1
|
Peng W, Fu Y, Du Y, Pan J, Li B, Gu Y, Bai Y, Zheng B, Wang T. Engineered bioorthogonal cell delivery system for in situ antimicrobial peptide recruitment during systemic bacterial infection. Acta Biomater 2025:S1742-7061(25)00265-X. [PMID: 40220946 DOI: 10.1016/j.actbio.2025.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/28/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Allogeneic cells represent promising intelligent delivery platforms owing to their intrinsic target homing ability, ready-to-use, scalability and broad applicability. However, implanted allogeneic cells are susceptible to rapid clearance by mononuclear phagocytic system (MPS), resulting in short half-life and compromised therapeutic efficacy. To overcome this limitation, we constructed genetically engineered allogeneic cells with surface-expressed CD24, a "don't eat me" signal protein, to evade phagocytosis by macrophages. Additionally, we modified the allogeneic cells with azide groups, creating a binding site for dibenzocyclooctyne (DBCO)-modified drugs through copper-free click chemistry. The results showed that mesenchymal stem cells (MSCs) have natural inflammation-targeting properties, and modification of allogeneic MSCs (M24N3 cells) significantly prolonged their retention at the site of inflammation. Moreover, DBCO-modified antimicrobial peptides (DBCO-LL37) were more effectively recruited to inflammation sites via bioorthogonal reactions, resulting in sustained bacterial clearance. The M24N3@DBCO-LL37 treatment cleared multiple sepsis mediators, extended circulation time, and increased tissue retention, ultimately protecting against organ damage and delaying sepsis-induced lethality, subsequently resulting in remarkable survival rate elevation. These findings underscore the potential of bioorthogonal system based on engineered allogeneic cells for the treatment of complex inflammatory diseases, highlighting their promising applications in evading rapid clearance systems in vivo. STATEMENT OF SIGNIFICANCE: In recent years, allogeneic cells have garnered significant research interest as emerging drug delivery carriers due to their off-the-shelf availability, scalable production, and broad therapeutic applicability. However, recognition and elimination mediated by the mononuclear phagocyte system (MPS) brings a substantial challenge to their clinical application. We developed an engineered bioorthogonal cell delivery system, M24N3@DBCO-LL37, through genetic engineering and glucose metabolic engineering methods, which could avoid phagocytosis of allogeneic cells by macrophages, prolong the retention time of allogeneic cells at the site of inflammation, recruit more DBCO-modified antimicrobial peptides (DBCO-LL37), and significantly reduced the mortality rate and improved therapeutic efficiency in a mouse model of sepsis. This strategy can not only be used in the development of cell delivery systems, but also has the potential to be used in the design of more allogeneic cell therapy strategies, such as chimeric antigen receptor T-cell immunotherapy (CAR-T), haematopoietic stem cell transplantation and organ transplantation, to improve the therapeutic efficacy.
Collapse
Affiliation(s)
- Wenchang Peng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Yun Fu
- Fujian Provincial Human Sperm Bank, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, PR China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yajing Du
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jingye Pan
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yun Gu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Yang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Department of Stomatology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China.
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, 300011, China.
| |
Collapse
|
2
|
Li CH, Sharma S, Heczey AA, Woods ML, Steffin DHM, Louis CU, Grilley BJ, Thakkar SG, Wu M, Wang T, Rooney CM, Brenner MK, Heslop HE. Long-term outcomes of GD2-directed CAR-T cell therapy in patients with neuroblastoma. Nat Med 2025; 31:1125-1129. [PMID: 39962287 DOI: 10.1038/s41591-025-03513-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025]
Abstract
In a phase 1 clinical trial open to accrual from 2004 to 2009, we treated children with neuroblastoma with Epstein-Barr virus (EBV)-specific T lymphocytes and CD3-activated T cells-each expressing chimeric antigen receptors (CARs) targeting GD2 but without an embedded co-stimulatory sequence (first-generation CARs). These CARs incorporated barcoded sequences to track each infused population. We previously reported outcomes up to 5 years and now report long-term outcomes up to 18 years. Of 11 patients with active disease at infusion, three achieved a complete response that was sustained in two patients, one for 8 years until lost to follow-up and one for more than 18 years. Of eight patients with no evidence of disease at the time of CAR-T administration, five are disease free at their last follow-up between 10 years and 15 years after infusion. Intermittent low levels of transgene were detected during the follow-up period with significantly greater persistence in those who were long-term survivors. Despite using first-generation vectors that are no longer employed because of the lack of co-stimulatory domains, patients with relapsed/refractory neuroblastoma achieved long-term disease control after receiving GD2 CAR-T cell therapy, including one patient now in remission of relapsed disease for more than 18 years.ClinicalTrials.gov identifier: NCT00085930 .
Collapse
Affiliation(s)
- Che-Hsing Li
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Andras A Heczey
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mae L Woods
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - David H M Steffin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chrystal U Louis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Bambi J Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sachin G Thakkar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Mengfen Wu
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Shi X, He X, Xu C. Charge-based immunoreceptor signalling in health and disease. Nat Rev Immunol 2025; 25:298-311. [PMID: 39528837 DOI: 10.1038/s41577-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Immunoreceptors have crucial roles in sensing environmental signals and initiating immune responses to protect the host. Dysregulation of immunoreceptor signalling can therefore lead to a range of diseases, making immunoreceptor-based therapies a promising frontier in biomedicine. A common feature of various immunoreceptors is the basic-residue-rich sequence (BRS), which is a largely unexplored aspect of immunoreceptor signalling. The BRS is typically located in the cytoplasmic juxtamembrane region of immunoreceptors, where it forms dynamic interactions with neighbouring charged molecules to regulate signalling. Loss or gain of the basic residues in an immunoreceptor BRS has been linked to severe human diseases, such as immunodeficiency and autoimmunity. In this Perspective, we describe the role of BRSs in various immunoreceptors, elucidating their signalling mechanisms and biological functions. Furthermore, we highlight pathogenic mutations in immunoreceptor BRSs and discuss the potential of leveraging BRS signalling in engineered T cell-based therapies.
Collapse
Affiliation(s)
- Xiaoshan Shi
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xing He
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
4
|
Yang L, Wang X, Wang S, Shen J, Li Y, Wan S, Xiao Z, Wu Z. Targeting lipid metabolism in regulatory T cells for enhancing cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189259. [PMID: 39798823 DOI: 10.1016/j.bbcan.2025.189259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
As immunosuppressive cells, Regulatory T cells (Tregs) exert their influence on tumor immune escape within the tumor microenvironment (TME) by effectively suppressing the activity of other immune cells, thereby significantly impeding the anti-tumor immune response. In recent years, the metabolic characteristics of Tregs have become a focus of research, especially the important role of lipid metabolism in maintaining the function of Tregs. Consequently, targeted interventions aimed at modulating lipid metabolism in Tregs have been recognized as an innovative and promising approach to enhance the effectiveness of tumor immunotherapy. This review presents a comprehensive overview of the pivotal role of lipid metabolism in regulating the function of Tregs, with a specific focus on targeting Tregs lipid metabolism as an innovative approach to augment anti-tumor immune responses. Furthermore, we discuss potential opportunities and challenges associated with this strategy, aiming to provide novel insights for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Liu Yang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yaling Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
5
|
Ma K, Xu Y, Cheng H, Tang K, Ma J, Huang B. T cell-based cancer immunotherapy: opportunities and challenges. Sci Bull (Beijing) 2025:S2095-9273(25)00337-8. [PMID: 40221316 DOI: 10.1016/j.scib.2025.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
T cells play a central role in the cancer immunity cycle. The therapeutic outcomes of T cell-based intervention strategies are determined by multiple factors at various stages of the cycle. Here, we summarize and discuss recent advances in T cell immunotherapy and potential barriers to it within the framework of the cancer immunity cycle, including T-cell recognition of tumor antigens for activation, T cell trafficking and infiltration into tumors, and killing of target cells. Moreover, we discuss the key factors influencing T cell differentiation and functionality, including TCR stimulation, costimulatory signals, cytokines, metabolic reprogramming, and mechanistic forces. We also highlight the key transcription factors dictating T cell differentiation and discuss how metabolic circuits and specific metabolites shape the epigenetic program of tumor-infiltrating T cells. We conclude that a better understanding of T cell fate decision will help design novel strategies to overcome the barriers to effective cancer immunity.
Collapse
Affiliation(s)
- Kaili Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yingxi Xu
- Department of Oncology, University of Lausanne, Lausanne, 1015, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, 1066, Switzerland; National Key Laboratory of Blood Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 300070, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Huang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
6
|
Tian R, Tian X, Yang M, Song Y, Zhao T, Zhong C, Zhu W, Zhou P, Han Z, Hu Z. Systematic high-throughput evaluation reveals FrCas9's superior specificity and efficiency for therapeutic genome editing. SCIENCE ADVANCES 2025; 11:eadu7334. [PMID: 40138428 PMCID: PMC11939069 DOI: 10.1126/sciadv.adu7334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
CRISPR-Cas9 systems have revolutionized genome editing, but the off-target effects of Cas9 limit its use in clinical applications. Here, we systematically evaluate FrCas9, a variant from Faecalibaculum rodentium, for cell and gene therapy (CGT) applications and compare its performance to SpCas9 and OpenCRISPR-1. OpenCRISPR-1 is a CRISPR system synthesized de novo using large language models (LLMs) but has not yet undergone systematic characterization. Using AID-seq, Amplicon sequencing, and GUIDE-seq, we assessed the on-target activity and off-target profiles of these systems across multiple genomic loci. FrCas9 demonstrated higher on-target efficiency and substantially fewer off-target effects than SpCas9 and OpenCRISPR-1. Furthermore, TREX2 fusion with FrCas9 reduced large deletions and translocations, enhancing genomic stability. Through screening of 1903 sgRNAs targeting 21 CGT-relevant genes using sequential AID-seq, Amplicon sequencing, and GUIDE-seq analysis, we identified optimal sgRNAs for each gene. Our high-throughput screening platform highlights FrCas9, particularly in its TREX2-fused form, as a highly specific and efficient tool for precise therapeutic genome editing.
Collapse
Affiliation(s)
- Rui Tian
- Generulor Company Bio-X Lab, Zhuhai 519000, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Meiying Yang
- Department of Gynecology, Guilin People’s Hospital, Guilin 541000, China
| | - Yuping Song
- Department of Dermatology, Wuhan Donghu Hospital, Wuhan 430074, Hubei, China
| | | | | | - Wei Zhu
- Generulor Company Bio-X Lab, Zhuhai 519000, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Hu
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
7
|
Ikeda S, Hasegawa K, Kogue Y, Arimori T, Kawamoto R, Wibowo T, Yaga M, Inada Y, Uehara H, Matsubara M, Tachikawa M, Suga M, Kida S, Shibata K, Tsutsumi K, Fukushima K, Fujita J, Ueda T, Kusakabe S, Hino A, Ichii M, Hirose A, Nakamae H, Hino M, Nakao T, Inoue M, Yoshihara K, Yoshihara S, Ueda S, Tachi T, Kuroda H, Murakami K, Kijima N, Kishima H, Igashira E, Murakami M, Takiuchi T, Kimura T, Hiroshima T, Kimura T, Shintani Y, Imai C, Yusa K, Mori R, Ogino T, Eguchi H, Takeda K, Oji Y, Kumanogoh A, Takagi J, Hosen N. CAR T or NK cells targeting mismatched HLA-DR molecules in acute myeloid leukemia after allogeneic hematopoietic stem cell transplant. NATURE CANCER 2025:10.1038/s43018-025-00934-1. [PMID: 40128569 DOI: 10.1038/s43018-025-00934-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/19/2025] [Indexed: 03/26/2025]
Abstract
Acute myeloid leukemia (AML)-specific target antigens are difficult to identify. Here we demonstrate that HLA-DRB1 can serve as a leukemia-specific target of chimeric antigen receptor (CAR) T cells in patients with AML after allogeneic hematopoietic stem cell transplantation (allo-HCT). We identified KG2032 as a monoclonal antibody specifically bound to AML cells in about half of patients, but not to normal leukocytes other than B lymphocytes. KG2032 reacted with a subset of HLA-DRB1 molecules, specifically those in which the 86th amino acid was not aspartic acid. KG2032 reacted minimally with nonhematopoietic tissues. These results indicate that KG2032 reactivity is highly specific for AML cells in patients who carry KG2032-reactive HLA-DRB1 alleles and who received allo-HCT from a donor carrying KG2032-nonreactive HLA-DRB1 alleles. KG2032-derived CAR T or natural killer cells showed significant anti-leukemic activity in preclinical models in female mice, suggesting that they may cure patients with AML who are incurable with allo-HCT.
Collapse
Affiliation(s)
- Shunya Ikeda
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kana Hasegawa
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Yosuke Kogue
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Company, Osaka, Japan
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takao Arimori
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryuhei Kawamoto
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tansri Wibowo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuri Inada
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirofumi Uehara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miwa Matsubara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mana Tachikawa
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makiko Suga
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kida
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kumi Shibata
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhito Tsutsumi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jiro Fujita
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Kusakabe
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihisa Hino
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Asao Hirose
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takafumi Nakao
- Department of Hematology, Osaka City General Hospital, Osaka, Japan
| | - Megumu Inoue
- Department of Hematology, Itami City Hospital, Hyogo, Japan
| | - Kyoko Yoshihara
- Department of Hematology, Hyogo Medical University Hospital, Hyogo, Japan
| | - Satoshi Yoshihara
- Department of Hematology, Hyogo Medical University Hospital, Hyogo, Japan
| | - Shuji Ueda
- Department of Hematology, Hyogo Prefectural Nishinomiya Hospital, Hyogo, Japan
| | - Tetsuro Tachi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Kuroda
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eri Igashira
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Murakami
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Takiuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Hiroshima
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chihaya Imai
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryota Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyoshi Takeda
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Kumanogoh
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Naoki Hosen
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
8
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
9
|
Renninger J, Kurz L, Stein H. Mitigation and Management of Common Toxicities Associated with the Administration of CAR-T Therapies in Oncology Patients. Drug Saf 2025:10.1007/s40264-025-01538-5. [PMID: 40108072 DOI: 10.1007/s40264-025-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapies are one of the main approaches among targeted cellular therapies. Despite the potential benefit and durable responses observed in some patients receiving CAR-T therapies, serious and potentially fatal toxicities remain a major challenge. The most common CAR-T-associated toxicities include cytokine release syndrome (CRS), neurotoxicity, cytopenias, and infections. While CRS and neurotoxicity are generally managed with tocilizumab and corticosteroids, respectively, high-grade toxicities can be life-threatening. Close postinfusion monitoring and assessment of clinical laboratory parameters, patient-related and clinical risk factors (e.g., age, tumor burden, comorbidities, baseline laboratory parameters, and underlying abnormalities), and therapy-related risk factors (e.g., CAR-T type, dose, and CAR-T-induced toxicity) are effective strategies to mitigate the toxicities. Clinical laboratory parameters, including various cytokines, have been identified for CRS (interleukin [IL]-1, IL-2, IL-5, IL-6, IL-8, IL-10, C-reactive protein [CRP], interferon [IFN]-γ, ferritin, granulocyte-macrophage colony-stimulating factor [GM-CSF], and monocyte chemoattractant protein-1), neurotoxicity (IL-1, IL-2, IL-6, IL-15, tumor necrosis factor [TNF]-α, GM-CSF, and IFN-γ), cytopenias (IL-2, IL-4, IL-6, IL-10, IFN-γ, ferritin, and CRP), and infections (IL-8, IL-1β, CRP, IFN-γ, and procalcitonin). CAR-T-associated toxicities can be monitored and treated to mitigate the risk to patients. Assessment of alterations in clinical laboratory parameter values that are correlated with CAR-T-associated toxicities may predict development and/or severity of a given toxicity, which can improve patient management strategies and ultimately enable the patients to better tolerate these therapies.
Collapse
Affiliation(s)
- Jonathan Renninger
- GSK Safety Evaluation and Risk Management, Global Safety, Philadelphia, PA, USA.
| | - Lisa Kurz
- GSK Safety Evaluation and Risk Management, Global Safety, Upper Providence, PA, USA
| | - Heather Stein
- GSK Safety Evaluation and Risk Management, Global Safety, Cambridge, MA, USA
| |
Collapse
|
10
|
Cui Y, David M, Bouchareychas L, Rouquier S, Sajuthi S, Ayrault M, Navarin C, Lara G, Lafon A, Saviane G, Boulakirba S, Menardi A, Demory A, Frikeche J, de la Forest Divonne Beghelli S, Lu HH, Dumont C, Abel T, Fenard D, de la Rosa M, Gertner-Dardenne J. IL23R-Specific CAR Tregs for the Treatment of Crohn's Disease. J Crohns Colitis 2025; 19:jjae135. [PMID: 39252592 PMCID: PMC11945296 DOI: 10.1093/ecco-jcc/jjae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Regulatory T cells (Tregs) are key regulators in maintaining tissue homeostasis. Disrupted immune homeostasis is associated with Crohn's disease (CD) pathogenesis. Thus, Treg therapy represents a promising long-acting treatment to restore immune balance in the diseased intestine. Chimeric antigen receptor (CAR) T-cell therapy has revolutionized cancer treatment. This innovative approach also provides the opportunity to improve therapy for CD. By targeting a disease-relevant protein, interleukin-23 receptor (IL23R), we engineered Tregs expressing IL23R-CAR for treating active CD. METHODS Intestinal IL23R expression from active CD was verified by immunohistochemical analysis. Phenotypic and functional characteristics of IL23R-CAR Tregs were assessed using in vitro assays and their migration capacity was monitored in a xenograft tumor model. Transcriptomic and proteomic analyses were performed to associate molecular profiles with IL23R-CAR Treg activation against colon biopsy-derived cells from active CD patients. RESULTS Our study showed that IL23R-CAR displayed negligible tonic signaling and a strong signal-to-noise ratio. IL23R-CAR Tregs maintained regulatory phenotype during in vitro expansion, even when chronically exposed to proinflammatory cytokines and target antigen. IL23R engagement on IL23R-CAR Tregs triggered CAR-specific activation and significantly enhanced their suppressive activity. Also, IL23R-CAR Tregs migrated to IL23R-expressing tissue in humanized mice. Finally, IL23R-CAR Tregs elicited a specific activation against colon biopsy-derived cells from active CD, suggesting an efficient CAR engagement in active CD. Molecular profiling of CD patient biopsies also revealed transcriptomic and proteomic patterns associated with IL23R-CAR activation. CONCLUSIONS Overall, our results demonstrate that IL23R-CAR Tregs represent a promising therapy for active CD.
Collapse
Affiliation(s)
- Yue Cui
- Research, Sangamo Therapeutics, Valbonne, France
| | - Marion David
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | - Gregory Lara
- Research, Sangamo Therapeutics, Valbonne, France
| | - Audrey Lafon
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | | | | | | | - Tobias Abel
- Research, Sangamo Therapeutics, Valbonne, France
| | - David Fenard
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | |
Collapse
|
11
|
Chen Q, Sun J, Ling S, Yang H, Li T, Yang X, Li M, Du M, Zhang Y, Li C, Wang Q. Tumor Microenvironment-Responsive Nano-Immunomodulators for Enhancing Chimeric Antigen Receptor-T Cell Therapy in Lung Cancer. ACS NANO 2025; 19:8212-8226. [PMID: 39988897 DOI: 10.1021/acsnano.4c17899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Chimeric antigen receptor (CAR)-T cells have shown unparalleled efficacy in treating hematologic cancers, but their application in solid tumor treatment remains challenging due to the immunosuppressive tumor microenvironment (TME). It is highly significant to develop safe and efficient TME regulatory strategies for the adoptive cellular immunotherapy of tumors. Herein, a TME-responsive nanoimmunomodulator (FMANAC) is designed using a multicomponent coordination self-assembly method to reconstruct the immune chemokine gradient and overcome the suppression of CAR-T cell immunoactivity, thereby improving the infiltration and killing efficiency of CAR-T cells within tumors. The acidic TME induces the disassembly of FMANAC, followed by the drug release, in which C-C chemokine ligand 5 (CCL5) improves the disrupted chemotactic gradient within tumors, increasing CAR-T cell recruitment and infiltration into deep tissue; and NLG919 reverses indoleamine 2,3-dioxygenase (IDO)-mediated immunosuppression in TME to create a favorable environment for CAR-T cells to exert their killing function. In the H460 lung cancer animal model, this nanoregulatory strategy combined with engineered CD276 CAR-T cells, guided by multiplexed near-infrared-II fluorescence imaging for programmed administration, achieved significantly enhanced tumor treatment efficacy.
Collapse
Affiliation(s)
- Qian Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Jie Sun
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215031, China
| | - Sisi Ling
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaohu Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Meng Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mingming Du
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
12
|
Kwok DW, Stevers NO, Etxeberria I, Nejo T, Colton Cove M, Chen LH, Jung J, Okada K, Lakshmanachetty S, Gallus M, Barpanda A, Hong C, Chan GKL, Liu J, Wu SH, Ramos E, Yamamichi A, Watchmaker PB, Ogino H, Saijo A, Du A, Grishanina NR, Woo J, Diaz A, Hervey-Jumper SL, Chang SM, Phillips JJ, Wiita AP, Klebanoff CA, Costello JF, Okada H. Tumour-wide RNA splicing aberrations generate actionable public neoantigens. Nature 2025; 639:463-473. [PMID: 39972144 PMCID: PMC11903331 DOI: 10.1038/s41586-024-08552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2024] [Indexed: 02/21/2025]
Abstract
T cell-based immunotherapies hold promise in treating cancer by leveraging the immune system's recognition of cancer-specific antigens1. However, their efficacy is limited in tumours with few somatic mutations and substantial intratumoural heterogeneity2-4. Here we introduce a previously uncharacterized class of tumour-wide public neoantigens originating from RNA splicing aberrations in diverse cancer types. We identified T cell receptor clones capable of recognizing and targeting neoantigens derived from aberrant splicing in GNAS and RPL22. In cases with multi-site biopsies, we detected the tumour-wide expression of the GNAS neojunction in glioma, mesothelioma, prostate cancer and liver cancer. These neoantigens are endogenously generated and presented by tumour cells under physiologic conditions and are sufficient to trigger cancer cell eradication by neoantigen-specific CD8+ T cells. Moreover, our study highlights a role for dysregulated splicing factor expression in specific cancer types, leading to recurrent patterns of neojunction upregulation. These findings establish a molecular basis for T cell-based immunotherapies addressing the challenges of intratumoural heterogeneity.
Collapse
Affiliation(s)
- Darwin W Kwok
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Iñaki Etxeberria
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Maggie Colton Cove
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lee H Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jangham Jung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Abhilash Barpanda
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Gary K L Chan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jerry Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Samuel H Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Atsuro Saijo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aidan Du
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nadia R Grishanina
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - James Woo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
13
|
Gao H, Qu L, Li M, Guan X, Zhang S, Deng X, Wang J, Xing F. Unlocking the potential of chimeric antigen receptor T cell engineering immunotherapy: Long road to achieve precise targeted therapy for hepatobiliary pancreatic cancers. Int J Biol Macromol 2025; 297:139829. [PMID: 39814310 DOI: 10.1016/j.ijbiomac.2025.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Innovative therapeutic strategies are urgently needed to address the ongoing global health concern of hepatobiliary pancreatic malignancies. This review summarizes the latest and most comprehensive research of chimeric antigen receptor (CAR-T) cell engineering immunotherapy for treating hepatobiliary pancreatic cancers. Commencing with an exploration of the distinct anatomical location and the immunosuppressive, hypoxic tumor microenvironment (TME), this review critically assesses the limitations of current CAR-T therapy in hepatobiliary pancreatic cancers and proposes corresponding solutions. Various studies aim at enhancing CAR-T cell efficacy in these cancers through improving T cell persistence, enhancing antigen specificity and reducing tumor heterogeneity, also modulating the immunosuppressive and hypoxic TME. Additionally, the review examines the application of emerging nanoparticles and biotechnologies utilized in CAR-T therapy for these cancers. The results suggest that constructing optimized CAR-T cells to overcome physical barrier, manipulating the TME to relieve immunosuppression and hypoxia, designing CAR-T combination therapies, and selecting the most suitable delivery strategies, all together could collectively enhance the safety of CAR-T engineering and advance the effectiveness of adaptive cell therapy for hepatobiliary pancreatic cancers.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianyue Qu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
14
|
Wang Z, Zhang D, Liu N, Wang J, Zhang Q, Zheng S, Zhang Z, Zhang W. A review on recent advances in polymeric microneedle loading cells: Design strategies, fabrication technologies, transdermal application and challenges. Int J Biol Macromol 2025; 297:138885. [PMID: 39719236 DOI: 10.1016/j.ijbiomac.2024.138885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Microneedle systems (MNs) loading living cells are a powerful platform to treat various previously incurable diseases in the era of precision medicine. Herein, an overview of recent advances in MN-based strategies for cell delivery is summarized, including material selection, design of morphological structures, and processing methods. We also systematically outlined the law of microstructural design relative to the structure-effective/function relationship in transdermal delivery or precision medicine and the design principles of cell microneedle (CMN). Furthermore, the representative works of precision treatments focusing on inflammatory skin diseases were tracked and discussed using CMN. Indeed, it highlights a practical path to solving the dilemma of cell therapy and raising the hope of precision medicine. However, there are still some challenges in developing CMN since they need multi-dimensional comprehensive properties, including mechanical properties, cell viability preservation, release, therapeutic effect, etc. The manuscript could provide insights into developing an innovative fit-to-purpose vehicle in cell therapy for interested researchers.
Collapse
Affiliation(s)
- Zixin Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dongmei Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Ningning Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiayi Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qianjie Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shilian Zheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zijia Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wanping Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
15
|
Wu Z, Wang Q, Xiong Z. Causal relations between immune cells and cerebral hemorrhage: a bidirectional Mendelian randomization study. Int J Neurosci 2025:1-14. [PMID: 39918327 DOI: 10.1080/00207454.2025.2457042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/12/2025]
Abstract
BACKGROUND Previous studies have shown that an increased number of immune cells is closely associated with the onset and course changes of intracerebral hemorrhage, but the exact causal relationship has not been clarified. The aim of this study was to investigate the causal relationship between immune cells and intracerebral hemorrhage by a two-way Mendelian randomization method. METHODS Two sets of SNPs were used as instrumental variables and two-way Mendelian randomization analyses were performed and leave-one-out method were used to assess the validity and heterogeneity of the included genetic variation instruments. The level of multiplicity and heterogeneity of the included genetic variance instruments was assessed. RESULTS The results showed a clear causal relationship between three immune cells and intracerebral hemorrhage, and no heterogeneity between SNPs related to intracerebral hemorrhage, while scatterplot and funnel plot confirmed that the causality was less likely to be biased; MR-Egger results suggested that no genetic pleiotropy was found. Leave-one-out analysis was applied to suggest that the MR analysis results for a single SNP were robust; meanwhile, Meta-analysis was applied to combine the two intracerebral hemorrhage datasets, and the analysis results suggested that in the fixed-effects model and random-effects model, the immunocyte CD66b on Granulocytic Myeloid-Derived Suppressor Cells and other three immune cells were significantly causally associated with intracerebral hemorrhage, while the heterogeneity test suggested that there was no significant difference between the different datasets. CONCLUSIONS The present study found a significant causal relationship between specific immune cell phenotypes and intracerebral hemorrhage by Mendelian randomization analysis.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Neurosurgery, The Central hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiqi Wang
- Department of Neurosurgery, The Central hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuojun Xiong
- Department of Neurosurgery, The Central hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Wang Q, Yuan X, Liu C, Huang Y, Li L, Zhu Y. Peptide-based CAR-NK cells: A novel strategy for the treatment of solid tumors. Biochem Pharmacol 2025; 232:116741. [PMID: 39761877 DOI: 10.1016/j.bcp.2025.116741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/26/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
CAR-T cell therapy has been proven to be effective on hematological tumors, although graft-versus-host disease and cytokine release syndrome(CRS) limit its application to a certain extent. However, CAR-T therapy for solid tumors met challenges, among which the lack of tumor-specific antigens (TSA) and immunosuppressive tumor microenvironment (TME) are the most important factors. CAR-NK could be a good alternative to CAR-T in some ways since they can induce mild CRS and are independent of HLA-matching, but the efficacy of CAR-NKs remains limited in solid tumors. CAR cells armed with multiple tumor targeting molecules may obtain higher therapeutic efficacy against solid tumors. Due to large molecular weight, multivalent scFvs cannot be displayed efficiently on T cells and the high affinity of scFv to the target makes it easy to cause on-target, off-tumor(OTOT) toxicity. Peptides with low molecular weight and slightly lower affinity than scFvs allow immune cells to display multiple peptides to increase killing ability and reduce OTOT toxicity. In our study, peptide-based CAR-NK cells were designed to solve the dilemma of CAR-T in solid tumors. Firstly, the peptide-based CAR-NK92MI cells with A1 peptide were constructed and their inhibitory effects on the growth of A549 tumor cells were identified. Secondly, the tri-specific CAR-NK92MI cells with peptides that simultaneously targeted PD-L1, EGFR and VEGFR2 were developed for the combinatory therapy. Tri-specific CAR-NK92MI exhibited comparable killing activities to scFv-based CAR-NK92MI. Moreover, peptide-based CAR NK92MI mitigated OTOT toxicity. Our study implied that peptide-based CAR-NKs could behave as promising tools in solid tumor.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xin Yuan
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Cuijuan Liu
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ying Huang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lin Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yimin Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
17
|
Guo P, Zhong L, Wang T, Luo W, Zhou A, Cao D. NK cell-based immunotherapy for hepatocellular carcinoma: Challenges and opportunities. Scand J Immunol 2025; 101:e13433. [PMID: 39934640 DOI: 10.1111/sji.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most challenging malignancies globally, characterized by significant heterogeneity, late-stage diagnosis, and resistance to treatment. In recent years, the advent of immune-checkpoint blockades (ICBs) and targeted immune cell therapies has marked a substantial advancement in HCC treatment. However, the clinical efficacy of these existing therapies is still limited, highlighting the urgent need for new breakthroughs. Natural killer (NK) cells, a subset of the innate lymphoid cell family, have shown unique advantages in the anti-tumour response. With increasing evidence suggesting the crucial role of dysfunctional NK cells in the pathogenesis and progression of HCC, considerable efforts have been directed toward exploring NK cells as a potential therapeutic target for HCC. In this review, we will provide an overview of the role of NK cells in normal liver immunity and in HCC, followed by a detailed discussion of various NK cell-based immunotherapies and their potential applications in HCC treatment.
Collapse
Affiliation(s)
- Pei Guo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aiqiang Zhou
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, P.R China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
18
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
19
|
Grewal EP, Nahed BV, Carter BS, Gerstner ER, Curry WT, Maus MV, Choi BD. Clinical progress in the development of CAR T cells to treat malignant glioma. J Neurooncol 2025; 171:571-579. [PMID: 39695004 DOI: 10.1007/s11060-024-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
CONTEXT Chimeric antigen receptor (CAR) T cell therapy is an exciting modality of immunotherapy that has revolutionized the treatment of hematologic malignancies. However, translating this success to malignant gliomas such as glioblastoma (GBM) and diffuse midline glioma (DMG) remains a formidable challenge due to multiple biologic, anatomic, and immunologic factors. Despite these hurdles, a number of clinical trials deployed over the last decade have increased optimism for the potential of CAR T cell therapy in glioma treatment. EVIDENCE SYNTHESIS We highlight historical and ongoing clinical trials of CAR T cell therapy in glioma, with a focus on key tumor-associated antigens such as IL-13Rα2, HER2, EGFR, EGFRvIII, EphA2, GD2, and B7-H3. Early studies established proof-of-concept for antigen-specific CAR T cell targeting, yet immune evasion mechanisms such as antigen downregulation and limited CAR T cell persistence remain significant obstacles. Recent approaches, including multiantigen targeting, alternative cell sources, and innovations in delivery routes offer promising strategies to overcome these challenges. CONCLUSIONS The rapid evolution of investigational CAR T cell therapies portends great potential for the future of glioma treatment. Future studies will need to refine antigen targeting strategies, optimize CAR T cell persistence, and integrate combinatorial approaches to fully harness the therapeutic potential of this modality and improve the therapeutic window against brain tumors.
Collapse
Affiliation(s)
- Eric P Grewal
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Chen P, Tan X, Xiao L, Gong Z, Qin X, Nie J, Zhu H, Zhong S. Isolation, purification, structural characterization, and antitumor activity of Gynura divaricata polysaccharides. Int J Biol Macromol 2025; 290:138928. [PMID: 39701250 DOI: 10.1016/j.ijbiomac.2024.138928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In this study, a water-soluble, homogeneous polysaccharide, GDPs-1, was isolated from Gynura divaricata and purified. It was subsequently subjected to structural characterization and biological activity assessment. Structural characterization revealed that GDPs-1 was mainly composed of glucose, galactose, and arabinose, with a molecular weight of 55.1 kDa. Its main structural backbone was →[4)-α-D-Glcp-(1]22 → 4)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1 → [4)-β-D-Galp-(1]11→, with two additional branched structures. In vitro experiments demonstrated that GDPs-1 induced cancer cell apoptosis, caused cell cycle blockade, increased the Bax/Bcl-2 protein ratio, attenuated epithelial-mesenchymal transition, and activated caspase-3 protein in carcinoma cells, thereby exerting antitumor effects on tumor cells without affecting the growth of normal cells. Therefore, GDPs-1 may be further explored as a novel medicine to treat lung and liver cancer.
Collapse
Affiliation(s)
- Ping Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiao Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - LiuYue Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Zhu
- Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel, Pharmaceutical Preparations, the "Double-First Class" Applicatio Characteristic, Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
21
|
Qi N, Lyu Z, Huang L, Zhao Y, Zhang W, Zhou X, Zhang Y, Cui J. Investigating the dual causative pathways linking immune cells and venous thromboembolism via Mendelian randomization analysis. Thromb J 2025; 23:8. [PMID: 39849535 PMCID: PMC11756130 DOI: 10.1186/s12959-025-00692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Venous thromboembolism (VTE) is a common vascular disease with a significant global burden, influenced by multiple factors, such as genetic, environmental, and immune components. Immune responses and shifts in immune cell profiles are closely linked to the development and progression of VTE, yet current studies are limited by confounding factors and reverse causation. To address these limitations, this study uses Mendelian randomization to explore the causal relationship between immune cell traits and VTE, aiming to provide insights into underlying mechanisms. METHODS We utilized GWAS data on 731 immunological traits (n = 3757) from the IEU OpenGWAS project and VTE (21021 cases, 391160 controls) from Finngen public data. Five commonly used Mendelian randomization (MR) methods were employed, including inverse-variance weighted (IVW), MR-Egger regression, weighted median estimator (WME), and both weighted and simple models to analyze their associations. Sensitivity checks for the results included pleiotropy tests, heterogeneity tests, and leave-one-out analyses. RESULTS From a strictly statistical perspective, no significant associations were observed after FDR correction. However, our exploratory analysis suggested potential trends between immune cell traits and VTE. When immune cells were considered as the exposure and VTE as the outcome, 44 immune cell traits were suggestively associated with VTE based on uncorrected p-values. Conversely, when VTE was considered as the exposure, it appeared to influence immune cell traits. Specifically, secreting CD4 regulatory T cells (OR = 0.9084; 95% CI: 0.8418-0.9804; P = 0.0135; FDR = 0.7339) and activated and resting CD4 regulatory T cells (OR = 0.9275; 95% CI: 0.8622-0.9977; P = 0.0433; FDR = 0.8048) suggested a potential protective trend against VTE. On the other hand, B cells expressing CD20 (OR = 1.0697; 95% CI: 1.0227-1.1188; P = 0.0033; FDR = 0.5767) and myeloid cells expressing CD33 (OR = 1.0199; 95% CI: 1.0021-1.0382; P = 0.0296; FDR = 0.7339) may be linked to an increased risk of VTE. CONCLUSIONS From a strict statistical perspective, no significant associations were identified after FDR correction. However, our analysis using MR method suggests a potential link between VTE and immune cell traits, suggesting the complex interplay between the immune system and thrombotic events. While this study is exploratory and needs validation, the findings of this study are hypothesis-generating with resect to the mechanisms underlying VTE and encourage further investigation into the role of immune activity in VTE pathology.
Collapse
Affiliation(s)
- Ning Qi
- Department of Vascular Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Zhuochen Lyu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Huang
- Department of Vascular Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Zhao
- Department of Vascular Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Wan Zhang
- Department of Vascular Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Xinfeng Zhou
- Department of Vascular Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Yang Zhang
- Department of Vascular Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Jiasen Cui
- Department of Vascular Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China.
- Department of Vascular Surgery and Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, 221 West Yan'an Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
22
|
Hu Q, Xuan J, Wang L, Shen K, Gao Z, Zhou Y, Wei C, Gu J. Application of adoptive cell therapy in malignant melanoma. J Transl Med 2025; 23:102. [PMID: 39844295 PMCID: PMC11752767 DOI: 10.1186/s12967-025-06093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Cutaneous melanoma is one of the most aggressive skin cancers originating from skin pigment cells. Patients with advanced melanoma suffer a poor prognosis and generally cannot benefit well from surgical resection and chemo/target therapy due to metastasis and drug resistance. Thus, adoptive cell therapy (ACT), employing immune cells with specific tumor-recognizing receptors, has emerged as a promising therapeutic approach to display on-tumor toxicity. This review discusses the application, efficacy, limitations, as well as future prospects of four commonly utilized approaches -including tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR) T cell, engineered T-cell receptor T cells, and chimeric antigen receptor NK cells- in the context of malignant melanoma.
Collapse
Affiliation(s)
- Qianrong Hu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jiangying Xuan
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Kangjie Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
23
|
Wang B, Zhu Y, Zhang Y, Ru Z, Chen L, Zhang M, Wu Y, Ding J, Chen Z. Hyperactivity of the IL-33-ILC2s-IL-13-M-MDSCs axis promotes cervical cancer progression. Int Immunopharmacol 2025; 144:113693. [PMID: 39615114 DOI: 10.1016/j.intimp.2024.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
The interleukin-33(IL-33) - group 2 innate lymphoid cells (ILC2s) - interleukin-13(IL-13) - monocytic myeloid-derived suppressor cells (M-MDSCs) axis plays a critical role in promoting immune evasion in tumors; however, its specific function in cervical cancer remains poorly understood. In this study, we observed that the proportion of IL-33-ILC2s-IL-13-M-MDSCs were significantly elevated in both cervical cancer patients and the subcutaneous U14 cervical cancer mouse model, compared to normal controls. Our results suggest that IL-33 stimulates ILC2s to secrete IL-13, which, in turn, regulates M-MDSCs to enhance their immune evasion capabilities. Notably, in vitro blockade of IL-33 and IL-13 partially restored the levels and functions of both ILC2s and M-MDSCs. In conclusion, these findings imply that the overactivation of the IL-33-ILC2s-IL-13-M-MDSCs axis may contribute to cervical cancer progression. However, further in vivo blockade studies are required to fully elucidate the precise mechanisms underlying this interaction and to assess its potential therapeutic implications for cervical cancer.
Collapse
Affiliation(s)
- Bihui Wang
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yuejie Zhu
- Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yulian Zhang
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Zhenyu Ru
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Liqiao Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Manli Zhang
- Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yufeng Wu
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine of Xinjiang Medical University, Urumqi 830054, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
24
|
Rumiano L, Manzo T. Lipids guide T cell antitumor immunity by shaping their metabolic and functional fitness. Trends Endocrinol Metab 2024:S1043-2760(24)00321-7. [PMID: 39743401 DOI: 10.1016/j.tem.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
Lipids are metabolic messengers essential for energy production, membrane structure, and signal transduction. Beyond their recognized role, lipids have emerged as metabolic rheostats of T cell responses, with distinct species differentially modulating CD8+ T cell (CTL) fate and function. Indeed, lipids can influence T cell signaling by altering their membrane composition; in addition, they can affect the differentiation path of T cells through cellular metabolism. This Review discusses the ability of lipids to shape T cell phenotypes and functions. Based on this link between lipid metabolism, metabolic fitness and immunosurveillance, we suggest that lipid could be rationally integrated in the context of immunotherapies to fine-tune fitness and function of adoptive T cell therapy (ACT) products.
Collapse
Affiliation(s)
- Letizia Rumiano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Teresa Manzo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
25
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2770-x. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
26
|
Wibowo T, Kogue Y, Ikeda S, Yaga M, Tachikawa M, Suga M, Kida S, Shibata K, Tsutsumi K, Murakami H, Ueda Y, Kato H, Fukushima K, Fujita J, Ueda T, Kusakabe S, Hino A, Ichii M, Imai C, Okuzaki D, Kumanogoh A, Hosen N. CAR-NK cells derived from cord blood originate mainly from CD56 -CD7 +CD34 -HLA-DR -Lin - NK progenitor cells. Mol Ther Methods Clin Dev 2024; 32:101374. [PMID: 39659759 PMCID: PMC11629225 DOI: 10.1016/j.omtm.2024.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Cord blood (CB)-derived chimeric antigen receptor (CAR)-natural killer (NK) cells targeting CD19 have been shown to be effective against B cell malignancies. While human CD56+ NK cells can be expanded in vitro, NK cells can also be differentiated from hematopoietic progenitor cells. It is still unclear whether CAR-NK cells originate from mature NK cells or NK progenitor cells in CB. Here, we determined that CAR-NK cells were predominantly derived from CD56- NK progenitor cells. We first found that substantial numbers of CD19 CAR-NK cells were produced from CD56- CB mononuclear cells after in vitro culture for 2 weeks. Single-cell RNA sequencing analysis of CD56-CD3-CD14-CD19- CB mononuclear cells revealed that these cells could be subdivided into three subpopulations based on the expression of CD34 and human leukocyte antigen (HLA)-DR. NK cells originated primarily from CD34-HLA-DR- cells. In addition, among the CD34-HLA-DR- cells, only CD7+ cells could differentiate into NK cells. These results indicate that CD56-CD7+CD34-HLA-DR- lineage marker (Lin)- cells are the major origin of human CB-derived CAR-NK cells, indicating the importance of developing methods to enhance the quality and quantity of NK cells produced from these NK progenitor cells.
Collapse
Affiliation(s)
- Tansri Wibowo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yosuke Kogue
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Company, Ltd., Osaka 562-0029, Japan
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shunya Ikeda
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Mana Tachikawa
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Makiko Suga
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shuhei Kida
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kumi Shibata
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazuhito Tsutsumi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiraku Murakami
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasutaka Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hisashi Kato
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Jiro Fujita
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shinsuke Kusakabe
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akihisa Hino
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Chihaya Imai
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Qi K, Jia D, Zhou S, Zhang K, Guan F, Yao M, Sui X. Cryopreservation of Immune Cells: Recent Progress and Challenges Ahead. Adv Biol (Weinh) 2024; 8:e2400201. [PMID: 39113431 DOI: 10.1002/adbi.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/02/2024] [Indexed: 12/14/2024]
Abstract
Cryopreservation of immune cells is considered as a key enabling technology for adoptive cellular immunotherapy. However, current immune cell cryopreservation technologies face the challenges with poor biocompatibility of cryoprotection materials, low efficiency, and impaired post-thaw function, limiting their clinical translation. This review briefly introduces the adoptive cellular immunotherapy and the approved immune cell-based products, which involve T cells, natural killer cells and etc. The cryodamage mechanisms to these immune cells during cryopreservation process are described, including ice formation related mechanical and osmotic injuries, cryoprotectant induced toxic injuries, and other biochemical injuries. Meanwhile, the recent advances in the cryopreservation medium and freeze-thaw protocol for several representative immune cell type are summarized. Furthermore, the remaining challenges regarding on the cryoprotection materials, freeze-thaw protocol, and post-thaw functionality evaluation of current cryopreservation technologies are discussed. Finally, the future perspectives are proposed toward advancing highly efficient cryopreservation of immune cells.
Collapse
Affiliation(s)
- Kejun Qi
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Danqi Jia
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaojie Sui
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
28
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
29
|
Fu Y, Feng C, Qin S, Xing Z, Liu C, Liu Z, Yu H. Breaking barriers: advancing cellular therapies in autoimmune disease management. Front Immunol 2024; 15:1503099. [PMID: 39676874 PMCID: PMC11638217 DOI: 10.3389/fimmu.2024.1503099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Autoimmune diseases occur due to a dysregulation within the immune system, leading to an aberrant assault on the organism's own tissues. The pathogenesis of these conditions is multifactorial, encompassing intricate interplays among genetic predispositions, environmental determinants, and hormonal fluctuations. The spectrum of autoimmune diseases is broad, impacting a multitude of organ systems, with notable examples such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), psoriasis, and vitiligo. Despite substantial progress in therapeutic interventions over recent years, a definitive cure for autoimmune diseases has yet to be realized, with existing modalities largely providing palliative care. Cellular therapy is considered the fourth pillar in the management of oncological disorders subsequent to surgical resection, radiotherapy, and chemotherapy. Cellular therapies have shown potential in augmenting immune competence and eliminating of targeted neoplastic cells in a spectrum of cancers. As targeting specific molecules on the surface of autoreactive B and T cells, such as CD19, BCMA, CD20, and CTLA-4, cellular therapies are emerging as promising approaches for the treatment of autoimmune diseases. This review delineates the advancements in the application of cellular therapies applied recently for autoimmune diseases and proposes considerations for the advancement of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yanhong Fu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Chunjing Feng
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Jiangxi Engineering Research Center for Stem Cell, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, Jiangxi, China
| | - Shan Qin
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Jinnan Hospital, Faculty of Medicine, Tianjin Jinnan Hospital, Tianjin University, Tianjin, China
| | - Chong Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Hongjian Yu
- Jinnan Hospital, Faculty of Medicine, Tianjin Jinnan Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
30
|
Corica DA, Bell SD, Miller PJ, Kasperbauer DT, Lawler NJ, Wakefield MR, Fang Y. Into the Future: Fighting Melanoma with Immunity. Cancers (Basel) 2024; 16:4002. [PMID: 39682188 DOI: 10.3390/cancers16234002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Immunotherapy offers a novel and promising option in the treatment of late-stage melanoma. By utilizing the immune system to assist in tumor destruction, patients have additional options after tumor progression. Immune checkpoint inhibitors reduce the ability for tumors to evade the immune system by inhibiting key surface proteins used to inactivate T-cells. Without these surface proteins, T-cells can induce cytotoxic responses against tumors. Tumor infiltrating lymphocyte therapy is a form of adoptive cell therapy that takes advantage of a small subset of T-cells that recognize and infiltrate tumors. Isolation and rapid expansion of these colonies assist the immune system in mounting a charged response that can induce remission. Tumor vaccines deliver a high dose of unique antigens expressed by tumor cells to the entire body. The introduction of large quantities of tumor antigens upregulates antigen presenting cells and leads to effective activation of the immune system against tumors. Cytokine therapy introduces high amounts of chemical messengers that are endogenous to the immune system and support T-cell expansion. While other methods of immunotherapy exist, immune checkpoint inhibitors, tumor infiltrating lymphocytes, tumor vaccines, and cytokine therapy are commonly used to treat melanoma. Like many other cancer treatments, immunotherapy is not without adverse effects, as toxicities represent a major obstacle. However, immunotherapy has been efficacious in the treatment of melanoma.
Collapse
Affiliation(s)
- Derek A Corica
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Scott D Bell
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Peyton J Miller
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Daniel T Kasperbauer
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Nicholas J Lawler
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
31
|
Hosen N. Designer immune cells. Inflamm Regen 2024; 44:48. [PMID: 39587689 PMCID: PMC11587678 DOI: 10.1186/s41232-024-00362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Affiliation(s)
- Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
32
|
Hlavac K, Pavelkova P, Ondrisova L, Mraz M. FoxO1 signaling in B cell malignancies and its therapeutic targeting. FEBS Lett 2024. [PMID: 39533662 DOI: 10.1002/1873-3468.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
FoxO transcription factors (FoxO1, FoxO3a, FoxO4, FoxO6) are a highly evolutionary conserved subfamily of the 'forkhead' box proteins. They have traditionally been considered tumor suppressors, but FoxO1 also exhibits oncogenic properties. The complex nature of FoxO1 is illustrated by its various roles in B cell development and differentiation, immunoglobulin gene rearrangement and cell-surface B cell receptor (BCR) structure, DNA damage control, cell cycle regulation, and germinal center reaction. FoxO1 is tightly regulated at a transcriptional (STAT3, HEB, EBF, FoxOs) and post-transcriptional level (Akt, AMPK, CDK2, GSK3, IKKs, JNK, MAPK/Erk, SGK1, miRNA). In B cell malignancies, recurrent FoxO1 activating mutations (S22/T24) and aberrant nuclear export and activity have been described, underscoring the potential of its therapeutic inhibition. Here, we review FoxO1's roles across B cell and myeloid malignancies, namely acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and multiple myeloma (MM). We also discuss preclinical evidence for FoxO1 targeting by currently available inhibitors (AS1708727, AS1842856, cpd10).
Collapse
Affiliation(s)
- Krystof Hlavac
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Petra Pavelkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Laura Ondrisova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
33
|
Volkmann ER, Varga J, Blazar BR, Pavletic SZ. Challenges and solutions for cellular therapy development in autoimmune diseases. THE LANCET. RHEUMATOLOGY 2024; 6:e740-e743. [PMID: 39332423 DOI: 10.1016/s2665-9913(24)00274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Affiliation(s)
- Elizabeth R Volkmann
- Department of Medicine, Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - John Varga
- Department of Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, USA
| | - Steven Z Pavletic
- Immune Deficiency and Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Miao Y, Niu L, Lv X, Zhang Q, Xiao Z, Ji Z, Chen L, Liu Y, Liu N, Zhu J, Yang Y, Chen Q. A Minimalist Pathogen-Like Sugar Nanovaccine for Enhanced Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410715. [PMID: 39210649 DOI: 10.1002/adma.202410715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Pathogen-mimicking nanoparticles have emerged at the forefront of vaccine delivery technology, offering potent immune activation and excellent biocompatibility. Among these innovative carriers, mannan, a critical component of yeast cell walls, shows promise as an exemplary vaccine carrier. Nevertheless, it faces challenges like unpredictable immunogenicity, rapid elimination, and limited antigen loading due to high water solubility. Herein, mannan with varying carbon chain ratios is innovatively modified, yielding a series of dodecyl chains modified mannan (Mann-C12). Through meticulous screening, a mannan variant with a 40% grafting ratio is pinpointed as the optimal vaccine carrier. Further RNA sequencing confirms that Mann-C12 exhibits desired immunostimulatory characteristics. Coupled with antigen peptides, Mann-C12/OVA257-280 nanovaccine initiates the maturation of antigen-presenting cells by activating the TLR4 and Dectin-2 pathways, significantly boosting antigen utilization and sparking antigen-specific immune responses. In vivo, experiments utilizing the B16-OVA tumor model underscore the exceptional preventive capabilities of Mann-C12/OVA257-280. Notably, when combined with immune checkpoint blockade therapy, it displays a profound synergistic effect, leading to marked inhibition of tumor growth. Thus, the work has yielded a pathogen-like nanovaccine that is both simple to prepare and highly effective, underscoring the vast potential of mannan-modified nanovaccines in the realm of cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Miao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Le Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xinying Lv
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Qiang Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhisheng Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhaoxin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yi Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Nanhui Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yang Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
35
|
Meng S, Hara T, Miura Y, Ishii H. Fibroblast activation protein constitutes a novel target of chimeric antigen receptor T-cell therapy in solid tumors. Cancer Sci 2024; 115:3532-3542. [PMID: 39169645 PMCID: PMC11531970 DOI: 10.1111/cas.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
With recent advances in tumor immunotherapy, chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success in several hematologic tumors, significantly improving patient prognosis. However, in solid tumors, the efficacy of CAR-T cell therapy is limited because of high antigen uncertainty and the extremely restrictive tumor microenvironment (TME). This challenge has led to the exploration of new targets, among which fibroblast activation protein (FAP) has gained attention for its relatively stable and specific expression in the TME of various solid tumors, making it a potential new target for CAR-T cell therapy. This study comprehensively analyzed the biological characteristics of FAP and discussed its potential application in CAR-T cell therapy, including the theoretical basis, and preclinical and clinical research progress of targeting FAP with CAR-T cell therapy for solid tumor treatment. The challenges and future optimization directions of this treatment strategy were also explored, providing new perspectives and strategies for CAR-T cell therapy in solid tumors.
Collapse
Grants
- 2024 Princess Takamatsu Cancer Research Fund
- JP23ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- JP24ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- A20H0054100 Ministry of Education, Culture, Sports, Science and Technology
- T23KK01530 Ministry of Education, Culture, Sports, Science and Technology
- T22K195590 Ministry of Education, Culture, Sports, Science and Technology
- A22H031460 Ministry of Education, Culture, Sports, Science and Technology
- T23K183130 Ministry of Education, Culture, Sports, Science and Technology
- T23K195050 Ministry of Education, Culture, Sports, Science and Technology
- T24K199920 Ministry of Education, Culture, Sports, Science and Technology
- IFO Research Communications (2024)
- Oceanic Wellness Foundation (2024)
- Princess Takamatsu Cancer Research Fund
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yutaka Miura
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of TechnologyYokohamaKanagawaJapan
- Department of Life Science and Technology, School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
36
|
Xiao N, Liu H, Zhang C, Chen H, Li Y, Yang Y, Liu H, Wan J. Applications of single-cell analysis in immunotherapy for lung cancer: Current progress, new challenges and expectations. J Adv Res 2024:S2090-1232(24)00462-4. [PMID: 39401694 DOI: 10.1016/j.jare.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Lung cancer is a prevalent form of cancer worldwide, presenting a substantial risk to human well-being. Lung cancer is classified into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). The advancement of tumor immunotherapy, specifically immune checkpoint inhibitors and adaptive T-cell therapy, has encountered substantial obstacles due to the rapid progression of SCLC and the metastasis, recurrence, and drug resistance of NSCLC. These challenges are believed to stem from the tumor heterogeneity of lung cancer within the tumor microenvironment. AIM OF REVIEW This review aims to comprehensively explore recent strides in single-cell analysis, a robust sequencing technology, concerning its application in the realm of tumor immunotherapy for lung cancer. It has been effectively integrated with transcriptomics, epigenomics, genomics, and proteomics for various applications. Specifically, these techniques have proven valuable in mapping the transcriptional activity of tumor-infiltrating lymphocytes in patients with NSCLC, identifying circulating tumor cells, and elucidating the heterogeneity of the tumor microenvironment. KEY SCIENTIFIC CONCEPTS OF REVIEW The review emphasizes the paramount significance of single-cell analysis in mapping the immune cells within NSCLC patients, unveiling circulating tumor cells, and elucidating the tumor microenvironment heterogeneity. Notably, these advancements highlight the potential of single-cell analysis to revolutionize lung cancer immunotherapy by characterizing immune cell fates, improving therapeutic strategies, and identifying promising targets or prognostic biomarkers. It is potential to unravel the complexities within the tumor microenvironment and enhance treatment strategies marks a significant step towards more effective therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Nan Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huanxiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hongchun Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
37
|
Dandoy CE, Adams J, Artz A, Bredeson C, Dahi PB, Dodd T, Jaglowski S, Lehmann L, LeMaistre CF, Mian A, Neal A, Page K, Rizzo JD, Rotz S, Sorror M, Steinberg A, Viswabandya A, Howard DS. In Pursuit of Optimal Outcomes: A Framework for Quality Standards in Immune Effector Cell Therapy. Transplant Cell Ther 2024; 30:942-954. [PMID: 39067790 DOI: 10.1016/j.jtct.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Immune effector cell (IEC) therapy represents a transformative advancement in oncology, leveraging the immune system to combat various malignancies. This article outlines a comprehensive framework for establishing and maintaining quality standards in IEC therapy amidst rapid scientific and clinical advancements. We emphasize the integration of structured process measures, robust quality assurance, and meticulous outcome evaluation to ensure treatment efficacy and safety. Key components include multidisciplinary expertise, stringent accreditation protocols, and advanced data management systems, which facilitate standardized reporting and continual innovation. The collaborative effort among stakeholders-ranging from patients and healthcare providers to regulatory bodies-is crucial in delivering high-quality IEC therapies. This framework aims to enhance patient outcomes and cement the role of IEC therapy as a cornerstone of modern oncology, promoting continuous improvement and adherence to high standards across the therapeutic spectrum.
Collapse
Affiliation(s)
- Christopher E Dandoy
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio.
| | - Joan Adams
- Stephenson Cancer Center, OU Health Science Center The University of Oklahoma, Oklahoma City, Oklahoma
| | - Andrew Artz
- Division of Leukemia, Department of Hematology and HCT, City of Hope, Duarte, California
| | - Christopher Bredeson
- Ottawa Hospital Research Institute, Division of Hematology, University of Ottawa, Ottawa, Canada
| | - Parastoo B Dahi
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Therese Dodd
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, Tennessee
| | - Samantha Jaglowski
- Department of Pediatrics and Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Leslie Lehmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Amir Mian
- Department of Pediatric Hematology and Oncology, Department of Pediatrics at Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Alison Neal
- Department of Bone Marrow Transplant and Cellular Therapy, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kristen Page
- Department of Pediatrics and Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - J Douglas Rizzo
- Department of Pediatrics and Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Seth Rotz
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic, Cleveland, Ohio
| | - Mohamed Sorror
- Fred Hutchinson Cancer Center and University of Washington, Seattle, Washington
| | - Amir Steinberg
- Adult Stem Cell Transplantation, Westchester Medical Center, New York Medical College, Valhalla, New York
| | - Auro Viswabandya
- Department of Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Dianna S Howard
- Department of Internal Medicine, Section of Hematology and Oncology, Stem Cell Transplant and Cellular Therapy Program, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, North Carolina
| |
Collapse
|
38
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
39
|
Xu EJK, Smith BE, Conce Alberto WD, Walsh MJ, Lim B, Hoffman MT, Qiang L, Dong J, Garmilla A, Zhao QH, Perez CR, Gaglione SA, Dobson CS, Dougan M, Dougan SK, Birnbaum ME. Peptide-MHC-targeted retroviruses enable in vivo expansion and gene delivery to tumor-specific T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613594. [PMID: 39345591 PMCID: PMC11429759 DOI: 10.1101/2024.09.18.613594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Tumor-infiltrating-lymphocyte (TIL) therapy has demonstrated that endogenous T cells can be harnessed to initiate an effective anti-tumor response. Despite clinical promise, current TIL production protocols involve weeks-long ex vivo expansions which can affect treatment efficacy. Therefore, additional tools are needed to engineer endogenous tumor-specific T cells to have increased potency while mitigating challenges of manufacturing. Here, we present a strategy for pseudotyping retroviral vectors with peptide-major histocompatibility complexes (pMHC) for antigen-specific gene delivery to CD8 T cells and examine the efficacy of these transduced cells in immunocompetent mouse models. We demonstrate that pMHC-targeted viruses are able to specifically deliver function-enhancing cargoes while simultaneously activating and expanding anti-tumor T cells. The specificity of these viral vectors enables in vivo engineering of tumor-specific T cells, circumventing ex vivo manufacturing processes and improving overall survival in B16F10-bearing mice. Altogether, we have established that pMHC-targeted viruses are efficient vectors for reprogramming and expanding tumor-specific populations of T cells directly in vivo , with the potential to substantially streamline engineered cell therapy production for a variety of applications.
Collapse
|
40
|
Zhang W, Zhou X, Lin L, Lin A, Cheng Q, Liu Z, Luo P, Zhang J. Development and validation of a novel immune‒metabolic-Based classifier for hepatocellular carcinoma. Heliyon 2024; 10:e37327. [PMID: 39296052 PMCID: PMC11407989 DOI: 10.1016/j.heliyon.2024.e37327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/04/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
The heterogeneity of immune cells and metabolic pathways in hepatocellular carcinoma (HCC) patients has not been fully elucidated, leading to diverse clinical outcomes. Accurately distinguishing different HCC subtypes and recommending appropriate treatments is are highly important. In this study, we conducted a comprehensive analysis of 28 immune cells and 85 metabolic pathways in the TCGA-LIHC and GSE14520 datasets. Metabolism-related first principal component (MRPC1) and cytotoxic T lymphocyte (CTL) infiltration were used to assess the metabolic and immune infiltration levels of HCC patients, respectively. These two quantifiable indicators were then used to construct an immune‒metabolic classifier, which categorized HCC patients into three distinct groups. The potential biological mechanisms were explored through multiomics analysis, revealing that group S1 exhibited high metabolic activity and a high level of immune infiltration, that group S2 presented a low level of immune infiltration, and that group S3 presented low metabolic activity. This new immune‒metabolic classifier was well validated in a pancancer cohort of 9296 patients. The efficacy of multiple treatment approaches was assessed in relation to different immune‒metabolic groups, indicating that group S1 patients may benefit from immunotherapy, that group S2 patients are suitable for transcatheter arterial chemoembolization (TACE), and that group S3 patients are appropriate candidates for tyrosine kinase inhibitors. In conclusion, this immune‒metabolic classifier is anticipated to address the differences in treatment efficacy among HCC patients due to the heterogeneity of the tumor microenvironment, and to help refine the individualized treatment choices for clinical patients.
Collapse
Affiliation(s)
- Wenda Zhang
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xinyi Zhou
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Lili Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. Application of magnetic nanoparticles in adoptive cell therapy of cancer; training, guiding and imaging cells. Nanomedicine (Lond) 2024; 19:2315-2329. [PMID: 39258568 PMCID: PMC11488091 DOI: 10.1080/17435889.2024.2395239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Adoptive cell therapy (ACT) is on the horizon as a thrilling therapeutic plan for cancer. However, widespread application of ACT is often restricted by several challenges, including complexity of priming tumor-specific T cells and poor trafficking in solid tumors. The convergence of nanotechnology and cancer immunotherapy is coming of age and could address the limitations of ACT. Recent studies have provided evidence on the application of magnetic nanoparticles (MNPs) to generate smart immune cells and to bypass problems associated with conventional ACT. Herein, we review current progress in the application of MNPs to improve preparing, guiding and tracking immune cells in cancer ACT. Besides, we comment on the challenges ahead and strategies to optimize MNPs for clinical settings.
Collapse
Affiliation(s)
- Vahid Mohammadi
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
42
|
Nayer B, Tan JL, Alshoubaki YK, Lu YZ, Legrand JMD, Lau S, Hu N, Park AJ, Wang XN, Amann-Zalcenstein D, Hickey PF, Wilson T, Kuhn GA, Müller R, Vasanthakumar A, Akira S, Martino MM. Local administration of regulatory T cells promotes tissue healing. Nat Commun 2024; 15:7863. [PMID: 39251592 PMCID: PMC11383969 DOI: 10.1038/s41467-024-51353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial immune cells for tissue repair and regeneration. However, their potential as a cell-based regenerative therapy is not yet fully understood. Here, we show that local delivery of exogenous Tregs into injured mouse bone, muscle, and skin greatly enhances tissue healing. Mechanistically, exogenous Tregs rapidly adopt an injury-specific phenotype in response to the damaged tissue microenvironment, upregulating genes involved in immunomodulation and tissue healing. We demonstrate that exogenous Tregs exert their regenerative effect by directly and indirectly modulating monocytes/macrophages (Mo/MΦ) in injured tissues, promoting their switch to an anti-inflammatory and pro-healing state via factors such as interleukin (IL)-10. Validating the key role of IL-10 in exogenous Treg-mediated repair and regeneration, the pro-healing capacity of these cells is lost when Il10 is knocked out. Additionally, exogenous Tregs reduce neutrophil and cytotoxic T cell accumulation and IFN-γ production in damaged tissues, further dampening the pro-inflammatory Mo/MΦ phenotype. Highlighting the potential of this approach, we demonstrate that allogeneic and human Tregs also promote tissue healing. Together, this study establishes exogenous Tregs as a possible universal cell-based therapy for regenerative medicine and provides key mechanistic insights that could be harnessed to develop immune cell-based therapies to enhance tissue healing.
Collapse
Affiliation(s)
- Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Jean L Tan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Julien M D Legrand
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Sinnee Lau
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Nan Hu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Anthony J Park
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Xiao-Nong Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniela Amann-Zalcenstein
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter F Hickey
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Trevor Wilson
- MHTP Medical Genomics Facility, Monash Health Translation Precinct, Clayton, VIC, Australia
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- La Trobe University, Bundoora, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Victorian Heart Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
43
|
Lim SY, Kim L, Kim H, Park JA, Yun J, Lim KS. Synergistic Chemo-Immunotherapy: Recombinant Fusion Protein-Based Surface Modification of NK Cell for Targeted Cancer Treatment. Pharmaceutics 2024; 16:1189. [PMID: 39339225 PMCID: PMC11435017 DOI: 10.3390/pharmaceutics16091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
While traditional combination anticancer treatments have shown promising results, there remains significant interest in developing innovative methods to enhance and integrate chemotherapy and immunotherapy. This study introduces a recombinant fusion protein-based cell surface modification system that synergistically combines chemotherapy and immunotherapy into a single-targeted chemo-immunotherapy approach. A cell surface-modified protein composed of an antibody-specific binding domain and a cell-penetrating domain rapidly converts immune cells into chemo-immuno therapeutics by binding to antibodies on the surface of immune cells. Utilizing a non-invasive, non-toxic approach free of chemical modifications and binding, our system homogeneously transforms immune cells by transiently introducing targeted cytotoxic drugs into them. The surface-engineered immune cells loaded with antibody-drug conjugates (ADCs) significantly inhibit the growth of target tumors and enhance the targeted elimination of cancer cells. Therefore, NK cells modified by the cell surface-modified protein to incorporate ADCs could be expected to achieve the combined effects of targeted cancer cell recognition, chemotherapy, and immunotherapy, thereby enhancing their therapeutic efficacy against cancer. This strategy allows for the efficient and rapid preparation of advanced chemo-immuno therapeutics to treat various types of cancer and provides significant potential to improve the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Su Yeon Lim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Luna Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hongbin Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jina Yun
- Division of Hemato-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Kwang Suk Lim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biotechnology and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
44
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
45
|
Jia S, Bode AM, Chen X, Luo X. Unlocking the potential: Targeting metabolic pathways in the tumor microenvironment for Cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189166. [PMID: 39111710 DOI: 10.1016/j.bbcan.2024.189166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Cancer incidence and mortality are increasing and impacting global life expectancy. Metabolic reprogramming in the tumor microenvironment (TME) is intimately related to tumorigenesis, progression, metastasis and drug resistance. Tumor cells drive metabolic reprogramming of other cells in the TME through metabolic induction of cytokines and metabolites, and metabolic substrate competition. Consequently, this boosts tumor cell growth by providing metabolic support and facilitating immunosuppression and angiogenesis. The metabolic interplay in the TME presents potential therapeutic targets. Here, we focus on the metabolic reprogramming of four principal cell subsets in the TME: CAFs, TAMs, TILs and TECs, and their interaction with tumor cells. We also summarize medications and therapies targeting these cells' metabolic pathways, particularly in the context of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Siyuan Jia
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
46
|
Weinberg ZY, Soliman SS, Kim MS, Shah DH, Chen IP, Ott M, Lim WA, El-Samad H. De novo-designed minibinders expand the synthetic biology sensing repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575267. [PMID: 38293112 PMCID: PMC10827046 DOI: 10.1101/2024.01.12.575267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Synthetic and chimeric receptors capable of recognizing and responding to user-defined antigens have enabled "smart" therapeutics based on engineered cells. These cell engineering tools depend on antigen sensors which are most often derived from antibodies. Advances in the de novo design of proteins have enabled the design of protein binders with the potential to target epitopes with unique properties and faster production timelines compared to antibodies. Building upon our previous work combining a de novo-designed minibinder of the Spike protein of SARS-CoV-2 with the synthetic receptor synNotch (SARSNotch), we investigated whether minibinders can be readily adapted to a diversity of cell engineering tools. We show that the Spike minibinder LCB1 easily generalizes to a next-generation proteolytic receptor SNIPR that performs similarly to our previously reported SARSNotch. LCB1-SNIPR successfully enables the detection of live SARS-CoV-2, an improvement over SARSNotch which can only detect cell-expressed Spike. To test the generalizability of minibinders to diverse applications, we tested LCB1 as an antigen sensor for a chimeric antigen receptor (CAR). LCB1-CAR enabled CD8+ T cells to cytotoxically target Spike-expressing cells. We further demonstrate that two other minibinders directed against the clinically relevant epidermal growth factor receptor are able to drive CAR-dependent cytotoxicity with efficacy similar to or better than an existing antibody-based CAR. Our findings suggest that minibinders represent a novel class of antigen sensors that have the potential to dramatically expand the sensing repertoire of cell engineering tools.
Collapse
Affiliation(s)
| | | | - Matthew S. Kim
- Tetrad Gradudate Program, UCSF, San Francisco CA
- Cell Design Institute, San Francisco CA
| | - Devan H. Shah
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA
| | - Irene P. Chen
- Gladstone Institutes, San Francisco CA
- Department of Medicine, UCSF, San Francisco CA
| | - Melanie Ott
- Gladstone Institutes, San Francisco CA
- Department of Medicine, UCSF, San Francisco CA
- Chan Zuckerberg Biohub–San Francisco, San Francisco CA
| | - Wendell A. Lim
- Cell Design Institute, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Hana El-Samad
- Department of Biochemistry & Biophysics, UCSF, San Francisco CA
- Cell Design Institute, San Francisco CA
- Chan Zuckerberg Biohub–San Francisco, San Francisco CA
- Altos Labs, San Francisco CA
| |
Collapse
|
47
|
Liu P, Hu Q. Engineering Cells for Cancer Therapy. Acc Chem Res 2024; 57:2358-2371. [PMID: 39093824 DOI: 10.1021/acs.accounts.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cells, particularly living cells, serve as natural carriers of bioactive substances. Their inherent low immunogenicity and multifunctionality have garnered significant attention in the realm of disease treatment applications, specifically within the domains of cancer immunotherapy and regenerative tissue repair. Nevertheless, several prominent challenges impede their swift translation into clinical applications, including obstacles related to large-scale production feasibility and high utilization costs. To address these issues comprehensively, researchers have proposed the notion of bionic cells that are synthetically generated through chemical or biosynthetic means to emulate cellular functions and behaviors. However, artificial cell strategies encounter difficulties in fully replicating the intricate functionalities exhibited by living cells while also grappling with the complexities associated with design implementation for clinical translation purposes. The convergence of disciplines has facilitated the reform of living cells through a range of approaches, including chemical-, biological-, genetic-, and materials-based methods. These techniques can be employed to impart specific functions to cells or enhance the efficacy of therapy. For example, cells are engineered through gene transduction, surface modifications, endocytosis of drugs as delivery systems, and membrane fusion. The concept of engineered cells presents a promising avenue for enhancing control over living cells, thereby enhancing therapeutic efficacy while concurrently mitigating toxic side effects and ultimately facilitating the realization of precision medicine.In this Account, we present a comprehensive overview of our recent research advancements in the field of engineered cells. Our work involves the application of biological or chemical engineering techniques to manipulate endogenous cells for therapeutics or drug delivery purposes. For instance, to avoid the laborious process of isolating, modifying, and expanding engineered cells in vitro, we proposed the concept of in situ engineered cells. By applying a hydrogel loaded with nanoparticles carrying edited chimeric antigen receptor (CAR) plasmids within the postoperative cavity of glioma, we successfully targeted tumor-associated macrophages for gene editing, leading to effective tumor recurrence inhibition. Furthermore, leveraging platelet's ability to release microparticles upon activation at injury sites, we modified antiprogrammed death 1 (PD-1) antibodies on their surface to suppress postoperative tumor recurrence and provide immunotherapy for inoperable tumors. Similarly, by exploiting bacteria's active tropism toward sites of inflammation and hypoxia, we delivered protein drugs by engineered bacteria to induce cancer cell death through pyroptosis initiation and immunotherapy strategies. In the final section, we summarize our aforementioned research progress while providing an outlook on cancer therapy and the hurdles for clinical translation with potential solutions or future directions based on the concept of engineered cells.
Collapse
Affiliation(s)
- Peixin Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
48
|
Long J, Wang Y, Jiang X, Ge J, Chen M, Zheng B, Wang R, Wang M, Xu M, Ke Q, Wang J. Nanomaterials Boost CAR-T Therapy for Solid Tumors. Adv Healthc Mater 2024; 13:e2304615. [PMID: 38483400 DOI: 10.1002/adhm.202304615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Indexed: 05/22/2024]
Abstract
T cell engineering, particularly via chimeric antigen receptor (CAR) modifications for enhancing tumor specificity, has shown efficacy in treating hematologic malignancies. The extension of CAR-T cell therapy to solid tumors, however, is impeded by several challenges: The absence of tumor-specific antigens, antigen heterogeneity, a complex immunosuppressive tumor microenvironment, and physical barriers to cell infiltration. Additionally, limitations in CAR-T cell manufacturing capacity and the high costs associated with these therapies restrict their widespread application. The integration of nanomaterials into CAR-T cell production and application offers a promising avenue to mitigate these challenges. Utilizing nanomaterials in the production of CAR-T cells can decrease product variability and lower production expenses, positively impacting the targeting and persistence of CAR-T cells in treatment and minimizing adverse effects. This review comprehensively evaluates the use of various nanomaterials in the production of CAR-T cells, genetic modification, and in vivo delivery. It discusses their underlying mechanisms and potential for clinical application, with a focus on improving specificity and safety in CAR-T cell therapy.
Collapse
Affiliation(s)
- Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, 1001 Xueyuan Road, Shenzhen, 518055, China
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, 362000, China
| | - Boshu Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Rong Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Meifang Xu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Qi Ke
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| |
Collapse
|
49
|
Bui TA, Mei H, Sang R, Ortega DG, Deng W. Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment. EBioMedicine 2024; 106:105266. [PMID: 39094262 PMCID: PMC11345408 DOI: 10.1016/j.ebiom.2024.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a ground-breaking immunotherapeutic approach in cancer treatment. To overcome the complexity and high manufacturing cost associated with current ex vivo CAR T cell therapy products, alternative strategies to produce CAR T cells directly in the body have been developed in recent years. These strategies involve the direct infusion of CAR genes via engineered nanocarriers or viral vectors to generate CAR T cells in situ. This review offers a comprehensive overview of recent advancements in the development of T cell-targeted CAR generation in situ. Additionally, it identifies the challenges associated with in vivo CAR T method and potential strategies to overcome these issues.
Collapse
Affiliation(s)
- Thuy Anh Bui
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Whitlam Orthopaedic Research Centre, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Haoqi Mei
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rui Sang
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - David Gallego Ortega
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
50
|
Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer 2024; 24:523-539. [PMID: 38977835 DOI: 10.1038/s41568-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 07/10/2024]
Abstract
The development of neoplasia involves a complex and continuous interplay between malignantly transformed cells and the tumour microenvironment (TME). Cancer immunotherapies targeting the immune TME have been increasingly validated in clinical trials but response rates vary substantially between tumour histologies and are often transient, idiosyncratic and confounded by resistance. Faithful experimental models of the patient-specific tumour immune microenvironment, capable of recapitulating tumour biology and immunotherapy effects, would greatly improve patient selection, target identification and definition of resistance mechanisms for immuno-oncology therapeutics. In this Review, we discuss currently available and rapidly evolving 3D tumour organoid models that capture important immune features of the TME. We highlight diverse opportunities for organoid-based investigations of tumour immunity, drug development and precision medicine.
Collapse
Affiliation(s)
- Roel Polak
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa T Zhang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|