1
|
Li J, Wang H, Xia S. Hematopoietic stem and progenitor cells fine-tuning the "sweet" of trained immunity. J Leukoc Biol 2025; 117:qiaf043. [PMID: 40233187 DOI: 10.1093/jleuko/qiaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025] Open
Abstract
Recent studies have challenged the traditional view of innate immunity as nonspecific and transient by demonstrating that innate immune cells can develop immune memory in response to various activating factors, a phenomenon known as trained immunity. This process involves epigenetic modifications, such as changes in chromatin accessibility, and metabolic reprogramming, which can provide protection against unrelated pathogens but may also trigger immune-mediated damage. This review summarizes the current understanding of innate immune memory, with a particular focus on recent findings regarding the training of innate immune cells at the hematopoietic stem and progenitor cell stage. We present observations of trained immunity in innate immune cells, summarize key activating factors and underlying mechanisms, and propose potential host-directed immunotherapeutic strategies and preventive measures based on trained immunity. Our aim is to highlight the biological significance of trained immunity and its potential applications in enhancing long-term immunity, improving vaccine efficacy, and preventing immune-related diseases.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Immunology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212000, China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212000, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212000, China
| |
Collapse
|
2
|
Wan J, Wu M, Zhu Z, Liu X, Li J, Wu Z, Li Y, Zhang Y, Zhang Y, Wang Y, Yang F, Li M, Gu J, Luo X. Vaccination of a CdrA fragment conferred protection against Pseudomonas aeruginosa in wound infection via inhibition of biofilm formation. Vaccine 2025; 56:127185. [PMID: 40311213 DOI: 10.1016/j.vaccine.2025.127185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/26/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Due to a prolonged course of infection aggravated by drug resistance, Pseudomonas aeruginosa (PA) remains a global health concern, raising an urgent need for an effective vaccine. However, no PA vaccines have been approved to date, possibly attributed to the role of biofilm formation in PA pathogenesis. CdrA (Cyclic-di-GMP-regulated adhesin A) is a large adhesion protein of PA, which plays a crucial role in bacterial biofilm formation. In this study, we produced the recombinant CdrA fragment (CdrA-F1) in E. coli based on the 3D structure predicted by AlphaFold. Immunization with CdrA-F1 induced a predominantly Th2-type immune response and conferred protection in a mouse PA wound infection model. Additionally, anti-CdrA-F1 antibodies effectively blocked the initial attachment of bacteria, thereby inhibiting biofilm formation both in vivo and in vitro, thereby exerting a protective effect. Our findings suggest that CdrA-F1 is a promising subunit vaccine candidate against PA infections, particularly those related to biofilm formation.
Collapse
Affiliation(s)
- Jiqing Wan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Meilin Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Zifan Zhu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xinglong Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China; Department of Respiratory Diseases, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Junyi Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Zhengzheng Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yuhang Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yueyue Zhang
- Chongqing Yuanlun Biopharmaceuticals Inc, Chongqing 400038, China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Ying Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Feng Yang
- Chongqing Yuanlun Biopharmaceuticals Inc, Chongqing 400038, China
| | - Mengxia Li
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400038, China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| | - Xiaoli Luo
- Department of Respiratory Diseases, Xinqiao Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Monreal-Escalante E, Angulo M, Ramos-Vega A, Trujillo E, Angulo C. Plant-made trained immunity-based vaccines: Beyond one approach. Int J Pharm 2025; 675:125572. [PMID: 40204041 DOI: 10.1016/j.ijpharm.2025.125572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Plant-made vaccines and trained immunity-based vaccines (TIbV or TRAIMbV) represent two strategies for enhancing immunity against diseases. Plants provide an effective and cost-efficient vaccine production platform, while TIbV induces innate immune memory that can protect against both homologous and heterologous diseases. Both strategies are generally compatible; however, they have not been explored in a transdisciplinary manner. Despite their strengths in vaccinology, each faces limitations that hinder widespread adoption and health benefits. This review revisits both strategies, discussing their fundamental knowledge alongside practical and experimental examples, ultimately highlighting their limitations and perspectives to pave the way for a unified approach to combat diseases. Future scenarios are envisioned and presented if research on plant-made trained immunity-based vaccines is adopted.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico; SECIHTI-Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Abel Ramos-Vega
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Dirección: Boulevard de la Tecnología No.1036, Código Postal 62790 Xochitepec, Morelos, Mexico
| | - Edgar Trujillo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
4
|
Bonduelle O, Delory T, Franco-Moscardini I, Ghidi M, Bennacer S, Wokam M, Lenormand M, Petrier M, Rogeaux O, de Bernard S, Alves K, Nourikyan J, Lina B, Combadiere B, Janssen C. Boosting effect of high-dose influenza vaccination on innate immunity among elderly. JCI Insight 2025; 10:e184128. [PMID: 40036077 PMCID: PMC12016920 DOI: 10.1172/jci.insight.184128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUNDThe high-dose quadrivalent influenza vaccine (QIV-HD) showed superior efficacy against laboratory-confirmed illness compared with the standard-dose quadrivalent influenza vaccine (QIV-SD) in randomized controlled trials with the elderly. However, specific underlying mechanism remains unclear.METHODSThis phase IV randomized controlled trial compared early innate responses induced by QIV-HD and QIV-SD in 59 individuals aged > 65 years. Systemic innate cells and gene signatures at day 0 (D0) and D1 as well as hemagglutinin inhibition antibody (HIA) titers at D0 and D21 after vaccination were assessed.RESULTSQIV-HD elicited robust humoral response with significantly higher antibody titers and seroconversion rates than QIV-SD. At D1 after vaccination, QIV-HD recipients showed significant reduction in innate cells, including conventional DCs and NK cells, compared with QIV-SD, correlating with significantly increased HIA titers at D21. Blood transcriptomic analysis revealed greater amplitude of gene expression in the QIV-HD arm, encompassing genes related to innate immune response, IFNs, and antigen processing and presentation, and correlated with humoral responses. Interestingly, comparative analysis with a literature dataset from young adults vaccinated with influenza standard-dose vaccine highlighted strong similarities in gene expression patterns and biological pathways with the elderly vaccinated with QIV-HD.CONCLUSIONQIV-HD induces higher HIA titers than QIV-SD, a youthful boost of the innate gene expression significantly associated with high HIA titers.TRIAL REGISTRATIONEudraCT no. 2021-004573-32.
Collapse
Affiliation(s)
- Olivia Bonduelle
- Sorbonne Université, Institut National de Santé et de Recherche Médicale, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Tristan Delory
- Centre Hospitalier Annecy Genevois, Epagny Metz-Tessy, France
| | - Isabelle Franco-Moscardini
- Sorbonne Université, Institut National de Santé et de Recherche Médicale, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Marion Ghidi
- Centre Hospitalier Annecy Genevois, Epagny Metz-Tessy, France
| | - Selma Bennacer
- Sorbonne Université, Institut National de Santé et de Recherche Médicale, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Michele Wokam
- Sorbonne Université, Institut National de Santé et de Recherche Médicale, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | | | - Melissa Petrier
- Centre Hospitalier Annecy Genevois, Epagny Metz-Tessy, France
| | - Olivier Rogeaux
- Centre Hospitalier Centre Hospitalier Métropole Savoie, Chambéry, France
| | | | | | | | - Bruno Lina
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon-1, INSERM U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, Lyon, France
| | | | - Behazine Combadiere
- Sorbonne Université, Institut National de Santé et de Recherche Médicale, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Cécile Janssen
- Centre Hospitalier Annecy Genevois, Epagny Metz-Tessy, France
| |
Collapse
|
5
|
Feng Y, de Jong SE, Oliveira APBN, Samaha H, Yang F, Hu M, Wang Y, Beydoun N, Xie X, Zhang H, Kazmin D, Fang Z, Zou J, Gewirtz AT, Boyd SD, Hagan T, Rouphael N, Pulendran B. Antibiotic-induced gut microbiome perturbation alters the immune responses to the rabies vaccine. Cell Host Microbe 2025:S1931-3128(25)00126-X. [PMID: 40252648 DOI: 10.1016/j.chom.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/12/2025] [Accepted: 03/27/2025] [Indexed: 04/21/2025]
Abstract
The gut microbiome plays a crucial role in modulating human immunity. Previously, we reported that antibiotic-induced microbiome perturbation affects influenza vaccine responses, depending on pre-existing immunity levels. Here, we employed a systems biology approach to analyze the impact of antibiotic administration on both primary and secondary immune responses to the rabies vaccine in humans. Antibiotic administration reduced the gut bacterial load, with a long-lasting reduction in commensal diversity. This alteration was associated with reduced rabies-specific humoral responses. Multi-omics profiling revealed that antibiotic administration induced (1) an enhanced pro-inflammatory signature early after vaccination, (2) a shift in the balance of vaccine-specific T-helper 1 (Th1) to T-follicular-helper response toward Th1 phenotype, and (3) profound alterations in metabolites, particularly in secondary bile acids in the blood. By integrating multi-omics datasets, we generated a multiscale, multi-response network that revealed key regulatory nodes, including the microbiota, secondary bile acids, and humoral immunity to vaccination.
Collapse
Affiliation(s)
- Yupeng Feng
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, China; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sanne E de Jong
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ana Paula B N Oliveira
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hady Samaha
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Fan Yang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yanli Wang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nour Beydoun
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Haibo Zhang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zhuoqing Fang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jun Zou
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Scott D Boyd
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Sean N. Parker Center for Allergy and Immunology Research, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Liao W, Zai X, Zhang J, Xu J. Hematopoietic stem cell state and fate in trained immunity. Cell Commun Signal 2025; 23:182. [PMID: 40229653 PMCID: PMC11995595 DOI: 10.1186/s12964-025-02192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025] Open
Abstract
Trained immunity serves as a de facto memory for innate immune responses, resulting in long-term functional reprogramming of innate immune cells. It enhances resistance to pathogens and augments immunosurveillance under physiological conditions. Given that innate immune cells typically have a short lifespan and do not divide, persistent innate immune memory may be mediated by epigenetic and metabolic changes in long-lived hematopoietic stem cells (HSCs) in the bone marrow. HSCs fine-tune their state and fate in various training conditions, thereby generating functionally adapted progeny cells that orchestrate innate immune plasticity. Notably, both beneficial and maladaptive trained immunity processes can comprehensively influence HSC state and fate, leading to divergent hematopoiesis and immune outcomes. However, the underlying mechanisms are still not fully understood. In this review, we summarize recent advances regarding HSC state and fate in the context of trained immunity. By elucidating the stem cell-intrinsic and extrinsic regulatory network, we aim to refine current models of innate immune memory and provide actionable insights for developing targeted therapies against infectious diseases and chronic inflammation. Furthermore, we propose a conceptual framework for engineering precision-trained immunity through HSC-targeted interventions.
Collapse
Affiliation(s)
- Weinian Liao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
7
|
Liu X, Wang S, Sun Y, Liao Y, Jiang G, Sun BY, Yu J, Zhao D. Unlocking the potential of circular RNA vaccines: a bioinformatics and computational biology perspective. EBioMedicine 2025; 114:105638. [PMID: 40112741 PMCID: PMC11979485 DOI: 10.1016/j.ebiom.2025.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Bioinformatics has significantly advanced RNA-based therapeutics, particularly circular RNAs (circRNAs), which outperform mRNA vaccines, by offering superior stability, sustained expression, and enhanced immunogenicity due to their covalently closed structure. This review highlights how bioinformatics and computational biology optimise circRNA vaccine design, elucidates internal ribosome entry sites (IRES) selection, open reading frame (ORF) optimisation, codon usage, RNA secondary structure prediction, and delivery system development. While circRNA vaccines may not always surpass traditional vaccines in stability, their production efficiency and therapeutic efficacy can be enhanced through computational strategies. The discussion also addresses challenges and future prospects, emphasizing the need for innovative solutions to overcome current limitations and advance circRNA vaccine applications.
Collapse
Affiliation(s)
- Xuyuan Liu
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Siqi Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yunan Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yunxi Liao
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Guangzhen Jiang
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong 510005, China
| | - Bryan-Yu Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jingyou Yu
- Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| |
Collapse
|
8
|
Lei Y, Tsang JS. Systems Human Immunology and AI: Immune Setpoint and Immune Health. Annu Rev Immunol 2025; 43:693-722. [PMID: 40279304 DOI: 10.1146/annurev-immunol-090122-042631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The immune system, critical for human health and implicated in many diseases, defends against pathogens, monitors physiological stress, and maintains tissue and organismal homeostasis. It exhibits substantial variability both within and across individuals and populations. Recent technological and conceptual progress in systems human immunology has provided predictive insights that link personal immune states to intervention responses and disease susceptibilities. Artificial intelligence (AI), particularly machine learning (ML), has emerged as a powerful tool for analyzing complex immune data sets, revealing hidden patterns across biological scales, and enabling predictive models for individualistic immune responses and potentially personalized interventions. This review highlights recent advances in deciphering human immune variation and predicting outcomes, particularly through the concepts of immune setpoint, immune health, and use of the immune system as a window for measuring health. We also provide a brief history of AI; review ML modeling approaches, including their applications in systems human immunology; and explore the potential of AI to develop predictive models and personal immune state embeddings to detect early signs of disease, forecast responses to interventions, and guide personalized health strategies.
Collapse
Affiliation(s)
- Yona Lei
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - John S Tsang
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Chan Zuckerberg Biohub NY, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Ghneim K, Ten-Caten F, Santana AC, Latif MB, Dinamarca DAD, García-Salum T, Estrada PMDR, Sohal P, Strongin Z, Harper J, Jean S, Wallace C, Balderas R, Lifson JD, Raghunathan G, Rimmer E, Pastuskova C, Wu G, Micci L, Sieben LFM, Gerum PCL, Dos Santos J, Netea MG, van der Ven A, Silvestri G, Hazuda DJ, Gorman DM, Howell BJ, Sharma AA, Paiardini M, Soudeyns H, Ribeiro SP, Sekaly RP. TGF-β mediates epigenetic control of innate antiviral responses and SIV reservoir size. RESEARCH SQUARE 2025:rs.3.rs-5626892. [PMID: 40166014 PMCID: PMC11957188 DOI: 10.21203/rs.3.rs-5626892/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Immunotherapeutic approaches to eliminate latently HIV-infected cells are focused on the adaptive immune system. Herein we provide mechanistic evidence for a molecular cascade characterized by epigenetic reprogramming of innate myeloid cells and CD4 T cells. The coordinate regulation and gene expression mediated by transcription factors (TFs) IRF3, IRF7, STAT1 and C/EBPβ versus AP-1, promoted the development of innate antiviral immunity in these cells which was associated with control of viral load and decay of cell associated viral DNA (CA-vDNA) following analytical treatment interruption (ATI) in SIV-infected rhesus macaques (RMs) treated with anti-IL-10 and anti-PD-1. The prevalence of TGF-β/SMAD signaling in a subset of combo-treated RMs with high CA-vDNA (CA-vDNAhi) suppressed this antiviral activity through histone deacetylases, including HDAC11, as the latter reduced chromatin accessibility of IRFs and STATs and impeded their antiviral functions. The addition of HDAC inhibitors in vitro restored antiviral response in the presence of TGF-β. Induction of IL-6, a target gene of C/EBPβ, in CA-vDNAlo RMs, amplified the antiviral network through IRF9, a transcription factor upstream of IRF7. We identified a similar molecular cascade in HIV elite controllers, who maintain low to undetectable viremia and small viral reservoirs without treatment. These data highlight the importance of epigenetic regulation of the host in shaping innate antiviral immune responses that control viral rebound following ATI and reduce the viral reservoir, providing insight into potential strategies for HIV cure interventions.
Collapse
Affiliation(s)
- Khader Ghneim
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Felipe Ten-Caten
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Ana Carolina Santana
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Muhammad Bilal Latif
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Diego Andres Diaz Dinamarca
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Tamara García-Salum
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Perla Mariana Del Rio Estrada
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Puja Sohal
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
| | - Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sherrie Jean
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Chelsea Wallace
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gopalan Raghunathan
- Department of Discovery Biologics, Merck & Co. Inc., South San Francisco, CA, USA
| | - Eric Rimmer
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., South San Francisco, CA, USA
| | - Cinthia Pastuskova
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., South San Francisco, CA, USA
| | - Guoxin Wu
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ, USA
| | - Luca Micci
- Department of Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Luiz Felipe Martins Sieben
- Department of Mathematics, Cleveland State University, Cleveland, OH, USA
- Department of Operations and Supply Chain Management, Cleveland State University, Cleveland, OH, USA
| | - Pedro Cesar Lopes Gerum
- Department of Mathematics, Cleveland State University, Cleveland, OH, USA
- Department of Operations and Supply Chain Management, Cleveland State University, Cleveland, OH, USA
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Andre van der Ven
- Department of internal medicine, Radboudumc, Nijmegen, the Netherlands
| | - Guido Silvestri
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Daria J Hazuda
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ, USA
| | - Daniel M Gorman
- Department of Discovery Biologics, Merck & Co. Inc., South San Francisco, CA, USA
| | - Bonnie J Howell
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ, USA
| | - Ashish A Sharma
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
| | - Mirko Paiardini
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Hugo Soudeyns
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
- Viral Immunopathology Unit, Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Canada
- Department of Microbiology, Infectiology & Immunology and Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Susan Pereira Ribeiro
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Rafick P Sekaly
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Kato Y, Kumanogoh A. The immune memory of innate immune systems. Int Immunol 2025; 37:195-202. [PMID: 39588905 DOI: 10.1093/intimm/dxae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/24/2024] [Indexed: 11/27/2024] Open
Abstract
Immune memory has long been considered a function specific to adaptive immune systems; however, adaptive immune memory alone has not fully explained the mechanism by which vaccines exert their protective effects against nontarget pathogens. Recently, trained immunity, in which human monocytes vaccinated with bacillus Calmette-Guérin become highly responsive to pathogens other than Mycobacterium tuberculosis, has been reported. However, a phenomenon called endotoxin tolerance is also known, in which monocyte responsiveness is attenuated after the first lipopolysaccharide stimulation. These phenomena represent an altered innate immune response after the initial exposure to the stimulus, indicating that memories are formed in the innate immune system. In this review, we discuss trained immunity and endotoxin tolerance, known as innate immune memory, and innate immune memory formation by mRNA vaccines, which have been newly used in the coronavirus disease 2019 (COVID-19) pandemic and are considered important vaccine modalities in the future.
Collapse
Affiliation(s)
- Yasuhiro Kato
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Ramos I. Predictive signatures of immune response to vaccination and implications of the immune setpoint remodeling. mSphere 2025; 10:e0050224. [PMID: 39853092 PMCID: PMC11852852 DOI: 10.1128/msphere.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
In 2020, I featured two articles in the "mSphere of Influence" commentary series that had profound implications for the field of immunology and helped shape my research perspective. These articles were "Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses" by Tsang et al. (Cell 157:499-513, 2014, https://doi.org/10.1016/j.cell.2014.03.031) and "A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection" by Fourati et al. (Nat Commun 9:4418, 2018, https://doi.org/10.1038/s41467-018-06735-8). From these topics, the identification of signatures predictive of immune responses to vaccination has greatly advanced and pivoted our understanding of how the immune state at the time of vaccination predicts (and potentially determines) vaccination outcomes. While most of this work has been done using influenza vaccination as a model, pan-vaccine signatures have been also identified. The key implications are their potential use to predict who will respond to vaccinations and to inform strategies for fine-tuning the immune setpoint to enhance immune responses. In addition, investigations in this area led us to understand that immune perturbations, such as acute infections and vaccinations, can remodel the baseline immune state and alter immune responses to future exposures, expanding this exciting field of research. These processes are likely epigenetically encoded, and some examples have already been identified and are discussed in this minireview. Therefore, further research is essential to gain a deeper understanding of how immune exposures modify the epigenome and transcriptome, influence the immune setpoint in response to vaccination, and define its exposure-specific characteristics.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Megdiche Y, Salerno-Gonçalves R. Harnessing adjuvant-induced epigenetic modulation for enhanced immunity in vaccines and cancer therapy. Front Immunol 2025; 16:1547213. [PMID: 40040700 PMCID: PMC11876029 DOI: 10.3389/fimmu.2025.1547213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
Adjuvants are crucial in vaccines and cancer therapies, enhancing therapeutic efficacy through diverse mechanisms. In vaccines, adjuvants are traditionally valued for amplifying immune responses, ensuring robust and long-lasting protection against pathogens. In cancer treatments, adjuvants can boost the effectiveness of chemotherapy or immunotherapy by targeting tumor antigens, rendering cancer cells more vulnerable to treatment. Recent research has uncovered new molecular-level effects of the adjuvants, mainly through epigenetic mechanisms. Epigenetics encompasses heritable modifications in gene expression that do not alter the DNA sequence, impacting processes such as DNA methylation, histone modification, and non-coding RNA expression. These epigenetic changes play a pivotal role in regulating gene activity, influencing immune pathways, and modulating the strength and duration of immune responses. Whether in vaccines or cancer treatments, understanding how adjuvants interact with epigenetic regulators offers significant potential for developing more precise, cell-targeted therapies across various medical fields. This review delves into the evolving role of adjuvants and their interactions with epigenetic mechanisms. It also examines the potential of harnessing epigenetic changes to enhance adjuvant efficacy and explores the novel use of epigenetic inhibitors as adjuvants in therapeutic settings.
Collapse
Affiliation(s)
| | - Rosângela Salerno-Gonçalves
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Ben-Akiva E, Chapman A, Mao T, Irvine DJ. Linking vaccine adjuvant mechanisms of action to function. Sci Immunol 2025; 10:eado5937. [PMID: 39951545 DOI: 10.1126/sciimmunol.ado5937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Vaccines deliver an immunogen in a manner designed to safely provoke an immune response, leading to the generation of memory T and B cells and long-lived antibody-producing plasma cells. Adjuvants play a critical role in vaccines by controlling how the immune system is exposed to the immunogen and providing inflammatory cues that enable productive immune priming. However, mechanisms of action underlying adjuvant function at the molecular, cell, and tissue levels are diverse and often poorly understood. Here, we review the current understanding of mechanisms of action underlying adjuvants used in subunit protein/polysaccharide vaccines and mRNA vaccines, discuss where possible how these mechanisms of action link to downstream effects on the immune response, and identify knowledge gaps that will be important to fill in order to enable the continued development of more effective adjuvants for challenging pathogens such as HIV and emerging threats.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Asheley Chapman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Tianyang Mao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
- Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
14
|
Ward AI, de las Heras JI, Schirmer EC, Fassati A. Memory CD4+ T cells sequentially restructure their 3D genome during stepwise activation. Front Cell Dev Biol 2025; 13:1514627. [PMID: 40018706 PMCID: PMC11866950 DOI: 10.3389/fcell.2025.1514627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 03/01/2025] Open
Abstract
Background CD4+ T cells are a highly differentiated cell type that maintain enough transcriptomic plasticity to cycle between activated and memory statuses. How the 1D chromatin state and 3D chromatin architecture support this plasticity is under intensive investigation. Methods Here, we wished to test a commercially available in situ Hi-C kit (Arima Genomics Inc.) to establish whether published performance on limiting cell numbers from clonal cell lines copies across to a primary immune cell type. We achieved comparable contact matrices from 50,000, 250,000, and 1,000,000 memory CD4+ T-cell inputs. We generated multiple Hi-C and RNA-seq libraries from the same biological blood donors under three separate conditions: unstimulated fresh ex vivo, IL-2-only stimulated, and T cell receptor (TCR)+CD28+IL-2-stimulated, conferring increasingly stronger activation signals. We wished to capture the magnitude and progression of 3D chromatin shifts and correlate these to expression changes under the two stimulations. Results Although some genome organization changes occurred concomitantly with changes in gene expression, at least as many changes occurred without corresponding changes in expression. Counter to the hypothesis that topologically associated domains (TADs) are largely invariant structures providing a scaffold for dynamic looping contacts between enhancers and promotors, we found that there were at least as many dynamic TAD changes. Stimulation with IL-2 alone triggered many changes in genome organization, and many of these changes were strengthened by additional TCR and CD28 co-receptor stimulation. Conclusions This suggests a stepwise process whereby mCD4+ T cells undergo sequential buildup of 3D architecture induced by distinct or combined stimuli likely to "prime" or "deprime" them for expression responses to subsequent TCR-antigen ligation or additional cytokine stimulation.
Collapse
Affiliation(s)
- Alexander I. Ward
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ariberto Fassati
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
15
|
Islam K, Sancho-Shimizu V, Kampmann B, Diavatopoulos D, Holder B, Rice TF. Heterologous Effects of Pertussis and Influenza Vaccines During Pregnancy on Maternal and Infant Innate Immune Responses: A Pilot Study. Pediatr Infect Dis J 2025; 44:S70-S74. [PMID: 39951361 DOI: 10.1097/inf.0000000000004676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
BACKGROUND Research has demonstrated that some vaccines may have effects on the immune system beyond their intended targets. These heterologous effects of vaccination occur through reprogramming of innate immune cells, resulting in enhanced cytokine responses to unrelated pathogens and have been observed most evidently following Bacillus Calmette-Guérin vaccination. Pregnant women in the United Kingdom are offered influenza and acellular pertussis (Tdap) vaccines to protect the mother and infant, respectively, from infection. Little is known about the potential heterologous effects of vaccines given during pregnancy on the maternal and infant immune systems. OBJECTIVE To investigate heterologous innate immune responses in mothers and infants from pertussis-vaccinated and pertussis/influenza double-vaccinated pregnancies compared with unvaccinated pregnancies, in a pilot cohort. METHODS In this pilot study, samples collected as part of 2 maternal immunization studies were utilized. Maternal and cord peripheral blood mononuclear cells (PBMCs) were collected at birth from women who had received both Tdap and influenza vaccination, only the Tdap vaccine or no vaccines during pregnancy. To further investigate the effect of influenza vaccination alone, PBMCs were collected from nonpregnant women before and after seasonal influenza vaccination. PBMCs were incubated with pattern recognition receptor (PRR) ligands, vaccine adjuvants or CRM197 for 24 hours and cytokine responses were quantified in supernatants by enzyme-linked immunosorbent assay. RESULTS PBMC from women who received both Tdap and influenza vaccines had reduced IL-1β, IL-6 and IL-8 cytokine responses to PRR ligand stimulation, compared with those from women who received Tdap alone. Maternal vaccine status during pregnancy did not impact cytokine responses to PRR stimulation in cord PBMCs. Seasonal influenza vaccination did not alter cytokine responses to PRR ligands in nonpregnant women. CONCLUSIONS Our pilot study suggests that PBMC from women receiving combined Tdap and influenza vaccination during pregnancy may have reduced in vitro cytokine responses to nonpertussis stimuli. Larger cohorts of mother-infant pairs need to be studied to confirm these findings, study the potential mechanisms and control for potential confounders.
Collapse
Affiliation(s)
- Khaleda Islam
- From the Department of Metabolism, Digestion and Reproduction, Imperial College London
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, United Kingdom
| | - Beate Kampmann
- Centre for Global Health, Charité Universitatsmedizin, Berlin, Germany
| | - Dimitri Diavatopoulos
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Beth Holder
- From the Department of Metabolism, Digestion and Reproduction, Imperial College London
| | - Thomas F Rice
- Centre for Endocrinology, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Hajishengallis G, Netea MG, Chavakis T. Trained immunity in chronic inflammatory diseases and cancer. Nat Rev Immunol 2025:10.1038/s41577-025-01132-x. [PMID: 39891000 DOI: 10.1038/s41577-025-01132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
A decade after the term 'trained immunity' (TRIM) was coined to reflect the long-lasting hyper-responsiveness of innate immune cells with an epigenetically imprinted 'memory' of earlier stimuli, our understanding has broadened to include the potential implications of TRIM in health and disease. Here, after summarizing the well-documented beneficial effects of TRIM against infections, we discuss emerging evidence that TRIM is also a major underlying mechanism in chronic inflammation-related disorders such as periodontitis, rheumatoid arthritis and cardiovascular disease. Furthermore, mounting evidence indicates that the induction of TRIM by certain agonists confers protective antitumour responses. Although the mechanisms underlying TRIM require further study, the current knowledge enables the experimental development of innovative therapeutic approaches to stimulate or inhibit TRIM in a context-appropriate manner, such as the stimulation of TRIM in cancer or its inhibition in inflammatory disorders.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
- Department of Immunology and Metabolism, LIMES, University of Bonn, Bonn, Germany.
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Chan L, Pinedo K, Stabile MA, Hamlin RE, Pienkos SM, Ratnasiri K, Yang S, Blomkalns AL, Nadeau KC, Pulendran B, O'Hara R, Rogers AJ, Holmes SP, Blish CA. Prior vaccination prevents overactivation of innate immune responses during COVID-19 breakthrough infection. Sci Transl Med 2025; 17:eadq1086. [PMID: 39879318 DOI: 10.1126/scitranslmed.adq1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave. Breakthrough infections were characterized by a less activated transcriptomic profile in monocytes and natural killer cells, with induction of pathways limiting monocyte migratory potential and natural killer cell proliferation. Furthermore, we observed a female-specific increase in transcriptomic and proteomic activation of multiple innate immune cell subsets during breakthrough infections. These insights suggest that prior SARS-CoV-2 vaccination prevents overactivation of innate immune responses during breakthrough infections with discernible sex-specific patterns and underscore the potential of harnessing vaccines in mitigating pathologic immune responses resulting from overactivation.
Collapse
Affiliation(s)
- Leslie Chan
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikayla A Stabile
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca E Hamlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shaun M Pienkos
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andra L Blomkalns
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela J Rogers
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
18
|
Yakovenko I, Mihai IS, Selinger M, Rosenbaum W, Dernstedt A, Gröning R, Trygg J, Carroll L, Forsell M, Henriksson J. Telomemore enables single-cell analysis of cell cycle and chromatin condensation. Nucleic Acids Res 2025; 53:gkaf031. [PMID: 39878215 PMCID: PMC11775621 DOI: 10.1093/nar/gkaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/15/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Single-cell RNA-seq methods can be used to delineate cell types and states at unprecedented resolution but do little to explain why certain genes are expressed. Single-cell ATAC-seq and multiome (ATAC + RNA) have emerged to give a complementary view of the cell state. It is however unclear what additional information can be extracted from ATAC-seq data besides transcription factor binding sites. Here, we show that ATAC-seq telomere-like reads counter-inituively cannot be used to infer telomere length, as they mostly originate from the subtelomere, but can be used as a biomarker for chromatin condensation. Using long-read sequencing, we further show that modern hyperactive Tn5 does not duplicate 9 bp of its target sequence, contrary to common belief. We provide a new tool, Telomemore, which can quantify nonaligning subtelomeric reads. By analyzing several public datasets and generating new multiome fibroblast and B-cell atlases, we show how this new readout can aid single-cell data interpretation. We show how drivers of condensation processes can be inferred, and how it complements common RNA-seq-based cell cycle inference, which fails for monocytes. Telomemore-based analysis of the condensation state is thus a valuable complement to the single-cell analysis toolbox.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Ionut Sebastian Mihai
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Industrial Doctoral School, Umeå University, Umeå, Sweden
| | - Martin Selinger
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Department of Chemistry, Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | - William Rosenbaum
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Andy Dernstedt
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Remigius Gröning
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, Linnaeus väg 10, Umeå universitet, 901 87, Umeå, Sweden
- Sartorius Corporate Research, Östra Strandgatan 24, 903 33, Umeå, Sweden
| | - Laura Carroll
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Integrated Science Lab (IceLab), Umeå University, Naturvetarhuset, Universitetsvägen, 901 87, Umeå, Sweden
| | - Mattias Forsell
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Johan Henriksson
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Integrated Science Lab (IceLab), Umeå University, Naturvetarhuset, Universitetsvägen, 901 87, Umeå, Sweden
| |
Collapse
|
19
|
Jiang G, Zou Y, Zhao D, Yu J. Optimising vaccine immunogenicity in ageing populations: key strategies. THE LANCET. INFECTIOUS DISEASES 2025; 25:e23-e33. [PMID: 39326424 DOI: 10.1016/s1473-3099(24)00497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 09/28/2024]
Abstract
Vaccination has been shown to be the most effective means of preventing infectious diseases, although older people commonly have a suboptimal immune response to vaccines and thus impaired protection against subsequent adverse outcomes. This Review provides an overview of the existing mechanistic insights into compromised vaccine response for respiratory infectious diseases in older people, defined as aged 65 years and older, including immunosenescence, epigenetic regulation, trained immunity, and gut microbiota. We further summarise the latest proven or potential strategies to strengthen weakened immunogenicity. Insights from these analyses will be conducive to the development of the next generation of vaccines.
Collapse
Affiliation(s)
- Guangzhen Jiang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yushu Zou
- Department of Biomedical Informatics, School of Basic Medical Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jingyou Yu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| |
Collapse
|
20
|
Angulo M, Angulo C. Trained immunity-based vaccines: A vision from the one health initiative. Vaccine 2025; 43:126505. [PMID: 39520776 DOI: 10.1016/j.vaccine.2024.126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Trained immunity-based vaccines (TIbV or TRIMbV) represent a novel approach to combating infectious diseases. The innate immune system in animals, including humans, exhibits "memory-like" functions. Remarkably, the immunological mechanisms -both epigenetic and metabolic-) underlying this memory enables immune cells to develop defensive and protective outcomes against unspecific pathogenic infections. Under this context, the One Health initiative promotes integrative efforts to combat zoonotic (and anthropozoonotic) diseases, which is critical because 3 of 4 animal infections are transmitted to humans. Therefore, TIbV constitutes a potential affordable approach to control zoonotic pathologies, especially under pandemic scenarios. This review describes the state-of-the-art TIbV and their hurdles, opportunities, and prospects for the One Health initiative to prevent, control, and treat infectious diseases.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.; Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C. S., C.P. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.; Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C. S., C.P. 23096, Mexico.
| |
Collapse
|
21
|
Pellegrina D, Wilson HL, Mutwiri GK, Helmy M. Transcriptional Systems Vaccinology Approaches for Vaccine Adjuvant Profiling. Vaccines (Basel) 2025; 13:33. [PMID: 39852812 PMCID: PMC11768747 DOI: 10.3390/vaccines13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Adjuvants are a diverse group of substances that can be added to vaccines to enhance antigen-specific immune responses and improve vaccine efficacy. The first adjuvants, discovered almost a century ago, were soluble crystals of aluminium salts. Over the following decades, oil emulsions, vesicles, oligodeoxynucleotides, viral capsids, and other complex organic structures have been shown to have adjuvant potential. However, the detailed mechanisms of how adjuvants enhance immune responses remain poorly understood and may be a barrier that reduces the rational selection of vaccine components. Previous studies on mechanisms of action of adjuvants have focused on how they activate innate immune responses, including the regulation of cell recruitment and activation, cytokine/chemokine production, and the regulation of some "immune" genes. This approach provides a narrow perspective on the complex events involved in how adjuvants modulate antigen-specific immune responses. A comprehensive and efficient way to investigate the molecular mechanism of action for adjuvants is to utilize systems biology approaches such as transcriptomics in so-called "systems vaccinology" analysis. While other molecular biology methods can verify if one or few genes are differentially regulated in response to vaccination, systems vaccinology provides a more comprehensive picture by simultaneously identifying the hundreds or thousands of genes that interact with complex networks in response to a vaccine. Transcriptomics tools such as RNA sequencing (RNA-Seq) allow us to simultaneously quantify the expression of practically all expressed genes, making it possible to make inferences that are only possible when considering the system as a whole. Here, we review some of the challenges in adjuvant studies, such as predicting adjuvant activity and toxicity when administered alone or in combination with antigens, or classifying adjuvants in groups with similar properties, while underscoring the significance of transcriptomics in systems vaccinology approaches to propel vaccine development forward.
Collapse
Affiliation(s)
- Diogo Pellegrina
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
| | - Heather L. Wilson
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - George K. Mutwiri
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Mohamed Helmy
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Department of Computer Science, Idaho State University, Pocatello, ID 83209, USA
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| |
Collapse
|
22
|
Jin L, Li J, Zhu F. AS03-adjuvanted H5N1 vaccine enhances immune response by modulating NR4A1, SDC1, ID3 genes, and reducing cortisol. Hum Vaccin Immunother 2024; 20:2426319. [PMID: 39569615 PMCID: PMC11583616 DOI: 10.1080/21645515.2024.2426319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The AS03-adjuvanted H5N1 influenza vaccine induces significantly higher immune responses compared to the non-adjuvanted H5N1 vaccine. However, the immunological mechanisms underlying this enhancement remain unclear. We aimed to identify the key genes and pathways involved in the immune response to the AS03-adjuvanted H5N1 vaccine compared to the non-adjuvanted H5N1 vaccine. The expression profiles of GSE102012 and GSE112293 were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes between AS03-adjuvanted and non-adjuvanted H5N1 vaccine groups. Subsequently, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery online tool. The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes database. Through cluster analysis of the PPI network, three hub genes, namely NR4A1, SDC1, and ID3, were identified as pivotal players in the intricate network of interactions. The ID3 was up-regulated, and the other two hub genes were down-regulated. The results of the GO analysis highlighted enrichment in seven biological processes, three cellular components, and two molecular functions among the differentially expressed genes. The KEGG pathway analysis revealed the involvement of the Cushing syndrome pathway. The AS03-adjuvanted H5N1 vaccine may enhance immune responses through suppressing the NR4A1 gene and the SDC1 gene, upregulating the ID3 gene, and reducing cortisol production compared to the non-adjuvanted H5N1 vaccine.
Collapse
Affiliation(s)
- Lairun Jin
- School of Public Health, Southeast University, Nanjing, P.R. China
| | - Jingxin Li
- School of Public Health, Southeast University, Nanjing, P.R. China
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing, P.R. China
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
23
|
Chen Y, Lu K, Rong B, Wen Y, Li G, Li S, Guo D, Zhou Q, Liu S, Zhang X. Discovery of Novel Thiophene-Based Baloxavir Derivatives as Potent Cap-Dependent Endonuclease Inhibitors for Influenza Treatment. J Med Chem 2024; 67:22039-22054. [PMID: 39658517 DOI: 10.1021/acs.jmedchem.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The genetic recombination and antigenic variation of influenza viruses may decrease the efficacy of antiviral vaccines, highlighting the imperativeness of developing novel anti-influenza agents. Herein, a series of thiophene-based compounds were designed and synthesized as potent anti-influenza agents. Among them, ATV2301 exhibited an excellent anti-influenza activity (EC50, H1N1 = 1.88 nM, H3N2 = 4.77 nM), a higher safety index (SI, H1N1 = 18218, H3N2 = 7180), and a remarkably improved oral bioavailability (F = 71.60%). The prodrug ATV2301A demonstrated strong therapeutic efficacy and protection in H1N1-infected BALB/c mice, with low toxicity and broad tissue distribution. ATV2301 also exhibited high stability in both human and mouse liver microsomes. Mechanistic studies indicated that ATV2301's anti-influenza activity was due to its effects on polymerase acid protein (PA), nuclear protein (NP), and RNA-dependent RNA polymerase (RdRp). Additionally, ATV2301 showed potent activities against clinical isolates of anti-influenza A virus (IAV) and anti-influenza B virus (IBV), positioning it as a promising cap-dependent endonuclease inhibitor for further clinical research.
Collapse
Affiliation(s)
- Yongzhi Chen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Kunyu Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Binhao Rong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanmei Wen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Guanguan Li
- Shenzhen AntiV Pharma Co., Ltd., Shenzhen, Guangdong 518081, China
| | - Shuo Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Qifan Zhou
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
24
|
Finn CM, Dhume K, Baffoe E, Kimball LA, Strutt TM, McKinstry KK. Airway-resident memory CD4 T cell activation accelerates antigen presentation and T cell priming in draining lymph nodes. JCI Insight 2024; 10:e182615. [PMID: 39688906 PMCID: PMC11948587 DOI: 10.1172/jci.insight.182615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024] Open
Abstract
Specialized memory CD4 T cells that reside long-term within tissues are critical components of immunity at portals of pathogen entry. In the lung, such tissue-resident memory (Trm) cells are activated rapidly after infection and promote local inflammation to control pathogen levels before circulating T cells can respond. However, optimal clearance of Influenza A virus can require Trm and responses by other virus-specific T cells that reach the lung only several days after their activation in secondary lymphoid organs. Whether local CD4 Trm sentinel activity can affect the efficiency of T cell activation in secondary lymphoid organs is not clear. Here, we found that recognition of antigen by influenza-primed Trm in the airways promoted more rapid migration of highly activated antigen-bearing DC to the draining lymph nodes. This in turn accelerated the priming of naive T cells recognizing the same antigen, resulting in newly activated effector T cells reaching the lungs earlier than in mice not harboring Trm. Our findings, thus, reveal a circuit linking local and regional immunity whereby antigen recognition by Trm improves effector T cell recruitment to the site of infection though enhancing the efficiency of antigen presentation in the draining lymph node.
Collapse
|
25
|
Li X, Dong X, Zhang W, Shi Z, Liu Z, Sa Y, Li L, Ni N, Mei Y. Multi-omics in exploring the pathophysiology of diabetic retinopathy. Front Cell Dev Biol 2024; 12:1500474. [PMID: 39723239 PMCID: PMC11668801 DOI: 10.3389/fcell.2024.1500474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading global cause of vision impairment, with its prevalence increasing alongside the rising rates of diabetes mellitus (DM). Despite the retina's complex structure, the underlying pathology of DR remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) and recent advancements in multi-omics analyses have revolutionized molecular profiling, enabling high-throughput analysis and comprehensive characterization of complex biological systems. This review highlights the significant contributions of scRNA-seq, in conjunction with other multi-omics technologies, to DR research. Integrated scRNA-seq and transcriptomic analyses have revealed novel insights into DR pathogenesis, including alternative transcription start site events, fluctuations in cell populations, altered gene expression profiles, and critical signaling pathways within retinal cells. Furthermore, by integrating scRNA-seq with genetic association studies and multi-omics analyses, researchers have identified novel biomarkers, susceptibility genes, and potential therapeutic targets for DR, emphasizing the importance of specific retinal cell types in disease progression. The integration of scRNA-seq with metabolomics has also been instrumental in identifying specific metabolites and dysregulated pathways associated with DR. It is highly conceivable that the continued synergy between scRNA-seq and other multi-omics approaches will accelerate the discovery of underlying mechanisms and the development of novel therapeutic interventions for DR.
Collapse
Affiliation(s)
- Xinlu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - XiaoJing Dong
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wen Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhizhou Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yalian Sa
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Li Li
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ninghua Ni
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yan Mei
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
26
|
Zhao Y, Yu ZM, Cui T, Li LD, Li YY, Qian FC, Zhou LW, Li Y, Fang QL, Huang XM, Zhang QY, Cai FH, Dong FJ, Shang DS, Li CQ, Wang QY. scBlood: A comprehensive single-cell accessible chromatin database of blood cells. Comput Struct Biotechnol J 2024; 23:2746-2753. [PMID: 39050785 PMCID: PMC11266868 DOI: 10.1016/j.csbj.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of single cell transposase-accessible chromatin sequencing (scATAC-seq) technology enables us to explore the genomic characteristics and chromatin accessibility of blood cells at the single-cell level. To fully make sense of the roles and regulatory complexities of blood cells, it is critical to collect and analyze these rapidly accumulating scATAC-seq datasets at a system level. Here, we present scBlood (https://bio.liclab.net/scBlood/), a comprehensive single-cell accessible chromatin database of blood cells. The current version of scBlood catalogs 770,907 blood cells and 452,247 non-blood cells from ∼400 high-quality scATAC-seq samples covering 30 tissues and 21 disease types. All data hosted on scBlood have undergone preprocessing from raw fastq files and multiple standards of quality control. Furthermore, we conducted comprehensive downstream analyses, including multi-sample integration analysis, cell clustering and annotation, differential chromatin accessibility analysis, functional enrichment analysis, co-accessibility analysis, gene activity score calculation, and transcription factor (TF) enrichment analysis. In summary, scBlood provides a user-friendly interface for searching, browsing, analyzing, visualizing, and downloading scATAC-seq data of interest. This platform facilitates insights into the functions and regulatory mechanisms of blood cells, as well as their involvement in blood-related diseases.
Collapse
Affiliation(s)
- Yu Zhao
- The First Affiliated Hospital & MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Zheng-Min Yu
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Ting Cui
- The First Affiliated Hospital & MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li-Dong Li
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Yan-Yu Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Feng-Cui Qian
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li-Wei Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ye Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiao-Li Fang
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Xue-Mei Huang
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Qin-Yi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fu-Hong Cai
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Fu-Juan Dong
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - De-Si Shang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chun-Quan Li
- The First Affiliated Hospital & MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Maternal and Child Health Care Hospital, National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiu-Yu Wang
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Maternal and Child Health Care Hospital, National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
27
|
Zhang H, Li C, Sun R, Zhang X, Li Z, Hua D, Yin B, Yang L, Zhang L, Huang J. NEIL1 block IFN-β production and enhance vRNP function to facilitate influenza A virus proliferation. NPJ VIRUSES 2024; 2:57. [PMID: 40295715 PMCID: PMC11721407 DOI: 10.1038/s44298-024-00065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 04/30/2025]
Abstract
Influenza A virus (IAV) has developed multiple tactics to hinder the innate immune response including the epigenetic regulation during IAV infection, but the novel epigenetic factors and their mechanism in innate immunity remain well studied. Here, through a non-biased high-throughput sgRNA screening of 1041 known epigenetic modifiers in a cellular model of IAV-induced interferon-beta (IFN-β) production, we identified nei endonuclease VIII-like 1 (NEIL1) as a critical regulator of IFN-β in response to viral infection. Further studies showed that NEIL1 promoted the replication of the influenza virus by regulating the methylation of cytonuclear IFN-β promoter (mainly CpG-345), inhibiting the expression of IFN-β and IFN-stimulating genes. The structural domains of NEIL1, especially the catalytic domain, were critical for the suppression of IFN-β production, but the enzymatic activity of NEIL1 was dispensable. Furthermore, our results revealed that NEIL1 relied on interactions with the N- and C-terminus of the nucleoprotein (NP) of IAV, and NEIL1 expression facilitated the entry of the NP into the nucleus, which further enhanced the stability of the viral ribonucleoprotein (vRNP) complex and thus contributed to IAV replication and transcription. These findings reveal an enzyme-independent mechanism of host NEIL1 that negatively regulates IFN-β expression, thereby facilitating IAV propagation. Our study provides new insights into the roles of NEIL1, both in directly promoting virus replication and in evading innate immunity in IAV infection.
Collapse
Affiliation(s)
- Huixia Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Changyan Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xinyi Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zexing Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Boxuan Yin
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Liu Yang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
28
|
Lercher A, Cheong JG, Bale MJ, Jiang C, Hoffmann HH, Ashbrook AW, Lewy T, Yin YS, Quirk C, DeGrace EJ, Chiriboga L, Rosenberg BR, Josefowicz SZ, Rice CM. Antiviral innate immune memory in alveolar macrophages following SARS-CoV-2 infection ameliorates secondary influenza A virus disease. Immunity 2024; 57:2530-2546.e13. [PMID: 39353439 PMCID: PMC11563926 DOI: 10.1016/j.immuni.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Pathogen encounter can result in epigenetic remodeling that shapes disease caused by heterologous pathogens. Here, we examined innate immune memory in the context of commonly circulating respiratory viruses. Single-cell analyses of airway-resident immune cells in a disease-relevant murine model of SARS-CoV-2 recovery revealed epigenetic reprogramming in alveolar macrophages following infection. Post-COVID-19 human monocytes exhibited similar epigenetic signatures. In airway-resident macrophages, past SARS-CoV-2 infection increased activity of type I interferon (IFN-I)-related transcription factors and epigenetic poising of antiviral genes. Viral pattern recognition and canonical IFN-I signaling were required for the establishment of this innate immune memory and augmented secondary antiviral responses. Antiviral innate immune memory mounted by airway-resident macrophages post-SARS-CoV-2 was necessary and sufficient to ameliorate secondary disease caused by influenza A virus and curtailed hyperinflammatory dysregulation and mortality. Our findings provide insights into antiviral innate immune memory in the airway that may facilitate the development of broadly effective therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Lercher
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael J Bale
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chenyang Jiang
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yue S Yin
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Emma J DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA; Center for Biospecimen Research and Development, New York, NY 10016, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
29
|
Netea MG, Joosten LAB. Trained innate immunity: Concept, nomenclature, and future perspectives. J Allergy Clin Immunol 2024; 154:1079-1084. [PMID: 39278362 DOI: 10.1016/j.jaci.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
During the past decade, compelling evidence has accumulated demonstrating that innate immune cells can mount adaptive characteristics, leading to long-term changes in their function. This de facto innate immune memory has been termed trained immunity. Trained immunity, which is mediated through extensive metabolic rewiring and epigenetic modifications, has important effects in human diseases. Although the upregulation of trained immunity by certain vaccines provides heterologous protection against infections, the inappropriate activation of trained immunity by endogenous stimuli contributes to the pathogenesis of inflammatory and neurodegenerative disorders. Development of vaccines that can induce both classical adaptive immunity and trained immunity may lead to a new generation of vaccines with increased efficacy. Activation of trained immunity can also lead to novel strategies for the treatment of cancer, whereas modulation of trained immunity can provide new approaches to the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
30
|
Qiu Y, Man C, Zhu L, Zhang S, Wang X, Gong D, Fan Y. R-loops' m6A modification and its roles in cancers. Mol Cancer 2024; 23:232. [PMID: 39425197 PMCID: PMC11487993 DOI: 10.1186/s12943-024-02148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
R-loops are three-stranded nucleic acid structures composed of an RNA-DNA hybrid and a displaced DNA strand. They are widespread and play crucial roles in regulating gene expression, DNA replication, and DNA and histone modifications. However, their regulatory mechanisms remain unclear. As R-loop detection technology advances, changes in R-loop levels have been observed in cancer models, often associated with transcription-replication conflicts and genomic instability. N6-methyladenosine (m6A) is an RNA epigenetic modification that regulates gene expression by affecting RNA localization, splicing, translation, and degradation. Upon reviewing the literature, we found that R-loops with m6A modifications are implicated in tumor development and progression. This article summarizes the molecular mechanisms and detection methods of R-loops and m6A modifications in gene regulation, and reviews recent research on m6A-modified R-loops in oncology. Our goal is to provide new insights into the origins of genomic instability in cancer and potential strategies for targeted therapy.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Luyu Zhu
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China.
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| |
Collapse
|
31
|
Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm (Beijing) 2024; 5:e714. [PMID: 39286776 PMCID: PMC11401974 DOI: 10.1002/mco2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.
Collapse
Affiliation(s)
- Ruyuan Wang
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Caini Lan
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kamel Benlagha
- Alloimmunity, Autoimmunity and Transplantation Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160 Paris France
| | - Niels Olsen Saraiva Camara
- Department of Immunology Institute of Biomedical Sciences University of São Paulo (USP) São Paulo São Paulo Brazil
| | - Heather Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton Montana USA
| | - Masato Kubo
- Division of Molecular Pathology Research Institute for Biomedical Sciences (RIBS) Tokyo University of Science Noda Chiba Japan
| | - Steffen Heegaard
- Department of Ophthalmology Rigshospitalet Hospital Copenhagen University Copenhagen Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| | - Huamei Forsman
- Department of Laboratory Medicine Institute of Biomedicine, University of Gothenburg Gothenburg Sweden
| | - Xingrui Li
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhimin Zhai
- Department of Hematology The Second Hospital of Anhui Medical University Hefei China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
32
|
Kumar S, Zoodsma M, Nguyen N, Pedroso R, Trittel S, Riese P, Botey-Bataller J, Zhou L, Alaswad A, Arshad H, Netea MG, Xu CJ, Pessler F, Guzmán CA, Graca L, Li Y. Systemic dysregulation and molecular insights into poor influenza vaccine response in the aging population. SCIENCE ADVANCES 2024; 10:eadq7006. [PMID: 39331702 PMCID: PMC11430404 DOI: 10.1126/sciadv.adq7006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Vaccination-induced protection against influenza is greatly diminished and increasingly heterogeneous with age. We investigated longitudinally (up to five time points) a cohort of 234 vaccinated >65-year-old vaccinees with adjuvanted vaccine FluAd across two independent seasons. System-level analyses of multiomics datasets measuring six modalities and serological data revealed that poor responders lacked time-dependent changes in response to vaccination as observed in responders, suggestive of systemic dysregulation in poor responders. Multiomics integration revealed key molecules and their likely role in vaccination response. High prevaccination plasma interleukin-15 (IL-15) concentrations negatively associated with antibody production, further supported by experimental validation in mice revealing an IL-15-driven natural killer cell axis explaining the suppressive role in vaccine-induced antibody production as observed in poor responders. We propose a subset of long-chain fatty acids as modulators of persistent inflammation in poor responders. Our findings provide a potential link between low-grade chronic inflammation and poor vaccination response and open avenues for possible pharmacological interventions to enhance vaccine responses.
Collapse
Affiliation(s)
- Saumya Kumar
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Martijn Zoodsma
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Nhan Nguyen
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Rodrigo Pedroso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Stephanie Trittel
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Javier Botey-Bataller
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Liang Zhou
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Ahmed Alaswad
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Haroon Arshad
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Pessler
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Hannover, Germany
| | - Carlos A. Guzmán
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luis Graca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Artificial Intelligence and Causal Methods in Medicine (CAIMed), Hannover, Germany
| |
Collapse
|
33
|
Apps R, Biancotto A, Candia J, Kotliarov Y, Perl S, Cheung F, Farmer R, Mulè MP, Rachmaninoff N, Chen J, Martins AJ, Shi R, Zhou H, Bansal N, Schum P, Olnes MJ, Milanez-Almeida P, Han KL, Sellers B, Cortese M, Hagan T, Rouphael N, Pulendran B, King L, Manischewitz J, Khurana S, Golding H, van der Most RG, Dickler HB, Germain RN, Schwartzberg PL, Tsang JS. Acute and persistent responses after H5N1 vaccination in humans. Cell Rep 2024; 43:114706. [PMID: 39235945 PMCID: PMC11949244 DOI: 10.1016/j.celrep.2024.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/14/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
To gain insight into how an adjuvant impacts vaccination responses, we use systems immunology to study human H5N1 influenza vaccination with or without the adjuvant AS03, longitudinally assessing 14 time points including multiple time points within the first day after prime and boost. We develop an unsupervised computational framework to discover high-dimensional response patterns, which uncover adjuvant- and immunogenicity-associated early response dynamics, including some that differ post prime versus boost. With or without adjuvant, some vaccine-induced transcriptional patterns persist to at least 100 days after initial vaccination. Single-cell profiling of surface proteins, transcriptomes, and chromatin accessibility implicates transcription factors in the erythroblast-transformation-specific (ETS) family as shaping these long-lasting signatures, primarily in classical monocytes but also in CD8+ naive-like T cells. These cell-type-specific signatures are elevated at baseline in high-antibody responders in an independent vaccination cohort, suggesting that antigen-agnostic baseline immune states can be modulated by vaccine antigens alone to enhance future responses.
Collapse
Affiliation(s)
- Richard Apps
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | | | - Julián Candia
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, MD, USA
| | - Shira Perl
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; NIH Oxford-Cambridge Scholars Program, Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, UCB2 0QQ Cambridge, UK
| | - Nicholas Rachmaninoff
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rongye Shi
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Huizhi Zhou
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Paula Schum
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Matthew J Olnes
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | | | - Kyu Lee Han
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Brian Sellers
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Mario Cortese
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas Hagan
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA; Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Lisa King
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | - Jody Manischewitz
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | | | | | - Ronald N Germain
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Pamela L Schwartzberg
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - John S Tsang
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Center for Systems and Engineering Immunology, Departments of Immunobiology and Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
34
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 PMCID: PMC11736809 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
35
|
Zheng H, Li C, Zheng X, Jiang HD, Li Y, Yao A, Li X, Wang F, Liu W, Cao X, Qi R, Chen L, Jin L, Zhu F, Li J, Chen F. Immune responses and transcription landscape of adults with the third dose of homologous and heterologous booster vaccines of COVID-19. Front Immunol 2024; 15:1461419. [PMID: 39328415 PMCID: PMC11424439 DOI: 10.3389/fimmu.2024.1461419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background Heterologous booster vaccines are more effective than homologous booster vaccines in combating the coronavirus disease 2019 (COVID-19) outbreak. However, our understanding of homologous and heterologous booster vaccines for COVID-19 remains limited. Methods We recruited 34 healthy participants from two cohorts who were primed with two-dose inactivated COVID-19 vaccine before, vaccinated with COVID-19 inactivated vaccine and adenovirus-vectored vaccine (intramuscular and aerosol inhalation of Ad5-nCoV) as a third booster dose. We assessed the immune responses of participants before and 14 days after vaccination, including levels of neutralizing antibodies, IgG, and cytokines, and quantified the transcriptional profile of peripheral blood mononuclear cells (PBMCs). Results The Ad5-nCoV group showed a significantly higher neutralizing antibody geometric mean titer (GMT) compared to the ICV group after 14 days of heterologous boosting. The intramuscular Ad5-nCoV group had a GMT of 191.8 (95% CI 129.0, 285.1) compared to 38.1 (95% CI 23.1, 62.8) in the ICV1 group (p<0.0001). The aerosolized Ad5-nCoV group had a GMT of 738.4 (95% CI 250.9-2173.0) compared to 244.0 (95% CI 135.0, 441.2) in the ICV2 group (p=0.0434). Participants in the aerosolized Ad5-nCoV group had median IFN-γ+ spot counts of 36.5 (IQR 15.3-58.8) per 106 PBMCs, whereas, both intramuscular Ad5-nCoV and CoronaVac immunization as the third dose showed lower responses. This suggests that a third dose of booster Ad5-nCoV vaccine (especially aerosolized inhalation) as a heterologous vaccine booster induces stronger humoral and cellular immune responses, which may be more potent against VOCs than the use of inactivated vaccine homologs. In transcriptomic analyses, both aerosolized inhalation/intramuscular injection of the Ad5-nCoV vaccine and inactivated vaccine induced a large number of differentially expressed genes that were significantly associated with several important innate immune pathways including inflammatory responses, regulation of the defense response, and regulation of cytokine production. In addition, we identified crucial molecular modules of protective immunity that are significantly correlated with vaccine type and neutralizing antibodies level. Conclusion This study demonstrated that inhalation/intramuscular injection of the Ad5-nCoV vaccine-mediated stronger humoral and cellular immune responses compared with the inactivated vaccine, and correlated significantly with innate immune function modules, supporting a heterologous booster immunization strategy.
Collapse
Affiliation(s)
- Hui Zheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Cuidan Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiuyu Zheng
- Research and Development Department, CanSino Biologics Inc., Tianjin, China
| | - Hu-Dachuan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yuqing Li
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aihua Yao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiaolong Li
- Research and Development Department, CanSino Biologics Inc., Tianjin, China
| | - Feiyu Wang
- Research and Development Department, CanSino Biologics Inc., Tianjin, China
| | - Wenqing Liu
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Runjie Qi
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Lairun Jin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fengcai Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingxin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| |
Collapse
|
36
|
Gioacchino E, Vandelannoote K, Ruberto AA, Popovici J, Cantaert T. Unraveling the intricacies of host-pathogen interaction through single-cell genomics. Microbes Infect 2024; 26:105313. [PMID: 38369008 DOI: 10.1016/j.micinf.2024.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Single-cell genomics provide researchers with tools to assess host-pathogen interactions at a resolution previously inaccessible. Transcriptome analysis, epigenome analysis, and immune profiling techniques allow for a better comprehension of the heterogeneity underlying both the host response and infectious agents. Here, we highlight technological advancements and data analysis workflows that increase our understanding of host-pathogen interactions at the single-cell level. We review various studies that have used these tools to better understand host-pathogen dynamics in a variety of infectious disease contexts, including viral, bacterial, and parasitic diseases. We conclude by discussing how single-cell genomics can advance our understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Emanuele Gioacchino
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Koen Vandelannoote
- Bacterial Phylogenomics Group, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Anthony A Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia; Infectious Disease Epidemiology and Analytics, Institut Pasteur, Paris, France
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia.
| |
Collapse
|
37
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Cai M, Le Y, Gong Z, Dong T, Liu B, Su M, Li X, Peng F, Li Q, Nian X, Yu H, Wu Z, Zhang Z, Zhang J. Production, Passaging Stability, and Histological Analysis of Madin-Darby Canine Kidney Cells Cultured in a Low-Serum Medium. Vaccines (Basel) 2024; 12:991. [PMID: 39340023 PMCID: PMC11435615 DOI: 10.3390/vaccines12090991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Madin-Darby canine kidney (MDCK) cells are commonly used to produce cell-based influenza vaccines. However, the role of the low-serum medium on the proliferation of MDCK cells and the propagation of the influenza virus has not been well studied. In the present study, we used 5 of 15 culture methods with different concentrations of a mixed medium and neonatal bovine serum (NBS) to determine the best culture medium. We found that a VP:M199 ratio of 1:2 (3% NBS) was suitable for culturing MDCK cells. Furthermore, the stable growth of MDCK cells and the production of the influenza virus were evaluated over long-term passaging. We found no significant difference in terms of cell growth and virus production between high and low passages of MDCK cells under low-serum culture conditions, regardless of influenza virus infection. Lastly, we performed a comparison of the transcriptomics and proteomics of MDCK cells cultured in VP:M199 = 1:2 (3% NBS) with those cultured in VP:M199 = 1:2 (5% NBS) before and after influenza virus infection. The transcriptome analysis showed that differentially expressed genes were predominantly enriched in the metabolic pathway and MAPK signaling pathway, indicating an activated state. This suggests that decreasing the concentration of serum in the medium from 5% to 3% may increase the metabolic activity of cells. Proteomics analysis showed that only a small number of differentially expressed proteins could not be enriched for analysis, indicating minimal difference in the protein levels of MDCK cells when the serum concentration in the medium was decreased from 5% to 3%. Altogether, our findings suggest that the screening and application of a low-serum medium provide a background for the development and optimization of cell-based influenza vaccines.
Collapse
Affiliation(s)
- Ming Cai
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Yang Le
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Zheng Gong
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Tianbao Dong
- Center for Drug Evaluation and Inspection of HMPA (Hubei Center for Vaccine Inspection), Wuhan 430207, China
| | - Bo Liu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Minne Su
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Xuedan Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Feixia Peng
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Qingda Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Xuanxuan Nian
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Hao Yu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Zheng Wu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Zhegang Zhang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jiayou Zhang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| |
Collapse
|
39
|
Ardali R, Garcia-Nicolas O, Ollagnier C, Sánchez Carvajal JM, Levy M, Yvernault P, de Aboim Borges Fialho de Brito F, Summerfield A. Impact of Oil-in-Water Adjuvanted β-Glucan on Innate Immune Memory in Piglets. Vaccines (Basel) 2024; 12:982. [PMID: 39340014 PMCID: PMC11436110 DOI: 10.3390/vaccines12090982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
The non-specific protective effects offered by the concept of "innate immune memory" might represent a promising strategy to tackle early-life threatening infections. Here we tested the potential of an in vitro selected β-glucan in inducing trained immunity using an in vivo porcine model. We assessed the leukocyte transcriptome using blood transcriptomic module (BTM), proinflammatory cytokines, and clinical scoring after a first "training" and a second "stimulation" phase. The possible induction of innate immune memory was tested during a "stimulation" by an LPS-adjuvanted Mycoplasma hyopneumoniae vaccine (Hyogen®) one day after weaning. Following the "training", no major group differences were found, with the exception of a plasma TNF that was only induced by Adj and Adj_BG treatment. After vaccination, all groups developed similar antibody responses. A significant induction of plasma TNF and IL-1β was found in groups that received Adj and Adj_BG. However, following vaccination, the expected early innate BTMs were only induced by the PBS group. In conclusion, the adjuvant alone, adjuvant-formulated β-glucan, or orally applied β-glucan were unable to enhance innate immune reactivity but rather appeared to promote innate immune tolerance. Such an immune status could have both positive and negative implications during this phase of the piglet's life.
Collapse
Affiliation(s)
- Razieh Ardali
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Obdulio Garcia-Nicolas
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | - José María Sánchez Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014 Córdoba, Spain
| | - Maria Levy
- Swine Research Unit, Agroscope, 1725 Posieux, Switzerland
| | | | - Francisco de Aboim Borges Fialho de Brito
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
40
|
Xie D, An B, Yang M, Wang L, Guo M, Luo H, Huang S, Sun F. Application and research progress of single cell sequencing technology in leukemia. Front Oncol 2024; 14:1389468. [PMID: 39267837 PMCID: PMC11390353 DOI: 10.3389/fonc.2024.1389468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Leukemia is a malignant tumor with high heterogeneity and a complex evolutionary process. It is difficult to resolve the heterogeneity and clonal evolution of leukemia cells by applying traditional bulk sequencing techniques, thus preventing a deep understanding of the mechanisms of leukemia development and the identification of potential therapeutic targets. However, with the development and application of single-cell sequencing technology, it is now possible to investigate the gene expression profile, mutations, and epigenetic features of leukemia at the single-cell level, thus providing a new perspective for leukemia research. In this article, we review the recent applications and advances of single-cell sequencing technology in leukemia research, discuss its potential for enhancing our understanding of the mechanisms of leukemia development, discovering therapeutic targets and personalized treatment, and provide reference guidelines for the significance of this technology in clinical research.
Collapse
Affiliation(s)
- Dan Xie
- Medical College, Guizhou University, Guiyang, China
| | - Bangquan An
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Mingyue Yang
- Medical College, Guizhou University, Guiyang, China
| | - Lei Wang
- Medical College, Guizhou University, Guiyang, China
| | - Min Guo
- Medical College, Guizhou University, Guiyang, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, Guizhou, China
| | - Shengwen Huang
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Fa Sun
- Medical College, Guizhou University, Guiyang, China
| |
Collapse
|
41
|
Tasdighian S, Bechtold V, Essaghir A, Saeys Y, Burny W. An innate immune signature induced by AS01- or AS03-adjuvanted vaccines predicts the antibody response magnitude and quality consistently over time. Front Immunol 2024; 15:1412732. [PMID: 39206189 PMCID: PMC11349632 DOI: 10.3389/fimmu.2024.1412732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background Antibody-mediated protection can depend on mechanisms varying from neutralization to Fc-dependent innate immune-cell recruitment. Adjuvanted vaccine development relies on a holistic understanding of how adjuvants modulate the quantity/titer and quality of the antibody response. Methods A Phase 2 trial (ClinicalTrials.gov: NCT00805389) evaluated hepatitis B vaccines formulated with licensed adjuvants (AS01B, AS01E, AS03, AS04 or Alum) in antigen-naïve adults. The trial investigated the role of adjuvants in shaping antibody-effector functions, and identified an innate transcriptional response shared by AS01B, AS01E and AS03. We integrated previously reported data on the innate response (gene expression, cytokine/C-reactive protein levels) and on quantitative/qualitative features of the mature antibody response (Fc-related parameters, immunoglobulin titers, avidity). Associations between the innate and humoral parameters were explored using systems vaccinology and a machine-learning framework. Results A dichotomy in responses between AS01/AS03 and AS04/Alum (with the former two contributing most to the association with the humoral response) was observed across all timepoints of this longitudinal study. The consistent patterns over time suggested a similarity in the impacts of the two-dose immunization regimen, year-long interval, and non-adjuvanted antigenic challenge given one year later. An innate signature characterized by interferon pathway-related gene expression and secreted interferon-γ-induced protein 10 and C-reactive protein, which was shared by AS01 and AS03, consistently predicted both the qualitative antibody response features and the titers. The signature also predicted from the antibody response quality, the group of adjuvants from which the administered vaccine was derived. Conclusion An innate signature induced by AS01- or AS03-adjuvanted vaccines predicts the antibody response magnitude and quality consistently over time.
Collapse
Affiliation(s)
- Setareh Tasdighian
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | | | - Yvan Saeys
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | |
Collapse
|
42
|
Focosi D, Maggi F. Avian Influenza Virus A(H5Nx) and Prepandemic Candidate Vaccines: State of the Art. Int J Mol Sci 2024; 25:8550. [PMID: 39126117 PMCID: PMC11312817 DOI: 10.3390/ijms25158550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Avian influenza virus has been long considered the main threat for a future pandemic. Among the possible avian influenza virus subtypes, A(H5N1) clade 2.3.4.4b is becoming enzootic in mammals, representing an alarming step towards a pandemic. In particular, genotype B3.13 has recently caused an outbreak in US dairy cattle. Since pandemic preparedness is largely based on the availability of prepandemic candidate vaccine viruses, in this review we will summarize the current status of the enzootics, and challenges for H5 vaccine manufacturing and delivery.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56100 Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| |
Collapse
|
43
|
Nideffer J, Ty M, Donato M, John R, Kajubi R, Ji X, Nankya F, Musinguzi K, Press KD, Yang N, Camanag K, Greenhouse B, Kamya M, Feeney ME, Dorsey G, Utz PJ, Pulendran B, Khatri P, Jagannathan P. Clinical immunity to malaria involves epigenetic reprogramming of innate immune cells. PNAS NEXUS 2024; 3:pgae325. [PMID: 39161730 PMCID: PMC11331423 DOI: 10.1093/pnasnexus/pgae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
The regulation of inflammation is a critical aspect of disease tolerance and naturally acquired clinical immunity to malaria. Here, we demonstrate using RNA sequencing and epigenetic landscape profiling by cytometry by time-of-flight, that the regulation of inflammatory pathways during asymptomatic parasitemia occurs downstream of pathogen sensing-at the epigenetic level. The abundance of certain epigenetic markers (methylation of H3K27 and dimethylation of arginine residues) and decreased prevalence of histone variant H3.3 correlated with suppressed cytokine responses among monocytes of Ugandan children. Such an epigenetic signature was observed across diverse immune cell populations and not only characterized active asymptomatic parasitemia but also correlated with future long-term disease tolerance and clinical immunity when observed in uninfected children. Pseudotime analyses revealed a potential trajectory of epigenetic change that correlated with a child's age and recent parasite exposure and paralleled the acquisition of clinical immunity. Thus, our data support a model whereby exposure to Plasmodium falciparum induces epigenetic changes that regulate excessive inflammation and contribute to naturally acquire clinical immunity to malaria.
Collapse
Affiliation(s)
- Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Maureen Ty
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michele Donato
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rek John
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Richard Kajubi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Xuhuai Ji
- Institute for Immunity, Infection, and Transplantation, Stanford University, Stanford, CA 94305, USA
| | | | | | | | - Nora Yang
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kylie Camanag
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, CA 94142, USA
| | - Moses Kamya
- School of Medicine, Makerere University, Kampala, Uganda
| | - Margaret E Feeney
- Department of Pediatrics, University of California, San Francisco, CA 94142, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, CA 94142, USA
| | - Paul J Utz
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bali Pulendran
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
44
|
Bechtold V, Smolen KK, Burny W, de Angelis SP, Delandre S, Essaghir A, Marchant A, Ndour C, Taton M, van der Most R, Willems F, Didierlaurent AM. Functional and epigenetic changes in monocytes from adults immunized with an AS01-adjuvanted vaccine. Sci Transl Med 2024; 16:eadl3381. [PMID: 39083587 DOI: 10.1126/scitranslmed.adl3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024]
Abstract
The adjuvant AS01 plays a key role in the immunogenicity of several approved human vaccines with demonstrated high efficacy. Its adjuvant effect relies on activation of the innate immune system. However, specific effects of AS01-adjuvanted vaccines on innate cell function and epigenetic remodeling, as described for Bacille Calmette-Guérin (BCG) and influenza vaccines, are still unknown. We assessed the long-term functional and epigenetic changes in circulating monocytes and dendritic cells induced by a model vaccine containing hepatitis B surface antigen and AS01 in healthy adults (NCT01777295). The AS01-adjuvanted vaccine, but not an Alum-adjuvanted vaccine, increased the number of circulating monocytes and their expression of human leukocyte antigen (HLA)-DR, which correlated with the magnitude of the memory CD4+ T cell response. Single-cell analyses revealed epigenetic alterations in monocyte and dendritic cell subsets, affecting accessibility of transcription factors involved in cell functions including activator protein-1 (AP-1), GATA, C/EBP, and interferon regulatory factor. The functional changes were characterized by a reduced proinflammatory response to Toll-like receptor activation and an improved response to interferon-γ, a cytokine critical for the adjuvant's mode of action. Epigenetic changes were most evident shortly after the second vaccine dose in CD14+ monocytes, for which accessibility differences of some transcription factors could persist for up to 6 months postvaccination. Together, we show that reprogramming of monocyte subsets occurs after vaccination with an AS01-adjuvanted vaccine, an effect that may contribute to the impact of vaccination beyond antigen-specific protection.
Collapse
Affiliation(s)
| | - Kinga K Smolen
- GSK, Rixensart, 1330, Belgium
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université libre de Bruxelles (ULB), Brussels, 1070, Belgium
| | | | | | | | | | - Arnaud Marchant
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université libre de Bruxelles (ULB), Brussels, 1070, Belgium
| | - Cheikh Ndour
- Business and Decision Life Sciences c/o GSK, Rixensart, 1330, Belgium
| | - Martin Taton
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université libre de Bruxelles (ULB), Brussels, 1070, Belgium
| | | | - Fabienne Willems
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université libre de Bruxelles (ULB), Brussels, 1070, Belgium
| | | |
Collapse
|
45
|
Chang LA, Schotsaert M. Ally, adversary, or arbitrator? The context-dependent role of eosinophils in vaccination for respiratory viruses and subsequent breakthrough infections. J Leukoc Biol 2024; 116:224-243. [PMID: 38289826 PMCID: PMC11288382 DOI: 10.1093/jleuko/qiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Eosinophils are a critical type of immune cell and central players in type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses toward effective antiviral responses is through vaccination, where typically a type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite preexisting immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease upon natural respiratory syncytial virus infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated respiratory syncytial virus. More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. On the basis of current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.
Collapse
Affiliation(s)
- Lauren A Chang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1630, New York, NY 10029, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
46
|
Samuel BER, Diaz FE, Maina TW, Corbett RJ, Tuggle CK, McGill JL. Evidence of innate training in bovine γδ T cells following subcutaneous BCG administration. Front Immunol 2024; 15:1423843. [PMID: 39100669 PMCID: PMC11295143 DOI: 10.3389/fimmu.2024.1423843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features. They are in higher proportion in the peripheral blood of cattle than humans or rodents and play an essential role in bovine immune response to pathogens. In the current study, we determined if BCG administration induced innate immune training in bovine γδ T cells. A group of 16 pre-weaned Holstein calves (2-4 d age) were enrolled in the study and randomly assigned to vaccine and control groups (n=8/group). The vaccine group received two doses of 106 colony forming units (CFU) BCG Danish strain subcutaneously, separated by 2 weeks. The control group remained unvaccinated. Gamma delta T cells were purified from peripheral blood using magnetic cell sorting three weeks after receiving the 1st BCG dose. We observed functional changes in the γδ T cells from BCG-treated calves shown by increased IL-6 and TNF-α cytokine production in response to in vitro stimulation with Escherichia coli LPS and PAM3CSK4. ATAC-Seq analysis of 78,278 regions of open chromatin (peaks) revealed that γδ T cells from BCG-treated calves had an altered epigenetic status compared to cells from the control calves. Differentially accessible peaks (DAP) found near the promoters of innate immunity-related genes like Siglec14, Irf4, Ifna2, Lrrfip1, and Tnfrsf10d were 1 to 4-fold more accessible in cells from BCG-treated calves. MOTIF enrichment analysis of the sequences within DAPs, which explores transcription factor binding motifs (TFBM) upstream of regulatory elements, revealed TFBM for Eomes and IRF-5 were among the most enriched transcription factors. GO enrichment analysis of genes proximal to the DAPs showed enrichment of pathways such as regulation of IL-2 production, T-cell receptor signaling pathway, and other immune regulatory pathways. In conclusion, our study shows that subcutaneous BCG administration in pre-weaned calves can induce innate immune memory in the form of trained immunity in γδ T cells. This memory is associated with increased chromatin accessibility of innate immune response-related genes, thereby inducing a functional trained immune response evidenced by increased IL-6 and TNF-α cytokine production.
Collapse
Affiliation(s)
- Beulah Esther Rani Samuel
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Fabian E. Diaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Teresia W. Maina
- Immunology, Cargill Animal Nutrition & Health, Elk River, MN, United States
| | - Ryan J. Corbett
- Center for Data Driven Discovery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
47
|
Zuo Z, Mu Y, Qi F, Zhang H, Li Z, Zhou T, Guo W, Guo K, Hu X, Yao Z. Influenza Vaccination Mediates SARS-CoV-2 Spike Protein Peptide-Induced Inflammatory Response via Modification of Histone Acetylation. Vaccines (Basel) 2024; 12:731. [PMID: 39066369 PMCID: PMC11281326 DOI: 10.3390/vaccines12070731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024] Open
Abstract
The effectiveness of coronavirus disease 2019 (COVID-19) vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain rapidly wanes over time. Growing evidence from epidemiological studies suggests that influenza vaccination is associated with a reduction in the risk of SARS-CoV-2 infection and COVID-19 severity. However, the underlying mechanisms remain elusive. Here, we investigate the cross-reactive immune responses of influenza vaccination to SARS-CoV-2 spike protein peptides based on in vitro study. Our data indicate enhanced activation-induced-marker (AIM) expression on CD4+ T cells in influenza-vaccination (IV)-treated peripheral blood mononuclear cells (PBMCs) upon stimulation with spike-protein-peptide pools. The fractions of other immune cell subtypes, including CD8+ T cells, monocytes, NK cells, and antigen-presenting cells, were not changed between IV-treated and control PBMCs following ex vivo spike-protein-peptide stimulation. However, the classical antiviral (IFN-γ) and anti-inflammatory (IL-1RA) cytokine responses to spike-protein-peptide stimulation were still enhanced in PBMCs from both IV-immunized adult and aged mice. Decreased expression of proinflammatory IL-1β, IL-12p40, and TNF-α is associated with inhibited levels of histone acetylation in PBMCs from IV-treated mice. Remarkably, prior immunity to SARS-CoV-2 does not result in modification of histone acetylation or hemagglutinin-protein-induced cytokine responses. This response is antibody-independent but can be mediated by manipulating the histone acetylation of PBMCs. These data experimentally support that influenza vaccination could induce modification of histone acetylation in immune cells and reveal the existence of potential cross-reactive immunity to SARS-CoV-2 antigens, which may provide insights for the adjuvant of influenza vaccine to limit COVID-19-related inflammatory responses.
Collapse
Affiliation(s)
- Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; (Z.Z.)
| | - Yating Mu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; (Z.Z.)
| | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongyang Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihui Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tuo Zhou
- Guangzhou Women and Children’s Medical Center, Guangzhou 510620, China
| | - Wenhai Guo
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kaihua Guo
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; (Z.Z.)
| | - Zhibin Yao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
48
|
Nouri N, Gaglia G, Mattoo H, de Rinaldis E, Savova V. GENIX enables comparative network analysis of single-cell RNA sequencing to reveal signatures of therapeutic interventions. CELL REPORTS METHODS 2024; 4:100794. [PMID: 38861988 PMCID: PMC11228368 DOI: 10.1016/j.crmeth.2024.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular responses to perturbations such as therapeutic interventions and vaccines. Gene relevance to such perturbations is often assessed through differential expression analysis (DEA), which offers a one-dimensional view of the transcriptomic landscape. This method potentially overlooks genes with modest expression changes but profound downstream effects and is susceptible to false positives. We present GENIX (gene expression network importance examination), a computational framework that transcends DEA by constructing gene association networks and employing a network-based comparative model to identify topological signature genes. We benchmark GENIX using both synthetic and experimental datasets, including analysis of influenza vaccine-induced immune responses in peripheral blood mononuclear cells (PBMCs) from recovered COVID-19 patients. GENIX successfully emulates key characteristics of biological networks and reveals signature genes that are missed by classical DEA, thereby broadening the scope of target gene discovery in precision medicine.
Collapse
Affiliation(s)
- Nima Nouri
- Precision Medicine and Computational Biology, Sanofi, 350 Water Street, Cambridge, MA 02141, USA.
| | - Giorgio Gaglia
- Precision Medicine and Computational Biology, Sanofi, 350 Water Street, Cambridge, MA 02141, USA
| | - Hamid Mattoo
- Precision Medicine and Computational Biology, Sanofi, 350 Water Street, Cambridge, MA 02141, USA
| | - Emanuele de Rinaldis
- Precision Medicine and Computational Biology, Sanofi, 350 Water Street, Cambridge, MA 02141, USA
| | - Virginia Savova
- Precision Medicine and Computational Biology, Sanofi, 350 Water Street, Cambridge, MA 02141, USA.
| |
Collapse
|
49
|
Marin C, Ruiz Moreno FN, Sánchez Vallecillo MF, Pascual MM, Dho ND, Allemandi DA, Palma SD, Pistoresi-Palencia MC, Crespo MI, Gomez CG, Morón G, Maletto BA. Improved biodistribution and enhanced immune response of subunit vaccine using a nanostructure formed by self-assembly of ascorbyl palmitate. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 58:102749. [PMID: 38719107 DOI: 10.1016/j.nano.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/04/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
New adjuvant strategies are needed to improve protein-based subunit vaccine immunogenicity. We examined the potential to use nanostructure of 6-O-ascorbyl palmitate to formulate ovalbumin (OVA) protein and an oligodeoxynucleotide (CpG-ODN) (OCC). In mice immunized with a single dose, OCC elicited an OVA-specific immune response superior to OVA/CpG-ODN solution (OC). Rheological studies demonstrated OCC's self-assembling viscoelastic properties. Biodistribution studies indicated that OCC prolonged OVA and CpG-ODN retention at injection site and lymph nodes, reducing systemic spread. Flow-cytometry assays demonstrated that OCC promoted OVA and CpG-ODN co-uptake by Ly6ChiCD11bhiCD11c+ monocytes. OCC and OC induced early IFN-γ in lymph nodes, but OCC led to higher concentration. Conversely, mice immunized with OC showed higher serum IFN-γ concentration compared to those immunized with OCC. In mice immunized with OCC, NK1.1+ cells were the IFN-γ major producers, and IFN-γ was essential for OVA-specific IgG2c switching. These findings illustrate how this nanostructure improves vaccine's response.
Collapse
Affiliation(s)
- Constanza Marin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Federico N Ruiz Moreno
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - María F Sánchez Vallecillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - María M Pascual
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Nicolas D Dho
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Daniel A Allemandi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas; CONICET, UNITEFA, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Santiago D Palma
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas; CONICET, UNITEFA, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - María C Pistoresi-Palencia
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - María I Crespo
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Cesar G Gomez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina; CONICET, IPQA, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina
| | - Gabriel Morón
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Belkys A Maletto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| |
Collapse
|
50
|
Cao R, Thatavarty A, King KY. Forged in the fire: Lasting impacts of inflammation on hematopoietic progenitors. Exp Hematol 2024; 134:104215. [PMID: 38580008 DOI: 10.1016/j.exphem.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Quiescence and differentiation of hematopoietic stem and progenitor cells (HSPC) can be modified by systemic inflammatory cues. Such cues can not only yield short-term changes in HSPCs such as in supporting emergency granulopoiesis but can also promote lasting influences on the HSPC compartment. First, inflammation can be a driver for clonal expansion, promoting clonal hematopoiesis for certain mutant clones, reducing overall clonal diversity, and reshaping the composition of the HSPC pool with significant health consequences. Second, inflammation can generate lasting cell-autonomous changes in HSPCs themselves, leading to changes in the epigenetic state, metabolism, and function of downstream innate immune cells. This concept, termed "trained immunity," suggests that inflammatory stimuli can alter subsequent immune responses leading to improved innate immunity or, conversely, autoimmunity. Both of these concepts have major implications in human health. Here we reviewed current literature about the lasting effects of inflammation on the HSPC compartment and opportunities for future advancement in this fast-developing field.
Collapse
Affiliation(s)
- Ruoqiong Cao
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Apoorva Thatavarty
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Genetics and Genomics, Baylor College of Medicine, Houston, Texas; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Katherine Y King
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX.
| |
Collapse
|