1
|
Liu S, Xin R, Zhang X, Han L. Separable Microneedle Patch Integrated with the Dictamnine-Loaded Copper MOF Nanozyme for Atopic Dermatitis Treatment. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40273362 DOI: 10.1021/acsami.5c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder marked by skin thickening, severe pruritus, lesions, and emotional disturbances, including anxiety and depression-like behavior. Current treatments primarily rely on localized therapies, which can lead to adverse effects such as hyperglycemia and Cushing's syndrome with repeated use. To address these issues, we developed a hyaluronic acid-based separable microneedle patch (Dic@pCu-HA MN), integrating polydopamine-coordinated copper-based metal-organic frameworks (pCu-MOFs) and the anti-inflammatory agent dictamnine (Dic), for synergistic management of AD and its neuropsychiatric comorbidities. pCu-MOFs exhibited dual functionality as nanocargo for hydrophobic Dic (encapsulation efficiency: 84.62 ± 2.14%) and multienzyme mimics that efficiently scavenge reactive oxygen species (ROS) (superoxide radical scavenging: 63.85 ± 0.34%). In vitro release studies demonstrated ROS-responsive Dic release of 86.80 ± 4.83% over 48 h under AD pathology-mimicking conditions. In a 1-Chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model, the Dic@pCu-HA MN significantly reduced oxidative stress (8-OHdG: 85.1 ± 7.0% decrease), suppressed pro-inflammatory cytokines (IL-4: 70.0 ± 7.8% decrease vs control), and restored skin barrier integrity. By modulating the HPA axis, the system attenuated neuroinflammation and alleviated itching (scratching frequency: 40.1 ± 41.3% reduction) and depression-like behavior (time in the bright box: 96.6 ± 156.2% increase). This combined therapeutic approach not only offers a comprehensive strategy for AD management but also provides potential benefits for addressing inflammatory skin disorders and their neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Shuyun Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Rui Xin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xinyue Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Lu Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Xu K, Liu X, Zeng Q, Liu Y, Shan L, Ji L, Wu Y, Wu J, Chen Y, Li Y, Huang S, Jiang C, Hong X, Wu C, Wang Z. Cannabinoid CB 2 receptor controls chronic itch by regulating spinal microglial activation and synaptic transmission. Cell Rep 2025; 44:115559. [PMID: 40222011 DOI: 10.1016/j.celrep.2025.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/30/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025] Open
Abstract
Chronic itch is a devastating clinical condition, and its central mechanisms remain poorly understood. We reported that spinal cannabinoid receptor type 2 (CB2R) activation exerts antipruritic effects and that itch escalates in mice lacking Cnr2 in mouse models of dermatitis and psoriasis. In the spinal cord, CB2R is mainly expressed in microglia, and microglial ablation or inhibition attenuated chronic itch, suggesting that microglial activation contributes to chronic itch. Particularly, conditional Cnr2 deletion in microglia also exacerbated chronic itch in mice. Single-cell RNA sequencing and molecular mechanistic studies suggest that CB2R activation reprogrammed microglia by inducing anti-inflammatory suppressor of cytokine signaling 3 (SOCS3) and reducing itch-related p38 and signal transducer and activator of transcription 1 (STAT1) phosphorylation. Finally, CB2R activation suppressed neuronal excitability and synaptic transmission in gastrin-releasing peptide (GRP)/GRP receptor (GRPR) interneurons and ascending projection neurons by inhibiting microglia-derived cytokines. These findings demonstrate that microglial activation contributes to chronic itch, while CB2R activation in microglia alleviates chronic itch via neuro-immune interactions.
Collapse
Affiliation(s)
- Kangtai Xu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xuefei Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qian Zeng
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yaqi Liu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Leyan Shan
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Luyao Ji
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yifei Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiawei Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yiming Chen
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yitong Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Songqiang Huang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Key University Laboratory of Metabolism and Health of Guangdong School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Chaoran Wu
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Zilong Wang
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Key University Laboratory of Metabolism and Health of Guangdong School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; SUSTech Homeostatic Medicine Institute, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
Ye J, Lai Y. Keratinocytes: new perspectives in inflammatory skin diseases. Trends Mol Med 2025:S1471-4914(25)00083-8. [PMID: 40246604 DOI: 10.1016/j.molmed.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/19/2025]
Abstract
Keratinocytes, the predominant cell type in the epidermis, are indispensable for maintaining skin barrier integrity, mediating host defense, and orchestrating immune responses. Beyond these well-established functions, emerging evidence reveals their dynamic interactions with the nervous system and their capacity to retain inflammatory memory. These discoveries position keratinocytes as key drivers of the onset, progression, and relapse of inflammatory skin diseases. In this review, we delve into the mechanisms underlying keratinocyte crosstalk with immune and neural cells, the metabolic reprogramming, including lactate and other metabolites, that may drive inflammatory memory, and the broader implications for disease pathogenesis and recurrence. Finally, we discuss the challenges to, and therapeutic potential of, targeting keratinocytes for the treatment of chronic inflammatory skin conditions.
Collapse
Affiliation(s)
- Jiafeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, PR China; Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yuping Lai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, PR China; Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China; Liwa Institue of Skin Health, East China Normal University, Shanghai, PR China.
| |
Collapse
|
4
|
Su B, Zhang Q, Hu X, Xie B, Chen C, Zhao Y, Liu Z, Ma L, Chen J. Role of basophils and type 2 inflammation in bullous pemphigoid pathophysiology: a comparative study of blood and blister fluid. Immunol Res 2025; 73:68. [PMID: 40198413 DOI: 10.1007/s12026-025-09617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025]
Abstract
Bullous pemphigoid (BP) is an autoimmune disease characterized by blister formation and inflammatory cell infiltration. In addition to eosinophil and neutrophil infiltration, there are many other inflammatory cells and factors involved in the pathophysiology of BP. Elucidating the inflammation environment will help to the diagnosis and treatment of BP. We used flow cytometry and wright-stained smears to analyze immune cells, and cytometric bead array methods were used to analyze immune factors in matched blood and blister fluid. Besides abundant eosinophil and neutrophil accumulation, distinct basophil infiltration was detected in blister fluid of patients with BP. We also found significant CD4+ T lymphocyte activation and increased type 2 cytokine secretion in BP blister fluid. Under no stimulation, basophils produce more IL-4 compared to CD4+ T lymphocytes in BP blister fluid. Basophils might play a more important role in BP than we early thought. Along with other inflammatory cells and factors, basophils, demonstrated as one of the main producers of IL-4, orchestrate the type 2 inflammation environment in BP.
Collapse
Affiliation(s)
- Bintao Su
- Department of Clinical Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Quanhong Zhang
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, China
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyong Hu
- Department of Clinical Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Bo Xie
- Department of Clinical Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Chao Chen
- Department of Clinical Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Yan Zhao
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, China
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Ma
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, China.
| | - Jinbo Chen
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, China.
| |
Collapse
|
5
|
Han C, Zhu X, Sokol CL. Neuroimmune Circuits in Allergic Diseases. Annu Rev Immunol 2025; 43:367-394. [PMID: 39977604 DOI: 10.1146/annurev-immunol-082423-032154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Communication between the nervous and immune systems is evolutionarily conserved. From primitive eukaryotes to higher mammals, neuroimmune communication utilizes multiple complex and complementary mechanisms to trigger effective but balanced responses to environmental dangers such as allergens and tissue damage. These responses result from a tight integration of the nervous and immune systems, and accumulating evidence suggests that this bidirectional communication is crucial in modulating the initiation and development of allergic inflammation. In this review, we discuss the basic mechanisms of neuroimmune communication, with a focus on the recent advances underlying the importance of such communication in the allergic immune response. We examine neuronal sensing of allergens, how neuropeptides and neurotransmitters regulate allergic immune cell functions, and how inflammatory factors derived from immune cells coordinate complex peripheral and central nervous system responses. Furthermore, we highlight how fundamental aspects of host biology, from aging to circadian rhythm, might affect these pathways. Appreciating neuroimmune communications as an evolutionarily conserved and functionally integrated system that is fundamentally involved in type 2 immunity will provide new insights into allergic inflammation and reveal exciting opportunities for the management of acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Cai Han
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
6
|
Xu J, Pan X, Zhang M, Sun K, Li Z, Chen J. Identification and Validation of the Potential Key Biomarkers for Atopic Dermatitis Mitochondrion by Learning Algorithms. J Inflamm Res 2025; 18:4291-4306. [PMID: 40144539 PMCID: PMC11937846 DOI: 10.2147/jir.s507085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Purpose Atopic dermatitis (AD) is a common inflammatory skin condition characterized by erythema and pruritus. Its precise pathogenesis remains unclear, though factors such as genetic predisposition, autoantigen response, allergen exposure, infections, and skin barrier dysfunction are involved. Research suggests a correlation between AD and mitochondrial dysfunction, as well as oxidative stress in skin tissues. Methods Skin sample datasets related to AD (GSE36842, GSE120721, GSE16161, and GSE121212) were retrieved from the GEO database. Differential gene analysis identified differentially expressed genes (DEGs) in AD. Three potential biomarkers-COX17, ACOX2, and ADH1B-were identified using LASSO and Support Vector Machine (SVM) algorithms. These biomarkers were validated through ROC curve analysis, nomogram modeling, calibration curves, and real-time PCR. Immune infiltration analysis assessed correlations of the biomarkers. Additionally, single-cell analysis of the GSE153760 dataset identified nine cell clusters and confirmed expression patterns of the three hub genes. Results Differential analysis identified 150 upregulated and 367 downregulated genes. Enrichment analysis revealed significant pathways related to mitochondrial function, oxidative stress, and energy metabolism in skin samples from AD patients. Area under the curve (AUC) values for biomarkers COX17, ACOX2, and ADH1B were 1.000, 0.928, and 0.895, respectively, indicating strong predictive capacity. qPCR results showed COX17 was highly expressed in AD lesions, while ACOX2 and ADH1B were higher in normal skin, consistent with previous findings. Correlation analysis indicated ACOX2 and ADH1B were positively correlated with resting mast cells but negatively with activated T cells and NK cells, while COX17 showed a positive correlation with activated T cells and a negative correlation with resting mast cells. Conclusion This study suggests that the hub genes COX17, ACOX2, and ADH1B may serve as potential biomarkers in the pathogenesis of AD. These findings could provide insights for the treatment and prognosis of AD and related inflammatory skin conditions.
Collapse
Affiliation(s)
- Junhao Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Xinyu Pan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Miao Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Kairong Sun
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Zihan Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Juan Chen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| |
Collapse
|
7
|
Hashimoto T, Okuno S. The big four in the pathogenesis and pathophysiology of prurigo nodularis: Interplay among type 2 inflammation, epidermal hyperplasia, dermal fibrosis, and itch from neuroimmune dysregulation. Clin Dermatol 2025:S0738-081X(25)00093-8. [PMID: 40118300 DOI: 10.1016/j.clindermatol.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Prurigo nodularis (PN) is a distinct inflammatory dermatosis. It is characterized by intensely pruritic, firm nodules, typically 1 to 2 cm in diameter, which usually develop on the extensor surfaces of the extremities. Histopathologically, the following characteristics are observed in PN lesions: (1) dermal cellular infiltrates composed of type 2 inflammation-associated immune cells with lesional overexpression of type 2 cytokines (including interleukin [IL]-4, IL-13, and IL-31), (2) dermal fibrosis, and (3) epidermal hyperplasia with hyperkeratosis. Additionally, functional and structural alterations of cutaneous sensory nerve fibers profoundly contribute to itch in cooperation with type 2 inflammation. This abnormal interaction is referred to as neuroimmune dysregulation. The scratching behavior induced by itching from neuroimmune dysregulation initiates the development of prurigo nodules. This distinctive pathogenic feature of "itch-first" in PN is distinct from "inflammation-first" in atopic dermatitis, where the skin initially exhibits type 2 inflammation, which is subsequently followed by itching. The interplay between the four elements, namely type 2 inflammation, epidermal hyperplasia, dermal fibrosis, and itch resulting from neuroimmune dysregulation, appears to be pivotal in the pathogenesis and pathophysiology of PN.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan.
| | - Satoshi Okuno
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
8
|
Hu P, Sun J, Gao R, Li K, Liu J, Pan X, Jin Z, Mao Y, Yang J, Yu R, Qi C. Harnessing the power of breast milk: how Lactiplantibacillus plantarum FN029 from rural western China mitigates severe atopic dermatitis in mice through retinol metabolism activation. Food Funct 2025; 16:2230-2246. [PMID: 39912208 DOI: 10.1039/d4fo04300f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Tongwei and Wuxi represent a rural county in western China and an industrialized city in the east, respectively. The study compared breast milk and the corresponding infant gut microbiota from 35 healthy mothers in Tongwei and 28 in Wuxi, uncovering significant differences in microbial alpha and beta diversity. A unique strain, Lactiplantibacillus plantarum FN029, characteristically transmitted from breast milk to the infant gut in Tongwei, was identified. Oral administration of FN029 to weaned BALB/c mice significantly alleviated atopic dermatitis severity caused by calcipotriol and ovalbumin. This reduction was paralleled by a decrease in mast cells and eosinophils in ear tissue and reduced levels of IL-4, IL-12, IL-33, IFN-γ, the IL-4/IFN-γ ratio, and IgE in plasma, along with an upsurge in regulatory T cells in the spleen. RNA sequencing revealed that FN029 activated the retinol metabolism pathway and the Wnt signaling pathway, enhancing immature dendritic cells and regulatory T cells. Metabolomics analysis indicated an increase in retinyl beta-glucuronide, a biomarker of vitamin A reserves. The mRNA expression of retinol-metabolizing enzymes was inversely related to the IL-4/IFN-γ ratio. FN029 also altered ileum microbiota without a direct link to atopic dermatitis improvement. In conclusion, L. plantarum FN029, a probiotic from Tongwei breast milk, fostered T regulatory cell conversion and immune balance by activating the retinol pathway, thereby improving severe atopic dermatitis in mice.
Collapse
Affiliation(s)
- Pengyue Hu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Ruijuan Gao
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Kexin Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Jiayi Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Xiaonan Pan
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Zilu Jin
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Yuejian Mao
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy(Group) Co. Ltd, Hohhot, Inner Mongolia, China
| | - Jing Yang
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy(Group) Co. Ltd, Hohhot, Inner Mongolia, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Jiangnan University, Wuxi 214002, PR China
| | - Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Yang S, Chen L, Zhang H, Song Y, Wang W, Hu Z, Wang S, Huang L, Wang Y, Wu S, Chen R, Liang F. Beyond the itch: the complex interplay of immune, neurological, and psychological factors in chronic urticaria. J Neuroinflammation 2025; 22:75. [PMID: 40069822 PMCID: PMC11895394 DOI: 10.1186/s12974-025-03397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/23/2025] [Indexed: 03/15/2025] Open
Abstract
Chronic urticaria (CU) arises from a multifaceted interplay of immunological, neurological, and psychological components. Immune dysregulation, mediated through both immunoglobulin E (IgE)-dependent and IgE-independent pathways, plays a pivotal role in CU pathogenesis, involving key effector cells such as mast cells (MCs), basophils, and eosinophils. This dysregulation culminates in the release of histamine, prostaglandins, and other mediators, which precipitate pruritus. The chronicity of the disease leads to sustained pruritic symptoms, contributing to both central and peripheral sensitization. The excitation of the itch circuit is augmented, leading to the release of neurotransmitters and neuropeptides, which subsequently interact with immune cells. Psychological factors such as depression, anxiety, and stress exacerbate CU symptoms and diminish quality of life. These factors disrupt the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS). Furthermore, the act of scratching activates the reward circuit, resulting in the manifestation of the itch-scratching cycle. Current treatments, such as antihistamines, omalizumab, and cyclosporine, demonstrate variable efficacy and are often associated with adverse effects. A holistic approach addressing both psychological and physiological aspects is advocated. This review highlights the critical importance of understanding neuroimmune interactions and the influence of psychosomatic factors in CU. It aims to enhance diagnostic and therapeutic strategies by integrating psychological, neurological, and immunological perspectives.
Collapse
Affiliation(s)
- Shurui Yang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430060, China
| | - Li Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430060, China
| | - Haiming Zhang
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China
| | | | - Wenyan Wang
- Department of acupuncture and moxibustion, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Zhengbo Hu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430060, China
| | - Siyu Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430060, China
| | - Liuyang Huang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430060, China
| | - Yayuan Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430060, China
| | - Song Wu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430060, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Fengxia Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, 430061, China.
- Hubei Shizhen Laboratory, Wuhan, 430060, China.
- Acupuncture and Moxibustion Department, Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, 430060, China.
| |
Collapse
|
10
|
Qian X, Tong M, Zhang T, Li Q, Hua M, Zhou N, Zeng W. IL-24 promotes atopic dermatitis-like inflammation through driving MRSA-induced allergic responses. Protein Cell 2025; 16:188-210. [PMID: 38752989 PMCID: PMC11892005 DOI: 10.1093/procel/pwae030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 03/11/2025] Open
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disorder in which patients experience recurrent eczematous lesions and intense itching. The colonization of Staphylococcus aureus (S. aureus) is correlated with the severity of the disease, but its role in AD development remains elusive. Using single-cell RNA sequencing, we uncovered that keratinocytes activate a distinct immune response characterized by induction of Il24 when exposed to methicillin-resistant S. aureus (MRSA). Further experiments using animal models showed that the administration of recombinant IL-24 protein worsened AD-like pathology. Genetic ablation of Il24 or the receptor Il20rb in keratinocytes alleviated allergic inflammation and atopic march. Mechanistically, IL-24 acted through its heterodimeric receptors on keratinocytes and augmented the production of IL-33, which in turn aggravated type 2 immunity and AD-like skin conditions. Overall, these findings establish IL-24 as a critical factor for onset and progression of AD and a compelling therapeutic target.
Collapse
Affiliation(s)
- Xinmin Qian
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Meiyi Tong
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingqing Li
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Meng Hua
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Nan Zhou
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
11
|
Ogulur I, Mitamura Y, Yazici D, Pat Y, Ardicli S, Li M, D'Avino P, Beha C, Babayev H, Zhao B, Zeyneloglu C, Giannelli Viscardi O, Ardicli O, Kiykim A, Garcia-Sanchez A, Lopez JF, Shi LL, Yang M, Schneider SR, Skolnick S, Dhir R, Radzikowska U, Kulkarni AJ, Imam MB, Veen WVD, Sokolowska M, Martin-Fontecha M, Palomares O, Nadeau KC, Akdis M, Akdis CA. Type 2 immunity in allergic diseases. Cell Mol Immunol 2025; 22:211-242. [PMID: 39962262 PMCID: PMC11868591 DOI: 10.1038/s41423-025-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025] Open
Abstract
Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Carina Beha
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Bingjie Zhao
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Can Zeyneloglu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Asuncion Garcia-Sanchez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Biomedical and Diagnostic Science, School of Medicine, University of Salamanca, Salamanca, Spain
| | - Juan-Felipe Lopez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Li-Li Shi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Minglin Yang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Seed Health Inc., Los Angeles, CA, USA
| | - Raja Dhir
- Seed Health Inc., Los Angeles, CA, USA
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Abhijeet J Kulkarni
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mar Martin-Fontecha
- Departamento de Quimica Organica, Facultad de Optica y Optometria, Complutense University of Madrid, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
12
|
Thoma G, Miltz W, Waelchli R, Orain D, Spanka C, Decoret O, Wolf RM, Hurley B, Cheung AK, Sandham DA, Honda A, Tichkule R, Chen X, Patel T, Labbe-Giguere N, Tan KL, Springer C, Manchester J, Culshaw AJ, Hunt P, Srinivas H, Penno CA, Ferrand S, Numao S, Schopfer U, Jäger P, Wack N, Hasler F, Urban B, Sindelar M, Loetscher P, Kiffe M, Ren X, Nicklin P, White K, Subramanian K, Liu H, Growcott EJ, Röhn TA. Discovery of GJG057, a Potent and Highly Selective Inhibitor of Leukotriene C4 Synthase. J Med Chem 2025; 68:4721-4742. [PMID: 39960261 DOI: 10.1021/acs.jmedchem.4c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Leukotriene C4 synthase (LTC4S) is a glutathione S-transferase that mediates the biosynthesis of cysteinyl leukotriene C4 (LTC4). Cysteinyl leukotrienes (CysLTs) are lipid mediators that drive type 2 inflammation, bronchoconstriction, and itch. Thus, LTC4S represents an attractive drug target for the treatment of allergic inflammatory diseases, but to date, no LTC4S inhibitor has been tested in patients. Herein, we disclose the discovery and preclinical profiling of the highly selective, oral LTC4S inhibitor GJG057 (compound 1), which exhibits 20-fold improved potency (IC50 = 44 nM) versus clinical candidate AZD9898 (IC50 = 900 nM) in a human whole blood LTC4 release assay. GJG057 showed efficacy in a murine asthma exacerbation model as well as in a mastoparan-induced skin challenge PK/PD model and was profiled in GLP toxicology studies. Despite its promising properties, GJG057 was not progressed into clinical trials as an oral drug. Its potential as a topical drug is currently being evaluated.
Collapse
Affiliation(s)
- Gebhard Thoma
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Rudolf Waelchli
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - David Orain
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Carsten Spanka
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Odile Decoret
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Romain M Wolf
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Brian Hurley
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Atwood K Cheung
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - David A Sandham
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Ayako Honda
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Ritesh Tichkule
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Xin Chen
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Tajesh Patel
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Nancy Labbe-Giguere
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Kian L Tan
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Clayton Springer
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - John Manchester
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Andrew J Culshaw
- Global Discovery Chemistry, Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, U.K
| | - Peter Hunt
- Global Discovery Chemistry, Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, U.K
| | - Honnappa Srinivas
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Carlos A Penno
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Sandrine Ferrand
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Shin Numao
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Ulrich Schopfer
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Petra Jäger
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Nathalie Wack
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Franziska Hasler
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Beatrice Urban
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Miriam Sindelar
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Pius Loetscher
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Michael Kiffe
- PK Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Xiaojun Ren
- PK Sciences, Biomedical Research, Novartis Pharmaceuticals, East Hanover, New Jersey 07936, United States
| | - Paul Nicklin
- Respiratory Disease Area, Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, U.K
| | - Kevin White
- Global Health Disease Area, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Khaushik Subramanian
- Global Health Disease Area, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Haoyuan Liu
- Global Health Disease Area, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Ellena J Growcott
- Global Health Disease Area, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Till A Röhn
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| |
Collapse
|
13
|
Du Y, Wang L, Zhou J, Hong W, Cai X, Ma H, Wei Z, Nie W, Zhu H, Yang B, He Q, Chen B, Wang J, Weng Q. Identification of a dual JAK3/TEC family kinase inhibitor for atopic dermatitis therapy. Biochem Pharmacol 2025; 232:116740. [PMID: 39765290 DOI: 10.1016/j.bcp.2025.116740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by recurrent eczematous lesions and severe itching, for which clinical treatments are limited. Selectively inhibiting Janus Kinase 3 (JAK3) and tyrosine kinase expressed in hepatocellular carcinoma (TEC) family kinases is proposed as a promising strategy to treat AD with possible reduced side effects and enhanced efficacy. In this study, we developed a dual JAK3/TEC family kinase inhibitor ZZB, which demonstrated potent inhibitory activity with IC50 values of 0.89 nM against JAK3 and 11.56 nM against TEC kinase interleukin-2-inducible T-cell kinase (ITK). Docking studies revealed that ZZB forms a covalent bond with the unique cysteine residue at position 909 (Cys909) in JAK3 and Cys442 in ITK. Utilizing human peripheral blood mononuclear cells, we discovered ZZB selectively inhibits JAK3-dependent cytokines signaling and ITK-mediated CD4+ T cell activation. Moreover, in vitro studies indicated ZZB significantly suppresses the proliferation and differentiation of CD4+ T cells, as well as the cytolytic function of CD8+ T cells and NK cells. We then conducted a pharmacokinetic study in mice and observed a favorable pharmacokinetic profile for ZZB. In a mouse model of AD induced by repeated application of 2,4-dinitrochlorobenzene to the shaved dorsal skin, oral administration of ZZB (100 mg/kg) markedly improved skin condition and reduced immune cell infiltration, matching the efficacy of the positive drug dexamethasone. We conclude that the JAK3/TEC kinase inhibitor ZZB is a highly promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Yiwen Du
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longling Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingmei Zhou
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuanyan Cai
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongbo Ma
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zonghui Wei
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenwen Nie
- Hangzhou Yuhong Pharmatech Co. Ltd., Hangzhou 310000, China
| | - Hong Zhu
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Binhui Chen
- Hangzhou Yuhong Pharmatech Co. Ltd., Hangzhou 310000, China.
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China.
| |
Collapse
|
14
|
Sun Y, Zhou Y, Peng T, Huang Y, Lu H, Ying X, Kang M, Jiang H, Wang J, Zheng J, Zeng C, Liu W, Zhang X, Ai L, Peng Q. Preventing NLRP3 inflammasome activation: Therapeutic atrategy and challenges in atopic dermatitis. Int Immunopharmacol 2025; 144:113696. [PMID: 39608174 DOI: 10.1016/j.intimp.2024.113696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disorder characterized by its chronic, persistent, and recurrent nature. The pathophysiology of this condition is complex, involving various factors including cell-mediated immune responses, compromised skin barrier function, and alterations in hypersensitivity reactions. These components synergistically contribute to the perpetuation of the bothersome "itch-scratch-itch" cycle. Recent research has highlighted the significant role of the NLRP3 inflammasome in the development of AD and other inflammatory conditions. Current research indicates that the NLRP3 inflammasome plays a pivotal role in both the acute and chronic phases of AD by modulating the Th2/Th1 immune deviation. Moreover, the pharmacological suppression of NLRP3 has shown promising results in mitigating the pathological aspects of AD. This review outlines potential drug development strategies that target the NLRP3 inflammasome as a therapeutic approach for AD and the challenges faced in this endeavor.
Collapse
Affiliation(s)
- Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yangang Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Tong Peng
- Department of R&D, Keystonecare Technology (Chengdu) Co., Ltd, Chengdu 610094, China
| | - Yuhang Huang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hao Lu
- School of Biosciences and Technology, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases at Chengdu Medical College of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Xiran Ying
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Mingsheng Kang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hao Jiang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Jingying Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Jiayao Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Chenyu Zeng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Wanting Liu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Lin Ai
- Department of Dermatology and Venereology, Nanbu County People's Hospital, Nanchong 637399, China
| | - Quekun Peng
- School of Biosciences and Technology, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases at Chengdu Medical College of Sichuan Province, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
15
|
Lee M, Boyce JA, Barrett NA. Cysteinyl Leukotrienes in Allergic Inflammation. ANNUAL REVIEW OF PATHOLOGY 2025; 20:115-141. [PMID: 39374430 PMCID: PMC11759657 DOI: 10.1146/annurev-pathmechdis-111523-023509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The cysteinyl leukotrienes (CysLTs), LTC4, LTD4, and LTE4, are potent lipid mediators derived from arachidonic acid through the 5-lipoxygenase pathway. These mediators produce both inflammation and bronchoconstriction through three distinct G protein-coupled receptors (GPCRs)-CysLT1, CysLT2, and OXGR1 (also known as CysLT3 or GPR99). While CysLT-mediated functions in the effector phase of allergic inflammation and asthma have been established for some time, recent work has demonstrated novel roles for these mediators and their receptors in the induction and amplification of type 2 inflammation. Additionally, in vitro studies and murine models have uncovered diverse regulatory mechanisms that restrain or amplify CysLT receptor activation and CysLT receptor function. This review provides an overview of CysLT biosynthesis and its regulation, the molecular and functional pharmacology of CysLT receptors, and an overview of the established and emerging roles of CysLTs in asthma, aspirin-exacerbated respiratory disease, and type 2 inflammation.
Collapse
Affiliation(s)
- Minkyu Lee
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| |
Collapse
|
16
|
Mizuno M, Imamura S, Yoshioka A, Washio K, Oda Y, Matsuhara H, Ohashi-Doi K, Fukunaga A. Effect of house dust mite sublingual immunotherapy in patients with adult atopic dermatitis with rhinitis. Future Sci OA 2024; 10:2419779. [PMID: 39539183 PMCID: PMC11572311 DOI: 10.1080/20565623.2024.2419779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Whether house dust mite (HDM) sublingual immunotherapy (SLIT) is effective for the skin symptoms of adult atopic dermatitis (AD) is unclear.Methods: HDM SLIT was added to conventional AD treatment for 10 HDM-sensitized AD patients with rhinitis for 2 years.Results: Seven out of ten enrolled patients completed the study. Eczema Area and Severity Index score was significantly reduced when comparing before treatment and at 24 months follow-up. CD203c ratio in the basophil activation test using HDM extract, skin prick test with HDM extract and Dermatophagoides pteronyssinus/Dermatophagoides farinae specific-IgG4 tended to improve when comparing before treatment and after treatment.Conclusion: HDM SLIT might be a therapeutic option for AD patients with rhinitis who are sensitized to HDM.
Collapse
Affiliation(s)
- Mayuko Mizuno
- Department of Internal Related, Division of Dermatology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Shinya Imamura
- Department of Internal Related, Division of Dermatology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
- Department of Dermatology, Kobe City Medical Center West Hospital, Kobe, Hyogo, Japan
| | - Ai Yoshioka
- Department of Internal Related, Division of Dermatology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Ken Washio
- Department of Internal Related, Division of Dermatology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
- Department of Dermatology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Yoshiko Oda
- Department of Internal Related, Division of Dermatology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Hiroki Matsuhara
- Torii Pharmaceutical Co., Ltd, 3-4-1, Nihonbashi-Honcho, Chuo-Ku, Tokyo, 103-8439, Japan
| | - Katsuyo Ohashi-Doi
- Torii Pharmaceutical Co., Ltd, 3-4-1, Nihonbashi-Honcho, Chuo-Ku, Tokyo, 103-8439, Japan
| | - Atsushi Fukunaga
- Department of Internal Related, Division of Dermatology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
- Department of Dermatology, Division of Medicine for Function & Morphology of Sensory Organs, Faculty of Medicine, Osaka Medical & Pharmaceutical University, 2-7 Daigaku-Cho, Takatsuki, Osaka, 569-0801, Japan
| |
Collapse
|
17
|
Plum T, Feyerabend TB, Rodewald HR. Beyond classical immunity: Mast cells as signal converters between tissues and neurons. Immunity 2024; 57:2723-2736. [PMID: 39662090 DOI: 10.1016/j.immuni.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Mast cells are regarded as effectors in immune defense against parasites and venoms and play an essential role in the pathology of allergic diseases. More recently, mast cells have been shown to receive stimuli derived from type 2 immunity, tissue damage, stress, and inflammation. Mast cells then rapidly convert these diverse signals into appropriate, organ-specific protective reflexes that can limit inflammation or reduce tissue damage. In this review, we consider functions of mast cells in sensations-such as pain, itch, and nausea-arising from tissue insults and inflammation and the ensuing protective responses. In light of emerging data highlighting the involvement of mast cells in neuroimmune communication, we also propose that mast cells are "signal converters" linking immunological and tissue states with nervous system responses.
Collapse
Affiliation(s)
- Thomas Plum
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Thorsten B Feyerabend
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
19
|
Wang Z, Song K, Kim BS, Manion J. Sensory neuroimmune interactions at the barrier. Mucosal Immunol 2024; 17:1151-1160. [PMID: 39374664 DOI: 10.1016/j.mucimm.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Epithelial barriers such as the skin, lung, and gut, in addition to having unique physiologic functions, are designed to preserve tissue homeostasis upon challenge with a variety of allergens, irritants, or pathogens. Both the innate and adaptive immune systems play a critical role in responding to epithelial cues triggered by environmental stimuli. However, the mechanisms by which organs sense and coordinate complex epithelial, stromal, and immune responses have remained a mystery. Our increasing understanding of the anatomic and functional characteristics of the sensory nervous system is greatly advancing a new field of peripheral neuroimmunology and subsequently changing our understanding of mucosal immunology. Herein, we detail how sensory biology is informing mucosal neuroimmunology, even beyond neuroimmune interactions seen within the central and autonomic nervous systems.
Collapse
Affiliation(s)
- Zhen Wang
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Keaton Song
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA.
| | - John Manion
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Zhang H, Li Q, Li Y, Guan J, Li K, Chen Y. Effects of Huang-Lian-Jie-Du decoction on improving skin barrier function and modulating T helper cell differentiation in 1-chloro-2,4-dinitrobenzene-induced atopic dermatitis mice. Front Pharmacol 2024; 15:1487402. [PMID: 39640480 PMCID: PMC11618541 DOI: 10.3389/fphar.2024.1487402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Background: Atopic dermatitis (AD) is among the most frequently encountered skin diseases, bothering a considerable number of patients. Today, corticosteroids and antihistamines are among the numerous drugs applied for the therapy of AD. However, lengthy use of them contributes to side effects, such as physiological changes in skin. As an alternative and supplementary therapy, traditional Chinese medicine has become a trend for AD treatment. Huang-Lian-Jie-Du decoction (HLJDD), a renowned herbal formula has been employed to treat inflammatory diseases such as AD. However, its role in regulating immunity in AD remains unclear. The object of this study was to elucidate the efficacy of HLJDD and reveal the implicit mechanism from an immunological perspective in AD-like mice. Methods: In brief, 1-chloro-2,4-dinitrobenzene (DNCB) for the sensitization phase (1% DNCB) and stimulation phase (1.5% DNCB) were applied for BALB/c mice. HLJDD and dexamethasone (DXMS) were administered orally to the mice. Mice skin and spleens were collected to evaluate the efficacy of HLJDD. 16S rRNA sequencing was applied to evaluate the commensal microbiota changes in skin and fecal. In vitro, spleen CD4+ T cells and bone marrow-derived mast cells (BMMCs) were co-cultured to explore the modulation of HLJDD in T helper (Th) cells phenotyping. Results: HLJDD showcased a substantial amelioration in skin through the upregulation of FLG, LOR, AQP3, and reducing scratching behaviors in AD-like mice, Also, the quantity of infiltrated mast cells (MCs), pruritus-related mRNA were decreased. In addition, the expression of OX40/OX40L was decreased by HLJDD, which was critical in Th-cell phenotyping. With the treatment of HLJDD, Th1/Th2 and Th17/Treg ratios in AD-like mice became balanced. The structure of commensal microbiota in AD-like mice was affected by HLJDD. HLJDD could also improve the imbalance of Th17/Treg in vitro. Conclusion: HLJDD could improve the symptoms of AD-like mice by alleviating the scratching behaviors via decreased Th2 and pruritus-related mRNA expression. HLJDD also enhanced the relative diversity of skin microbiota and changed the structure of intestinal microbiota. An in-depth study found that HLJDD could balance the ratio of Th1/Th2, Th17/Treg in AD-like mice, and Th17/Treg in vitro by regulating the OX40/OX40L signaling pathway.
Collapse
Affiliation(s)
- Huiyuan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Quanbin Li
- Hubei College of Chinese Medicine, Jing Zhou, Hubei Province, China
| | - Yaxing Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianhua Guan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kaidi Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunlong Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Li J, Yuan Z, Shi S, Chen X, Yu S, Qi X, Deng T, Zhou Y, Tang D, Xu S, Zhang J, Jiao Y, Yu W, Wang L, Yang L, Gao P. Microneedle patches incorporating zinc-doped mesoporous silica nanoparticles loaded with betamethasone dipropionate for psoriasis treatment. J Nanobiotechnology 2024; 22:706. [PMID: 39543615 PMCID: PMC11562306 DOI: 10.1186/s12951-024-02986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Treating psoriasis presents a major clinical challenge because of the limitations associated with traditional topical glucocorticoid therapy. This study introduced a drug delivery system utilizing zinc-doped mesoporous silica nanoparticle (Zn-MSN) and microneedle (MN), designed to enhance drug utilization for prolonged anti-inflammatory and anti-itch effects. The MN system facilitated the transdermal delivery of betamethasone dipropionate (BD), allowing its slow release. The BD@Zn-MSN-MN system promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype, achieving superior anti-inflammatory effects compared to the clinically used BD cream. Additionally, this study demonstrated that BD@Zn-MSN-MN could further alleviate itching in psoriasis-afflicted mice by decreasing the excitability of the transient receptor potential vanilloid V1 (TRPV1) ion channel positive neurons and reducing the release of calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). These findings offer new insights and effective therapeutic options for the future design of transdermal drug delivery for psoriasis.
Collapse
Grants
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 2023AH010073 Program for Excellent Sci-tech Innovation Teams of Universities in Anhui Province
- 2023AH010073 Program for Excellent Sci-tech Innovation Teams of Universities in Anhui Province
- 82270916, U23A20508, 82371517, 32030043, 81800748 National Natural Science Foundation of China
- 82270916, U23A20508, 82371517, 32030043, 81800748 National Natural Science Foundation of China
- 82270916, U23A20508, 82371517, 32030043, 81800748 National Natural Science Foundation of China
- 82270916, U23A20508, 82371517, 32030043, 81800748 National Natural Science Foundation of China
- 82270916, U23A20508, 82371517, 32030043, 81800748 National Natural Science Foundation of China
- PW2022D-01 Pudong New Area Health Commission Research Project
Collapse
Affiliation(s)
- Jun Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shuyu Shi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xingtao Chen
- Sichuan Provincial Laboratory of Orthopedic Engineering, Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shuangshuang Yu
- Department of Dermatology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui, 238000, China
| | - Xiaoshu Qi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Tong Deng
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, China
| | - Yifei Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Jue Zhang
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Liya Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, 200030, China.
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
22
|
Lin Z, Dou Y, Ju RY, Lin P, Cao Y. Construction of a disease risk prediction model for postherpetic pruritus by machine learning. Front Med (Lausanne) 2024; 11:1454057. [PMID: 39568742 PMCID: PMC11576279 DOI: 10.3389/fmed.2024.1454057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Background Postherpetic itch (PHI) is an easily overlooked complication of herpes zoster that greatly affects patients' quality of life. Studies have shown that early intervention can reduce the occurrence of itch. The aim of this study was to develop and validate a predictive model through a machine learning approach to identify patients at risk of developing PHI among patients with herpes zoster, making PHI prevention a viable clinical option. Method We conducted a retrospective review of 488 hospitalized patients with herpes zoster at The First Affiliated Hospital of Zhejiang Chinese Medical University and classified according to whether they had PHI. Fifty indicators of these participants were collected as potential input features for the model. Features associated with PHI were identified for inclusion in the model using the least absolute shrinkage selection operator (LASSO). Divide all the data into five pieces, and then use each piece as a verification set and the others as a training set for training and verification, this process is repeated 100 times. Five models, logistic regression, random forest (RF), k-nearest neighbor, gradient boosting decision tree and neural network, were built in the training set using machine learning methods, and the performance of these models was evaluated in the test set. Results Seven non-zero characteristic variables from the Lasso regression results were selected for inclusion in the model, including age, moderate pain, time to recovery from rash, diabetes, severe pain, rash on the head and face, and basophil ratio. The RF model performs better than other models. On the test set, the AUC of the RF model is 0.84 [(95% confidence interval (CI): 0.80-0.88], an accuracy of 0.78 (95% CI: 0.69-0.86), a precision of 0.61 (95% CI: 0.45-0.77), a recall of 0.73 (95% CI: 0.58-0.89), and a specificity of 0.79 (95% CI: 0.70-0.89). Conclusions In this study, five machine learning methods were used to build postherpetic itch risk prediction models by analyzing historical case data, and the optimal model was selected through comparative analysis, with the random forest model being the top performing model.
Collapse
Affiliation(s)
- Zheng Lin
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan Dou
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ru-Yi Ju
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ping Lin
- Department of Geriatrics, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Zhai S, Chen L, Liu H, Wang M, Xue J, Zhao X, Jiang H. Skin barrier: new therapeutic targets for chronic kidney disease-associated pruritus - a narrative review. Int J Dermatol 2024; 63:1513-1521. [PMID: 38855995 DOI: 10.1111/ijd.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
The current incidence of chronic kidney disease-associated pruritus (CKD-aP) in patients with end-stage renal disease (ESRD) is approximately 70%, especially in those receiving dialysis, which negatively affects their work and private lives. The CKD-aP pathogenesis remains unclear, but uremic toxin accumulation, histamine release, and opioid imbalance have been suggested to lead to CKD-aP. Current therapeutic approaches, such as opioid receptor modulators, antihistamines, and ultraviolet B irradiation, are associated with some limitations and adverse effects. The skin barrier is the first defense in preventing external injury to the body. Patients with chronic kidney disease often experience itch due to the damaged skin barrier and reduced secretion of sweat and secretion from sebaceous glands. Surprisingly, skin barrier-repairing agents repair the skin barrier and inhibit the release of inflammatory cytokines, maintain skin immunity, and ameliorate the micro-inflammatory status of afferent nerve fibers. Here, we summarize the epidemiology, pathogenesis, and treatment status of CKD-aP and explore the possibility of skin barrier repair in CKD-aP treatment.
Collapse
Affiliation(s)
- Siyue Zhai
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Central for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Chen
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hua Liu
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Wang
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinhong Xue
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xue Zhao
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Central for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongli Jiang
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
24
|
Hanč P, Messou MA, Ajit J, von Andrian UH. Setting the tone: nociceptors as conductors of immune responses. Trends Immunol 2024; 45:783-798. [PMID: 39307581 PMCID: PMC11493364 DOI: 10.1016/j.it.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
Nociceptors have emerged as master regulators of immune responses in both homeostatic and pathologic settings; however, their seemingly contradictory effects on the functions of different immune cell subsets have been a source of confusion. Nevertheless, work by many groups in recent years has begun to identify patterns of the modalities and consequences of nociceptor-immune system communication. Here, we review recent findings of how nociceptors affect immunity and propose an integrated concept whereby nociceptors are neither inherently pro- nor anti-inflammatory. Rather, we propose that nociceptors have the role of a rheostat that, in a context-dependent manner, favors tissue homeostasis and fine-tunes immunity by preventing excessive histotoxic inflammation, promoting tissue repair, and potentiating anticipatory and adaptive immune responses.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jainu Ajit
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| |
Collapse
|
25
|
Chiu IM, Sokol CL. Neuroimmune recognition of allergens. Curr Opin Immunol 2024; 90:102458. [PMID: 39213825 PMCID: PMC11423315 DOI: 10.1016/j.coi.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Interactions between the nervous system and the immune system play crucial roles in initiating and directing the type 2 immune response. Sensory neurons can initiate innate and adaptive type 2 immunity through their ability to detect allergens and promote dendritic cell and mast cell responses. Neurons also indirectly promote type 2 inflammation through suppression of type 1 immune responses. Type 2 cytokines promote neuronal function by directly activating or sensitizing neurons. This positive neuroimmune feedback loop may not only enhance allergic inflammation but also promote the system-wide responses of aversion, anaphylaxis, and allergen polysensitization that are characteristic of allergic immunity.
Collapse
Affiliation(s)
- Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
26
|
Chu CY, Bhat Marne R, Cheung CMT, Diep LN, Noppakun N, Novianto E, Palmero MLH, Tay YK, Zalmy AN. Advanced Systemic Treatments in Patients with Moderate-to-Severe Atopic Dermatitis: Key Learnings from Physicians Practicing in Nine Asian Countries and Territories. Dermatol Ther (Heidelb) 2024; 14:2669-2691. [PMID: 39340696 PMCID: PMC11480307 DOI: 10.1007/s13555-024-01278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Rapid progress made in the management of atopic dermatitis (AD) in recent years and the differences in patient journey between Asian and non-Asian populations call for a review of current atopic dermatitis landscape in Asia. METHODS A roundtable meeting with nine regional dermatological experts was held in June 2023 to discuss the optimal management approaches for moderate-to-severe AD, focusing on the use of advanced therapies. RESULTS Disease burden on patients' quality of life, treatment adherence, and financial constraints were identified as major concerns when managing patients with moderate-to-severe AD in parts of Asia. It was agreed that the Hanifin and Rajka's criteria or the UK Working Party's Diagnostic Criteria for Atopic Dermatitis can be used to guide the clinical diagnosis of AD. Meanwhile, patient-reported outcome scales including the Dermatology Life Quality Index and Atopic Dermatitis Control Tool can be used alongside depression monitoring scales to monitor treatment outcomes in patients with AD, allowing a better understanding for individualized treatment. When managing moderate-to-severe AD, phototherapy should be attempted after failure with topical treatments, followed by conventional disease-modifying antirheumatic drugs and, subsequently, biologics or Janus kinase inhibitors. Systemic corticosteroids can be used as short-term therapy for acute flares. Although these advanced treatments are known to be effective, physicians have to take into consideration safety concerns and limitations when prescribing these treatments. CONCLUSIONS Treatments in AD have evolved and its management varies country by country. Unique challenges across Asian countries necessitate a different management approach in Asian patients with AD.
Collapse
Affiliation(s)
- Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei, 10002, Taiwan.
| | - Ramesh Bhat Marne
- Department of Dermatology, Venereology, and Leprosy, and Head of Research, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India
| | - Christina Man-Tung Cheung
- Division of Dermatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Le Ngoc Diep
- Department of Dermatology, Ho Chi Minh City University of Medicine and Pharmacy and Ho Chi Minh City University Medical Center - Branch 2, Ho Chi Minh City, Vietnam
| | - Nopadon Noppakun
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Endi Novianto
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta Pusat, Indonesia
| | | | - Yong-Kwang Tay
- Department of Dermatology, Changi General Hospital, Singapore, Singapore
| | - Azizan Noor Zalmy
- Department of Dermatology, Hospital Kuala Lumpur, Kuala Lumpur and Thomson Hospital Kota Damansara, Selangor, Malaysia
| |
Collapse
|
27
|
Li X, Yuan D, Zhang P, Luo C, Xie X, Zhang Y, Wei Z, Wang M, Cai Y, Zeng Y, Lai L, Che D, Ling H, Shi S, Zhang HF, Wang F, Li F. A Neuron-Mast Cell Axis Regulates Skin Microcirculation in Diabetes. Diabetes 2024; 73:1728-1741. [PMID: 38833271 PMCID: PMC11573700 DOI: 10.2337/db23-0862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Changes in microcirculation lead to the progression of organ pathology in diabetes. Although neuroimmune interactions contribute to a variety of conditions, it is still unclear whether abnormal neural activities affect microcirculation related to diabetes. Using laser speckle contrast imaging, we examined the skin of patients with type 2 diabetes and found that their microvascular perfusion was significantly compromised. This phenomenon was replicated in a high-fat diet-driven murine model of type 2 diabetes-like disease. In this setting, although both macrophages and mast cells were enriched in the skin, only mast cells and associated degranulation were critically required for the microvascular impairment. Sensory neurons exhibited enhanced TRPV1 activities, which triggered mast cells to degranulate and compromise skin microcirculation. Chemical and genetic ablation of TRPV1+ nociceptors robustly improved skin microcirculation status. Substance P (SP) is a neuropeptide and was elevated in the skin and sensory neurons in the context of type 2 diabetes. Exogenous administration of SP resulted in impaired skin microcirculation, whereas neuronal knockdown of SP dramatically prevented mast cell degranulation and consequently improved skin microcirculation. Overall, our findings indicate a neuron-mast cell axis underlying skin microcirculation disturbance in diabetes and shed light on neuroimmune therapeutics for diabetes-related complications. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xinran Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Yuan
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Chenglei Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Xinyang Xie
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengqi Wei
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingyang Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunqiu Cai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zeng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Luying Lai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Delu Che
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University Second Affiliated Hospital, Shanxi, China
| | - Hao Ling
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shengjun Shi
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Flayer CH, Kernin IJ, Matatia PR, Zeng X, Yarmolinsky DA, Han C, Naik PR, Buttaci DR, Aderhold PA, Camire RB, Zhu X, Tirard AJ, McGuire JT, Smith NP, McKimmie CS, McAlpine CS, Swirski FK, Woolf CJ, Villani AC, Sokol CL. A γδ T cell-IL-3 axis controls allergic responses through sensory neurons. Nature 2024; 634:440-446. [PMID: 39232162 DOI: 10.1038/s41586-024-07869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/23/2024] [Indexed: 09/06/2024]
Abstract
In naive individuals, sensory neurons directly detect and respond to allergens, leading to both the sensation of itch and the activation of local innate immune cells, which initiate the allergic immune response1,2. In the setting of chronic allergic inflammation, immune factors prime sensory neurons, causing pathologic itch3-7. Although these bidirectional neuroimmune circuits drive responses to allergens, whether immune cells regulate the set-point for neuronal activation by allergens in the naive state is unknown. Here we describe a γδ T cell-IL-3 signalling axis that controls the allergen responsiveness of cutaneous sensory neurons. We define a poorly characterized epidermal γδ T cell subset8, termed GD3 cells, that produces its hallmark cytokine IL-3 to promote allergic itch and the initiation of the allergic immune response. Mechanistically, IL-3 acts on Il3ra-expressing sensory neurons in a JAK2-dependent manner to lower their threshold for allergen activation without independently eliciting itch. This γδ T cell-IL-3 signalling axis further acts by means of STAT5 to promote neuropeptide production and the initiation of allergic immunity. These results reveal an endogenous immune rheostat that sits upstream of and governs sensory neuronal responses to allergens on first exposure. This pathway may explain individual differences in allergic susceptibility and opens new therapeutic avenues for treating allergic diseases.
Collapse
Affiliation(s)
- Cameron H Flayer
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabela J Kernin
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peri R Matatia
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Xiangsunze Zeng
- FM Kirby Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David A Yarmolinsky
- FM Kirby Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cai Han
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Parth R Naik
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dean R Buttaci
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pamela A Aderhold
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan B Camire
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice J Tirard
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John T McGuire
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clive S McKimmie
- Virus Host Interaction Team, Skin Research Centre, University of York, York, UK
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clifford J Woolf
- FM Kirby Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloe Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Traidl-Hoffmann C, Afghani J, Akdis CA, Akdis M, Aydin H, Bärenfaller K, Behrendt H, Bieber T, Bigliardi P, Bigliardi-Qi M, Bonefeld CM, Bösch S, Brüggen MC, Diemert S, Duchna HW, Fähndrich M, Fehr D, Fellmann M, Frei R, Garvey LH, Gharbo R, Gökkaya M, Grando K, Guillet C, Guler E, Gutermuth J, Herrmann N, Hijnen DJ, Hülpüsch C, Irvine AD, Jensen-Jarolim E, Kong HH, Koren H, Lang CCV, Lauener R, Maintz L, Mantel PY, Maverakis E, Möhrenschlager M, Müller S, Nadeau K, Neumann AU, O'Mahony L, Rabenja FR, Renz H, Rhyner C, Rietschel E, Ring J, Roduit C, Sasaki M, Schenk M, Schröder J, Simon D, Simon HU, Sokolowska M, Ständer S, Steinhoff M, Piccirillo DS, Taïeb A, Takaoka R, Tapparo M, Teixeira H, Thyssen JP, Traidl S, Uhlmann M, van de Veen W, van Hage M, Virchow C, Wollenberg A, Yasutaka M, Zink A, Schmid-Grendelmeier P. Navigating the evolving landscape of atopic dermatitis: Challenges and future opportunities: The 4th Davos declaration. Allergy 2024; 79:2605-2624. [PMID: 39099205 DOI: 10.1111/all.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
The 4th Davos Declaration was developed during the Global Allergy Forum in Davos which aimed to elevate the care of patients with atopic dermatitis (AD) by uniting experts and stakeholders. The forum addressed the high prevalence of AD, with a strategic focus on advancing research, treatment, and management to meet the evolving challenges in the field. This multidisciplinary forum brought together top leaders from research, clinical practice, policy, and patient advocacy to discuss the critical aspects of AD, including neuroimmunology, environmental factors, comorbidities, and breakthroughs in prevention, diagnosis, and treatment. The discussions were geared towards fostering a collaborative approach to integrate these advancements into practical, patient-centric care. The forum underlined the mounting burden of AD, attributing it to significant environmental and lifestyle changes. It acknowledged the progress in understanding AD and in developing targeted therapies but recognized a gap in translating these innovations into clinical practice. Emphasis was placed on the need for enhanced awareness, education, and stakeholder engagement to address this gap effectively and to consider environmental and lifestyle factors in a comprehensive disease management strategy. The 4th Davos Declaration marks a significant milestone in the journey to improve care for people with AD. By promoting a holistic approach that combines research, education, and clinical application, the Forum sets a roadmap for stakeholders to collaborate to improve patient outcomes in AD, reflecting a commitment to adapt and respond to the dynamic challenges of AD in a changing world.
Collapse
Affiliation(s)
- Claudia Traidl-Hoffmann
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Jamie Afghani
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Mübecel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | | | - Katja Bärenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Heidrun Behrendt
- Center for Allergy and Environment (ZAUM), Technische Universität München, Germany
| | - Thomas Bieber
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Davos Biosciences, Davos, Switzerland
| | | | | | - Charlotte Menné Bonefeld
- Department of Immunology and Microbiology, The LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Bösch
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Hans-Werner Duchna
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Hochgebirgsklinik Davos, Davos, Switzerland
| | | | - Danielle Fehr
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Remo Frei
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Lena H Garvey
- Department of Dermatology and Allergy, Allergy Clinic, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Raschid Gharbo
- Psychosomatic Department, Hochgebirgsklinik, Davos, Switzerland
| | - Mehmet Gökkaya
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany
| | - Karin Grando
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Carole Guillet
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | | | - Nadine Herrmann
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Dirk Jan Hijnen
- Diakonessenhuis Utrecht Zeist Doorn Locatie Utrecht, Erasmus MC, University Medical Center Utrecht, Utrecht, Netherlands
| | - Claudia Hülpüsch
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Alan D Irvine
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Erika Jensen-Jarolim
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hillel Koren
- Environmental Health, LLC, Durham, North Carolina, USA
| | - Claudia C V Lang
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Immunology and Microbiology, The LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
| | - Roger Lauener
- Ostschweizer Kinderspital St. Gallen, St.Gallen, Switzerland
| | - Laura Maintz
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Pierre-Yves Mantel
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Emanuel Maverakis
- Department of Dermatology, University of California Davis, Sacramento, California, USA
| | | | - Svenja Müller
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Kari Nadeau
- Stanford University School of Medicine, Stanford, California, USA
| | - Avidan U Neumann
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
| | | | - Harald Renz
- Institute of Laboratory Medicine, Philipps University, Marburg, Germany
| | - Claudio Rhyner
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Ernst Rietschel
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Johannes Ring
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München, Munich, Germany
| | - Caroline Roduit
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Bern University Hospital, Bern, Switzerland
- Ostschweizer Kinderspital St. Gallen, St.Gallen, Switzerland
| | - Mari Sasaki
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Bern University Hospital, Bern, Switzerland
| | - Mirjam Schenk
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jens Schröder
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Schleswig-Holstein (UK-SH), Kiel, Germany
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Milena Sokolowska
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Sonja Ständer
- Center for Chronic Pruritus and Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- School of Medicine, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Doris Straub Piccirillo
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Alain Taïeb
- INSERM 1312, University of Bordeaux, Bordeaux, France
| | - Roberto Takaoka
- Department of Dermatology, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Jacob Pontoppidan Thyssen
- Department of Dermatology and Venerology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Miriam Uhlmann
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institute and Karolinska University Hospital Stockholm, Solna, Sweden
| | - Christian Virchow
- Department of Pneumology, Intensive Care Medicine, Center for Internal Medicine, Universitätsmedizin Rostock, Rostock, Germany
| | - Andreas Wollenberg
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Munich, Germany
- Department of Dermatology and Allergy, University Hospital Augsburg, Augsburg, Germany
- Comprehensive Center of Inflammation Medicine, University Hospital Schleswig Holstein Campus Luebeck, Lubeck, Germany
| | - Mitamura Yasutaka
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Alexander Zink
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Medicine Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Schmid-Grendelmeier
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Medicine Campus, Davos, Switzerland
- Department of Immunology and Microbiology, The LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology, Allergy Unit, University Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Yassky D, Kim BS. Mouse Models of Itch. J Invest Dermatol 2024:S0022-202X(24)02087-6. [PMID: 39320301 DOI: 10.1016/j.jid.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/26/2024]
Abstract
Murine models are vital preclinical and biological tools for studying itch. In this paper, we explore how these models have enhanced our understanding of the mechanisms underlying itch through both acute and chronic itch models. We provide detailed protocols and recommend experimental setups for specific models to guide researchers in conducting itch research. We distinguish between what constitutes a bona fide pruritogen versus a stimulus that causes pruritogen release, an acute itch model versus a chronic itch model, and how murine models can capture aspects of pruritus in human disease. Finally, we highlight how mouse models of itch have transformed our understanding and development of therapeutics for chronic pruritus in patients.
Collapse
Affiliation(s)
- Daniel Yassky
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Allen Discovery Center for Neuroimmune Interactions, New York, New York, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Allen Discovery Center for Neuroimmune Interactions, New York, New York, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
31
|
Matatia PR, Christian E, Sokol CL. Sensory sentinels: Neuroimmune detection and food allergy. Immunol Rev 2024; 326:83-101. [PMID: 39092839 PMCID: PMC11436315 DOI: 10.1111/imr.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Food allergy is classically characterized by an inappropriate type-2 immune response to allergenic food antigens. However, how allergens are detected and how that detection leads to the initiation of allergic immunity is poorly understood. In addition to the gastrointestinal tract, the barrier epithelium of the skin may also act as a site of food allergen sensitization. These barrier epithelia are densely innervated by sensory neurons, which respond to diverse physical environmental stimuli. Recent findings suggest that sensory neurons can directly detect a broad array of immunogens, including allergens, triggering sensory responses and the release of neuropeptides that influence immune cell function. Reciprocally, immune mediators modulate the activation or responsiveness of sensory neurons, forming neuroimmune feedback loops that may impact allergic immune responses. By utilizing cutaneous allergen exposure as a model, this review explores the pivotal role of sensory neurons in allergen detection and their dynamic bidirectional communication with the immune system, which ultimately orchestrates the type-2 immune response. Furthermore, it sheds light on how peripheral signals are integrated within the central nervous system to coordinate hallmark features of allergic reactions. Drawing from this emerging evidence, we propose that atopy arises from a dysregulated neuroimmune circuit.
Collapse
Affiliation(s)
- Peri R. Matatia
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Christian
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline L. Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
32
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Heo JD, Kim HW, Seong JK, Kim TY, Park JW, Kim BS, Kim GS. The Skin Histopathology of Pro- and Parabiotics in a Mouse Model of Atopic Dermatitis. Nutrients 2024; 16:2903. [PMID: 39275219 PMCID: PMC11397434 DOI: 10.3390/nu16172903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
As it has been revealed that the activation of human immune cells through the activity of intestinal microorganisms such as pro- and prebiotics plays a vital role, controlling the proliferation of beneficial bacteria and suppressing harmful bacteria in the intestine has become essential. The importance of probiotics, especially for skin health and the immune system, has led to the emergence of products in various forms, including probiotics, prebiotics, and parabiotics. In particular, atopic dermatitis (AD) produces hypersensitive immunosuppressive substances by promoting the differentiation and activity of immune regulatory T cells. As a result, it has been in the Th1 and Th2 immune balance through a mechanism that suppresses skin inflammation or allergic immune responses caused by bacteria. Furthermore, an immune mechanism has recently emerged that simultaneously controls the expression of IL-17 produced by Th17. Therefore, the anti-atopic effect was investigated by administering doses of anti-atopic candidate substances (Lactobacilus sakei CVL-001, Lactobacilus casei MCL, and Lactobacilus sakei CVL-001 Lactobacilus casei MCL mixed at a ratio of 4:3) in an atopy model using 2,4-dinitrochlorobenzene and observing symptom changes for 2 weeks to confirm the effect of pro-, para-, and mixed biotics on AD. First, the body weight and feed intake of the experimental animals were investigated, and total IgG and IgM were confirmed through blood biochemical tests. Afterward, histopathological staining was performed using H&E staining, Toluidine blue staining, Filaggrin staining, and CD8 antibody staining. In the treatment group, the hyperproliferation of the epidermal layer, the inflammatory cell infiltration of the dermal layer, the expression of CD8, the expression of filaggrin, and the secretion of mast cells were confirmed to be significantly reduced. Lastly, small intestine villi were observed through a scanning microscope, and scoring evaluation was performed through skin damage. Through these results, it was confirmed that AD was reduced when treated with pro-, para-, and mixed biotics containing probiotics and parabiotics.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Se Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Yang Kim
- R&D Group, Kick the Hurdle, Changwon-si 51139, Republic of Korea
| | - Jeong Woo Park
- R&D Group, Kick the Hurdle, Changwon-si 51139, Republic of Korea
| | - Byeong Soo Kim
- R&D Group, Kick the Hurdle, Changwon-si 51139, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
33
|
Poto R, Cristinziano L, Criscuolo G, Strisciuglio C, Palestra F, Lagnese G, Di Salvatore A, Marone G, Spadaro G, Loffredo S, Varricchi G. The JAK1/JAK2 inhibitor ruxolitinib inhibits mediator release from human basophils and mast cells. Front Immunol 2024; 15:1443704. [PMID: 39188724 PMCID: PMC11345246 DOI: 10.3389/fimmu.2024.1443704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The Janus kinase (JAK) family includes four cytoplasmic tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) constitutively bound to several cytokine receptors. JAKs phosphorylate downstream signal transducers and activators of transcription (STAT). JAK-STAT5 pathways play a critical role in basophil and mast cell activation. Previous studies have demonstrated that inhibitors of JAK-STAT pathway blocked the activation of mast cells and basophils. Methods In this study, we investigated the in vitro effects of ruxolitinib, a JAK1/2 inhibitor, on IgE- and IL-3-mediated release of mediators from human basophils, as well as substance P-induced mediator release from skin mast cells (HSMCs). Results Ruxolitinib concentration-dependently inhibited IgE-mediated release of preformed (histamine) and de novo synthesized mediators (leukotriene C4) from human basophils. Ruxolitinib also inhibited anti-IgE- and IL-3-mediated cytokine (IL-4 and IL-13) release from basophils, as well as the secretion of preformed mediators (histamine, tryptase, and chymase) from substance P-activated HSMCs. Discussion These results indicate that ruxolitinib, inhibiting the release of several mediators from human basophils and mast cells, is a potential candidate for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
34
|
Cong J, Lv H, Xu Y. The role of nociceptive neurons in allergic rhinitis. Front Immunol 2024; 15:1430760. [PMID: 39185421 PMCID: PMC11341422 DOI: 10.3389/fimmu.2024.1430760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Allergic rhinitis (AR) is a chronic, non-infectious condition affecting the nasal mucosa, primarily mediated mainly by IgE. Recent studies reveal that AR is intricately associated not only with type 2 immunity but also with neuroimmunity. Nociceptive neurons, a subset of primary sensory neurons, are pivotal in detecting external nociceptive stimuli and modulating immune responses. This review examines nociceptive neuron receptors and elucidates how neuropeptides released by these neurons impact the immune system. Additionally, we summarize the role of immune cells and inflammatory mediators on nociceptive neurons. A comprehensive understanding of the dynamic interplay between nociceptive neurons and the immune system augments our understanding of the neuroimmune mechanisms underlying AR, thereby opening novel avenues for AR treatment modalities.
Collapse
Affiliation(s)
- Jianchao Cong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
| |
Collapse
|
35
|
Hu M, Scheffel J, Frischbutter S, Steinert C, Reidel U, Spindler M, Przybyłowicz K, Hawro M, Maurer M, Metz M, Hawro T. Characterization of cells and mediators associated with pruritus in primary cutaneous T-cell lymphomas. Clin Exp Med 2024; 24:171. [PMID: 39068637 PMCID: PMC11284195 DOI: 10.1007/s10238-024-01407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
Patients with primary cutaneous T-cell lymphoma (CTCL) often experience severe and difficult-to-treat pruritus that negatively affects their quality of life (QoL). However, the mechanisms of pruritus in CTCL, including mycosis fungoides (MF), remain largely unknown, and detailed characteristics of CTCL-associated pruritus is not fully elucidated. To characterize pruritus in CTCL, cutaneous B-cell lymphoma (CBCL), and large plaque parapsoriasis (LPP), and to identify potential itch mediators involved in the pathogenesis of pruritus in CTCL patients. Clinical data and blood samples were collected from 129 healthy subjects and 142 patients. Itch intensity, QoL impairment, psychological distress, and sleep quality were assessed using validated questionnaires and instruments. Blood levels of BDNF, CCL24, GRP, IL-31, IL-33, sST2, substance P, TSLP, tryptase and total IgE were measured using ELISA or ImmunoCAP. Pruritus was prevalent in CTCL, LPP and CBCL patients, with higher prevalence and severity observed in CTCL. In CTCL, pruritus correlated with significant impairment in QoL, sleep, psychological distress. Compared to healthy controls, elevated levels of IL-31, IL-33, substance P, total IgE, tryptase, and TSLP were found in MF patients. A comparison of MF patients with and without pruritus revealed higher levels of IL-31, substance P, GRP, and CCL24 in the former. Itch intensity positively correlated with IL-31, GRP, CCL24, and tryptase levels. Pruritus significantly burdens CTCL patients, necessitating appropriate therapeutic management. Our findings suggest that various non-histaminergic mediators such as tryptase and IL-31 could be explored as novel therapeutic targets for managing pruritus in MF patients.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Stefan Frischbutter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Carolin Steinert
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ulrich Reidel
- Department of Dermatology, Allergology and Venereology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Max Spindler
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Katarzyna Przybyłowicz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Marlena Hawro
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany.
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| |
Collapse
|
36
|
Pan Y, Wang Y, Xu M, Zhong M, Peng X, Zeng K, Huang X. The Roles of Innate Immune Cells in Atopic Dermatitis. J Innate Immun 2024; 16:385-396. [PMID: 39025048 PMCID: PMC11324229 DOI: 10.1159/000539534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by recurrent eczematous lesions and severe pruritus. The economic burden and time penalty caused by the relapse of AD reduce patients' life quality. SUMMARY AD has complex pathogenesis, including genetic disorders, epidermal barrier dysfunction, abnormal immune responses, microbial dysbiosis of the skin, and environmental factors. Recently, the role of innate immune cells in AD has attracted considerable attention. This review highlighted recent findings on innate immune cells in the onset and progression of AD. KEY MESSAGES Innate immune cells play essential roles in the pathogenesis of AD and enough attention should be given for treating AD from the perspective of innate immunity in clinics.
Collapse
Affiliation(s)
- Yuke Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Youyi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meinian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meizhen Zhong
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoming Peng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Miyamoto S, Takayama Y, Kondo T, Maruyama K. Senso-immunology: the hidden relationship between sensory system and immune system. J Bone Miner Metab 2024; 42:413-420. [PMID: 39060499 DOI: 10.1007/s00774-024-01538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The primary sensory neurons involved in pain perception express various types of receptor-type ion channels at their nerve endings. These molecules are responsible for triggering neuronal excitation, translating environmental stimuli into pain signals. Recent studies have shown that acute nociception, induced by neuronal excitation, not only serves as a sensor for signaling life-threatening situations but also modulates our pathophysiological conditions. This modulation occurs through the release of neuropeptides by primary sensory neurons excited by nociceptive stimuli, which directly or indirectly affect peripheral systems, including immune function. Senso-immunology, an emerging research field, integrates interdisciplinary studies of pain and immunology and has garnered increasing attention in recent years. This review provides an overview of the systemic pathophysiological functions regulated by receptor-type ion channels, such as transient receptor potential (TRP) channels in primary sensory neurons, from the perspective of senso-immunology.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Department of Pharmacology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan
| | - Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Takeshi Kondo
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Kenta Maruyama
- Department of Pharmacology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan.
| |
Collapse
|
38
|
Soltani S, Hollstein MM, Berliner D, Buhl T, Bauersachs J, Werfel T, Bavendiek U, Traidl S. Symptom severity reflected by NYHA grade is independently associated with pruritus in chronic heart failure patients. J Eur Acad Dermatol Venereol 2024; 38:1410-1418. [PMID: 38420867 DOI: 10.1111/jdv.19931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Pruritus is a symptom profoundly impairing patients' quality of life (QoL). It is a common symptom in chronic heart failure (CHF) patients of yet unknown nature. The aim of this study was to evaluate the risk factors of pruritus in CHF patients. METHODS For this monocentric, prospective cohort study, CHF patients were recruited and CHF symptoms, comorbidities and drug intake were assessed using a structured report. Additionally, a questionnaire evaluated pruritus symptoms. Detailed medical histories including laboratory test results were retrieved from patient files for all participants. RESULTS We evaluated data from 550 CHF patients. Of those, 25.3% reported pruritus to occur frequently (3-5 times per week), often (1-2 times per week) or daily. Patients of higher NYHA classes (NYHA III + IV) experienced significantly more pruritus (31.2%) than lower NYHA classes (NYHA I + II) (21.1%, p = 0.024). Patients with pruritus reported disproportionately often concomitant stasis dermatitis (p = 0.026) and chronic lung disease (p = 0.014). Other parameters reflecting cardiac, liver, kidney and thyroid function, as well as medical therapies showed no significant differences between patients with and without pruritus. In the multivariate logistic regression analysis, only NYHA class (p = 0.016, OR 1.55, 95% confidence interval (CI): [1.09; 2.20]) and elevated leukocyte count (p = 0.007, OR 1.11, CI [1.03; 1.21]) remained significantly associated with pruritus in CHF patients. CONCLUSIONS NYHA class is an independent predictor for pruritus in CHF patients. Besides NYHA class, leukocyte count was also associated with increased pruritus. Pruritus may impair QoL in CHF patients and should thus be included in the assessment of those patients. We suggest that providing best care for CHF patients can be achieved through an interdisciplinary approach of cardiologists and dermatologists and should include a pruritus assessment.
Collapse
Affiliation(s)
- Samira Soltani
- Department of Cardiology and Angiology, Hanover Medical School, Hanover, Germany
| | - Moritz M Hollstein
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Dominik Berliner
- Department of Cardiology and Angiology, Hanover Medical School, Hanover, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hanover Medical School, Hanover, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Udo Bavendiek
- Department of Cardiology and Angiology, Hanover Medical School, Hanover, Germany
| | - Stephan Traidl
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
39
|
Chen Y, Tang H, Yao B, Pan S, Ying S, Zhang C. Basophil differentiation, heterogeneity, and functional implications. Trends Immunol 2024; 45:523-534. [PMID: 38944621 DOI: 10.1016/j.it.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024]
Abstract
Basophils, rare granulocytes, have long been acknowledged for their roles in type 2 immune responses. However, the mechanisms by which basophils adapt their functions to diverse mammalian microenvironments remain unclear. Recent advancements in specific research tools and single-cell-based technologies have greatly enhanced our understanding of basophils. Several studies have shown that basophils play a role in maintaining homeostasis but can also contribute to pathology in various tissues and organs, including skin, lung, and others. Here, we provide an overview of recent basophil research, including cell development, characteristics, and functions. Based on an increasing understanding of basophil biology, we suggest that the precise targeting of basophil features might be beneficial in alleviating certain pathologies such as asthma, atopic dermatitis (AD), and others.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China
| | - Haoyu Tang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China
| | - Bingpeng Yao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Sheng Pan
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Songmin Ying
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, 322000, China.
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
40
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [PMID: 38718731 DOI: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Zhengrui Li
- XiangYa School of Medicine, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
41
|
Brooks SG, Yosipovitch G. Unmet needs in treating itch: reaching beyond eczema. J DERMATOL TREAT 2024; 35:2351487. [PMID: 38945542 DOI: 10.1080/09546634.2024.2351487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE Pruritus is an unpleasant sensation that creates the urge to scratch. In many chronic conditions, relentless pruritus and scratching perpetuates a vicious itch-scratch cycle. Uncontrolled itch can detrimentally affect quality of life and may lead to sleep disturbance, impaired concentration, financial burden, and psychological suffering. Recent strides have been made to develop guidelines and investigate new therapies to treat some of the most common severely pruritic conditions, however, a large group of diseases remains underrecognized and undertreated. The purpose of this article is to provide a comprehensive review of the challenges hindering the treatment of pruritus. METHODS An online search was performed using PubMed, Web of Science, Google Scholar, and ClinicalTrials.gov from 1994 to 2024. Included studies were summarized and assessed for quality and relevance in treating pruritus. RESULTS Several barriers to treating pruritus emerged, including variable presentation, objective measurement of itch, and identifying therapeutic targets. Itch associated with autoimmune conditions, connective tissue diseases, genodermatoses, cutaneous T-cell lymphoma, and pruritus of unknown origin were among the etiologies with the greatest unmet needs. CONCLUSION Treating pruritus poses many challenges and there are many itchy conditions that have no yet been addressed. There is an urgent need for large-scale controlled studies to investigate potential targets for these conditions and novel therapies.
Collapse
Affiliation(s)
- Sarah G Brooks
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
42
|
Wang JC, Nikpoor AR, Crosson T, Kaufmann E, Rafei M, Talbot S. BASOPHILS ACTIVATE PRURICEPTOR-LIKE VAGAL SENSORY NEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598517. [PMID: 38915548 PMCID: PMC11195257 DOI: 10.1101/2024.06.11.598517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Vagal sensory neurons convey sensations from internal organs along the vagus nerve to the brainstem. Pruriceptors are a subtype of neurons that transmit itch and induce pruritus. Despite extensive research on the molecular mechanisms of itch, studies focusing on pruriceptors in the vagal ganglia still need to be explored. In this study, we characterized vagal pruriceptor neurons by their responsiveness to pruritogens such as lysophosphatidic acid, β-alanine, chloroquine, and the cytokine oncostatin M. We discovered that lung-resident basophils produce oncostatin M and that its release can be induced by engagement of FcεRIα. Oncostatin M then sensitizes multiple populations of vagal sensory neurons, including Tac1+ and MrgprA3+ neurons in the jugular ganglia. Finally, we observed an increase in oncostatin M release in mice sensitized to the house dust mite Dermatophagoides pteronyssinus or to the fungal allergen Alternaria alternata, highlighting a novel mechanism through which basophils and vagal sensory neurons may communicate during type I hypersensitivity diseases such as allergic asthma.
Collapse
Affiliation(s)
- Jo-Chiao Wang
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Amin Reza Nikpoor
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| | - Théo Crosson
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Eva Kaufmann
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Sébastien Talbot
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| |
Collapse
|
43
|
Wang ZY, Nie KX, Niu JC, Cheng G. Research progress toward the influence of mosquito salivary proteins on the transmission of mosquito-borne viruses. INSECT SCIENCE 2024; 31:663-673. [PMID: 37017683 DOI: 10.1111/1744-7917.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Mosquito-borne viruses (MBVs) are a large class of viruses transmitted mainly through mosquito bites, including dengue virus, Zika virus, Japanese encephalitis virus, West Nile virus, and chikungunya virus, which pose a major threat to the health of people around the world. With global warming and extended human activities, the incidence of many MBVs has increased significantly. Mosquito saliva contains a variety of bioactive protein components. These not only enable blood feeding but also play a crucial role in regulating local infection at the bite site and the remote dissemination of MBVs as well as in remodeling the innate and adaptive immune responses of host vertebrates. Here, we review the physiological functions of mosquito salivary proteins (MSPs) in detail, the influence and the underlying mechanism of MSPs on the transmission of MBVs, and the current progress and issues that urgently need to be addressed in the research and development of MSP-based MBV transmission blocking vaccines.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Kai-Xiao Nie
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ji-Chen Niu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
44
|
Zhang S, Fang X, Xu B, Zhou Y, Li F, Gao Y, Luo Y, Yao X, Liu X. Comprehensive analysis of phenotypes and transcriptome characteristics reveal the best atopic dermatitis mouse model induced by MC903. J Dermatol Sci 2024; 114:104-114. [PMID: 38806322 DOI: 10.1016/j.jdermsci.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Although several mouse models of exogenous-agent-induced atopic dermatitis (AD) are currently available, the lack of certainty regarding their similarity with human AD has limited their scientific value. Thus, comprehensive evaluation of the characteristics of mouse models and their similarity with human AD is essential. OBJECTIVE To compare six different exogenous-agent-induced AD mouse models and find out the optimum models for study. METHODS Female BALB/c mice underwent induction of AD-like dermatitis by MC903 alone or in combination with ovalbumin (OVA), dinitrofluorobenzene (DNFB) alone or in combination with OVA, OVA alone, or Staphylococcus aureus. Gross phenotype, total immunoglobulin E (IgE) level, histopathological manifestations, and skin lesion transcriptome were analyzed, and metagenomic sequencing of the gut microbiome was performed. RESULTS The DNFB plus OVA model showed the highest disease severity, while the OVA model showed the lowest severity. The MC903 and MC903 plus OVA models showed high expression of T-helper (Th)2- and Th17-related genes; the DNFB and DNFB plus OVA models showed upregulation of Th1-, Th2-, and Th17-related genes; while the S. aureus inoculation model showed more enhanced Th1 and Th17 immune responses. In contrast to the other models, the OVA-induced model showed the lowest expression levels of inflammation-related genes, while the MC903 model shared the largest overlap with human AD profiles. The intestinal microbiota of all groups showed significant differences after modeling. CONCLUSION Each AD mouse model exhibited different characteristics. The MC903 model was the best to recapitulate most features of human AD among these exogenous-agent-induced AD models.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiaokai Fang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Beilei Xu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Fang Li
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yuwen Gao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
45
|
Zheng R, Ren Y, Liu X, He C, Liu H, Wang Y, Li J, Xia S, Liu Z, Ma Y, Wang D, Xu S, Wang G, Li N. Exogenous drug-induced mouse models of atopic dermatitis. Cytokine Growth Factor Rev 2024; 77:104-116. [PMID: 38272716 DOI: 10.1016/j.cytogfr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease characterized by intense pruritus. AD is harmful to both children and adults, but its pathogenic mechanism has yet to be fully elucidated. The development of mouse models for AD has greatly contributed to its study and treatment. Among these models, the exogenous drug-induced mouse model has shown promising results and significant advantages. Until now, a large amount of AD-related research has utilized exogenous drug-induced mouse models, leading to notable advancements in research. This indicates the crucial significance of applying such models in AD research. These models exhibit diverse characteristics and are highly complex. They involve the use of various strains of mice, diverse types of inducers, and different modeling effects. However, there is currently a lack of comprehensive comparative studies on exogenous drug-induced AD mouse models, which hinders researchers' ability to choose among these models. This paper provides a comprehensive review of the features and mechanisms associated with various exogenous drug-induced mouse models, including the important role of each cytokine in AD development. It aims to assist researchers in quickly understanding models and selecting the most suitable one for further investigation.
Collapse
Affiliation(s)
- Rou Zheng
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China.
| | - Xinyue Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Canxia He
- Health Science Center, Ningbo University, Ningbo, China.
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China.
| | - Shuya Xia
- Health Science Center, Ningbo University, Ningbo, China.
| | - Zhifang Liu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Yizhao Ma
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Dianchen Wang
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Suling Xu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Geng Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China; Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
46
|
Leyva-Castillo JM, Vega-Mendoza D, Strakosha M, Deng L, Choi S, Miyake K, Karasuyama H, Chiu IM, Phipatanakul W, Geha RS. Basophils are important for development of allergic skin inflammation. J Allergy Clin Immunol 2024; 153:1344-1354.e5. [PMID: 38336257 PMCID: PMC11070311 DOI: 10.1016/j.jaci.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Atopic dermatitis skin lesions exhibit increased infiltration by basophils. Basophils produce IL-4, which plays an important role in the pathogenesis of atopic dermatitis. OBJECTIVE We sought to determine the role of basophils in a mouse model of antigen-driven allergic skin inflammation. METHODS Wild-type mice, mice with selective and inducible depletion of basophils, and mice expressing Il4-driven enhanced green fluorescent protein were subjected to epicutaneous sensitization with ovalbumin or saline. Sensitized skin was examined by histology for epidermal thickening. Cells were analyzed for surface markers and intracellular expression of enhanced green fluorescent protein by flow cytometry. Gene expression was evaluated by real-time reverse transcription-quantitative PCR. RESULTS Basophils were important for epidermal hyperplasia, dermal infiltration by CD4+ T cells, mast cells, and eosinophils in ovalbumin-sensitized mouse skin and for the local and systemic TH2 response to epicutaneous sensitization. Moreover, basophils were the major source of IL-4 in epicutaneous-sensitized mouse skin and promote the ability of dendritic cells to drive TH2 polarization of naive T cells. CONCLUSION Basophils play an important role in the development of allergic skin inflammation induced by cutaneous exposure to antigen in mice.
Collapse
Affiliation(s)
- Juan-Manuel Leyva-Castillo
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Daniela Vega-Mendoza
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Maria Strakosha
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, Mass
| | - Samantha Choi
- Department of Immunology, Harvard Medical School, Boston, Mass
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, Mass
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
47
|
Schuler CF, Tsoi LC, Billi AC, Harms PW, Weidinger S, Gudjonsson JE. Genetic and Immunological Pathogenesis of Atopic Dermatitis. J Invest Dermatol 2024; 144:954-968. [PMID: 38085213 PMCID: PMC11040454 DOI: 10.1016/j.jid.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
Type 2 immune-mediated diseases give a clear answer to the issue of nature (genetics) versus nurture (environment). Both genetics and environment play vital complementary roles in the development of atopic dermatitis (AD). As a key component of the atopic march, AD demonstrates the interactive nature of genetic and environmental contributions to atopy. From sequence variants in the epithelial barrier gene encoding FLG to the hygiene hypothesis, AD combines a broad array of contributions into a single syndrome. This review will focus on the genetic contribution to AD and where genetics facilitates the elicitation or enhancement of AD pathogenesis.
Collapse
Affiliation(s)
- Charles F Schuler
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul W Harms
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephan Weidinger
- Department of Dermatology, Venereology, and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johann E Gudjonsson
- Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
48
|
Das M, Mukherjee S, Geha RS. Phosphodiesterase 4 Inhibitors, Basophils, and Atopic Dermatitis. J Invest Dermatol 2024; 144:924-926. [PMID: 38441508 DOI: 10.1016/j.jid.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/09/2023] [Indexed: 04/23/2024]
Affiliation(s)
- Mrinmoy Das
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
| | - Saikat Mukherjee
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
49
|
Biazus Soares G, Hashimoto T, Yosipovitch G. Atopic Dermatitis Itch: Scratching for an Explanation. J Invest Dermatol 2024; 144:978-988. [PMID: 38363270 DOI: 10.1016/j.jid.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Chronic pruritus is a cardinal symptom of atopic dermatitis (AD). The mechanisms underlying atopic itch involve intricate crosstalk among skin, immune components, and neural components. In this review, we explore these mechanisms, focusing on key players and interactions that induce and exacerbate itch. We discuss the similarities and differences between pruritus and pain in patients with AD as well as the relationship between pruritus and factors such as sweat and the skin microbiome. Furthermore, we explore novel targets that could provide significant itch relief in these patients as well as exciting future research directions to better understand atopic pruritus in darker skin types.
Collapse
Affiliation(s)
- Georgia Biazus Soares
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
50
|
Krupka-Olek M, Bożek A, Aebisher D, Bartusik-Aebisher D, Cieślar G, Kawczyk-Krupka A. Potential Aspects of the Use of Cytokines in Atopic Dermatitis. Biomedicines 2024; 12:867. [PMID: 38672221 PMCID: PMC11048200 DOI: 10.3390/biomedicines12040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Atopic dermatitis (AD) is an abnormal inflammatory response in the skin to food, environmental IgE, or non-IgE allergens. This disease belongs to a group of inflammatory diseases that affect both children and adults. In highly developed countries, AD is diagnosed twice as often in children than in adults, which may possibly be connected to increased urbanization. The immune system's pathomechanisms of AD involve humoral mechanisms with IgE, cellular T lymphocytes, dendritic cells occurring in the dermis, Langerhans cells occurring in the epidermis, and other cells infiltrating the site of inflammation (eosinophils, macrophages, mast cells, neutrophils, and basophils). Cytokines are small proteins that affect the interaction and communication between cells. This review characterizes cytokines and potential aspects of the treatment of atopic dermatitis, as well as new strategies that are currently being developed, including targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Magdalena Krupka-Olek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.B.)
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Bożek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.B.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland;
| |
Collapse
|