1
|
Carleton N, Rosen ABI, Das J, Lotze MT. Immuno-oncology recapitulates ontogeny: Modern cell and gene therapy for cancer. Mol Ther 2025; 33:2229-2237. [PMID: 40156188 DOI: 10.1016/j.ymthe.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Immuno-oncology (IO) has had over a century to develop from the original seminal insights of Virchow in 1863, seeing inflammation and lymphoid infiltrates as a common anlage for many adult tumors. That IO has become a central pillar of cancer treatment has come about because of the remarkable clinical and subsequent commercial success of immune checkpoint blockade (ICB) in the last 15 years. This now includes approved cell and gene therapies for patients with cancer, including an armed adenovirus, oncolytic herpesvirus, and adoptive transfer of dendritic cells, chimeric antigen receptor T (CAR-T) cells, and tumor-infiltrating lymphocytes (TILs). The evolution of such applications has required the stepwise development of a deeper understanding of the molecular biology of cancer and the physiology of immunobiology. This also recapitulates, in a broader sense, our evolutionary trajectory with capture of "evolvability," not only across the development of species but also within individuals. This review covers how our foundational understanding of immune system learning and evolvability have facilitated better understanding of the co-evolutionary interactions between the epithelium and the immune system. We highlight examples of this in breast, colon, prostate, pancreas, and lung cancer, and provide examples of next-generation cell and gene therapies that intercept cancer development.
Collapse
Affiliation(s)
- Neil Carleton
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aaron B I Rosen
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael T Lotze
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Yuan HZ, Jin SM, Yang WD, Du M, Wang L, Xiao L. Elevated Expression of STAT6, ERG, and miR-647 Expression as Predictive Biomarkers for Prostate Cancer. Int J Gen Med 2025; 18:2067-2075. [PMID: 40231243 PMCID: PMC11995998 DOI: 10.2147/ijgm.s512606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Aim The aim of this study was to investigate the clinical significance of STAT6, ERG, miR-647 in prostate cancer (PCa). Methods This was a retrospective study. There were 210 consecutive patients diagnosed with prostate cancer or benign prostatic hyperplasia in our hospital from July 2020 to July 2023. Among those patients, 108 patients pathologically diagnosed as prostate cancer were divided into the prostate cancer group (PCa group), and 102 patients pathologically diagnosed as having benign prostatic hyperplasia were divided into the benign prostatic hyperplasia group (BPH group). Results The levels of STAT6 mRNA, ERG mRNA, and miR-647 expression in prostate cancer tissue were higher than those in BPH tissues, with statistically significant differences (P<0.05) . The levels of STAT6 mRNA, ERG mRNA, and miR-647 indicators in prostate cancer patients were not significantly different with respect to patient age and tumor size (P > 0.05) but were related to lymph node metastasis, T stage, and Gleason score (P < 0.05). On the other hand, the tPSA/fPSA had significantly different between two groups (P < 0.05). PCa group had smaller MRI sagittal diameter and anteroposterior diameter in comparison to BPH group (P < 0.05), furthermore, PCa group had larger PI-RAD in comparison to BPH group (P < 0.05). Conclusion The higher level of STAT6, ERG, and miR-647 in prostate tissue are closely related to the occurrence of prostate cancer and have certain value in predicting the onset of prostate cancer.
Collapse
Affiliation(s)
- Hua-Zun Yuan
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Sheng-Ming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Wen-Dong Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Min Du
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Lei Wang
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Li Xiao
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Cheng L, Wang Y, Zhang Y. Dying to survive: harnessing inflammatory cell death for better immunotherapy. Trends Cancer 2025; 11:376-402. [PMID: 39986988 DOI: 10.1016/j.trecan.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Immunotherapy has transformed cancer treatment paradigms, but its effectiveness depends largely on the immunogenicity of the tumor. Unfortunately, the high resemblance of cancer to normal tissues makes most tumors immunologically 'cold', with a poor response to immunotherapy. Danger signals are critical for breaking immune tolerance and mobilizing robust, long-lasting antitumor immunity. Recent studies have identified inflammatory cell death modalities and their power in providing danger signals to trigger optimal tumor suppression. However, key mediators of inflammatory cell death are preferentially silenced during early tumor immunoediting. Strategies to rejuvenate inflammatory cell death hold great promise for broadening immunotherapy-responsive tumors. In this review, we examine how inflammatory cell death enhances tumor immunogenicity, how it is suppressed during immunoediting, and the potential of harnessing it for improved immunotherapy.
Collapse
Affiliation(s)
- Long Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yibo Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Bi L, Wang X, Li J, Li W, Wang Z. Epigenetic modifications in early stage lung cancer: pathogenesis, biomarkers, and early diagnosis. MedComm (Beijing) 2025; 6:e70080. [PMID: 39991629 PMCID: PMC11843169 DOI: 10.1002/mco2.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
The integration of liquid biopsy with epigenetic markers offers significant potential for early lung cancer detection and personalized treatment. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA changes, often precede genetic mutations and are critical in cancer progression. In this study, we explore how liquid biopsy, combined with epigenetic markers, can provide early detection of lung cancer, potentially predicting onset up to 4 years before clinical diagnosis. We discuss the challenges of targeting epigenetic regulators, which could disrupt cellular balance if overexploited, and the need for maintaining key gene expressions in therapeutic applications. This review highlights the promise and challenges of using liquid biopsy and epigenetic markers for early-stage lung cancer diagnosis, with a focus on optimizing treatment strategies for personalized and precision medicine.
Collapse
Affiliation(s)
- Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jiayi Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| |
Collapse
|
5
|
Wang C, Li J, Chen J, Wang Z, Zhu G, Song L, Wu J, Li C, Qiu R, Chen X, Zhang L, Li W. Multi-omics analyses reveal biological and clinical insights in recurrent stage I non-small cell lung cancer. Nat Commun 2025; 16:1477. [PMID: 39929832 PMCID: PMC11811181 DOI: 10.1038/s41467-024-55068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/26/2024] [Indexed: 02/13/2025] Open
Abstract
Post-operative recurrence rates of stage I non-small cell lung cancer (NSCLC) range from 20% to 40%. Nonetheless, the molecular mechanisms underlying recurrence hitherto remain largely elusive. Here, we generate genomic, epigenomic and transcriptomic profiles of paired tumors and adjacent tissues from 122 stage I NSCLC patients, among which 57 patients develop recurrence after surgery during follow-up. Integrated analyses illustrate that the presence of predominantly solid or micropapillary histological subtypes, increased genomic instability, and APOBEC-related signature are associated with recurrence. Furthermore, TP53 missense mutation in DNA-binding domain could contribute to shorter time to recurrence. DNA hypomethylation is pronounced in recurrent NSCLC, and PRAME is the significantly hypomethylated and overexpressed gene in recurrent lung adenocarcinoma (LUAD). Mechanistically, hypomethylation at TEAD1 binding site facilitates the transcriptional activation of PRAME. Inhibition of PRAME restrains the tumor metastasis via downregulation of epithelial-mesenchymal transition-related genes. We also identify that enrichment of AT2 cells with higher copy number variation burden, exhausted CD8 + T cells and Macro_SPP1, along with the reduced interaction between AT2 and immune cells, is essential for the formation of ecosystem in recurrent LUAD. Finally, multi-omics clustering could stratify the NSCLC patients into 4 subclusters with varying recurrence risk and subcluster-specific therapeutic vulnerabilities. Collectively, this study constitutes a promising resource enabling insights into the biological mechanisms and clinical management for post-operative recurrence of stage I NSCLC.
Collapse
Affiliation(s)
- Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jingwei Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyao Chen
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhoufeng Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lujia Song
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayang Wu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changshu Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Qiu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, China
| | - Xuelan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Bergmann L, Afflerbach AK, Yuan T, Pantel K, Smit DJ. Lessons (to be) learned from liquid biopsies: assessment of circulating cells and cell-free DNA in cancer and pregnancy-acquired microchimerism. Semin Immunopathol 2025; 47:14. [PMID: 39893314 PMCID: PMC11787191 DOI: 10.1007/s00281-025-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Tumors constantly shed cancer cells that are considered the mediators of metastasis via the blood stream. Analysis of circulating cells and circulating cell-free DNA (cfDNA) in liquid biopsies, mostly taken from peripheral blood, have emerged as powerful biomarkers in oncology, as they enable the detection of genomic aberrations. Similarly, liquid biopsies taken from pregnant women serve as prenatal screening test for an abnormal number of chromosomes in the fetus, e.g., via the analysis of microchimeric fetal cells and cfDNA circulating in maternal blood. Liquid biopsies are minimally invasive and, consequently, associated with reduced risks for the patients. However, different challenges arise in oncology and pregnancy-acquired liquid biopsies with regard to the analyte concentration and biological (background) noise among other factors. In this review, we highlight the unique biological properties of circulating tumor cells (CTC), summarize the various techniques that have been developed for the enrichment, detection and analysis of CTCs as well as for analysis of genetic and epigenetic aberrations in cfDNA and highlight the range of possible clinical applications. Lastly, the potential, but also the challenges of liquid biopsies in oncology as well as their translational value for the analysis of pregnancy-acquired microchimerism are discussed.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ann-Kristin Afflerbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Tingjie Yuan
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
7
|
Richard Albert J, Urli T, Monteagudo-Sánchez A, Le Breton A, Sultanova A, David A, Scarpa M, Schulz M, Greenberg MVC. DNA methylation shapes the Polycomb landscape during the exit from naive pluripotency. Nat Struct Mol Biol 2025; 32:346-357. [PMID: 39448850 DOI: 10.1038/s41594-024-01405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
In mammals, 5-methylcytosine (5mC) and Polycomb repressive complex 2 (PRC2)-deposited histone 3 lysine 27 trimethylation (H3K27me3) are generally mutually exclusive at CpG-rich regions. As mouse embryonic stem cells exit the naive pluripotent state, there is massive gain of 5mC concomitantly with restriction of broad H3K27me3 to 5mC-free, CpG-rich regions. To formally assess how 5mC shapes the H3K27me3 landscape, we profiled the epigenome of naive and differentiated cells in the presence and absence of the DNA methylation machinery. Surprisingly, we found that 5mC accumulation is not required to restrict most H3K27me3 domains. Instead, this 5mC-independent H3K27me3 restriction is mediated by aberrant expression of the PRC2 antagonist Ezhip (encoding EZH inhibitory protein). At the subset of regions where 5mC appears to genuinely supplant H3K27me3, we identified 163 candidate genes that appeared to require 5mC deposition and/or H3K27me3 depletion for their activation in differentiated cells. Using site-directed epigenome editing to directly modulate 5mC levels, we demonstrated that 5mC deposition is sufficient to antagonize H3K27me3 deposition and confer gene activation at individual candidates. Altogether, we systematically measured the antagonistic interplay between 5mC and H3K27me3 in a system that recapitulates early embryonic dynamics. Our results suggest that H3K27me3 restraint depends on 5mC, both directly and indirectly. Our study also implies a noncanonical role of 5mC in gene activation, which may be important not only for normal development but also for cancer progression, as oncogenic cells frequently exhibit dynamic replacement of 5mC for H3K27me3 and vice versa.
Collapse
Affiliation(s)
| | - Teresa Urli
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Ana Monteagudo-Sánchez
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Carlos Simon Foundation, INCLIVA Health Research Institute, Valencia, Spain
| | - Anna Le Breton
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Amina Sultanova
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Angélique David
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Mathieu Schulz
- Institut Curie, PSL Research University, INSERM U934, CNRS, UMR3215, Paris, France
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montréal, Québec, Canada
| | | |
Collapse
|
8
|
Constâncio V, Lobo J, Sequeira JP, Henrique R, Jerónimo C. Prostate cancer epigenetics - from pathophysiology to clinical application. Nat Rev Urol 2025:10.1038/s41585-024-00991-8. [PMID: 39820138 DOI: 10.1038/s41585-024-00991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/19/2025]
Abstract
Prostate cancer is a multifactorial disease influenced by various molecular features. Over the past decades, epigenetics, which is the study of changes in gene expression without altering the DNA sequence, has been recognized as a major driver of this disease. In the past 50 years, advancements in technological tools to characterize the epigenome have highlighted crucial roles of epigenetic mechanisms throughout the entire spectrum of prostate cancer, from initiation to progression, including localized disease, metastatic dissemination, castration resistance and neuroendocrine transdifferentiation. Substantial advances in the understanding of epigenetic mechanisms in the pathophysiology of prostate cancer have been carried out, but translating preclinical achievements into clinical practice remains challenging. Ongoing research and biomarker-oriented clinical trials are expected to increase the likelihood of successfully integrating epigenetics into prostate cancer clinical management.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Doctoral Program in Biomedical Sciences, ICBAS - School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Doctoral Program in Biomedical Sciences, ICBAS - School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
9
|
Mishra A, Huang SB, Dubash T, Burr R, Edd JF, Wittner BS, Cunneely QE, Putaturo VR, Deshpande A, Antmen E, Gopinathan KA, Otani K, Miyazawa Y, Kwak JE, Guay SY, Kelly J, Walsh J, Nieman LT, Galler I, Chan P, Lawrence MS, Sullivan RJ, Bardia A, Micalizzi DS, Sequist LV, Lee RJ, Franses JW, Ting DT, Brunker PAR, Maheswaran S, Miyamoto DT, Haber DA, Toner M. Tumor cell-based liquid biopsy using high-throughput microfluidic enrichment of entire leukapheresis product. Nat Commun 2025; 16:32. [PMID: 39746954 PMCID: PMC11696112 DOI: 10.1038/s41467-024-55140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from seven patients with metastatic cancer. High CTC yields (mean 10,057 CTCs per patient; range 100 to 58,125) reveal considerable intra-patient heterogeneity. CTC size varies within patients, with 67% overlapping in diameter with WBCs. Paired single-cell DNA and RNA sequencing identifies subclonal patterns of aneuploidy and distinct signaling pathways within CTCs. In prostate cancers, a subpopulation of small aneuploid cells lacking epithelial markers is enriched for neuroendocrine signatures. Pooling of CNV-confirmed CTCs enables whole exome sequencing with high mutant allele fractions. High-throughput CTC enrichment thus enables cell-based liquid biopsy for comprehensive monitoring of cancer.
Collapse
Affiliation(s)
- Avanish Mishra
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shih-Bo Huang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Howard Hughes Medical Institute, Bethesda, MD, 20815, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Risa Burr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jon F Edd
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ben S Wittner
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Quinn E Cunneely
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Victor R Putaturo
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Akansha Deshpande
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ezgi Antmen
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kaustav A Gopinathan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Keisuke Otani
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yoshiyuki Miyazawa
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ji Eun Kwak
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sara Y Guay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Justin Kelly
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - John Walsh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Linda T Nieman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Isabella Galler
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - PuiYee Chan
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ryan J Sullivan
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Aditya Bardia
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
- Hematology/Oncology, University of California, Los Angeles, USA
| | - Douglas S Micalizzi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Lecia V Sequist
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Richard J Lee
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Joseph W Franses
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - David T Ting
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Patricia A R Brunker
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - David T Miyamoto
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA.
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA.
- Howard Hughes Medical Institute, Bethesda, MD, 20815, USA.
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA.
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Shriners Children's Boston, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Zhou W, Reizel Y. On correlative and causal links of replicative epimutations. Trends Genet 2025; 41:60-75. [PMID: 39289103 PMCID: PMC12048181 DOI: 10.1016/j.tig.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yitzhak Reizel
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
11
|
Zhu Q, Liu J, Xie Y, Wu C. CD1a affects the recurrence and prognosis of ovarian cancer. J Obstet Gynaecol Res 2025; 51:e16120. [PMID: 39511782 DOI: 10.1111/jog.16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/29/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Explored the correlation between CD1a expression in recurrence and prognosis of ovarian cancer (OV). METHODS The CD1a expression profile in OV, recurrent OV, and normal tissues, as well as corresponding clinical data, were obtained from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), Gene Expression Omnibus (GEO), and Genotype Tissue Expression (GTEx) databases. Meanwhile, immunohistochemical detection of CD1a expression in normal and OV tissues. Kaplan-Meier curves were plotted to estimate the hazard ratio (HR) of survival in OV. In addition, the correlation between CD1a and immune cells in OV, as well as the CD1a expression profile and corresponding survival time in pan-cancer were obtained from TCGA database. RESULTS CD1a was overexpressed in OV and was significantly under-expressed in recurrent OV (TCGA-OV, p < 0.0001 and ICGC-OV, p < 0.0001). CD1a immunohistochemistry is significantly overexpressed in OV compared to normal tissue (p < 0.05). Recurrent OV (ICGC, p < 0.001; GSE17260, p < 0.001; GSE32062, p < 0.05). The prognosis in OV was significantly better when CD1a is overexpressed compared to under-expressed (HR [low], 1.426: 95% confidence interval [CI], 0.912-2.128; p = 0.050). Meanwhile, the overexpression of CD1a has a better prognosis than low expression in OV and recurrent OV (p = 0.004, HR [low] = 2.462, 95%CI [1.346-4.504] and p = 0.011, HR [low] = 2.199, 95%CI [1.202-4.024]). In addition, CD1a expression was closely correlated with immune cells, the CD8+ T cells, macrophages, and NK cells, while uncharacterized cells were significantly different (p = 2.65e-6, p = 7.52e-13, p = 8.28e-12, and p = 5.89e-8, respectively). Moreover, CD1a expression affected the prognosis in various other cancers. CONCLUSIONS CD1a expression affected the recurrence and prognosis of OV and is closely related to various immune cell levels.
Collapse
Affiliation(s)
- Qiong Zhu
- School of Public Health, University of South China, Hengyang, China
| | - Jun Liu
- Hengyang Central for Disease Control and Prevention, Hengyang, China
| | - Yinghao Xie
- School of Public Health, University of South China, Hengyang, China
| | - Chengqiu Wu
- School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
12
|
Raval H, Bhattacharya S. Early Detection, Precision Treatment, Recurrence Monitoring: Liquid Biopsy Transforms Colorectal Cancer Therapy. Curr Cancer Drug Targets 2025; 25:586-619. [PMID: 38623975 DOI: 10.2174/0115680096295070240318075023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Colorectal cancer (CRC) is a significant global health concern. We need ways to detect it early and determine the best treatments. One promising method is liquid biopsy, which uses cancer cells and other components in the blood to help diagnose and treat the disease. Liquid biopsies focus on three key elements: circulating tumor DNA (ctDNA), circulating microRNA (miRNA), and circulating tumor cells (CTC). By analyzing these elements, we can identify CRC in its early stages, predict how well a treatment will work, and even spot signs of cancer returning. This study investigates the world of liquid biopsy, a rapidly growing field. We want to understand how it can help us better recognize the molecular aspects of cancer, improve and diagnostics, tailor treatments to individual patients, and keep track of the disease over the long-term. We explored specific components of liquid biopsy, like extracellular vesicles and cell-free DNA, and how they are used to detect CRC. This review sheds light on the current state of knowledge and the many ways a liquid biopsy can be used in treating colorectal cancer. It can transform patient care, disease management, and clinical outcomes by offering non-invasive cancer-targeting solutions.
Collapse
Affiliation(s)
- Harshvardhan Raval
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
13
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
14
|
Li T, Chen Y, Li S. The Advances in the Development of Epigenetic Modifications Therapeutic Drugs Delivery Systems. Int J Nanomedicine 2024; 19:10623-10637. [PMID: 39445155 PMCID: PMC11498046 DOI: 10.2147/ijn.s480095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic dysregulation can significantly trigger the onset and progression of various diseases, epigenetic therapy is a new treatment strategy by changing DNA methylation, histone modification, N6-methyladenosine, chromatin modification and other epigenetic modifications to regulate gene expression levels for therapeutic purposes. However, small-molecule epigenetic drugs face challenges in disease treatment, such as lack of selectivity, limited therapeutic efficacy, and insufficient safety. Nanomedicine delivery systems offer significant advantages in addressing these issues by enhancing drug targeting, improving bioavailability, and reducing nonspecific distribution. This help minimize side effects while increasing both therapeutic effectiveness and safety of epigenetic drugs. In this review, we focus on the mechanism and role of epigenetic regulatory factors in diseases, as well as the challenges faced by small molecule inhibitors in treatment strategies, especially the research advancements in epigenetic drug delivery systems, review and discuss the therapeutic potential and challenges of using nanotechnology to develop epigenetic drug delivery systems.
Collapse
Affiliation(s)
- Tingyi Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Dalian Medical University, Dalian, People’s Republic of China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
15
|
Liu Z, Chen J, Ren Y, Liu S, Ba Y, Zuo A, Luo P, Cheng Q, Xu H, Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct Target Ther 2024; 9:270. [PMID: 39389953 PMCID: PMC11467208 DOI: 10.1038/s41392-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
The cascade of metastasis in tumor cells, exhibiting organ-specific tendencies, may occur at numerous phases of the disease and progress under intense evolutionary pressures. Organ-specific metastasis relies on the formation of pre-metastatic niche (PMN), with diverse cell types and complex cell interactions contributing to this concept, adding a new dimension to the traditional metastasis cascade. Prior to metastatic dissemination, as orchestrators of PMN formation, primary tumor-derived extracellular vesicles prepare a fertile microenvironment for the settlement and colonization of circulating tumor cells at distant secondary sites, significantly impacting cancer progression and outcomes. Obviously, solely intervening in cancer metastatic sites passively after macrometastasis is often insufficient. Early prediction of metastasis and holistic, macro-level control represent the future directions in cancer therapy. This review emphasizes the dynamic and intricate systematic alterations that occur as cancer progresses, illustrates the immunological landscape of organ-specific PMN creation, and deepens understanding of treatment modalities pertinent to metastasis, thereby identifying some prognostic and predictive biomarkers favorable to early predict the occurrence of metastasis and design appropriate treatment combinations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingqi Chen
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
Zhang Y, Naderi Yeganeh P, Zhang H, Wang SY, Li Z, Gu B, Lee DJ, Zhang Z, Ploumakis A, Shi M, Wu H, Greer EL, Hide W, Lieberman J. Tumor editing suppresses innate and adaptive antitumor immunity and is reversed by inhibiting DNA methylation. Nat Immunol 2024; 25:1858-1870. [PMID: 39169233 DOI: 10.1038/s41590-024-01932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/13/2024] [Indexed: 08/23/2024]
Abstract
Cancer cells edit gene expression to evade immunosurveillance. However, genome-wide studies of gene editing during early tumorigenesis are lacking. Here we used single-cell RNA sequencing in a breast cancer genetically engineered mouse model (GEMM) to identify edited genes without bias. Late tumors repressed antitumor immunity genes, reducing infiltrating immune cells and tumor-immune cell communications. Innate immune genes, especially interferon-stimulated genes, dominated the list of downregulated tumor genes, while genes that regulate cell-intrinsic malignancy were mostly unedited. Naive and activated CD8+ T cells in early tumors were replaced with exhausted or precursor-exhausted cells in late tumors. Repression of immune genes was reversed by inhibiting DNA methylation using low-dose decitabine, which suppressed tumor growth and restored immune control, increasing the number, functionality and memory of tumor-infiltrating lymphocytes and reducing the number of myeloid suppressor cells. Decitabine induced important interferon, pyroptosis and necroptosis genes, inflammatory cell death and immune control in GEMM and implanted breast and melanoma tumors.
Collapse
Affiliation(s)
- Ying Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Pourya Naderi Yeganeh
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Haiwei Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Simon Yuan Wang
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Zhouyihan Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bowen Gu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Dian-Jang Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Zhibin Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Athanasios Ploumakis
- Harvard Medical School, Boston, MA, USA
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ming Shi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Winston Hide
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
18
|
Wang Y, Wang C, Zhong R, Wang L, Sun L. Research progress of DNA methylation in colorectal cancer (Review). Mol Med Rep 2024; 30:154. [PMID: 38963030 PMCID: PMC11240861 DOI: 10.3892/mmr.2024.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024] Open
Abstract
DNA methylation is one of the earliest and most significant epigenetic mechanisms discovered. DNA methylation refers, in general, to the addition of a methyl group to a specific base in the DNA sequence under the catalysis of DNA methyltransferase, with S‑adenosine methionine as the methyl donor, via covalent bonding and chemical modifications. DNA methylation is an important factor in inducing cancer. There are different types of DNA methylation, and methylation at different sites plays different roles. It is well known that the progression of colorectal cancer (CRC) is affected by the methylation of key genes. The present review did not only discuss the potential relationship between DNA methylation and CRC but also discussed how DNA methylation affects the development of CRC by affecting key genes. Furthermore, the clinical significance of DNA methylation in CRC was highlighted, including that of the therapeutic targets and biomarkers of methylation; and the importance of DNA methylation inhibitors was discussed as a novel strategy for treatment of CRC. The present review did not only focus upon the latest research findings, but earlier reviews were also cited as references to older literature.
Collapse
Affiliation(s)
- Yuxin Wang
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Chengcheng Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ruiqi Zhong
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Liang Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lei Sun
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
19
|
Wu Z, Zhou R, Li B, Cao M, Wang W, Li X. Methylation modifications in tRNA and associated disorders: Current research and potential therapeutic targets. Cell Prolif 2024; 57:e13692. [PMID: 38943267 PMCID: PMC11503269 DOI: 10.1111/cpr.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024] Open
Abstract
High-throughput sequencing has sparked increased research interest in RNA modifications, particularly tRNA methylation, and its connection to various diseases. However, the precise mechanisms underpinning the development of these diseases remain largely elusive. This review sheds light on the roles of several tRNA methylations (m1A, m3C, m5C, m1G, m2G, m7G, m5U, and Nm) in diverse biological functions, including metabolic processing, stability, protein interactions, and mitochondrial activities. It further outlines diseases linked to aberrant tRNA modifications, related enzymes, and potential underlying mechanisms. Moreover, disruptions in tRNA regulation and abnormalities in tRNA-derived small RNAs (tsRNAs) contribute to disease pathogenesis, highlighting their potential as biomarkers for disease diagnosis. The review also delves into the exploration of drugs development targeting tRNA methylation enzymes, emphasizing the therapeutic prospects of modulating these processes. Continued research is imperative for a comprehensive comprehension and integration of these molecular mechanisms in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhijing Wu
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ruixin Zhou
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Baizao Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mingyu Cao
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wenlong Wang
- Department of Breast Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Clinical Research Center for Breast Cancer in Hunan ProvinceChangshaHunanChina
| | - Xinying Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
20
|
Zhu X, Farsh T, Vis D, Yu I, Li H, Liu T, Sjöström M, Shrestha R, Kneppers J, Severson T, Zhang M, Lundberg A, Moreno Rodriguez T, Weinstein AS, Foye A, Mehra N, Aggarwal RR, Bergman AM, Small EJ, Lack NA, Zwart W, Quigley DA, van der Heijden MS, Feng FY. Genomic and transcriptomic features of androgen receptor signaling inhibitor resistance in metastatic castration-resistant prostate cancer. J Clin Invest 2024; 134:e178604. [PMID: 39352383 PMCID: PMC11444163 DOI: 10.1172/jci178604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUNDAndrogen receptor signaling inhibitors (ARSIs) have improved outcomes for patients with metastatic castration-resistant prostate cancer (mCRPC), but their clinical benefit is limited by treatment resistance.METHODSTo investigate the mechanisms of ARSI resistance, we analyzed the whole-genome (n = 45) and transcriptome (n = 31) sequencing data generated from paired metastatic biopsies obtained before initiation of first-line ARSI therapy for mCRPC and after radiographic disease progression. We investigated the effects of genetic and pharmacologic modulation of SSTR1 in 22Rv1 cells, a representative mCRPC cell line.RESULTSWe confirmed the predominant role of tumor genetic alterations converging on augmenting androgen receptor (AR) signaling and the increased transcriptional heterogeneity and lineage plasticity during the emergence of ARSI resistance. We further identified amplifications involving a putative enhancer downstream of the AR and transcriptional downregulation of SSTR1, encoding somatostatin receptor 1, in ARSI-resistant tumors. We found that patients with SSTR1-low mCRPC tumors derived less benefit from subsequent ARSI therapy in a retrospective cohort. We showed that SSTR1 was antiproliferative in 22Rv1 cells and that the FDA-approved drug pasireotide suppressed 22Rv1 cell proliferation.CONCLUSIONOur findings expand the knowledge of ARSI resistance and point out actionable next steps, exemplified by potentially targeting SSTR1, to improve patient outcomes.FUNDINGNational Cancer Institute (NCI), NIH; Prostate Cancer Foundation; Conquer Cancer, American Society of Clinical Oncology Foundation; UCSF Benioff Initiative for Prostate Cancer Research; Netherlands Cancer Institute.
Collapse
MESH Headings
- Male
- Humans
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Signal Transduction/drug effects
- Transcriptome
- Neoplasm Metastasis
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Androgen Receptor Antagonists/pharmacology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
Collapse
Affiliation(s)
- Xiaolin Zhu
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Tatyanah Farsh
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Daniël Vis
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ivan Yu
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Tianyi Liu
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Jeroen Kneppers
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tesa Severson
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Thaidy Moreno Rodriguez
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Urology, UCSF, San Francisco, California, USA
| | - Alana S. Weinstein
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rahul R. Aggarwal
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Andries M. Bergman
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eric J. Small
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Nathan A. Lack
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Koç University School of Medicine, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Urology, UCSF, San Francisco, California, USA
| | | | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| |
Collapse
|
21
|
Berglund A, Yamoah K, Eschrich SA, Falahat R, Mulé JJ, Kim S, Matta J, Dutil J, Ruiz‐Deya G, Ortiz Sanchez C, Wang L, Park H, Banerjee HN, Lotan T, Barry KH, Putney RM, Kim SJ, Gwede C, Kresovich JK, Kim Y, Lin H, Dhillon J, Chakrabarti R, Park JY. Epigenome-wide association study of prostate cancer in African American men identified differentially methylated genes. Cancer Med 2024; 13:e70044. [PMID: 39162297 PMCID: PMC11334050 DOI: 10.1002/cam4.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Men with African ancestry have the highest incidence and mortality rates of prostate cancer (PCa) worldwide. METHODS This study aimed to identify differentially methylated genes between tumor vs. adjacent normal and aggressive vs. indolent PCa in 121 African American patients. Epigenome-wide DNA methylation patterns in tumor DNA were assessed using the human Illumina Methylation EPIC V1 array. RESULTS Around 5,139 differentially methylated CpG-sites (q < 0.01, lΔβl > 0.2) were identified when comparing normal vs. tumor, with an overall trend of hypermethylation in prostate tumors. Multiple representative differentially methylated regions (DMRs), including immune-related genes, such as CD40, Galectin3, OX40L, and STING, were detected in prostate tumors when compared to adjacent normal tissues. Based on an epigenetic clock model, we observed that tumors' total number of stem cell divisions and the stem cell division rate were significantly higher than adjacent normal tissues. Regarding PCa aggressiveness, 2,061 differentially methylated CpG-sites (q < 0.05, lΔβl > .05) were identified when the grade group (GG)1 was compared with GG4/5. Among these 2,061 CpG sites, 155 probes were consistently significant in more than one comparison. Among these genes, several immune system genes, such as COL18A1, S100A2, ITGA4, HLA-C, and ADCYAP1, have previously been linked to tumor progression in PCa. CONCLUSION Several differentially methylated genes involved in immune-oncologic pathways associated with disease risk or aggressiveness were identified. In addition, 261 African American-specific differentially methylated genes related to the risk of PCa were identified. These results can shedlight on potential mechanisms contributing to PCa disparities in the African American Population.
Collapse
Affiliation(s)
- Anders Berglund
- Department of Biostatistics and BioinformaticsH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Kosj Yamoah
- Department of Radiation OncologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Steven A. Eschrich
- Department of Biostatistics and BioinformaticsH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Rana Falahat
- Department of ImmunologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - James J. Mulé
- Department of ImmunologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Sungjune Kim
- Department of Radiation OncologyMayo Clinic Alix College of Medicine and Health SciencesJacksonvilleFloridaUSA
| | - Jaime Matta
- Department of Basic SciencesPonce Research Institute, Ponce Health Sciences University‐School of MedicinePoncePuerto Rico
| | - Julie Dutil
- Department of Basic SciencesPonce Research Institute, Ponce Health Sciences University‐School of MedicinePoncePuerto Rico
| | - Gilberto Ruiz‐Deya
- Department of Basic SciencesPonce Research Institute, Ponce Health Sciences University‐School of MedicinePoncePuerto Rico
| | - Carmen Ortiz Sanchez
- Department of Basic SciencesPonce Research Institute, Ponce Health Sciences University‐School of MedicinePoncePuerto Rico
| | - Liang Wang
- Department of Tumor BiologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Hyun Park
- Department of Cancer EpidemiologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Hirendra N. Banerjee
- Natural, Pharmacy and Health SciencesElizabeth City State UniversityElizabeth CityNorth CarolinaUSA
| | | | - Kathryn Hughes Barry
- Department of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Program in OncologyUniversity of Maryland Greenebaum Comprehensive Cancer CenterBaltimoreMarylandUSA
| | - Ryan M. Putney
- Department of Biostatistics and BioinformaticsH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Clement Gwede
- Department of Health Outcome and BehaviorH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Jacob K. Kresovich
- Department of Cancer EpidemiologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Youngchul Kim
- Department of Biostatistics and BioinformaticsH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Hui‐Yi Lin
- Biostatistics and Data Science Program, School of Public HealthLouisiana State University School of MedicineNew OrleansLouisianaUSA
| | - Jasreman Dhillon
- Department of PathologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Ratna Chakrabarti
- Burnett School of Biomedical SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Jong Y. Park
- Department of Cancer EpidemiologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| |
Collapse
|
22
|
Dittrich M, Bernhardt L, Penfold CA, Boroviak TE, Drummer C, Behr R, Müller T, Haaf T. Age-related and species-specific methylation changes in the protein-coding marmoset sperm epigenome. Aging Cell 2024; 23:e14200. [PMID: 38757354 PMCID: PMC11320356 DOI: 10.1111/acel.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
The sperm epigenome is thought to affect the developmental programming of the resulting embryo, influencing health and disease in later life. Age-related methylation changes in the sperm of old fathers may mediate the increased risks for reproductive and offspring medical problems. The impact of paternal age on sperm methylation has been extensively studied in humans and, to a lesser extent, in rodents and cattle. Here, we performed a comparative analysis of paternal age effects on protein-coding genes in the human and marmoset sperm methylomes. The marmoset has gained growing importance as a non-human primate model of aging and age-related diseases. Using reduced representation bisulfite sequencing, we identified age-related differentially methylated transcription start site (ageTSS) regions in 204 marmoset and 27 human genes. The direction of methylation changes was the opposite, increasing with age in marmosets and decreasing in humans. None of the identified ageTSS was differentially methylated in both species. Although the average methylation levels of all TSS regions were highly correlated between marmosets and humans, with the majority of TSS being hypomethylated in sperm, more than 300 protein-coding genes were endowed with species-specifically (hypo)methylated TSS. Several genes of the glycosphingolipid (GSL) biosynthesis pathway, which plays a role in embryonic stem cell differentiation and regulation of development, were hypomethylated (<5%) in human and fully methylated (>95%) in marmoset sperm. The expression levels and patterns of defined sets of GSL genes differed considerably between human and marmoset pre-implantation embryo stages and blastocyst tissues, respectively.
Collapse
Affiliation(s)
- Marcus Dittrich
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
- Department of BioinformaticsJulius Maximilians UniversityWürzburgGermany
| | - Laura Bernhardt
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
| | - Christopher A. Penfold
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Thorsten E. Boroviak
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Wellcome Trust – Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Charis Drummer
- Platform Degenerative DiseasesGerman Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany
- DZHK (German Centre for Cardiovascular Research)GöttingenGermany
| | - Rüdiger Behr
- Platform Degenerative DiseasesGerman Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany
- DZHK (German Centre for Cardiovascular Research)GöttingenGermany
| | - Tobias Müller
- Department of BioinformaticsJulius Maximilians UniversityWürzburgGermany
| | - Thomas Haaf
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
| |
Collapse
|
23
|
Abou-Ghali NE, Giannakakou P. Advances in metastatic prostate cancer circulating tumor cell enrichment technologies and clinical studies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 392:151-175. [PMID: 40287219 DOI: 10.1016/bs.ircmb.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Circulating tumor cells (CTCs) have emerged as a pivotal tool that enables molecular interrogation of patient tumor cells and association with clinical outcomes. In prostate cancer specifically, where tumor biopsies from patients with bone metastasis are extremely challenging, CTCs offer a viable and established source of tumor "biopsy". While the prognostic value of CTC enumeration in metastatic prostate cancer is established, there is a compelling need for molecular CTC characterization for effective patient stratification and disease management. The clinical utility of CTCs has been advanced by the evolution of enrichment technologies and their molecular characterization. Enrichment technologies have evolved from strictly EpCAM-based enrichment to antigen-agnostic enrichment, while their clinical utility has evolved from enumeration to advanced downstream analyses including CTC proteomics, transcriptomics and genomics. This chapter offers a comprehensive overview of recent advancements in CTC enrichment and analytical technologies while highlighting pivotal clinical studies in prostate cancer, that utilize CTCs to determine the molecular basis of clinical response and resistance, to assist in disease management and treatment customization.
Collapse
|
24
|
Liu Y, Cao P, Xiao L, Tang N, Fei W, Li X. Hypomethylation-associated Sox11 upregulation promotes oncogenesis via the PI3K/AKT pathway in OLP-associated OSCC. J Cell Mol Med 2024; 28:e18556. [PMID: 39039706 PMCID: PMC11263134 DOI: 10.1111/jcmm.18556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Oral lichen planus (OLP) is a particularly prevalent oral disorder with the potential to progress to oral squamous cell carcinoma (OSCC). SRY-box transcription factor 11 (Sox11) has been reported to serve as a prognostic marker for various cancers. However, the role and mechanism of Sox11 in OLP-related OSCC are unknown. Our results indicated that Sox11 was highly expressed, and that Sox11 promoter methylation was significantly reduced in OLP-associated OSCC tissues. High Sox11 expression and Sox11 promoter hypomethylation indicate a poor patient prognosis. According to in vivo and in vitro experiments, the knockdown of Sox11 inhibited proliferation, invasion, and migration while driving its apoptotic death in OSSC cells; Sox11 overexpression exerted the opposite effect as Sox11 knockdown. Mechanistically, knockdown of Sox11 inhibited PI3K/AKT and glycolysis pathway, and overexpression of Sox11 enhanced the PI3K/AKT and glycolysis pathways in OSCC cells. In addition, we demonstrated that Sox11 overexpression accelerated the progression of OSCC, at least in part by promoting PI3K/AKT pathway activation. In conclusion, our data indicated that the DNA hypomethylation-associated upregulation of Sox11 could promote oncogenic transformation via the PI3K/AKT pathway in OLP-associated OSCC. Therefore, Sox11 might be a reliable biomarker for predicting the progression of precancerous oral tissues.
Collapse
Affiliation(s)
- Yi Liu
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Peilin Cao
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Li Xiao
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Na Tang
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wei Fei
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Department of StomatologySichuan Provincial People's Hospital Wenjiang HospitalChengduChina
| | - Xue Li
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
25
|
Ma J, Xue K, Jiang Y, Wang X, He D, Guo P. Down-regulation of SLC14A1 in prostate cancer activates CDK1/CCNB1 and mTOR pathways and promotes tumor progression. Sci Rep 2024; 14:14914. [PMID: 38942821 PMCID: PMC11213927 DOI: 10.1038/s41598-024-66020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Prostate cancer (PCa) is the most common cancer among men in the United States and the leading cause of cancer-related death. The Solute Carrier Family 14 Member 1 (SLC14A1) is a member of urea transporters which are important for the regulation of urine concentration. However, the physiological significance of SLC14A1 in PCa still remains unclear. In the present study, via bioinformatics analysis and experiments, we found that expression of SLC14A1 is significantly decreased in PCa progression, which could be attributed to hypermethylation on SLC14A1 promoter region. Moreover, its low expression and hypermethylation on SLC14A1 promoter are closely related to the poor prognosis of PCa patients. On the other hand, overexpression of SLC14A1 inhibited cell proliferation and metastasis while its overexpression also suppressed CDK1/CCNB1 pathway and mTOR/MMP-9 signaling pathway. Additionally, SLC14A1 expression is enriched in prostate basal-type cells. In summary, our study indicates that its low expression level and promoter hypermethylation of SLC14A1 may represent novel indicators for PCa progression and prognosis, and SLC14A1 could inhibit the progression of PCa.
Collapse
Affiliation(s)
- Jianbin Ma
- Department of Urology, Qujiang Hospital, Northwest Corner of Huang Qutou Road Number Two and Changming Road, Xi'an, 710061, Shaanxi, China
| | - Kaihua Xue
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-Ta West Road, Xi'an, 710061, Shaanxi, China
| | - Yifan Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-Ta West Road, Xi'an, 710061, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-Ta West Road, Xi'an, 710061, Shaanxi, China
| | - Dalin He
- Department of Urology, Qujiang Hospital, Northwest Corner of Huang Qutou Road Number Two and Changming Road, Xi'an, 710061, Shaanxi, China.
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-Ta West Road, Xi'an, 710061, Shaanxi, China.
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-Ta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
26
|
Gerke MB, Jansen CS, Bilen MA. Circulating Tumor DNA in Genitourinary Cancers: Detection, Prognostics, and Therapeutic Implications. Cancers (Basel) 2024; 16:2280. [PMID: 38927984 PMCID: PMC11201475 DOI: 10.3390/cancers16122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
CtDNA is emerging as a non-invasive clinical detection method for several cancers, including genitourinary (GU) cancers such as prostate cancer, bladder cancer, and renal cell carcinoma (RCC). CtDNA assays have shown promise in early detection of GU cancers, providing prognostic information, assessing real-time treatment response, and detecting residual disease and relapse. The ease of obtaining a "liquid biopsy" from blood or urine in GU cancers enhances its potential to be used as a biomarker. Interrogating these "liquid biopsies" for ctDNA can then be used to detect common cancer mutations, novel genomic alterations, or epigenetic modifications. CtDNA has undergone investigation in numerous clinical trials, which could address clinical needs in GU cancers, for instance, earlier detection in RCC, therapeutic response prediction in castration-resistant prostate cancer, and monitoring for recurrence in bladder cancers. The utilization of liquid biopsy for ctDNA analysis provides a promising method of advancing precision medicine within the field of GU cancers.
Collapse
Affiliation(s)
- Margo B. Gerke
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
| | - Caroline S. Jansen
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Pang L, Zhou F, Liu Y, Ali H, Khan F, Heimberger AB, Chen P. Epigenetic regulation of tumor immunity. J Clin Invest 2024; 134:e178540. [PMID: 39133578 PMCID: PMC11178542 DOI: 10.1172/jci178540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Although cancer has long been considered a genetic disease, increasing evidence shows that epigenetic aberrations play a crucial role in affecting tumor biology and therapeutic response. The dysregulated epigenome in cancer cells reprograms the immune landscape within the tumor microenvironment, thereby hindering antitumor immunity, promoting tumor progression, and inducing immunotherapy resistance. Targeting epigenetically mediated tumor-immune crosstalk is an emerging strategy to inhibit tumor progression and circumvent the limitations of current immunotherapies, including immune checkpoint inhibitors. In this Review, we discuss the mechanisms by which epigenetic aberrations regulate tumor-immune interactions and how epigenetically targeted therapies inhibit tumor progression and synergize with immunotherapy.
Collapse
|
28
|
Zhang YW, Gvozdenovic A, Aceto N. A Molecular Voyage: Multiomics Insights into Circulating Tumor Cells. Cancer Discov 2024; 14:920-933. [PMID: 38581442 DOI: 10.1158/2159-8290.cd-24-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Circulating tumor cells (CTCs) play a pivotal role in metastasis, the leading cause of cancer-associated death. Recent improvements of CTC isolation tools, coupled with a steady development of multiomics technologies at single-cell resolution, have enabled an extensive exploration of CTC biology, unlocking insights into their molecular profiles. A detailed molecular portrait requires CTC interrogation across various levels encompassing genomic, epigenetic, transcriptomic, proteomic and metabolic features. Here, we review how state-of-the-art multiomics applied to CTCs are shedding light on how cancer spreads. Further, we highlight the potential implications of CTC profiling for clinical applications aimed at enhancing cancer diagnosis and treatment. SIGNIFICANCE Exploring the complexity of cancer progression through cutting-edge multiomics studies holds the promise of uncovering novel aspects of cancer biology and identifying therapeutic vulnerabilities to suppress metastasis.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
29
|
Jia W, Li N, Wang J, Gong X, Ouedraogo SY, Wang Y, Zhao J, Grech G, Chen L, Zhan X. Immune-related gene methylation prognostic instrument for stratification and targeted treatment of ovarian cancer patients toward advanced 3PM approach. EPMA J 2024; 15:375-404. [PMID: 38841623 PMCID: PMC11148001 DOI: 10.1007/s13167-024-00359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/07/2024] [Indexed: 06/07/2024]
Abstract
Background DNA methylation is an important mechanism in epigenetics, which can change the transcription ability of genes and is closely related to the pathogenesis of ovarian cancer (OC). We hypothesize that DNA methylation is significantly different in OCs compared to controls. Specific DNA methylation status can be used as a biomarker of OC, and targeted drugs targeting these methylation patterns and DNA methyltransferase may have better therapeutic effects. Studying the key DNA methylation sites of immune-related genes (IRGs) in OC patients and studying the effects of these methylation sites on the immune microenvironment may provide a new method for further exploring the pathogenesis of OC, realizing early detection and effective monitoring of OC, identifying effective biomarkers of DNA methylation subtypes and drug targets, improving the efficacy of targeted drugs or overcoming drug resistance, and better applying it to predictive diagnosis, prevention, and personalized medicine (PPPM; 3PM) of OC. Method Hypermethylated subtypes (cluster 1) and hypomethylated subtypes (cluster 2) were established in OCs based on the abundance of different methylation sites in IRGs. The differences in immune score, immune checkpoints, immune cells, and overall survival were analyzed between different methylation subtypes in OC samples. The significant pathways, gene ontology (GO), and protein-protein interaction (PPI) network of the identified methylation sites in IRGs were enriched. In addition, the immune-related methylation signature was constructed with multiple regression analysis. A methylation site model based on IRGs was constructed and verified. Results A total of 120 IRGs with 142 differentially methylated sites (DMSs) were identified. The DMSs were clustered into a high-level methylation group (cluster 1) and a low-level methylation group (cluster 2). The significant pathways and GO analysis showed many immune-related and cancer-associated enrichments. A methylation site signature based on IRGs was constructed, including RORC|cg25112191, S100A13|cg14467840, TNF|cg04425624, RLN2|cg03679581, and IL1RL2|cg22797169. The methylation sites of all five genes showed hypomethylation in OC, and there were statistically significant differences among RORC|cg25112191, S100A13|cg14467840, and TNF|cg04425624 (p < 0.05). This prognostic model based on low-level methylation and high-level methylation groups was significantly linked to the immune microenvironment as well as overall survival in OC. Conclusions This study provided different methylation subtypes for OC patients according to the methylation sites of IRGs. In addition, it helps establish a relationship between methylation and the immune microenvironment, which showed specific differences in biological signaling pathways, genomic changes, and immune mechanisms within the two subgroups. These data provide ones to deeply understand the mechanism of immune-related methylation genes on the occurrence and development of OC. The methylation-site signature is also to establish new possibilities for OC therapy. These data are a precious resource for stratification and targeted treatment of OC patients toward an advanced 3PM approach. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00359-3.
Collapse
Affiliation(s)
- Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Gong
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Yan Wang
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Junkai Zhao
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Godfrey Grech
- Department of Pathology, University of Malta, Msida, Malta
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
30
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
31
|
Mishra A, Huang SB, Dubash T, Burr R, Edd JF, Wittner BS, Cunneely QE, Putaturo VR, Deshpande A, Antmen E, Gopinathan KA, Otani K, Miyazawa Y, Kwak JE, Guay SY, Kelly J, Walsh J, Nieman L, Galler I, Chan P, Lawrence MS, Sullivan RJ, Bardia A, Micalizzi DS, Sequist LV, Lee RJ, Franses JW, Ting DT, Brunker PAR, Maheswaran S, Miyamoto DT, Haber DA, Toner M. Tumor cell-based liquid biopsy using high-throughput microfluidic enrichment of entire leukapheresis product. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.583573. [PMID: 38559183 PMCID: PMC10980012 DOI: 10.1101/2024.03.13.583573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Circulating Tumor Cells (CTCs), interrogated by sampling blood from patients with cancer, contain multiple analytes, including intact RNA, high molecular weight DNA, proteins, and metabolic markers. However, the clinical utility of tumor cell-based liquid biopsy has been limited since CTCs are very rare, and current technologies cannot process the blood volumes required to isolate a sufficient number of tumor cells for in-depth assays. We previously described a high-throughput microfluidic prototype utilizing high-flow channels and amplification of cell sorting forces through magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from patients with metastatic cancer, with a median of 2,799 CTCs purified per patient. Isolation of many CTCs from individual patients enables characterization of their morphological and molecular heterogeneity, including cell and nuclear size and RNA expression. It also allows robust detection of gene copy number variation, a definitive cancer marker with potential diagnostic applications. High-volume microfluidic enrichment of CTCs constitutes a new dimension in liquid biopsies.
Collapse
|
32
|
Bae SY, Kamalanathan KJ, Galeano-Garces C, Konety BR, Antonarakis ES, Parthasarathy J, Hong J, Drake JM. Dissemination of Circulating Tumor Cells in Breast and Prostate Cancer: Implications for Early Detection. Endocrinology 2024; 165:bqae022. [PMID: 38366552 PMCID: PMC10904107 DOI: 10.1210/endocr/bqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Burgeoning evidence suggests that circulating tumor cells (CTCs) may disseminate into blood vessels at an early stage, seeding metastases in various cancers such as breast and prostate cancer. Simultaneously, the early-stage CTCs that settle in metastatic sites [termed disseminated tumor cells (DTCs)] can enter dormancy, marking a potential source of late recurrence and therapy resistance. Thus, the presence of these early CTCs poses risks to patients but also holds potential benefits for early detection and treatment and opportunities for possibly curative interventions. This review delves into the role of early DTCs in driving latent metastasis within breast and prostate cancer, emphasizing the importance of early CTC detection in these diseases. We further explore the correlation between early CTC detection and poor prognoses, which contribute significantly to increased cancer mortality. Consequently, the detection of CTCs at an early stage emerges as a critical imperative for enhancing clinical diagnostics and allowing for early interventions.
Collapse
Affiliation(s)
| | | | | | - Badrinath R Konety
- Astrin Biosciences, St. Paul, MN 55114, USA
- Allina Health Cancer Institute, Minneapolis, MN 55407, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jiarong Hong
- Astrin Biosciences, St. Paul, MN 55114, USA
- Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
| | - Justin M Drake
- Astrin Biosciences, St. Paul, MN 55114, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
33
|
Gu M, Ren B, Fang Y, Ren J, Liu X, Wang X, Zhou F, Xiao R, Luo X, You L, Zhao Y. Epigenetic regulation in cancer. MedComm (Beijing) 2024; 5:e495. [PMID: 38374872 PMCID: PMC10876210 DOI: 10.1002/mco2.495] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Epigenetic modifications are defined as heritable changes in gene activity that do not involve changes in the underlying DNA sequence. The oncogenic process is driven by the accumulation of alterations that impact genome's structure and function. Genetic mutations, which directly disrupt the DNA sequence, are complemented by epigenetic modifications that modulate gene expression, thereby facilitating the acquisition of malignant characteristics. Principals among these epigenetic changes are shifts in DNA methylation and histone mark patterns, which promote tumor development and metastasis. Notably, the reversible nature of epigenetic alterations, as opposed to the permanence of genetic changes, positions the epigenetic machinery as a prime target in the discovery of novel therapeutics. Our review delves into the complexities of epigenetic regulation, exploring its profound effects on tumor initiation, metastatic behavior, metabolic pathways, and the tumor microenvironment. We place a particular emphasis on the dysregulation at each level of epigenetic modulation, including but not limited to, the aberrations in enzymes responsible for DNA methylation and histone modification, subunit loss or fusions in chromatin remodeling complexes, and the disturbances in higher-order chromatin structure. Finally, we also evaluate therapeutic approaches that leverage the growing understanding of chromatin dysregulation, offering new avenues for cancer treatment.
Collapse
Affiliation(s)
- Minzhi Gu
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Bo Ren
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Yuan Fang
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Jie Ren
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xiaohong Liu
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xing Wang
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Feihan Zhou
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Ruiling Xiao
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xiyuan Luo
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Lei You
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Yupei Zhao
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| |
Collapse
|
34
|
Micalizzi DS, Sequist LV, Haber DA. Deploying blood-based cancer screening. Science 2024; 383:368-370. [PMID: 38271495 DOI: 10.1126/science.adk1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
AI-based risk assessment may enable personalized blood-based multicancer screening.
Collapse
Affiliation(s)
- Douglas S Micalizzi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Medicine and Massachusetts General Hospital Cancer Center, Harvard Medical, School, Boston, MA, USA
| | - Lecia V Sequist
- Department of Medicine and Massachusetts General Hospital Cancer Center, Harvard Medical, School, Boston, MA, USA
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Medicine and Massachusetts General Hospital Cancer Center, Harvard Medical, School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
35
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
36
|
Lumour-Mensah T, Lemos B. Defining high confidence targets of differential CpG methylation in response to in utero arsenic exposure and implications for cancer risk. Toxicol Appl Pharmacol 2024; 482:116768. [PMID: 38030093 PMCID: PMC10889851 DOI: 10.1016/j.taap.2023.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Arsenic is a relatively abundant metalloid that impacts DNA methylation and has been implicated in various adverse health outcomes including several cancers and diabetes. However, uncertainty remains about the identity of genomic CpGs that are sensitive to arsenic exposure, in utero or otherwise. Here we identified a high confidence set of CpG sites whose methylation is sensitive to in utero arsenic exposure. To do so, we analyzed methylation of infant CpGs as a function of maternal urinary arsenic in cord blood and placenta from geographically and ancestrally distinct human populations. Independent analyses of these distinct populations were followed by combination of results across sexes and populations/tissue types. Following these analyses, we concluded that both sex and tissue type are important drivers of heterogeneity in methylation response at several CpGs. We also identified 17 high confidence CpGs that were hypermethylated across sex, tissue type and population; 11 of these were located within protein coding genes. This pattern is consistent with hypotheses that arsenic increases cancer risk by inducing the hypermethylation of genic regions. This study represents an opportunity to understand consistent, reproducible patterns of epigenomic responses after in utero arsenic exposure and may aid towards novel biomarkers or signatures of arsenic exposure. Identifying arsenic-responsive sites can also contribute to our understanding of the biological mechanisms by which arsenic exposure can affect biological function and increase risk of cancer and other age-related diseases.
Collapse
Affiliation(s)
- Tabitha Lumour-Mensah
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Bernardo Lemos
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America; R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
37
|
Zhu J, Yang Y, Li L, Tang J, Zhang R. DNA methylation profiles in cancer: functions, therapy, and beyond. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0403. [PMID: 38062785 PMCID: PMC10884540 DOI: 10.20892/j.issn.2095-3941.2023.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 02/24/2024] Open
Affiliation(s)
- Jinrong Zhu
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongjie Yang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Li
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiuren Tang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
38
|
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells (LCCRH), University Medical Center of Montpellier, Montpellier, France.
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, CNRS, IRD, Montpellier, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Institut Universitaire de Recherche Clinique (IURC), 641, avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
| | - Dario Marchetti
- Departments of Internal Medicine and Pathology, The University of New Mexico Health Sciences Center, UNM Comprehensive Cancer Center, MSC07 4025, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Julie E Lang
- Breast Surgery and Cancer Biology, Cleveland Clinic, 9500 Euclid Ave, A80, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland Clinic, 9500 Euclid Ave, A80, Cleveland, OH, 44195, USA
| |
Collapse
|