1
|
Viox EG, Richard J, Grandea AG, Nguyen K, Harper J, Auger J, Ding S, Gasser R, Prévost J, Marchitto L, Medjahed H, Bourassa C, Gaudette F, Pagliuzza A, Trifone CA, Gavegnano C, Hurwitz SJ, Park J, Clark NM, Hammad I, Capuano S, Martin MA, Schinazi RF, Silvestri G, Kulpa DA, Kumar P, Chomont N, Pazgier M, Smith AB, Sodroski J, Evans DT, Finzi A, Paiardini M. Safety, pharmacokinetics, and biological activity of CD4-mimetic BNM-III-170 in SHIV-infected rhesus macaques. J Virol 2025; 99:e0006225. [PMID: 40192306 DOI: 10.1128/jvi.00062-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/10/2025] [Indexed: 05/21/2025] Open
Abstract
Anti-HIV-1 antibodies capable of mediating ADCC are elicited by the majority of people with HIV-1 and preferentially target the "open," CD4-bound conformation of HIV-1 envelope glycoproteins (Env). However, due to the "closed" conformation sampled by unliganded HIV-1-Envs, these antibodies are ineffective at eliminating infected cells. BNM-III-170 is a small-molecule CD4-mimetic compound that binds the Phe43 cavity of the gp120 subunit of Env, forcing Env to "open up," thus exposing epitopes targeted by CD4-induced (CD4i), ADCC-mediating antibodies. Here, we assessed the safety, pharmacokinetics, and biological activity of BNM-III-170 in uninfected and SHIV-AD8-EO-infected rhesus macaques (RMs). In uninfected RMs, single subcutaneous administrations of 3-36 mg/kg BNM-III-170 were well-tolerated, with serum half-lives ranging from 3 to 6 h. In SHIV-infected RMs, four different regimens were evaluated: 2 × 36 mg/kg daily, 1 × 24 mg/kg, 3 × 36 mg/kg every 7 days, and 3 × 36 mg/kg every 3 days. While toxicity was observed with daily doses, all other regimens demonstrated reasonable safety profiles. No changes in plasma viral loads were observed in SHIV-infected RMs following any of the evaluated BNM-III-170 dosing regimens. However, plasma collected following BNM-III-170 administration was shown to have increased binding to infected cells and to sensitize SHIV AD8-EO virions to neutralization by otherwise non-neutralizing antibodies. In addition, the plasma of treated animals mediated ADCC in the presence of BNM-III-170. These results establish a well-tolerated BNM-III-170 dosing regimen in SHIV-infected RMs and serve as proof of concept for its biological activity in promoting the targeting of infected cells by CD4i ADCC-mediating antibodies. Thus, they inform future studies evaluating CD4mc treatment in ART-treated animals.IMPORTANCEA therapeutic regimen able to eradicate or functionally cure HIV-1 remains elusive and may require a "shock-and-kill" approach to reactivate and then purge the latent HIV-1 reservoir. The small-molecule CD4-mimetic compound BNM-III-170 has previously been shown to (i) sensitize HIV-1-infected cells to ADCC mediated by plasma from people with HIV-1 (PWH) in vitro and (ii) significantly delay the time to viral rebound following ART interruption when combined with anti-CoRBS + anti-cluster A Abs or plasma from PWH in humanized mice. To evaluate the use of BNM-III-170 as part of a kill approach, we characterized the safety, pharmacokinetics, and biological activity of BNM-III-170 in uninfected and SHIV-infected RMs. Our study identifies a tolerable BNM-III-170 dosing regimen in SHIV-infected RMs and provides insights into its antiviral activities; as such, it informs future studies evaluating the efficacy of BNM-III-170 in reducing the viral reservoir.
Collapse
Affiliation(s)
- Elise G Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Andres G Grandea
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - James Auger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | - Cesar Ariel Trifone
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Christina Gavegnano
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Selwyn J Hurwitz
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jun Park
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha M Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Iman Hammad
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Raymond F Schinazi
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Deanna A Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Sugata K, Rahman A, Niimura K, Monde K, Ueno T, Rajib SA, Takatori M, Sakhor W, Hossain MB, Sithi SN, Jahan MI, Matsuda K, Ueda M, Yamano Y, Ikeda T, Ueno T, Tsuchiya K, Tanaka Y, Tokunaga M, Maeda K, Utsunomiya A, Okuma K, Ono M, Satou Y. Intragenic viral silencer element regulates HTLV-1 latency via RUNX complex recruitment. Nat Microbiol 2025:10.1038/s41564-025-02006-7. [PMID: 40360701 DOI: 10.1038/s41564-025-02006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
Retroviruses integrate their genetic material into the host genome, enabling persistent infection. Human T cell leukaemia virus type 1 (HTLV-1) and human immunodeficiency virus type 1 (HIV-1) share similarities in genome structure and target cells, yet their infection dynamics differ drastically. While HIV-1 leads to high viral replication and immune system collapse, HTLV-1 establishes latency, promoting the survival of infected cells and, in some cases, leading to leukaemia. The mechanisms underlying this latency preference remain unclear. Here we analyse blood samples from people with HTLV-1 and identify an open chromatin region within the HTLV-1 provirus that functions as a transcriptional silencer and regulates transcriptional burst. The host transcription factor RUNX1 binds to this open chromatin region, repressing viral expression. Mutation of this silencer enhances HTLV-1 replication and immunogenicity, while its insertion into HIV-1 suppresses viral production. These findings reveal a strategy by which HTLV-1 ensures long-term persistence, offering potential insights into retroviral evolution and therapeutic targets.
Collapse
Affiliation(s)
- Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Koki Niimura
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- School of Medicine, Kumamoto University, Kumamoto, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Takatori
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Wajihah Sakhor
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Md Belal Hossain
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sharmin Nahar Sithi
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - M Ishrat Jahan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuetsu Tanaka
- School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
3
|
Yang X, Zhu Y, Zhao X, Xun J, Wang X, Cheng Y, Xiong S, Yu X, Li S, Wang D, Hu Z, Shen Y, Jiang S, Lu H, Wang G, Zhu H. RYBP promotes HIV-1 latency through promoting H2AK119ub and decreasing H3K4me3. Cell Commun Signal 2025; 23:222. [PMID: 40361117 PMCID: PMC12070685 DOI: 10.1186/s12964-025-02221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Acquired immunodeficiency syndrome (AIDS) cannot be completely cured, and the main obstacle is the existence of viral reservoirs. However, we currently do not fully understand the molecular mechanisms by which HIV-1 latency is established and maintained. METHODS Here, based on engineered chromatin immunoprecipitation (enChIP) technology that using FLAG-tagged zinc finger nucleic acid proteins (FLAG-ZFP) that bind to the HIV-1 L region and chromatin immunoprecipitation, we identified RYBP as a new HIV-1 latency-promoting gene. The effect of RYBP on HIV-1 latency was explored in multiple cell lines and primary latency models through gene knockout methods. Western blot and chromatin immunoprecipitation (ChIP) were used to explore the molecular mechanism of RYBP in promoting HIV-1 latency. RESULTS Disruption of RYBP gene can activate latent HIV-1 in different latent cell lines and primary latent cell models. Mechanistically, the HIV-1 long terminal repeats (LTR) region binding protein Yin Yang 1 (YY1) can recruit RYBP to the HIV-1 L region. Then, RYBP can further recruit KDM2B, thereby promoting the increased ubiquitination level of H2AK119 and decreases the level of H3K4me3, to decrease HIV-1 L transcriptional elongation and enter a latent state. At the same time, during the stage of viral transcription and replication, Tat protein can inhibit the expression of RYBP, promoting viral transcription and replication. Finally, we found that the H2AK119ub inhibitor PRT4165 can promote latent HIV-1 activation and has good synergy with reported latent reactivating agents. CONCLUSION These results provide mechanistically new insights into a critical role of RYBP in the regulation of histone modification and H2AK119ub may be directly targeted to control HIV reservoirs.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China.
- Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, China.
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Jingna Xun
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xingyu Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Yipeng Cheng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Su Xiong
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Xingwen Yu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Suixiang Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Danqing Wang
- Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, China
| | - Zhiliang Hu
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing Medical University, Center for Global Health, School of Public Health, Nanjing, China
| | - Yinzhong Shen
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Gramatica A, Miller IG, Ward AR, Khan F, Kemmer TJ, Weiler J, Huynh TT, Zumbo P, Kurland AP, Leyre L, Ren Y, Klevorn T, Copertino DC, Chukwukere U, Levinger C, Dilling TR, Linden N, Board NL, Falling Iversen E, Terry S, Mota TM, Bedir S, Clayton KL, Bosque A, MacLaren Ehui L, Kovacs C, Betel D, Johnson JR, Paiardini M, Danesh A, Jones RB. EZH2 inhibition mitigates HIV immune evasion, reduces reservoir formation, and promotes skewing of CD8 + T cells toward less-exhausted phenotypes. Cell Rep 2025; 44:115652. [PMID: 40333189 DOI: 10.1016/j.celrep.2025.115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/28/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Persistent HIV reservoirs in CD4+ T cells pose a barrier to curing HIV infection. We identify overexpression of enhancer of zeste homolog 2 (EZH2) in HIV-infected CD4+ T cells that survive cytotoxic T lymphocyte (CTL) exposure, suggesting a mechanism of CTL resistance. Inhibition of EZH2 with the US Food and Drug Administration-approved drug tazemetostat increases surface expression of major histocompatibility complex (MHC) class I on CD4+ T cells, counterbalancing HIV Nef-mediated MHC class I downregulation. This improves CTL-mediated elimination of HIV-infected cells and suppresses viral replication in vitro. In a participant-derived xenograft mouse model, tazemetostat elevates MHC class I and the pro-apoptotic protein BIM in CD4+ T cells, facilitating CD8+ T cell-mediated reductions of HIV reservoir seeding. Additionally, tazemetostat promotes sustained skewing of CD8+ T cells toward less-differentiated and exhausted phenotypes. Our findings reveal EZH2 overexpression as a mechanism of CTL resistance and support the clinical evaluation of tazemetostat as a method of enhancing clearance of HIV reservoirs and improving CD8+ T cell function.
Collapse
Affiliation(s)
- Andrea Gramatica
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Itzayana G Miller
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Adam R Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Farzana Khan
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tyler J Kemmer
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jared Weiler
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tan Thinh Huynh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew P Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Louise Leyre
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Yanqin Ren
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Thais Klevorn
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Uchenna Chukwukere
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Callie Levinger
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20052, USA
| | - Thomas R Dilling
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Nathan L Board
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Sandra Terry
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Seden Bedir
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kiera L Clayton
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20052, USA
| | | | - Colin Kovacs
- Maple Leaf Medical Clinic and Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jeffry R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, GA 30322 USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ali Danesh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
5
|
Katusiime MG, Neer V, Guo S, Patro SC, Wang W, Luke B, Capoferri AA, Wu X, Horner AM, Rausch JW, Chahroudi A, Mavigner M, Kearney MF. Divergent populations of HIV-infected naive and memory CD4+ T cell clones in children on antiretroviral therapy. J Clin Invest 2025; 135:e188533. [PMID: 40048262 PMCID: PMC12043081 DOI: 10.1172/jci188533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/05/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUNDNaive cells comprise 90% of the CD4+ T cell population in neonates and exhibit distinct age-specific capacities for proliferation and activation. We hypothesized that HIV-infected naive CD4+ T cell populations in children on long-term antiretroviral therapy (ART) would thus be distinct from infected memory cells.METHODSPeripheral blood naive and memory CD4+ T cells from 8 children with perinatal HIV on ART initiated at age 1.7-17 months were isolated by FACS. DNA was extracted from sorted cells, and HIV proviruses were counted, evaluated for intactness, and subjected to integration site analysis (ISA).RESULTSNaive CD4+ T cells containing HIV proviruses were detected in children with 95% statistical confidence. A median 4.7% of long terminal repeat-containing naive CD4+ T cells also contained HIV genetic elements consistent with intactness. Full-length proviral sequencing confirmed intactness of 1 provirus. In the participant with the greatest degree of naive cell infection, ISA revealed infected expanded cell clones in both naive and memory T cells, with no common HIV integration sites detected between subsets. Divergent integration site profiles reflected differential gene expression patterns of naive and memory T cells.CONCLUSIONThese results demonstrate that HIV persisted in both naive and memory CD4+ T cells that underwent clonal expansion and harbored intact proviruses, and suggest that infected memory T cell clones do not frequently arise from naive cell differentiation in children with perinatal HIV on long-term ART.FUNDINGCenter for Cancer Research, NCI; Office of AIDS Research; NCI FLEX; Children's and Emory Junior Faculty Focused Award.
Collapse
Affiliation(s)
- Mary Grace Katusiime
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Victoria Neer
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | | | | | | | - Brian Luke
- Advanced Biomedical Computational Science, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam A. Capoferri
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | | | - Anna M. Horner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| |
Collapse
|
6
|
Fisher BM, Cevaal PM, Roche M, Lewin SR. HIV Tat as a latency reversing agent: turning the tables on viral persistence. Front Immunol 2025; 16:1571151. [PMID: 40292298 PMCID: PMC12021871 DOI: 10.3389/fimmu.2025.1571151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
The 'shock and kill' approach to an HIV cure involves the use of latency reversing agents (LRAs) to reactivate latent HIV, with the aim to induce death of infected cells through virus induced cytolysis or immune mediated clearance. Most LRAs tested to date have been unable to overcome the blocks to transcription elongation and splicing that persist in resting CD4+ T cells. Furthermore, most LRAs target host factors and therefore have associated toxicities. Therefore, there remains a high need for HIV-specific LRAs that can also potently upregulate expression of multiply-spliced HIV RNA and viral protein. The HIV Transactivator of Transcription (Tat) protein plays an important role in viral replication - amplifying transcription from the viral promoter - but it is present at low to negligible levels in latently infected cells. As such, it has been hypothesized that providing Tat in trans could result in efficient HIV reactivation from latency. Recent studies exploring different types of Tat-based LRAs have used different nanoparticles for Tat delivery and describe potent, HIV-specific induction of multiply-spliced HIV RNA and protein ex vivo. However, there are several potential challenges to using Tat as a therapeutic, including the ability of Tat to cause systemic toxicities in vivo, limited delivery of Tat to the HIV reservoir due to poor uptake of nucleic acid by resting cells, and challenges in activating truly transcriptionally silent viruses. Identifying ways to mitigate these challenges will be critical to developing effective Tat-based LRA approaches towards an HIV cure.
Collapse
Affiliation(s)
- Bridget M. Fisher
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paula M. Cevaal
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- ATRACT Research Centre, Infectious and Inflammatory Diseases Theme, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Dulery R, Guiraud V, Choquet S, Thieblemont C, Bachy E, Barete S, Todesco È, Arnulf B, Boissel N, Baruchel A, Bay JO, Le Gouill S, Houot R. T cell malignancies after CAR T cell therapy in the DESCAR-T registry. Nat Med 2025; 31:1130-1133. [PMID: 39779930 DOI: 10.1038/s41591-024-03458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
The risk of T cell malignancies after chimeric antigen receptor (CAR) T cell therapy is a concern, although the true incidence remains unclear. Here we analyzed the DESCAR-T registry database, encompassing all pediatric and adult patients with hematologic malignancies who received CAR T cell therapy in France since 1 July 2018. Of the 3,066 patients included (2,536 B cell lymphoma, 162 B cell acute lymphoblastic leukemia (ALL) and 368 multiple myeloma), 1,680 (54.8%) received axicabtagene ciloleucel, 205 (6.7%) brexucabtagene autoleucel, 44 (1.4%) lisocabtagene maraleucel and 769 (25.1%) tisagenlecleucel. All multiple myeloma patients received idecabtagene vicleucel, with none receiving ciltacabtagene autoleucel. After a median follow-up of 12.7 months for B cell lymphoma, 17.7 months for B cell ALL and 6.3 months for multiple myeloma, only one (0.03%) patient developed a T cell malignancy after CAR T infusion. Specifically, the patient was diagnosed with a primary cutaneous CD30+ T cell lymphoproliferative disorder (anaplastic lymphoma kinase-negative) 3 years after receiving tisagenlecleucel therapy for diffuse large B cell lymphoma. This was associated with the integration of a CAR clone into the tumor suppressor gene PLAAT4 (phospholipase A and acyltransferase 4). Thus, the development of this secondary T cell malignancy might be linked to the use of CAR T cell therapy. In conclusion, our findings indicate a very low risk of T cell malignancy after CAR T cell therapy.
Collapse
Affiliation(s)
- Remy Dulery
- Department of Clinical Hematology and Cellular Therapy, Sorbonne University, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, INSERM, UMRs 938, Centre de recherche Saint-Antoine (CRSA), Paris, France.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Vincent Guiraud
- Department of Virology, Sorbonne University, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sylvain Choquet
- Department of Clinical Hematology, Sorbonne University, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Catherine Thieblemont
- Hemato-oncology, Paris Cité University, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Emmanuel Bachy
- Hematology Department, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Stéphane Barete
- Unit of Dermatology, Sorbonne University, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ève Todesco
- Department of Virology, Sorbonne University, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bertrand Arnulf
- Department of Immuno-Hematology, Paris Cité University, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Boissel
- Hematology Adolescents and Young Adult Unit, Paris Cité University, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, URP-3518, Institut de Recherche Saint-Louis, Paris, France
| | - André Baruchel
- Department of Pediatric Hematology and Immunology, Paris Cité University, Hôpital Universitaire Robert Debré, Assistance Publique-Hôpitaux de Paris, EA3518, Institut de Recherche Saint-Louis, Paris, France
| | - Jacques-Olivier Bay
- Department of Adult Clinical Hematology and Cellular Therapy, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Steven Le Gouill
- Department of Hematology, Versailles Saint-Quentin University, Institut Curie, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Inserm/Institut Curie Centre de recherche, Saint-Cloud, France
| | - Roch Houot
- Department of Hematology, University Hospital of Rennes, UMR U1236, INSERM, University of Rennes, French Blood Establishment, Rennes, France
| |
Collapse
|
8
|
Tolomeo M, Tolomeo F, Cascio A. The Complex Interactions Between HIV-1 and Human Host Cell Genome: From Molecular Mechanisms to Clinical Practice. Int J Mol Sci 2025; 26:3184. [PMID: 40244051 PMCID: PMC11989121 DOI: 10.3390/ijms26073184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Antiretroviral therapy (ART) has significantly improved the prognosis of human immunodeficiency virus type 1 (HIV-1) infection. Although ART can suppress plasma viremia below detectable levels, it cannot eradicate the HIV-1 DNA (provirus) integrated into the host cell genome. This integration often results in unrepaired DNA damage due to the HIV-1-induced inhibition of DNA repair pathways. Furthermore, HIV-1 infection causes telomere attrition in host chromosomes, a critical factor contributing to CD4+ T cell senescence and apoptosis. HIV-1 proteins can induce DNA damage, block DNA replication, and activate DNA damage responses across various organs. In this review, we explore multiple aspects of the intricate interactions between HIV-1 and the host genome involved in CD4+ T cell depletion, inflammaging, the clonal expansion of infected cells in long-term-treated patients, and viral latency. We discuss the molecular mechanisms of DNA damage that contribute to comorbidities in HIV-1-infected individuals and highlight emerging therapeutic strategies targeting the integrated HIV-1 provirus.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, (Azienda Ospedaliera Universitaria Policlinico) A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Francesco Tolomeo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy;
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, (Azienda Ospedaliera Universitaria Policlinico) A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
9
|
Janssens J, Wedrychowski A, Kim SJ, Isbell C, Hoh R, Pillai SK, Henrich TJ, Deeks SG, Roan NR, Lee SA, Yukl SA. Longitudinal changes in the transcriptionally active and intact HIV reservoir after starting ART during acute infection. J Virol 2025; 99:e0143124. [PMID: 39907283 PMCID: PMC11915860 DOI: 10.1128/jvi.01431-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025] Open
Abstract
Even in antiretroviral therapy (ART)-suppressed human immunodeficiency virus (HIV)-infected individuals, there are heterogeneous populations of HIV-expressing cells exhibiting variable degrees of progression through blocks to HIV transcriptional initiation, elongation, completion, and splicing. These HIV-transcribing cells likely contribute to HIV-associated immune activation and inflammation as well as the viral rebound that occurs after stopping ART. However, it is unclear whether the blocks to HIV transcription are present before ART and how the timing and duration of ART may affect the clearance of cells expressing HIV transcripts that differ in their processivity and/or presence of mutations. To investigate these questions, we quantified different types of HIV transcripts and the corresponding HIV DNA regions/proviruses in longitudinal blood samples obtained before ART initiation (T1) and after 6 months (T2) and 1 year (T3) of ART in 16 individuals who initiated ART during acute HIV infection. Before ART, the pattern of HIV transcripts suggested blocks to elongation and splicing, and only ~10% of intact proviruses were transcribing intact HIV RNA. During the first 6 months of ART, we detected progressively greater reductions in initiated, 5'-elongated, mid-transcribed, completed, and multiply spliced HIV transcripts. Completed HIV RNA decayed faster than initiated or 5'-elongated HIV RNA, and intact HIV RNA tended to decay faster than defective HIV RNA. HIV DNA and RNA levels at T1-T3 correlated inversely with baseline CD4+ T-cell counts. Our findings suggest the existence of immune responses that act selectively to reduce HIV transcriptional completion and/or preferentially kill cells making completed or intact HIV RNA.IMPORTANCEEven in virologically suppressed HIV-infected individuals, expression of viral products from both intact and defective proviruses may contribute to HIV-associated immune activation and inflammation, which are thought to underlie the organ damage that persists despite suppressive ART. We investigated how the timing of ART initiation and the duration of ART affect the heterogeneous populations of HIV-transcribing cells, including a detailed characterization of the different HIV transcripts produced before ART and the rate at which they decay after ART initiation during acute HIV infection. Even during untreated infection, most cells (~90%) have blocks at some stage of transcription. Furthermore, different HIV transcripts decline at different rates on ART, with the fastest decay of cells making completed and intact HIV RNA. Our results suggest that intrinsic or extrinsic immune responses act selectively to either reduce particular stages of HIV transcription or cause selective killing of cells making particular HIV transcripts.
Collapse
Affiliation(s)
- Julie Janssens
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Adam Wedrychowski
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Sun Jin Kim
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Cordelia Isbell
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Satish K. Pillai
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Timothy J. Henrich
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Nadia R. Roan
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, California, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Sulggi A. Lee
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Steven A. Yukl
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
10
|
Jones JE, Gunderson CE, Wigdahl B, Nonnemacher MR. Impact of chromatin on HIV-1 latency: a multi-dimensional perspective. Epigenetics Chromatin 2025; 18:9. [PMID: 40055755 PMCID: PMC11889793 DOI: 10.1186/s13072-025-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a retrovirus that infects multiple immune cell types and integrates into host cell DNA termed provirus. Under antiretroviral control, provirus in cells is able to evade targeting by both host immune surveillance and antiretroviral drug regimens. Additionally, the provirus remains integrated for the life of the cell, and clonal expansion establishes a persistent reservoir. As host cells become quiescent following the acute stage of infection, the provirus also enters a latent state characterized by low levels of transcription and virion production. Proviral latency may last years or even decades, but stimuli such as immune activation, accumulation of viral proteins, and certain medications can trigger reactivation of proviral gene expression. Left untreated, this can lead to virema, development of pathogenic out comes, and even death as the immune system becomes weakened and dysregulated. Over the last few decades, the role of chromatin in both HIV-1 latency and reactivation has been characterized in-depth, and a number of host factors have been identified as key players in modifying the local (2D) chromatin environment of the provirus. Here, the impact of the 2D chromatin environment and its related factors are reviewed. Enzymes that catalyze the addition or removal of covalent groups from histone proteins, such as histone deacetylase complexes (HDACs) and methyltransferases (HMTs) are of particular interest, as they both alter the affinity of histones for proviral DNA and function to recruit other proteins that contribute to chromatin remodeling and gene expression from the provirus. More recently, advances in next-generation sequencing and imaging technology has enabled the study of how the higher-order (3D) chromatin environment relates to proviral latency, including the impacts of integration site and cell type. All together, these multi-dimensional factors regulate latency by influencing the degree of accessibility to the proviral DNA by transcription machinery. Finally, additional implications for therapeutics and functional studies are proposed and discussed.
Collapse
Affiliation(s)
- Joanna E Jones
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Chelsea E Gunderson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
11
|
Xu K, Zhang X, Asam K, Quach BC, Page GP, Konkle‐Parker D, Martinez C, Lahiri CD, Topper EF, Cohen MH, Kassaye SG, DeHovitz J, Kuniholm MH, Archin NM, Valizadeh A, Tien PC, Marconi VC, Hancock DB, Johnson EO, Aouizerat BE. Aberrant DNA methylation of genes regulating CD4+ T cell HIV-1 reservoir in women with HIV. Clin Transl Med 2025; 15:e70267. [PMID: 40070009 PMCID: PMC11896887 DOI: 10.1002/ctm2.70267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The HIV-1 reservoir in CD4+ T cells (HRCD4) pose a major challenge to curing HIV, with many of its mechanisms still unclear. HIV-1 DNA integration and immune responses may alter the host's epigenetic landscape, potentially silencing HIV-1 replication. METHODS This study used bisulphite capture DNA methylation sequencing in CD4+ T cells from the blood of 427 virally suppressed women with HIV to identify differentially methylated sites and regions associated with HRCD4. RESULTS The average total HRCD4 size was 1409 copies per million cells, with most proviruses defective and only a small proportion intact. The study identified 245 differentially methylated CpG sites and 85 regions linked to HRCD4 size, with 52% of significant sites in intronic regions. Genes associated with HRCD4 were involved in viral replication, HIV-1 latency and cell growth and apoptosis. HRCD4 size was inversely related to DNA methylation of interferon signalling genes and positively associated with methylation at known HIV-1 integration sites. HRCD4-associated genes were enriched on the pathways related to immune defence, transcription repression and host-virus interactions. CONCLUSIONS These findings suggest that HIV-1 reservoir is linked to aberrant DNA methylation in CD4+ T cells, offering new insights into epigenetic mechanisms of HIV-1 latency and potential molecular targets for eradication strategies. KEY POINTS Study involved 427 women with HIV. Identified 245 aberrant DNA methylation sites and 85 methylation regions in CD4+ T cells linked to the HIV-1 reservoir. Highlighted genes are involved in viral replication, immune defence, and host genome integration. Findings suggest potential molecular targets for eradication strategies.
Collapse
Affiliation(s)
- Ke Xu
- Department of Psychiatry, School of MedicineYale UniversityNew HavenConnecticutUSA
- VA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Xinyu Zhang
- Department of Psychiatry, School of MedicineYale UniversityNew HavenConnecticutUSA
- VA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Kesava Asam
- Department of Oral and Maxillofacial SurgeryNew York UniversityNew YorkNew YorkUSA
- Translational Research CenterNew York UniversityNew YorkNew YorkUSA
| | - Bryan C. Quach
- GenOmics and Translational Research CenterRTI International, Research Triangle ParkNorth CarolinaUSA
| | - Grier P. Page
- GenOmics and Translational Research CenterRTI International, Research Triangle ParkNorth CarolinaUSA
- Fellow Program, RTI International, Research Triangle ParkNorth CarolinaUSA
| | - Deborah Konkle‐Parker
- Schools of Nursing, Medicine, and Population HealthUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Claudia Martinez
- Miller School of Medicine, Division of Cardiovascular MedicineUniversity of MiamiMiamiFloridaUSA
| | - Cecile D. Lahiri
- Department of Medicine, Division of Infectious DiseasesEmory University School of MedicineAtlantaGeorgiaUSA
| | - Elizabeth F. Topper
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mardge H. Cohen
- Department of Medicine, Stroger HospitalCook County Health SystemChicagoIllinoisUSA
| | - Seble G. Kassaye
- Department of Medicine, Division of Infectious DiseasesGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Jack DeHovitz
- Department of Medicine, Division of Infectious DiseasesDownstate Health Sciences UniversityBrooklynNew YorkUSA
| | - Mark H. Kuniholm
- Department of Epidemiology and BiostatisticsUniversity at Albany, State University of New YorkRensselaerNew YorkUSA
| | - Nancie M. Archin
- UNC HIV Cure CenterUniversity of North Carolina at Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
- Department of Medicine, Division of Infectious DiseasesUniversity of North Carolina at Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| | - Amir Valizadeh
- Department of Psychiatry, School of MedicineYale UniversityNew HavenConnecticutUSA
- VA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Phyllis C. Tien
- Department of MedicineUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Vincent C. Marconi
- Department of Medicine, Division of Infectious DiseasesEmory University School of MedicineAtlantaGeorgiaUSA
- Hubert Department of Global Health, Rollins School of Public HealthAtlantaGeorgiaUSA
- Atlanta VA Medical CenterDecaturGeorgiaUSA
| | - Dana B. Hancock
- GenOmics and Translational Research CenterRTI International, Research Triangle ParkNorth CarolinaUSA
| | - Eric O. Johnson
- GenOmics and Translational Research CenterRTI International, Research Triangle ParkNorth CarolinaUSA
- Fellow Program, RTI International, Research Triangle ParkNorth CarolinaUSA
| | - Bradley E. Aouizerat
- Department of Oral and Maxillofacial SurgeryNew York UniversityNew YorkNew YorkUSA
- Translational Research CenterNew York UniversityNew YorkNew YorkUSA
| |
Collapse
|
12
|
Singh M, Leddy SM, Iñiguez LP, Bendall ML, Nixon DF, Feschotte C. Transposable elements may enhance antiviral resistance in HIV-1 elite controllers. Genome Biol 2025; 26:28. [PMID: 39988678 PMCID: PMC11849351 DOI: 10.1186/s13059-025-03484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Less than 0.5% of people living with HIV-1 are elite controllers (ECs)-individuals who maintain undetectable plasma viremia without antiretroviral therapy, despite having replication-competent viral reservoirs. While EC CD4+ T cells have been investigated for gene expression signatures associated with HIV-1 resistance, the expression and regulatory activity of transposable elements (TEs) remain unexplored. TEs can directly impact host immune responses to pathogens, including HIV-1, suggesting their activities could contribute to HIV-1 elite control. To begin testing this hypothesis, we conduct a TE-centric analysis of public multi-omics data from ECs and other populations. RESULTS We find the CD4+ T cell transcriptome and retrotranscriptome of ECs are distinct from healthy controls, from people living with HIV-1 on antiretroviral therapy, and from viremic progressors. However, there is substantial transcriptomic heterogeneity among ECs. We categorize ECs into four clusters with distinct expression and chromatin accessibility profiles of TEs and antiviral factors. Several TE families with known immuno-regulatory activity are differentially expressed among ECs. Their expression positively correlates with their chromatin accessibility in ECs and negatively correlates with the expression of their KRAB zinc-finger (KZNF) repressors. This coordinated, locus-level variation forms a network of putative cis-regulatory elements for genes involved in HIV-1 restriction. CONCLUSIONS We propose that the EC phenotype is driven in part by reduced KZNF-mediated repression of specific TE-derived cis-regulatory elements for antiviral genes, heightening their resistance against HIV-1. Our study reveals heterogeneity in the EC CD4+ T cell transcriptome, including variable expression of TEs and their KZNF controllers, that must be considered when deciphering HIV-1 control mechanisms.
Collapse
Affiliation(s)
- Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Sabrina M Leddy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Luis Pedro Iñiguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Matthew L Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Zhang TH, Shi Y, Komarova NL, Wordaz D, Kostelny M, Gonzales A, Abbaali I, Chen H, Bresson-Tan G, Dimapasoc M, Harvey W, Oh C, Carmona C, Seet C, Du Y, Sun R, Zack JA, Kim JT. Barcoded HIV-1 reveals viral persistence driven by clonal proliferation and distinct epigenetic patterns. Nat Commun 2025; 16:1641. [PMID: 39952916 PMCID: PMC11829055 DOI: 10.1038/s41467-025-56771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
The HIV reservoir consists of infected cells in which the HIV-1 genome persists as provirus despite effective antiretroviral therapy (ART). Studies exploring HIV cure therapies often measure intact proviral DNA levels, time to rebound after ART interruption, or ex vivo stimulation assays of latently infected cells. This study utilizes barcoded HIV to analyze the reservoir in humanized mice. Using bulk PCR and deep sequencing methodologies, we retrieve 890 viral RNA barcodes and 504 proviral barcodes linked to 15,305 integration sites at the single RNA or DNA molecule in vivo. We track viral genetic diversity throughout early infection, ART, and rebound. The proviral reservoir retains genetic diversity despite cellular clonal proliferation and viral seeding by rebounding virus. Non-proliferated cell clones are likely the result of elimination of proviruses associated with transcriptional activation and viremia. Elimination of proviruses associated with viremia is less prominent among proliferated cell clones. Proliferated, but not massively expanded, cell clones contribute to proviral expansion and viremia, suggesting they fuel viral persistence. This approach enables comprehensive assessment of viral levels, lineages, integration sites, clonal proliferation and proviral epigenetic patterns in vivo. These findings highlight complex reservoir dynamics and the role of proliferated cell clones in viral persistence.
Collapse
Affiliation(s)
- Tian-Hao Zhang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Natalia L Komarova
- Department of Mathematics, University of California San Diego, La Jolla, CA, USA
| | - Dominik Wordaz
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, USA
| | - Matthew Kostelny
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Alexander Gonzales
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Izra Abbaali
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Hongying Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Gabrielle Bresson-Tan
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Melanie Dimapasoc
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - William Harvey
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Christopher Oh
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Camille Carmona
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Christopher Seet
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California, USA
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jerome A Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California, USA
| | - Jocelyn T Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA.
| |
Collapse
|
14
|
Chen W, Berkhout B, Pasternak AO. Phenotyping Viral Reservoirs to Reveal HIV-1 Hiding Places. Curr HIV/AIDS Rep 2025; 22:15. [PMID: 39903363 PMCID: PMC11794352 DOI: 10.1007/s11904-025-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist in various cell types and tissues and reignite active replication if therapy is stopped. Persistence of the viral reservoirs in people with HIV-1 (PWH) is the main obstacle to achieving a cure. Identification and characterization of cellular and tissue HIV-1 reservoirs is thus central to the cure research. Here, we discuss emerging insights into the phenotype of HIV-1 reservoir cells. RECENT FINDINGS HIV-1 persists in multiple tissues, anatomic locations, and cell types. Although contributions of different CD4 + T-cell subsets to the HIV-1 reservoir are not equal, all subsets harbor a part of the viral reservoir. A number of putative cellular markers of the HIV-1 reservoir have been proposed, such as immune checkpoint molecules, integrins, and pro-survival factors. CD32a expression was shown to be associated with a very prominent enrichment in HIV-1 DNA, although this finding has been challenged. Recent technological advances allow unbiased single-cell phenotypic analyses of cells harbouring total or intact HIV-1 proviruses. A number of phenotypic markers have been reported by several independent studies to be enriched on HIV-1 reservoir cells. Expression of some of these markers could be mechanistically linked to the reservoir persistence, as they could for instance shield the reservoir cells from the immune recognition or promote their survival. However, so far no single phenotypic marker, or combination of markers, can effectively distinguish HIV-infected from uninfected cells or identify all reservoir cells.
Collapse
Affiliation(s)
- Wenxuan Chen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Charre C, Merad Y, Avettand-Fenoel V. HIV-1 reservoir landscape of post-treatment control. Curr Opin HIV AIDS 2025; 20:99-108. [PMID: 39484860 DOI: 10.1097/coh.0000000000000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
PURPOSE OF REVIEW This review explores the viral reservoir landscape in individuals who control viral replication after treatment interruption (TI), designated as post-treatment controllers (PTCs). Identifying their virologic features is crucial to inform drug-free HIV remission strategies. RECENT FINDINGS Traditionally characterized as small, likely due to early treatment, the viral reservoir of PTCs, after TI, exhibits limited transcriptional activity, residual viral replication and subsequent proviral diversity. Intact proviruses are found to be restricted. In nonhuman primate PTCs, this depletion of intact proviruses is already observed in lymph nodes before TI, suggesting that control mechanisms begin during antiretroviral therapy. Furthermore, recent studies suggest immune-driven proviral deep latency associated with repressive epigenetic features and integration sites in PTCs. While molecular mapping of virological features of PTCs is increasingly precise and coupled with in-depth immunologic assays, robust predictive biomarkers of PTCs are still lacking. SUMMARY Despite limited sample sizes and heterogeneous definitions, common virologic features of PTCs include restricted reservoir size and transcriptional activity, fewer intact proviruses and deep proviral latency. Ongoing research using innovative technologies will further elucidate the mechanisms underlying post-treatment control, paving the way for successful HIV cure interventions.
Collapse
Affiliation(s)
- Caroline Charre
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin
- AP-HP, Service de virologie, Hôpital Cochin, Paris
| | - Yanis Merad
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin
- Hospices Civils de Lyon, Service des Maladies Infectieuses et Tropicales, Lyon
| | - Véronique Avettand-Fenoel
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin
- CHU d'Orléans
- Université d'Orléans, LI RSO, Orléans, France
| |
Collapse
|
17
|
Rai P, Mehrotra S, Prajapati VK. Exploring immunotherapy to control human infectious diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:389-429. [PMID: 39978973 DOI: 10.1016/bs.apcsb.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Infectious diseases continue to pose significant challenges to global health, especially with the rise of antibiotic resistance and emerging pathogens. Traditional treatments, while effective, are often limited in the face of rapidly evolving pathogens. Immunotherapy, which harnesses and enhances the body's immune response, offers a promising alternative to conventional approaches for the treatment of infectious diseases. By employing use of monoclonal antibodies, vaccines, cytokine therapies, and immune checkpoint inhibitors, immunotherapy has demonstrated considerable potential in overcoming treatment resistance and improving patient outcomes. Key innovations, including the development of mRNA vaccines, use of immune modulators, adoptive cell transfer, and chimeric antigen receptor (CAR)-T cell therapy are paving the way for more targeted pathogen clearance. Further, combining immunotherapy with conventional antibiotic treatment has demonstrated effectiveness against drug-resistant strains, but this chapter explores the evolving field of immunotherapy for the treatment of bacterial, viral, fungal, and parasitic infections. The chapter also explores the recent breakthroughs and ongoing clinical trials in infectious disease immunotherapy.
Collapse
Affiliation(s)
- Praveen Rai
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
18
|
Moskovljevic M, Dragoni F, Board NL, Wu F, Lai J, Zhang H, White JR, Hoh R, Lynn K, Tebas P, Mounzer K, Deeks SG, Montaner LJ, Siliciano JD, Siliciano RF, Simonetti FR. Cognate antigen engagement induces HIV-1 expression in latently infected CD4 + T cells from people on long-term antiretroviral therapy. Immunity 2024; 57:2928-2944.e6. [PMID: 39612916 PMCID: PMC11896817 DOI: 10.1016/j.immuni.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Despite antiretroviral therapy (ART), HIV-1 persists in latently infected CD4+ T cells, preventing a cure. Antigens drive the proliferation of infected cells, precluding latent reservoir decay. However, the relationship between antigen recognition and HIV-1 gene expression is poorly understood because most studies of latency reversal use agents that induce non-specific global T cell activation. Here, we isolated rare CD4+ T cells responding to cytomegalovirus (CMV) or HIV-1 Gag antigens from people living with HIV-1 on long-term ART and assessed T cell activation and HIV-1 RNA expression upon coculture with autologous dendritic cells (DCs) presenting cognate antigens. Presentation of cognate antigens ex vivo induced broad T cell activation (median 42-fold increase in CD154+CD69+ cells) and significantly increased HIV-1 transcription (median 4-fold), mostly through the induction of rare cells with higher viral expression. Thus, despite low proviral inducibility, antigen recognition can promote HIV-1 expression, potentially contributing to spontaneous reservoir activity and viral rebound upon ART interruption.
Collapse
Affiliation(s)
- Milica Moskovljevic
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Filippo Dragoni
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nathan L Board
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Fengting Wu
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jun Lai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Rebecca Hoh
- Division of HIV, School of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Kenneth Lynn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pablo Tebas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karam Mounzer
- Jonathan Lax Treatment Center, Philadelphia FIGHT, Philadelphia, PA 19107, USA
| | - Steven G Deeks
- Division of HIV, School of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | | | - Janet D Siliciano
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| | - Francesco R Simonetti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Park K, Lee D, Jeong J, Lee S, Kim S, Ahn K. Human immunodeficiency virus-1 induces host genomic R-loops and preferentially integrates its genome near the R-loop regions. eLife 2024; 13:RP97348. [PMID: 39630854 PMCID: PMC11616997 DOI: 10.7554/elife.97348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Although HIV-1 integration sites favor active transcription units in the human genome, high-resolution analysis of individual HIV-1 integration sites has shown that the virus can integrate into a variety of host genomic locations, including non-genic regions. The invisible infection by HIV-1 integrating into non-genic regions, challenging the traditional understanding of HIV-1 integration site selection, is more problematic because they are selected for preservation in the host genome during prolonged antiretroviral therapies. Here, we showed that HIV-1 integrates its viral genome into the vicinity of R-loops, a genomic structure composed of DNA-RNA hybrids. VSV-G-pseudotyped HIV-1 infection initiates the formation of R-loops in both genic and non-genic regions of the host genome and preferentially integrates into R-loop-rich regions. Using a HeLa cell model that can independently control transcriptional activity and R-loop formation, we demonstrated that the exogenous formation of R-loops directs HIV-1 integration-targeting sites. We also found that HIV-1 integrase proteins physically bind to the host genomic R-loops. These findings provide novel insights into the mechanisms underlying retroviral integration and the new strategies for antiretroviral therapy against HIV-1 latent infection.
Collapse
Affiliation(s)
- Kiwon Park
- Center for RNA Research, Institute for Basic ScienceSeoulRepublic of Korea
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Dohoon Lee
- Bioinformatics Institute, Seoul National UniversitySeoulRepublic of Korea
- BK21 FOUR Intelligence Computing, Seoul National UniversitySeoulRepublic of Korea
| | - Jiseok Jeong
- Center for RNA Research, Institute for Basic ScienceSeoulRepublic of Korea
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Sungwon Lee
- Center for RNA Research, Institute for Basic ScienceSeoulRepublic of Korea
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic ScienceSeoulRepublic of Korea
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
- SNU Institute for Virus Research, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
20
|
Maikoo S, Palstra RJ, Dong KL, Mahmoudi T, Ndung'u T, Madlala P. Development of a latency model for HIV-1 subtype C and the impact of long terminal repeat element genetic variation on latency reversal. J Virus Erad 2024; 10:100575. [PMID: 39811575 PMCID: PMC11730875 DOI: 10.1016/j.jve.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus. Furthermore, the impact of genetic variation between viral subtypes, specifically within the long terminal repeat (LTR) element of the viral transcriptional promoter on latency reversal, remains unclear. To address this scientific gap, we constructed a minimal genome retroviral vector expressing HIV-1C consensus transactivator of transcription protein (Tat) and green fluorescent protein (GFP) under the control of either HIV-1C consensus LTR (C731CC) or the transmitted/founder (T/F) LTRs derived from PLWH (CT/F731CC), produced corresponding LTR pseudotyped viruses using a vesicular stomatitis virus (VSV-G) pseudotyped Envelope vector and the pCMVΔR8.91 packaging vector containing HIV-1 accessory and rev genes. Viruses produced in this way were used to infect Jurkat E6 and primary CD4+ T cells in vitro. By enriching for latently infected cells, and treating them with different latency reversing agents, we developed an HIV-1C latency model that demonstrated that the HIV-1C consensus LTR has lower reactivation potential compared to its HIV-1B counterpart. Furthermore, HIV-1C T/F LTR pseudotyped proviral genetic variants exhibited a heterogenous reactivation response which was modulated by host cell (genetic) variation. Our data suggests that genetic variation both within and between HIV-1 subtypes influences latency reversal. Future studies should investigate the specific role of variation in host cellular environment on reactivation differences.
Collapse
Affiliation(s)
- Shreyal Maikoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, the Netherlands
- Department of Urology, Erasmus University Medical Center, the Netherlands
| | - Krista L. Dong
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Infectious Disease Division, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, the Netherlands
- Department of Urology, Erasmus University Medical Center, the Netherlands
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Africa Health Research Institute, Durban, KwaZulu-Natal, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Paradise Madlala
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
21
|
Wiśniewski J, Więcek K, Ali H, Pyrc K, Kula-Păcurar A, Wagner M, Chen HC. Distinguishable topology of the task-evoked functional genome networks in HIV-1 reservoirs. iScience 2024; 27:111222. [PMID: 39559761 PMCID: PMC11570469 DOI: 10.1016/j.isci.2024.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
HIV-1 reservoirs display a heterogeneous nature, lodging both intact and defective proviruses. To deepen our understanding of such heterogeneous HIV-1 reservoirs and their functional implications, we integrated basic concepts of graph theory to characterize the composition of HIV-1 reservoirs. Our analysis revealed noticeable topological properties in networks, featuring immunologic signatures enriched by genes harboring intact and defective proviruses, when comparing antiretroviral therapy (ART)-treated HIV-1-infected individuals and elite controllers. The key variable, the rich factor, played a pivotal role in classifying distinct topological properties in networks. The host gene expression strengthened the accuracy of classification between elite controllers and ART-treated patients. Markov chain modeling for the simulation of different graph networks demonstrated the presence of an intrinsic barrier between elite controllers and non-elite controllers. Overall, our work provides a prime example of leveraging genomic approaches alongside mathematical tools to unravel the complexities of HIV-1 reservoirs.
Collapse
Affiliation(s)
- Janusz Wiśniewski
- Quantitative Virology Research Group, Population Diagnostics Center, Łukasiewicz Research Network – PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Kamil Więcek
- Quantitative Virology Research Group, Population Diagnostics Center, Łukasiewicz Research Network – PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Haider Ali
- Molecular Virology Group, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A str, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A str, 30-387 Kraków, Poland
| | - Anna Kula-Păcurar
- Molecular Virology Group, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A str, 30-387 Kraków, Poland
| | - Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network – PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Heng-Chang Chen
- Quantitative Virology Research Group, Population Diagnostics Center, Łukasiewicz Research Network – PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| |
Collapse
|
22
|
Vela LC, Carrere L, Naasz C, Kalavacherla S, Tan TS, de Armas L, Gao C, Yu XG, Pahwa SG, Luzuriaga K, Lichterfeld M. Profound reduction of HIV-1 reservoir cells over 3 decades of antiretroviral therapy started in early infancy. JCI Insight 2024; 10:e186550. [PMID: 39541163 PMCID: PMC11721289 DOI: 10.1172/jci.insight.186550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
HIV-1 reservoir cells persist indefinitely during suppressive antiretroviral therapy (ART) in individuals who acquire infection in adulthood, but little is known about the longitudinal evolution of viral reservoir cells during long-term ART started during early infancy. We studied 2 fraternal twins who acquired HIV-1 perinatally, started ART at week 10 after birth and remained on ART for 28 years. We observed that the frequency of genome-intact proviruses, determined by single-genome near-full-length proviral sequencing, declined by approximately 4,000- to 13,000-fold during this period, indicating enhanced decay rates of intact proviruses even after adjusting for dilution effects from somatic growth. Despite analyzing more than one billion PBMC after 28 years of ART in each participant, no intact proviruses were detected in 1 participant, and 1 intact provirus was isolated in the other. The longitudinal decline of defective proviruses in the 2 participants was more similar to proviral decay kinetics reported in individuals who started ART during adulthood; moreover, clonal sequence clusters were readily detectable for defective proviruses but not for intact proviruses after 28 years of ART in the 2 twins. Together, these data suggest decreased long-term stability and increased immunological vulnerability of intact proviruses during long-term ART started in early infancy.
Collapse
Affiliation(s)
- Liliana C. Vela
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Chloe Naasz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sruthi Kalavacherla
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Toong Seng Tan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lesley de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Savita G. Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Sun W, Gao C, Gladkov GT, Roseto I, Carrere L, Parsons EM, Gasca-Capote C, Frater J, Fidler S, Yu XG, Lichterfeld M. Footprints of innate immune activity during HIV-1 reservoir cell evolution in early-treated infection. J Exp Med 2024; 221:e20241091. [PMID: 39466203 PMCID: PMC11519379 DOI: 10.1084/jem.20241091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Antiretroviral treatment (ART) initiation during the early stages of HIV-1 infection is associated with a higher probability of maintaining drug-free viral control during subsequent treatment interruptions, for reasons that remain unclear. Using samples from a randomized-controlled human clinical trial evaluating therapeutic HIV-1 vaccines, we here show that early ART commencement is frequently associated with accelerated and efficient selection of genome-intact HIV-1 proviruses in repressive chromatin locations during the first year after treatment initiation. This selection process was unaffected by vaccine-induced HIV-1-specific T cell responses. Single-cell proteogenomic profiling demonstrated that cells harboring intact HIV-1 displayed a discrete phenotypic signature of immune selection by innate immune responses, characterized by a slight but significant upregulation of HLA-C, HLA-G, the IL-10 receptor, and other markers involved in innate immune regulation. Together, these results suggest an accelerated immune selection of viral reservoir cells during early-treated HIV-1 infection that seems at least partially driven by innate immune responses.
Collapse
Affiliation(s)
- Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gregory Takashi Gladkov
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Elizabeth M. Parsons
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Carmen Gasca-Capote
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College and Imperial College NIHR Biomedical Research Centre, London, UK
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
24
|
Campagna R, Nonne C, Antonelli G, Turriziani O. Archived HIV-1 Drug Resistance Mutations: Role of Proviral HIV-1 DNA Genotype for the Management of Virological Responder People Living with HIV. Viruses 2024; 16:1697. [PMID: 39599811 PMCID: PMC11599110 DOI: 10.3390/v16111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Despite its effectiveness in controlling plasma viremia, antiretroviral therapy (ART) cannot target proviral DNA, which remains an obstacle to HIV-1 eradication. When treatment is interrupted, the reservoirs can act as a source of viral rebound, highlighting the value of proviral DNA as an additional source of information on an individual's overall resistance burden. In cases where the viral load is too low for successful HIV-1 RNA genotyping, HIV-1 DNA can help identify resistance mutations in treated individuals. The absence of treatment history, the need to adjust ART despite undetectable viremia, or the presence of LLV further support the use of genotypic resistance tests (GRTs) on HIV-1 DNA. Conventionally, GRTs have been achieved through Sanger sequencing, but the advances in NGS are leading to an increase in its use, allowing the detection of minority variants present in less than 20% of the viral population. The clinical significance of these mutations remains under debate, with interpretations varying based on context. Additionally, proviral DNA is subject to APOBEC3-induced hypermutation, which can lead to defective, nonviable viral genomes, a factor that must be considered when performing GRTs on HIV-1 DNA.
Collapse
Affiliation(s)
- Roberta Campagna
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.N.); (G.A.); (O.T.)
| | | | | | | |
Collapse
|
25
|
Wu G, Keller SH, Sardo L, Magliaro B, Zuck P, Balibar CJ, Williams C, Pan L, Gregory M, Ton K, Maxwell J, Cheney C, Rush T, Howell BJ. Single cell spatial profiling of FFPE splenic tissue from a humanized mouse model of HIV infection. Biomark Res 2024; 12:116. [PMID: 39380117 PMCID: PMC11462831 DOI: 10.1186/s40364-024-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Latency remains a major obstacle to finding a cure for HIV despite the availability of antiretroviral therapy. Due to virus dormancy, limited biomarkers are available to identify latent HIV-infected cells. Profiling of individual HIV-infected cells is needed to explore potential latency biomarkers and to study the mechanisms of persistence that maintain the HIV reservoir. METHODS Single cell spatial transcriptomic characterization using the CosMx Spatial Molecular Imager platform was conducted to analyze HIV-infected cells in formalin-fixed paraffin-embedded sections of splenic tissue surgically obtained from an HIV-infected humanized mouse model. Regulation of over a thousand human genes was quantified in both viremic and aviremic specimens. In addition, in situ hybridization and immunohistochemistry were performed in parallel to identify HIV viral RNA- and p24-containing cells, respectively. Finally, initial findings from CosMx gene profiling were confirmed by isolating RNA from CD4 + T cells obtained from a person living with HIV on antiretroviral therapy following either PMA/Ionomycin or DMSO treatment. RNA was quantified using qPCR for a panel of targeted human host genes. RESULTS Supervised cell typing revealed that most of the HIV-infected cells in the mouse spleen sections were differentiated CD4 + T cells. A significantly higher number of infected cells, 2781 (1.61%) in comparison to 112 (0.06%), and total HIV transcripts per infected cell were observed in viremic samples compared to aviremic samples, respectively, which was consistent with the data obtained from ISH and IHC. Notably, the expression of 55 genes was different in infected cells within tissue from aviremic animals compared to viremic. In particular, both spleen tyrosine kinase (SYK) and CXCL17, were expressed approximately 100-fold higher. This data was further evaluated against bulk RNA isolated from HIV-infected human primary CD4 + T cells. A nearly 6-fold higher expression of SYK mRNA was observed in DMSO-treated CD4 + T cells compared to those stimulated with PMA/Ionomycin. CONCLUSION This study found that the CosMx SMI platform is valuable for assessing HIV infection and providing insights into host biomarkers associated with HIV reservoirs. Higher relative expression of the SYK gene in aviremic-infected cells from the humanized mouse HIV model was consistent with levels found in CD4 + T cells of aviremic donors.
Collapse
Affiliation(s)
- Guoxin Wu
- MRL, Merck & Co., Inc, Rahway, NJ, USA.
| | | | | | | | - Paul Zuck
- MRL, Merck & Co., Inc, Rahway, NJ, USA
| | | | | | - Liuliu Pan
- NanoString Technologies, a Bruker Company, Seattle, WA, USA
| | - Mark Gregory
- NanoString Technologies, a Bruker Company, Seattle, WA, USA
| | - Kathy Ton
- NanoString Technologies, a Bruker Company, Seattle, WA, USA
| | | | | | - Tom Rush
- MRL, Merck & Co., Inc, Rahway, NJ, USA
| | | |
Collapse
|
26
|
Prigann J, Tavora R, Furler O'Brien RL, Schulze-Gahmen U, Boehm D, Roan NR, Nixon DF, Ndhlovu LC, Valente S, Ott M. Silencing the transcriptionally active HIV reservoir to improve treatment outcomes. Nat Microbiol 2024; 9:2470-2472. [PMID: 39289508 PMCID: PMC11841736 DOI: 10.1038/s41564-024-01816-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Persistence of the transcriptionally active HIV reservoir (TAHR) has important implications for people living with HIV (PLWH), including chronic immune activation and inflammation. Supplementing antiretroviral therapy with HIV transcriptional inhibitors could overcome this by silencing the TAHR.
Collapse
Affiliation(s)
- Julia Prigann
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
| | - Rubens Tavora
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Research Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - Robert L Furler O'Brien
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Daniela Boehm
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
| | - Nadia R Roan
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Douglas F Nixon
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Susana Valente
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Research Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA.
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA.
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
27
|
Capoferri AA, Wiegand A, Hong F, Jacobs JL, Spindler J, Musick A, Bale MJ, Shao W, Sobolewski MD, Cillo AR, Luke BT, Fennessey CM, Gorelick RJ, Hoh R, Halvas EK, Deeks SG, Coffin JM, Mellors JW, Kearney MF. HIV-1 control in vivo is related to the number but not the fraction of infected cells with viral unspliced RNA. Proc Natl Acad Sci U S A 2024; 121:e2405210121. [PMID: 39190360 PMCID: PMC11388345 DOI: 10.1073/pnas.2405210121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
In the absence of antiretroviral therapy (ART), a subset of individuals, termed HIV controllers, have levels of plasma viremia that are orders of magnitude lower than non-controllers (NC) who are at higher risk for HIV disease progression. In addition to having fewer infected cells resulting in fewer cells with HIV RNA, it is possible that lower levels of plasma viremia in controllers are due to a lower fraction of the infected cells having HIV-1 unspliced RNA (HIV usRNA) compared with NC. To directly test this possibility, we used sensitive and quantitative single-cell sequencing methods to compare the fraction of infected cells that contain one or more copies of HIV usRNA in peripheral blood mononuclear cells (PBMC) obtained from controllers and NC. The fraction of infected cells containing HIV usRNA did not differ between the two groups. Rather, the levels of viremia were strongly associated with the total number of infected cells that had HIV usRNA, as reported by others, with controllers having 34-fold fewer infected cells per million PBMC. These results reveal that viremic control is not associated with a lower fraction of proviruses expressing HIV usRNA, unlike what is reported for elite controllers, but is only related to having fewer infected cells overall, maybe reflecting greater immune clearance of infected cells. Our findings show that proviral silencing is not a key mechanism for viremic control and will help to refine strategies toward achieving HIV remission without ART.
Collapse
Affiliation(s)
- Adam A. Capoferri
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
- Department of Microbiology and Immunology, Georgetown University, Washington, DC20007
| | - Ann Wiegand
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Feiyu Hong
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Jana L. Jacobs
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Andrew Musick
- Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD21702
| | - Michael J. Bale
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD21702
| | - Michele D. Sobolewski
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Anthony R. Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Brian T. Luke
- Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD21702
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, CA94143
| | - Elias K. Halvas
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, CA94143
| | - John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA02111
| | - John W. Mellors
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| |
Collapse
|
28
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. J Exp Med 2024; 221:e20240391. [PMID: 39141127 PMCID: PMC11323366 DOI: 10.1084/jem.20240391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
HIV-1 antiretroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses, leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here, we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 100-10,000× less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir, thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Chica and Heinz Schaller (CHS) Research Group, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
29
|
Zhang Y, Otte F, Stoeckle M, Thielen A, Däumer M, Kaiser R, Kusejko K, Metzner KJ, Klimkait T. HIV-1 diversity in viral reservoirs obtained from circulating T-cell subsets during early ART and beyond. PLoS Pathog 2024; 20:e1012526. [PMID: 39292732 PMCID: PMC11410260 DOI: 10.1371/journal.ppat.1012526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Even during extended periods of effective immunological control, a substantial dynamic of the viral genome can be observed in different cellular compartments in HIV-1 positive individuals, indicating the persistence of active viral reservoirs. To obtain further insights, we studied changes in the proviral as well as in the viral HIV-1 envelope (Env) sequence along with transcriptional, translational and viral outgrowth activity as indicators for viral dynamics and genomic intactness. Our study identified distinct reservoir patterns that either represented highly sequence-diverse HIV-1 populations or only a single / few persisting virus variants. The single dominating variants were more often found in individuals starting ART during early infection phases, indicating that early treatment might limit reservoir diversification. At the same time, more sequence-diverse HIV reservoirs correlated with a poorer immune status, indicated by lower CD4 count, a higher number of regimen changes and more co-morbidities. Furthermore, we noted that in T-cell populations in the peripheral blood, replication-competent HIV-1 is predominantly present in Lymph node homing TN (naïve) and TCM (central memory) T cells. Provirus genomes archived in TTM (transitional memory) and TEM (effector memory) T cells more frequently tended to carry inactivating mutations and, population-wise, possess changes in the genetic diversity. These discriminating properties of the viral reservoir in T-cell subsets may have important implications for new early therapy strategies, underscoring the critical role of early therapy in preserving robust immune surveillance and constraining the viral reservoir.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Janssens J, Kim P, Kim SJ, Wedrychowski A, Kadiyala GN, Hunt PW, Deeks SG, Wong JK, Yukl SA. Mechanisms and efficacy of small molecule latency-promoting agents to inhibit HIV reactivation ex vivo. JCI Insight 2024; 9:e183084. [PMID: 39163135 PMCID: PMC11466185 DOI: 10.1172/jci.insight.183084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Drugs that inhibit HIV transcription and/or reactivation of latent HIV have been proposed as a strategy to reduce HIV-associated immune activation or to achieve a functional cure, yet comparative studies are lacking. We evaluated 26 drugs, including drugs previously reported to inhibit HIV transcription (inhibitors of Tat-dependent HIV transcription, Rev, HSF-1/PTEF-b, HSP90, Jak/Stat, or SIRT1/Tat deacetylation) and other agents that were not tested before (inhibitors of PKC, NF-κB, SP-1, or histone acetyltransferase; NR2F1 agonists), elongation (inhibitors of CDK9/ PTEF-b), completion (inhibitors of PolyA-polymerase), or splicing (inhibitors of human splice factors). To investigate if those drugs would vary in their ability to affect different blocks to HIV transcription, we measured levels of initiated, elongated, midtranscribed, completed, and multiply spliced HIV RNA in PBMCs from antiretroviral therapy-suppressed individuals following ex vivo treatment with each drug and subsequent T cell activation. We identified new drugs that prevent HIV reactivation, including CDK and splicing inhibitors. While some drugs inhibited 1 or 2 steps, other drugs (CDK inhibitors, splicing inhibitors, tanespimycin, and triptolide) inhibited multiple stages of HIV transcription and blocked the production of supernatant viral RNA. These drugs and targets deserve further study in strategies aimed at reducing HIV-associated immune activation or achieving a functional cure.
Collapse
Affiliation(s)
- Julie Janssens
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peggy Kim
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Sun Jin Kim
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Adam Wedrychowski
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gayatri N. Kadiyala
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peter W. Hunt
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Joseph K. Wong
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Steven A. Yukl
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
31
|
Raines SLM, Falcinelli SD, Peterson JJ, Van Gulck E, Allard B, Kirchherr J, Vega J, Najera I, Boden D, Archin NM, Margolis DM. Nanoparticle delivery of Tat synergizes with classical latency reversal agents to express HIV antigen targets. Antimicrob Agents Chemother 2024; 68:e0020124. [PMID: 38829049 PMCID: PMC11232404 DOI: 10.1128/aac.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.
Collapse
Affiliation(s)
- Samuel L. M. Raines
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Brigitte Allard
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | - Isabel Najera
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nancie M. Archin
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
32
|
Jansz N, Faulkner GJ. Viral genome sequencing methods: benefits and pitfalls of current approaches. Biochem Soc Trans 2024; 52:1431-1447. [PMID: 38747720 PMCID: PMC11346438 DOI: 10.1042/bst20231322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/27/2024]
Abstract
Whole genome sequencing of viruses provides high-resolution molecular insights, enhancing our understanding of viral genome function and phylogeny. Beyond fundamental research, viral sequencing is increasingly vital for pathogen surveillance, epidemiology, and clinical applications. As sequencing methods rapidly evolve, the diversity of viral genomics applications and catalogued genomes continues to expand. Advances in long-read, single molecule, real-time sequencing methodologies present opportunities to sequence contiguous, haplotype resolved viral genomes in a range of research and applied settings. Here we present an overview of nucleic acid sequencing methods and their applications in studying viral genomes. We emphasise the advantages of different viral sequencing approaches, with a particular focus on the benefits of third-generation sequencing technologies in elucidating viral evolution, transmission networks, and pathogenesis.
Collapse
Affiliation(s)
- Natasha Jansz
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J. Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
33
|
Joy J, Gervassi A, Chen L, Kirshenbaum B, Styrchak S, Ko D, McLaughlin S, Shao D, Kosmider E, Edlefsen PT, Maenza J, Collier AC, Mullins JI, Horton H, Frenkel LM. Antigen specificities and proviral integration sites differ in HIV-infected cells by timing of antiretroviral treatment initiation. J Clin Invest 2024; 134:e159569. [PMID: 38833307 PMCID: PMC11245156 DOI: 10.1172/jci159569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Despite effective antiretroviral therapy (ART), persons living with HIV harbor reservoirs of persistently infected CD4+ cells, which constitute a barrier to cure. Initiation of ART during acute infection reduces the size of the HIV reservoir, and we hypothesized that in addition, it would favor integration of proviruses in HIV-specific CD4+ T cells, while initiation of ART during chronic HIV infection would favor relatively more proviruses in herpesvirus-specific cells. We further hypothesized that proviruses in acute ART initiators would be integrated into antiviral genes, whereas integration sites (ISs) in chronic ART initiators would favor genes associated with cell proliferation and exhaustion. We found that the HIV DNA distribution across HIV-specific versus herpesvirus-specific CD4+ T cells was as hypothesized. HIV ISs in acute ART initiators were significantly enriched in gene sets controlling lipid metabolism and HIF-1α-mediated hypoxia, both metabolic pathways active in early HIV infection. Persistence of these infected cells during prolonged ART suggests a survival advantage. ISs in chronic ART initiators were enriched in a gene set controlling EZH2 histone methylation, and methylation has been associated with diminished long terminal repeat transcription. These differences that we found in antigen specificities and IS distributions within HIV-infected cells might be leveraged in designing cure strategies tailored to the timing of ART initiation.
Collapse
Affiliation(s)
- Jaimy Joy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ana Gervassi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - Sheila Styrchak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Daisy Ko
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Sherry McLaughlin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ewelina Kosmider
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
| | - Helen Horton
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
- Department of Pediatrics, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
34
|
Armani-Tourret M, Bone B, Tan TS, Sun W, Bellefroid M, Struyve T, Louella M, Yu XG, Lichterfeld M. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat Rev Microbiol 2024; 22:328-344. [PMID: 38337034 PMCID: PMC11131351 DOI: 10.1038/s41579-024-01010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.
Collapse
Affiliation(s)
- Marie Armani-Tourret
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Bone
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Toong Seng Tan
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Weiwei Sun
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maxime Bellefroid
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tine Struyve
- HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Michael Louella
- Community Advisory Board, Delaney AIDS Research Enterprise (DARE), San Francisco, CA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
35
|
Ashokkumar M, Mei W, Peterson JJ, Harigaya Y, Murdoch DM, Margolis DM, Kornfein C, Oesterling A, Guo Z, Rudin CD, Jiang Y, Browne EP. Integrated Single-cell Multiomic Analysis of HIV Latency Reversal Reveals Novel Regulators of Viral Reactivation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae003. [PMID: 38902848 PMCID: PMC11189801 DOI: 10.1093/gpbjnl/qzae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 06/22/2024]
Abstract
Despite the success of antiretroviral therapy, human immunodeficiency virus (HIV) cannot be cured because of a reservoir of latently infected cells that evades therapy. To understand the mechanisms of HIV latency, we employed an integrated single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) approach to simultaneously profile the transcriptomic and epigenomic characteristics of ∼ 125,000 latently infected primary CD4+ T cells after reactivation using three different latency reversing agents. Differentially expressed genes and differentially accessible motifs were used to examine transcriptional pathways and transcription factor (TF) activities across the cell population. We identified cellular transcripts and TFs whose expression/activity was correlated with viral reactivation and demonstrated that a machine learning model trained on these data was 75%-79% accurate at predicting viral reactivation. Finally, we validated the role of two candidate HIV-regulating factors, FOXP1 and GATA3, in viral transcription. These data demonstrate the power of integrated multimodal single-cell analysis to uncover novel relationships between host cell factors and HIV latency.
Collapse
Affiliation(s)
- Manickam Ashokkumar
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenwen Mei
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jackson J Peterson
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuriko Harigaya
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Murdoch
- Department of Medicine, Duke University, Durham, NC 27708, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caleb Kornfein
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Alex Oesterling
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Zhicheng Guo
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Cynthia D Rudin
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Yuchao Jiang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Edward P Browne
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Fombellida-Lopez C, Berkhout B, Darcis G, Pasternak AO. Persistent HIV-1 transcription during ART: time to reassess its significance? Curr Opin HIV AIDS 2024; 19:124-132. [PMID: 38502547 PMCID: PMC10990031 DOI: 10.1097/coh.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and reignite viral replication if therapy is interrupted. Persistence of the viral reservoir in people with HIV-1 (PWH) is the main obstacle to an HIV-1 cure. The reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. Here, we review the recent progress in the characterization of persistent HIV-1 transcription during ART. RECENT FINDINGS Evidence from several studies indicates that, although cell-associated unspliced (US) HIV-1 RNA is abundantly expressed in ART-treated PWH, intact full-length US transcripts are rare and most US RNA is derived from defective proviruses. The transcription- and translation-competent defective proviruses, previously considered irrelevant, are increasingly being linked to residual HIV-1 pathogenesis under suppressive ART. Recent data suggest a continuous crosstalk between the residual HIV-1 activity under ART and the immune system. Persistent HIV-1 transcription on ART, despite being mostly derived from defective proviruses, predicts viral rebound upon therapy interruption, suggesting its role as an indicator of the strength of the host antiviral immune response that is shaping the viral rebound. SUMMARY In light of the recent findings, the significance of persistent HIV-1 transcription during ART for the long-term health of PWH and the cure research should be reassessed.
Collapse
Affiliation(s)
- Céline Fombellida-Lopez
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gilles Darcis
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, Liège, Belgium
| | - Alexander O. Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Banga R, Perreau M. The multifaceted nature of HIV tissue reservoirs. Curr Opin HIV AIDS 2024; 19:116-123. [PMID: 38547340 PMCID: PMC10990014 DOI: 10.1097/coh.0000000000000851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW To underline the complexity and the heterogeneity of the HIV reservoir. RECENT FINDINGS While lymphoid tissues (spleen, lymph nodes, gut-associated lymphoid tissue) harbor specific subsets of specialized CD4 + T cells enriched in HIV-infected cells, non-CD4 + T cell reservoirs such as tissue-resident macrophages and dendritic cells have also been implicated to contribute to viral persistence. Moreover, studies have applied highly sensitive tools to detect transcriptional activity within HIV-infected cells during prolonged ART and revealed a broader spectrum of transcriptional activity for proviruses than previously thought. Finally, while a combination of factors might be involved in the regulation of HIV persistence within different tissues and remains to be fully elucidated, recent results from autopsy samples of HIV-infected ART suppressed individuals indicate extensive clonality of HIV reservoirs in multiple tissues and suggest that the recirculation of HIV-infected cells and their local expansions in tissues may also contribute to the complexity of the HIV reservoirs in humans. SUMMARY HIV persistence in blood and multiple tissues despite long-standing and potent therapy is one of the major barriers to a cure. Given that the HIV reservoir is established early and is highly complex based on its composition, viral diversity, tissue distribution, transcriptional activity, replication competence, migration dynamics and proliferative potential across the human body and possible compartmentalization in specific tissues, combinatorial therapeutic approaches are needed that may synergize to target multiple viral reservoirs to achieve a cure for HIV infection.
Collapse
Affiliation(s)
- Riddhima Banga
- Divisions of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
38
|
Esteban-Cantos A, Montejano R, Pinto-Martínez A, Rodríguez-Centeno J, Pulido F, Arribas JR. Non-suppressible viraemia during HIV-1 therapy: a challenge for clinicians. Lancet HIV 2024; 11:e333-e340. [PMID: 38604202 DOI: 10.1016/s2352-3018(24)00063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
In individuals receiving antiretroviral therapy (ART), persistent low-level viraemia not attributed to suboptimal ART adherence, detrimental pharmacological interactions, or drug resistance is referred to as non-suppressible viraemia (NSV). This Review presents recent findings in the virological characterisation of NSV, revealing that it consists of one or a few identical populations of plasma viruses without signs of evolution. This finding suggests that NSV originates from virus production by expanded HIV-infected cell clones, reflecting the persistence of the HIV reservoir despite ART. We discuss knowledge gaps regarding the management and the clinical consequences of NSV. The prevalence of NSV remains to be precisely determined and there is very little understanding of its effects on virological failure, HIV transmission, secondary inflammation, morbidity, and mortality. This issue, along with the absence of specific recommendations for the management of NSV in HIV clinical guidelines, underscores the complexities involved in treating individuals with NSV.
Collapse
Affiliation(s)
- Andrés Esteban-Cantos
- HIV/AIDS and Infectious Diseases Research Group, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Montejano
- Internal Medical Service, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Adriana Pinto-Martínez
- HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Javier Rodríguez-Centeno
- HIV/AIDS and Infectious Diseases Research Group, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Federico Pulido
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José R Arribas
- Internal Medical Service, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
39
|
Nguyen K, Karn J. The sounds of silencing: dynamic epigenetic control of HIV latency. Curr Opin HIV AIDS 2024; 19:102-109. [PMID: 38547337 PMCID: PMC10990033 DOI: 10.1097/coh.0000000000000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW This review highlights advances in understanding the epigenetic control mechanisms that regulate HIV-1 latency mechanisms in T-cells and microglial cells and describes the potential of current therapeutic approaches targeting the epigenetic machinery to eliminate or block the HIV-1 latent reservoir. RECENT FINDINGS Large-scale unbiased CRISPR-Cas9 library-based screenings, coupled with biochemical studies, have comprehensively identified the epigenetic factors pivotal in regulating HIV-1 latency, paving the way for potential novel targets in therapeutic development. These studies also highlight how the bivalency observed at the HIV-1 5'LTR primes latent proviruses for rapid reactivation. SUMMARY The HIV-1 latent is established very early during infection, and its persistence is the major obstacle to achieving an HIV-1 cure. Here, we present a succinct summary of the latest research findings, shedding light on the pivotal roles played by host epigenetic machinery in the control of HIV-1 latency. Newly uncovered mechanisms permitting rapid reversal of epigenetic restrictions upon viral reactivation highlight the formidable challenges of achieving enduring and irreversible epigenetic silencing of HIV-1.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Molecular Biology & Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
40
|
Bone B, Lichterfeld M. "Block and lock" viral integration sites in persons with drug-free control of HIV-1 infection. Curr Opin HIV AIDS 2024; 19:110-115. [PMID: 38457193 DOI: 10.1097/coh.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Elite controllers (ECs) and Posttreatment controllers (PTCs) represent a small subset of individuals who are capable of maintaining drug-free control of HIV plasma viral loads despite the persistence of a replication-competent viral reservoir. This review aims to curate recent experimental studies evaluating viral reservoirs that distinguish EC/PTC and may contribute to their ability to maintain undetectable viral loads in the absence of antiretroviral therapy. RECENT FINDINGS Recent studies on ECs have demonstrated that integration sites of intact proviruses in EC/PTC are markedly biased towards heterochromatin regions; in contrast, intact proviruses in accessible and permissive chromatin were profoundly underrepresented. Of note, no such biases were noted when CD4 + T cells from EC were infected directly ex vivo, suggesting that the viral reservoir profile in EC is not related to altered integration site preferences during acute infection, but instead represents the result of immune-mediated selection mechanisms that can eliminate proviruses in transcriptionally-active euchromatin regions while promoting preferential persistence of intact proviruses in nonpermissive genome regions. Proviral transcription in such "blocked and locked" regions may be restricted through epigenetic mechanisms, protecting them from immune-recognition but presumably limiting their ability to drive viral rebound. While the exact immune mechanisms driving this selection process remain undefined, recent single-cell analytic approaches support the hypothesis that HIV reservoir cells are subject to immune selection pressure by host factors. SUMMARY A "blocked and locked" viral reservoir profile may constitute a structural virological correlate of a functional cure of HIV-1 infection. Further research into the immunological mechanism promoting HIV-1 reservoir selection and evolution in EC/PTC is warranted and could inform foreseeable cure strategies.
Collapse
Affiliation(s)
- Benjamin Bone
- Infectious Disease Division, Brigham Women's Hospital, Boston
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham Women's Hospital, Boston
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591331. [PMID: 38746186 PMCID: PMC11092494 DOI: 10.1101/2024.04.26.591331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
HIV-1 anti-retroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 10010,000X less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
- Chica and Heinz Schaller (CHS) Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
42
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
43
|
Mudd JC. Quantitative and Qualitative Distinctions between HIV-1 and SIV Reservoirs: Implications for HIV-1 Cure-Related Studies. Viruses 2024; 16:514. [PMID: 38675857 PMCID: PMC11054464 DOI: 10.3390/v16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
The persistence of the latent viral reservoir is the main hurdle to curing HIV-1 infection. SIV infection of non-human primates (NHPs), namely Indian-origin rhesus macaques, is the most relevant and widely used animal model to evaluate therapies that seek to eradicate HIV-1. The utility of a model ultimately rests on how accurately it can recapitulate human disease, and while reservoirs in the NHP model behave quantitatively very similar to those of long-term suppressed persons with HIV-1 (PWH) in the most salient aspects, recent studies have uncovered key nuances at the clonotypic level that differentiate the two in qualitative terms. In this review, we will highlight differences relating to proviral intactness, clonotypic structure, and decay rate during ART between HIV-1 and SIV reservoirs and discuss the relevance of these distinctions in the interpretation of HIV-1 cure strategies. While these, to some degree, may reflect a unique biology of the virus or host, distinctions among the proviral landscape in SIV are likely to be shaped significantly by the condensed timeframe of NHP studies. ART is generally initiated earlier in the disease course, and animals are virologically suppressed for shorter periods before receiving interventions. Because these are experimental variables dictated by the investigator, we offer guidance on study design for cure-related studies performed in the NHP model. Finally, we highlight the case of GS-9620 (Vesatolimod), an antiviral TLR7 agonist tested in multiple independent pre-clinical studies in which virological outcomes may have been influenced by study-related variables.
Collapse
Affiliation(s)
- Joseph C. Mudd
- Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
44
|
Reda O, Monde K, Sugata K, Rahman A, Sakhor W, Rajib SA, Sithi SN, Tan BJY, Niimura K, Motozono C, Maeda K, Ono M, Takeuchi H, Satou Y. HIV-Tocky system to visualize proviral expression dynamics. Commun Biol 2024; 7:344. [PMID: 38509308 PMCID: PMC10954732 DOI: 10.1038/s42003-024-06025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Determinants of HIV-1 latency establishment are yet to be elucidated. HIV reservoir comprises a rare fraction of infected cells that can survive host and virus-mediated killing. In vitro reporter models so far offered a feasible means to inspect this population, but with limited capabilities to dissect provirus silencing dynamics. Here, we describe a new HIV reporter model, HIV-Timer of cell kinetics and activity (HIV-Tocky) with dual fluorescence spontaneous shifting to reveal provirus silencing and reactivation dynamics. This unique feature allows, for the first time, identifying two latent populations: a directly latent, and a recently silenced subset, with the latter having integration features suggestive of stable latency. Our proposed model can help address the heterogeneous nature of HIV reservoirs and offers new possibilities for evaluating eradication strategies.
Collapse
Affiliation(s)
- Omnia Reda
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Wajihah Sakhor
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sharmin Nahar Sithi
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Benjy Jek Yang Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Koki Niimura
- School of Medicine, Kumamoto University, Kumamoto, Japan
| | - Chihiro Motozono
- Division of Infection and Immunology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Hiroaki Takeuchi
- Department of High-risk Infectious Disease Control, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
45
|
Roux H, Chomont N. Measuring Human Immunodeficiency Virus Reservoirs: Do We Need to Choose Between Quantity and Quality? J Infect Dis 2024; 229:635-643. [PMID: 37665978 PMCID: PMC10938203 DOI: 10.1093/infdis/jiad381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
The persistence of latent viral genomes in people receiving antiretroviral therapy (ART) is the main obstacle to a cure for human immunodeficiency virus (HIV) infection. Viral reservoirs can be defined as cells harboring HIV genomes that have the ability to produce infectious virions. Precise quantification of the cellular reservoirs of HIV is challenging because these cells are rare, heterogeneous, and outnumbered by a larger number of cells carrying defective genomes. In addition, measuring the inducibility of these proviruses requires functional assays and remains technically difficult. The recent development of single-cell and single-viral genome approaches revealed additional layers of complexity: the cell subsets that harbor proviruses are heterogeneous and their ability to be induced is variable. A substantial fraction of intact HIV genomes may be permanently silenced after years of ART, revealing the underappreciated importance of induction assays. As such, a simple approach that would assess simultaneously the genetic intactness and the inducibility of the reservoir is still lacking. In this study, we review recent advances in the development of methods to quantify and characterize persistently infected cells, and we discuss how these findings can inform the design of future assays aimed at measuring the size of the intact and inducible HIV reservoir.
Collapse
Affiliation(s)
- Hélène Roux
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Harper J, Betts MR, Lichterfeld M, Müller-Trutwin M, Margolis D, Bar KJ, Li JZ, McCune JM, Lewin SR, Kulpa D, Ávila-Ríos S, Diallo DD, Lederman MM, Paiardini M. Erratum to: Progress Note 2024: Curing HIV; Not in My Lifetime or Just Around the Corner? Pathog Immun 2024; 8:179-222. [PMID: 38505662 PMCID: PMC10949969 DOI: 10.20411/pai.v8i2.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
[This corrects the article DOI: 10.20411/pai.v8i2.665.].
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - David Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Katharine J. Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Z. Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph M. McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Deanna Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
47
|
Kufera JT, Armstrong C, Wu F, Singhal A, Zhang H, Lai J, Wilkins HN, Simonetti FR, Siliciano JD, Siliciano RF. CD4+ T cells with latent HIV-1 have reduced proliferative responses to T cell receptor stimulation. J Exp Med 2024; 221:e20231511. [PMID: 38270554 PMCID: PMC10818065 DOI: 10.1084/jem.20231511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy as a barrier to cure. The antigen-driven proliferation of infected cells is a major mechanism of reservoir persistence. However, activation through the T cell antigen receptor (TCR) can induce latent proviruses, leading to viral cytopathic effects and immune clearance. In single-cell studies, we show that, relative to uninfected cells or cells with a defective provirus, CD4+ T cells with an intact provirus have a profound proliferative defect in response to TCR stimulation. Virion production was observed in only 16.5% of cultures with an intact provirus, but proliferation was reduced even when no virion production was detected. Proliferation was inversely correlated with in vivo clone size. These results may reflect the effects of previous in vivo proliferation and do not support attempts to reduce the reservoir with antiproliferative agents, which may have greater effects on normal T cell responses.
Collapse
Affiliation(s)
- Joshua T. Kufera
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ciara Armstrong
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Singhal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah N. Wilkins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
48
|
Harper J, Betts MR, Lichterfeld M, Müller-Trutwin M, Margolis D, Bar KJ, Li JZ, McCune JM, Lewin SR, Kulpa D, Ávila-Ríos S, Diallo DD, Lederman MM, Paiardini M. Progress Note 2024: Curing HIV; Not in My Lifetime or Just Around the Corner? Pathog Immun 2024; 8:115-157. [PMID: 38455668 PMCID: PMC10919397 DOI: 10.20411/pai.v8i2.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
Once a death sentence, HIV is now considered a manageable chronic disease due to the development of antiretroviral therapy (ART) regimens with minimal toxicity and a high barrier for genetic resistance. While highly effective in arresting AIDS progression and rendering the virus untransmissible in people living with HIV (PLWH) with undetectable viremia (U=U) [1, 2]), ART alone is incapable of eradicating the "reservoir" of resting, latently infected CD4+ T cells from which virus recrudesces upon treatment cessation. As of 2022 estimates, there are 39 million PLWH, of whom 86% are aware of their status and 76% are receiving ART [3]. As of 2017, ART-treated PLWH exhibit near normalized life expectancies without adjustment for socioeconomic differences [4]. Furthermore, there is a global deceleration in the rate of new infections [3] driven by expanded access to pre-exposure prophylaxis (PrEP), HIV testing in vulnerable populations, and by ART treatment [5]. Therefore, despite outstanding issues pertaining to cost and access in developing countries, there is strong enthusiasm that aggressive testing, treatment, and effective viral suppression may be able to halt the ongoing HIV epidemic (ie, UNAIDS' 95-95-95 targets) [6-8]; especially as evidenced by recent encouraging observations in Sydney [9]. Despite these promising efforts to limit further viral transmission, for PLWH, a "cure" remains elusive; whether it be to completely eradicate the viral reservoir (ie, cure) or to induce long-term viral remission in the absence of ART (ie, control; Figure 1). In a previous salon hosted by Pathogens and Immunity in 2016 [10], some researchers were optimistic that a cure was a feasible, scalable goal, albeit with no clear consensus on the best route. So, how are these cure strategies panning out? In this commentary, 8 years later, we will provide a brief overview on recent advances and failures towards identifying determinants of viral persistence and developing a scalable cure for HIV. Based on these observations, and as in the earlier salon, we have asked several prominent HIV cure researchers for their perspectives.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - David Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Katharine J. Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Z. Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph M. McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Deanna Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
49
|
Armani-Tourret M, Gao C, Hartana CA, Sun W, Carrere L, Vela L, Hochroth A, Bellefroid M, Sbrolla A, Shea K, Flynn T, Roseto I, Rassadkina Y, Lee C, Giguel F, Malhotra R, Bushman FD, Gandhi RT, Yu XG, Kuritzkes DR, Lichterfeld M. Selection of epigenetically privileged HIV-1 proviruses during treatment with panobinostat and interferon-α2a. Cell 2024; 187:1238-1254.e14. [PMID: 38367616 PMCID: PMC10903630 DOI: 10.1016/j.cell.2024.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.
Collapse
Affiliation(s)
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ciputra Adijaya Hartana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - WeiWei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Vela
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Amy Sbrolla
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrina Shea
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Theresa Flynn
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Carole Lee
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francoise Giguel
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rajeev Malhotra
- Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Matsuda K, Maeda K. HIV Reservoirs and Treatment Strategies toward Curing HIV Infection. Int J Mol Sci 2024; 25:2621. [PMID: 38473868 DOI: 10.3390/ijms25052621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Combination antiretroviral therapy (cART) has significantly improved the prognosis of individuals living with human immunodeficiency virus (HIV). Acquired immunodeficiency syndrome has transformed from a fatal disease to a treatable chronic infection. Currently, effective and safe anti-HIV drugs are available. Although cART can reduce viral production in the body of the patient to below the detection limit, it cannot eliminate the HIV provirus integrated into the host cell genome; hence, the virus will be produced again after cART discontinuation. Therefore, research into a cure (or remission) for HIV has been widely conducted. In this review, we focus on drug development targeting cells latently infected with HIV and assess the progress including our current studies, particularly in terms of the "Shock and Kill", and "Block and Lock" strategies.
Collapse
Affiliation(s)
- Kouki Matsuda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kenji Maeda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|