explored the role of Bcl-3 in the metabolism and function of T cells via the mTOR pathway. We verified that the proliferation of Bcl-3-deficient Jurkat T cells was inhibited, but their activation was promoted, and Bcl-3 depletion regulated cellular energy metabolism by reducing intracellular ATP and ROS production levels and mitochondrial membrane potential. Bcl-3 also regulates cellular energy metabolism in naive CD4+ T cells. In addition, the knockout of Bcl-3 altered the expression of mTOR, Akt, and Raptor, which are metabolism-related genes, in Jurkat cells. CONCLUSIONS This finding indicates that Bcl-3 may mediate the energy metabolism of T cells through the mTOR pathway, thereby affecting their function. Overall, we provide novel insights into the regulatory role of Bcl-3 in T-cell energy metabolism for the prevention and treatment of immune diseases.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengmeng Pan
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liwenhui Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hanying Li
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengxia Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xinqing Niu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chenguang Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|