1
|
Schmidt HF, Darwin CB, Sundaram MV. The Pax transcription factor EGL-38 links EGFR signaling to assembly of a cell type-specific apical extracellular matrix in the Caenorhabditis elegans vulva. Dev Biol 2025; 517:265-277. [PMID: 39489317 PMCID: PMC11631643 DOI: 10.1016/j.ydbio.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The surface of epithelial tissues is covered by an apical extracellular matrix (aECM). The aECMs of different tissues have distinct compositions to serve distinct functions, yet how a particular cell type assembles the proper aECM is not well understood. We used the cell type-specific matrix of the C. elegans vulva to investigate the connection between cell identity and matrix assembly. The vulva is an epithelial tube composed of seven cell types descending from EGFR/Ras-dependent (1°) and Notch-dependent (2°) lineages. Vulva aECM contains multiple Zona Pellucida domain (ZP) proteins, which are a common component of aECMs across life. ZP proteins LET-653 and CUTL-18 assemble on 1° cell surfaces, while NOAH-1 assembles on a subset of 2° surfaces. All three ZP genes are broadly transcribed, indicating that cell type-specific ZP assembly must be determined by features of the destination cell surface. The paired box (Pax) transcription factor EGL-38 promotes assembly of 1° matrix and prevents inappropriate assembly of 2° matrix, suggesting that EGL-38 promotes expression of one or more ZP matrix organizers. Our results connect the known signaling pathways and various downstream effectors to EGL-38/Pax expression and the ZP matrix component of vulva cell fate execution. We propose that dedicated transcriptional networks may contribute to cell-appropriate assembly of aECM in many epithelial organs.
Collapse
Affiliation(s)
- Helen F Schmidt
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Chelsea B Darwin
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Wang Y, Xu F, Li G, Cheng C, Yu B, Zhang Z, Kong D, Chen F, Liu Y, Fang Z, Cao L, Yu Y, Gu Y, He Y. Structure of scavenger receptor SCARF1 and its interaction with lipoproteins. eLife 2024; 13:RP93428. [PMID: 39541158 PMCID: PMC11563577 DOI: 10.7554/elife.93428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fan Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guangyi Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| | - Chen Cheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bowen Yu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical UniversityWeifangChina
| | - Ze Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dandan Kong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fabao Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yali Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhen Fang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Longxing Cao
- School of Life Science, Westlake UniversityHangzhouChina
| | - Yang Yu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| | - Yijun Gu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| | - Yongning He
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical TranslationShanghaiChina
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Schmidt HF, Darwin CB, Sundaram MV. The Pax transcription factor EGL-38 links EGFR signaling to assembly of a cell-type specific apical extracellular matrix in the Caenorhabditis elegans vulva. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611291. [PMID: 39282387 PMCID: PMC11398461 DOI: 10.1101/2024.09.04.611291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The surface of epithelial tissues is covered by an apical extracellular matrix (aECM). The aECMs of different tissues have distinct compositions to serve distinct functions, yet how a particular cell type assembles the proper aECM is not well understood. We used the cell-type specific matrix of the C. elegans vulva to investigate the connection between cell identity and matrix assembly. The vulva is an epithelial tube composed of seven cell types descending from EGFR/Ras-dependent (1°) and Notch-dependent (2°) lineages. Vulva aECM contains multiple Zona Pellucida domain (ZP) proteins, which are a common component of aECMs across life. ZP proteins LET-653 and CUTL-18 assemble on 1° cell surfaces, while NOAH-1 assembles on a subset of 2° surfaces. All three ZP genes are broadly transcribed, indicating that cell-type specific ZP assembly must be determined by features of the destination cell surface. The paired box (Pax) transcription factor EGL-38 promotes assembly of 1° matrix and prevents inappropriate assembly of 2° matrix, suggesting that EGL-38 promotes expression of one or more ZP matrix organizers. Our results connect the known signaling pathways and various downstream effectors to EGL-38/Pax expression and the ZP matrix component of vulva cell fate execution. We propose that dedicated transcriptional networks may contribute to cell-appropriate assembly of aECM in many epithelial organs.
Collapse
Affiliation(s)
- Helen F Schmidt
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chelsea B Darwin
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Zhang Z, Tanaka I, Nakahashi-Ouchida R, Ernst PB, Kiyono H, Kurashima Y. Glycoprotein 2 as a gut gate keeper for mucosal equilibrium between inflammation and immunity. Semin Immunopathol 2024; 45:493-507. [PMID: 38170255 PMCID: PMC11136868 DOI: 10.1007/s00281-023-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Glycoprotein 2 (GP2) is a widely distributed protein in the digestive tract, contributing to mucosal barrier maintenance, immune homeostasis, and antigen-specific immune response, while also being linked to inflammatory bowel disease (IBD) pathogenesis. This review sheds light on the extensive distribution of GP2 within the gastrointestinal tract and its intricate interplay with the immune system. Furthermore, the significance of GP2 autoantibodies in diagnosing and categorizing IBD is underscored, alongside the promising therapeutic avenues for modulating GP2 to regulate immunity and maintain mucosal balance.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
| | - Izumi Tanaka
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
| | - Rika Nakahashi-Ouchida
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Peter B Ernst
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, CA, USA
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Hiroshi Kiyono
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan.
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA.
- Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan.
| |
Collapse
|
5
|
Jorge AM, Lao T, Kim R, Licciardi S, El Khoury J, Luster AD, Means TK, Ramirez-Ortiz ZG. SCARF1-Induced Efferocytosis Plays an Immunomodulatory Role in Humans, and Autoantibodies Targeting SCARF1 Are Produced in Patients with Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:955-967. [PMID: 35082161 PMCID: PMC8852219 DOI: 10.4049/jimmunol.2100532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022]
Abstract
Deficiency in the clearance of cellular debris is a major pathogenic factor in the emergence of autoimmune diseases. We previously demonstrated that mice deficient for scavenger receptor class F member 1 (SCARF1) develop a lupus-like autoimmune disease with symptoms similar to human systemic lupus erythematosus (SLE), including a pronounced accumulation of apoptotic cells (ACs). Therefore, we hypothesized that SCARF1 will be important for clearance of ACs and maintenance of self-tolerance in humans, and that dysregulation of this process could contribute to SLE. In this article, we show that SCARF1 is highly expressed on phagocytic cells, where it functions as an efferocytosis receptor. In healthy individuals, we discovered that engagement of SCARF1 by ACs on BDCA1+ dendritic cells initiates an IL-10 anti-inflammatory response mediated by the phosphorylation of STAT1 and STAT3. Unexpectedly, there was no significant difference in SCARF1 expression in samples of patients with SLE compared with healthy donor samples. However, we detected anti-SCARF1 autoantibodies in 26% of patients with SLE, which was associated with dsDNA Ab positivity. Furthermore, our data show a direct correlation of the levels of anti-SCARF1 in the serum and defects in the removal of ACs. Depletion of Ig restores efferocytosis in SLE serum, suggesting that defects in the removal of ACs are partially mediated by SCARF1 pathogenic autoantibodies. Our data demonstrate that human SCARF1 is an AC receptor in dendritic cells and plays a role in maintaining tolerance and homeostasis.
Collapse
Affiliation(s)
- April M Jorge
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Taotao Lao
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Rachel Kim
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Samantha Licciardi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Terry K Means
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
- Autoimmunity Cluster, Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA
| | - Zaida G Ramirez-Ortiz
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA;
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and
| |
Collapse
|
6
|
Adhesion of enteropathogenic, enterotoxigenic and commensal Escherichia coli to the Major Zymogen Granule Membrane Glycoprotein 2. Appl Environ Microbiol 2022; 88:e0227921. [PMID: 35020452 PMCID: PMC8904060 DOI: 10.1128/aem.02279-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria, such as enteropathogenic Escherichia coli (EPEC) and enterotoxigenic E. coli (ETEC), cause diarrhea in mammals. In particular, E. coli colonizes and infects the gastrointestinal tract via type 1 fimbriae (T1F). Here, the major zymogen granule membrane glycoprotein 2 (GP2) acts as a host cell receptor. GP2 is also secreted by the pancreas and various mucous glands, interacting with luminal type 1 fimbriae-positive E. coli. It is unknown whether GP2 isoforms demonstrate specific E. coli pathotype binding. In this study, we investigated interactions of human, porcine, and bovine EPEC and ETEC, as well as commensal E. coli isolates with human, porcine, and bovine GP2. We first defined pathotype- and host-associated FimH variants. Second, we could prove that GP2 isoforms bound to FimH variants to various degrees. However, the GP2-FimH interactions did not seem to be influenced by the host specificity of E. coli. In contrast, soluble GP2 affected ETEC infection and phagocytosis rates of macrophages. Preincubation of the ETEC pathotype with GP2 reduced the infection of cell lines. Furthermore, preincubation of E. coli with GP2 improved the phagocytosis rate of macrophages. Our findings suggest that GP2 plays a role in the defense against E. coli infection and in the corresponding host immune response. IMPORTANCE Infection by pathogenic bacteria, such as certain Escherichia coli pathotypes, results in diarrhea in mammals. Pathogens, including zoonotic agents, can infect different hosts or show host specificity. There are Escherichia coli strains which are frequently transmitted between humans and animals, whereas other Escherichia coli strains tend to colonize only one host. This host specificity is still not fully understood. We show that glycoprotein 2 is a selective receptor for particular Escherichia coli strains or variants of the adhesin FimH but not a selector for a species-specific Escherichia coli group. We demonstrate that GP2 is involved in the regulation of colonization and infection and thus represents a molecule of interest for the prevention or treatment of disease.
Collapse
|
7
|
Kisworo D, Depamede SN. Bioinformatics analysis of structures and ligand-bindings of predicted zymogen granule protein observed on Bali cattle ( Bos javanicus) saliva. J Adv Vet Anim Res 2021; 8:224-229. [PMID: 34395592 PMCID: PMC8280989 DOI: 10.5455/javar.2021.h506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 11/03/2022] Open
Abstract
Objective Previously, we have shown that predicted zymogen granule protein 16 homolog B (P-G3MZ19) existed in Bali cattle (Bos javanicus) saliva. It was suggested that P-G3MZ19 is a member of the mannose-binding lectin family that plays an essential role in innate immunity. In the present study, we aimed to analyze the structure and ligand-binding of P-3MZ19 in Bali cattle saliva. Materials and Methods Saliva of four adult healthy Bali cattle was collected, lyophilized, and subjected to two-dimensional (2-D) gel electrophoresis. The target spot of around 17 kDa related to P-G3MZ19 was excised for matrix-assisted laser desorption ionization time-of-flight mass spectrometer/time-of-flight mass spectrometer mass spectrometry analysis and sequencing. The structure and the ligand-binding of P-3MZ19 were analyzed using bioinformatics software programs published elsewhere. Results Based on Iterative Threading ASSEmbly Refinement the 3D model of P-G3MZ19 was suggested to have similarities to exo-alpha-sialidase (EC 3.2.1.18); while its ligand-binding sites consisted of seven residues, i.e., 25aa-26aa (Gly-Gly), 95aa (Phe), 138aa (Tyr), 140aa (Leu), 141aa (Gly), and 143aa (Thr). Conclusion The structure of P-G3MZ19 of Bali cattle saliva and its ligand-binding sites have been successfully determined by using bioinformatics techniques. The biological and immunological roles of the peptide are currently under investigation based on P-G3MZ19 synthetic peptides.
Collapse
Affiliation(s)
- Djoko Kisworo
- Faculty of Animal Science, University of Mataram, Mataram, Indonesia
| | | |
Collapse
|
8
|
Wicker-Planquart C, Dufour S, Tacnet-Delorme P, Bally I, Delneste Y, Frachet P, Housset D, Thielens NM. Molecular and Cellular Interactions of Scavenger Receptor SR-F1 With Complement C1q Provide Insights Into Its Role in the Clearance of Apoptotic Cells. Front Immunol 2020; 11:544. [PMID: 32296440 PMCID: PMC7137648 DOI: 10.3389/fimmu.2020.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
The scavenger receptor SR-F1 binds to and mediates the internalization of a wide range of ligands, and is involved in several immunological processes. We produced recombinant SR-F1 ectodomain and fragments deleted from the last 2 or 5 C-terminal epidermal growth factor-like modules and investigated their role in the binding of acetylated low density lipoprotein (AcLDL), complement C1q, and calreticulin (CRT). C1q measured affinity was in the 100 nM range and C1q interaction occurs via its collagen-like region. We identified two different binding regions on SR-F1: the N-terminal moiety interacts with C1q and CRT whereas the C-terminal moiety binds AcLDL. The role of SR-F1 N-linked glycans was also tested by mutating each of the three glycosylated asparagines. The three mutants retained binding activities for both AcLDL and C1q. A stable THP-1 cell line overexpressing SR-F1 was generated and C1q was shown to bind more strongly to the surface of SR-F1 overexpressing macrophages, with C1q/SR-F1 colocalization observed in some membrane areas. We also observed a higher level of CRT internalization for THP-1 SR-F1 cells. Increasing SR-F1 negatively modulated the uptake of apoptotic cells. Indeed, THP-1 cells overexpressing SR-F1 displayed a lower phagocytic capacity as compared with mock-transfected cells, which could be partially restored by addition of C1q in the extracellular milieu. Our data shed some light on the role of SR-F1 in efferocytosis, through its capacity to bind C1q and CRT, two proteins involved in this process.
Collapse
Affiliation(s)
| | - Samy Dufour
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Isabelle Bally
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie Allergologie, Angers, France
| | | | | | | |
Collapse
|
9
|
Lopens S, Krawczyk M, Papp M, Milkiewicz P, Schierack P, Liu Y, Wunsch E, Conrad K, Roggenbuck D. The search for the Holy Grail: autoantigenic targets in primary sclerosing cholangitis associated with disease phenotype and neoplasia. AUTO- IMMUNITY HIGHLIGHTS 2020; 11:6. [PMID: 32178720 PMCID: PMC7077156 DOI: 10.1186/s13317-020-00129-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
Abstract
Unlike in other autoimmune liver diseases such as autoimmune hepatitis and primary biliary cholangitis, the role and nature of autoantigenic targets in primary sclerosing cholangitis (PSC), a progressive, chronic, immune-mediated, life threatening, genetically predisposed, cholestatic liver illness, is poorly elucidated. Although anti-neutrophil cytoplasmic antibodies (ANCA) have been associated with the occurrence of PSC, their corresponding targets have not yet been identified entirely. Genome-wide association studies revealed a significant number of immune-related and even disease-modifying susceptibility loci for PSC. However, these loci did not allow discerning a clear autoimmune pattern nor do the therapy options and the male gender preponderance in PSC support a pathogenic role of autoimmune responses. Nevertheless, PSC is characterized by the co-occurrence of inflammatory bowel diseases (IBD) demonstrating autoimmune responses. The identification of novel autoantigenic targets in IBD such as the major zymogen granule membrane glycoprotein 2 (GP2) or the appearance of proteinase 3 (PR3) autoantibodies (autoAbs) have refocused the interest on a putative association of loss of tolerance with the IBD phenotype and consequently with the PSC phenotype. Not surprisingly, the report of an association between GP2 IgA autoAbs and disease severity in patients with PSC gave a new impetus to autoAb research for autoimmune liver diseases. It might usher in a new era of serological research in this field. The mucosal loss of tolerance against the microbiota-sensing GP2 modulating innate and adaptive intestinal immunity and its putative role in the pathogenesis of PSC will be elaborated in this review. Furthermore, other potential PSC-related autoantigenic targets such as the neutrophil PR3 will be discussed. GP2 IgA may represent a group of new pathogenic antibodies, which share characteristics of both type 2 and 3 of antibody-mediated hypersensitive reactions according to Coombs and Gell.
Collapse
Affiliation(s)
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Hospital, Saarland University, Homburg/Saar, Germany
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland
| | - Maria Papp
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland
| | - Peter Schierack
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Yudong Liu
- Department of Laboratory Medicine, Peking University People's Hospital, Beijing, China
| | - Ewa Wunsch
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Karsten Conrad
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Universitätsplatz 1, 01968, Senftenberg, Germany.
| |
Collapse
|
10
|
SCARF1: a multifaceted, yet largely understudied, scavenger receptor. Inflamm Res 2018; 67:627-632. [PMID: 29725698 PMCID: PMC6028831 DOI: 10.1007/s00011-018-1154-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND As is a prerequisite of belonging to the scavenger receptor super family, SCARF1 (scavenger receptor class F, member 1) is known to play a key role in the binding and endocytosis of a wide range of endogenous and exogenous ligands. FINDINGS Unlike most scavenger receptors, SCARF1 is an essential protein, as SCARF1-deficient mice exhibit a severe resting phenotype in which they develop systemic lupus erythematosus (SLE)-like disease, thus highlighting the importance of SCARF1-mediated clearance of apoptotic host cells in homeostasis. In addition, a number of other roles in homeostasis and disease pathology have also been suggested, including roles in both innate and adaptive immunity; however, the majority of these studies have utilised transfected cell lines engineered to ectopically express SCARF1 and very few have utilised in vivo or ex vivo approaches. CONCLUSION This review summarises our current knowledge on SCARF1 biology and reflects on future directions for research on this multifaceted, yet largely understudied, scavenger receptor.
Collapse
|
11
|
Autoantibodies Against Glycoprotein 2 Isoforms in Pediatric Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2017; 23:1624-1636. [PMID: 28691939 DOI: 10.1097/mib.0000000000001159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anti-Glycoprotein 2 (GP2) antibodies are associated with a more complicated course of Crohn's disease (CD) in adults. Four different GP2 isoforms with different length and antibody-binding sites have been identified so far but not been explored in serological studies. We aimed to investigate the diagnostic utility of autoantibodies against all 4 isoforms of GP2 in an exclusively pediatric population for the first time. METHODS We included 278 children and adolescents with inflammatory bowel disease: 164 with CD, 114 with ulcerative colitis, 83 disease controls (acute gastrointestinal infection, nonspecific gastrointestinal functional disorders), and 219 healthy controls. Sera were tested for anti-GP2 antibodies using 4 different isoforms of GP2 for anti-Saccharomyces cerevisiae antibodies, antineutrophil cytoplasmic antibodies, and pancreatic antibodies. RESULTS Anti-GP2 antibodies were significantly more prevalent in patients with CD than in ulcerative colitis and controls. We found a sensitivity of 38% (with a specificity of 95%) for anti-GP2 IgG against isoform 4 in CD. Anti-GP2 IgA against isoform 1 and anti-GP2 IgG against isoform 4 possessed the best diagnostic values for identification of CD. For the differentiation of CD from ulcerative colitis anti-GP2 IgG against isoforms 3 and 4 proved to be most accurate markers. Anti-GP2 antibodies were associated with a more complicated disease behavior and bowel surgery in CD. In a subgroup of patients with CD, anti-GP2 IgG against isoform 4 proved to be a relatively stable marker over time independent of disease activity. CONCLUSIONS Anti-GP2 antibodies against different isoforms are specific markers for CD and for different phenotypes in pediatric inflammatory bowel disease.
Collapse
|
12
|
Murshid A, Borges TJ, Lang BJ, Calderwood SK. The Scavenger Receptor SREC-I Cooperates with Toll-Like Receptors to Trigger Inflammatory Innate Immune Responses. Front Immunol 2016; 7:226. [PMID: 27379091 PMCID: PMC4904184 DOI: 10.3389/fimmu.2016.00226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
Scavenger receptor expressed by endothelial cell-I (SREC-I) is a class F scavenger receptor expressed by immune cells with a significant role in CD8+- and CD4+-mediated T cell immunity. This receptor can also modulate the function of toll-like receptors (TLRs), which play essential roles in innate immunity. Earlier, it was found that human monocyte/macrophage THP1 cells and bone marrow-derived macrophages from mice exhibited increased responses to polyinosine–polycytidylic acid (poly I:C, PIC) and CpG (unmethylated) DNA and enhanced production of inflammatory cytokines with overexpressed SREC-I. Our data also showed that intracellular/endocytic TLR3 and TLR9 could directly interact with SREC-I in the presence of their respective ligands. We also observed that the internalized ligand along with TLR3/TLR9 colocalized in the endosome in macrophages and THP-1 cells overexpressing these receptors. In the absence of these ligands, there was no detectable colocalization between the SREC-I and endocytic TLRs. Earlier, it was shown that SREC-I stimulated double-stranded RNA/CpGDNA-mediated TLR3/TLR9 activation of the innate immune response by triggering signaling through the NF-κB, IRF3, and MAP kinase pathways leading to transcription of cytokine genes. We also established that SREC-I can associate with plasma membrane TLRs, such as TLR2 and TLR4. We demonstrated that SREC-I–TLR4 signals more efficiently from lipid microdomain in which lipopolysaccharide (LPS) can associate with SREC-I–TLR4 complex. We also proved that SREC-I is an alternate receptor for LPS capable of internalizing the complex and for endocytic TLR ligands as well. This binding activated endocytic TLR-mediated downstream cytokine production in THP1 cells and macrophages. Finally, SREC-I could also form complexes with TLR2 and induce the release of cytokines in the presence of bacterial, viral, and fungal ligands.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Thiago J Borges
- Biomedical Research Institute, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| | - Benjamin J Lang
- Molecular and Cellular Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
13
|
Abstract
Inflammation in inflammatory bowel diseases (IBD) has been linked to a loss of tolerance to self-antigens suggesting the existence of autoantibodies in specific disease phenotypes. However, the lack of clearly defined autoantigenic targets has slowed down research. Genome-wide association studies have identified an impressive number of immune-related susceptibility loci for IBD with no clearly discernible pattern among them. Growing evidence supports the hypothesis that innate immune responses to a low-diversity and impaired gut microbiota may be of key importance in initiating and perpetuating chronic inflammation in IBD. Increasing evidence suggests that reduced microbial diversity and microbial-mucosal epithelium interaction (including adhesion and clearance) are critically involved in IBD pathogenesis. Along these lines the discovery of autoantigenic targets in Crohn's disease (CD) has refocused research in IBD on the possible role of autoimmune responses. The identification of the major zymogen granule membrane glycoprotein 2 (GP2) as an autoantigen in CD patients and its proposed role in the sensing of the microbiota lends credence to this trend. Loss of tolerance to GP2 occurs in up to 40% of patients with CD. Corresponding autoantibodies appear to be associated with distinct disease courses (types or phenotypes) in CD. Here, we critically review autoantibodies in CD for their impact on clinical practice and future IBD research. The immunomodulatory role of GP2 in innate and adaptive intestinal immunity is also discussed.
Collapse
|
14
|
Hofer J, Forster F, Isenman DE, Wahrmann M, Leitner J, Hölzl MA, Kovarik JJ, Stockinger H, Böhmig GA, Steinberger P, Zlabinger GJ. Ig-like transcript 4 as a cellular receptor for soluble complement fragment C4d. FASEB J 2015; 30:1492-503. [PMID: 26678451 DOI: 10.1096/fj.15-275594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/08/2015] [Indexed: 01/16/2023]
Abstract
Complement regulation leads to the generation of complement split products (CSPs) such as complement component (C)4d, a marker for disease activity in autoimmune syndromes or antibody-mediated allograft rejection. However, the physiologic role of C4d has been unknown. By screening murine thymoma BW5147 cells expressing a cDNA library generated from human monocyte-derived dendritic cells with recombinant human C4d, we identified Ig-like transcript (ILT)4 and ILT5v2 as cellular receptors for C4d. Both receptors, expressed on monocytes, macrophages, and dendritic cells, also interacted with the CSPs C3d, C4b, C3b, and iC3b. However, C4d did not bind to classic complement receptors (CRs). Interaction between cell surface-resident ILT4 and soluble monomeric C4d resulted in endocytosis of C4d. Surprisingly, binding of soluble ILT4 to C4d covalently immobilized to a cellular surface following classic complement activation could not be detected. Remarkably, C4d immobilized to a solid phaseviaits intrinsic thioester conferred a dose-dependent inhibition of TNF-α and IL-6 secretion in monocytes activatedviaFc-cross-linking of up to 50% as compared to baseline. Similarly, C4d conferred an attenuation of intracellular Ca(2+)flux in monocytes activatedviaFc-cross-linking. In conclusion, ILT4 represents a scavenger-type endocytotic CR for soluble monomeric C4d, whereas attenuation of monocyte activation by physiologically oriented C4d on a surface appears to be dependent on a yet to be identified C4d receptor.-Hofer, J., Forster, F., Isenman, D. E., Wahrmann, M., Leitner, J., Hölzl, M. A., Kovarik, J. K., Stockinger, H., Böhmig, G. A., Steinberger, P., Zlabinger, G. J. Ig-like transcript 4 as a cellular receptor for soluble complement fragment C4d.
Collapse
Affiliation(s)
- Johannes Hofer
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Florian Forster
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - David E Isenman
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Markus Wahrmann
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Judith Leitner
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Markus A Hölzl
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Johannes J Kovarik
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hannes Stockinger
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Georg A Böhmig
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Peter Steinberger
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Gerhard J Zlabinger
- *Division of Clinical Experimental Immunology and Division of Immune Receptors and T Cell Activation, Institute of Immunology, Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology, and Immunology, and Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Pancreatic Autoantibodies Against CUZD1 and GP2 Are Associated with Distinct Clinical Phenotypes of Crohn's Disease. Inflamm Bowel Dis 2015; 21:2864-72. [PMID: 26273818 DOI: 10.1097/mib.0000000000000564] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by a broad spectrum of clinical phenotypes with different outcomes. In the last decades, several IBD-associated autoantibodies have been identified and investigated for their diagnostic relevance. Autoantibodies against the pancreatic glycoproteins (PAB) CUB and zona pellucida-like domains-containing protein 1 (CUZD1), and glycoprotein 2 (GP2) have been demonstrated to possess high specificity for the diagnosis of IBD. Although several studies have shown significant interrelations of anti-GP2 positivity with disease phenotype, associations of clinical phenotypes with anti-CUZD1 are still unknown. The aim was to identify the association of clinical phenotypes with anti-CUZD1 and anti-GP2 in a well-defined German IBD cohort. METHODS Patients with IBD (224 patients with Crohn's disease and 136 patients with ulcerative colitis), who were tested for anti-GP2 and anti-CUZD1 immunoglobulin G and immunoglobulin A by indirect immunofluorescence on transfected cells between 2005 and 2013, were included. Serotype and specified phenotypic data were collected in retrospect and statistically analyzed. RESULTS Both anti-GP2 (P < 0.001) and anti-CUZD1 (P < 0.001) were significantly more prevalent in patients with Crohn's disease than in ulcerative colitis. PAB positivity was associated with ileocolonic disease (P = 0.002), perianal disease (P = 0.011), immunosuppressive treatment (P = 0.036), and ASCA positivity (P = 0.036). Anti-CUZD1 positivity was associated with ileocolonic (P = 0.016) and perianal disease (P = 0.002), whereas anti-GP2 positivity was positively associated with stricturing behavior (P = 0.016). CONCLUSIONS We found distinct clinical phenotypes to be associated with PAB positivity. Therefore, determination of PABs and their subgroup analysis might identify patients with complicated disease behavior. However, the clinical relevance of our findings should be further evaluated in prospective cohorts.
Collapse
|
16
|
He J, Liu W, Wang S, Liu W, Liu H. The SREC-I and SREC-II associated with epidermal growth factor in scavenger receptor family are the potential regulative transmembrane receptors in Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2015; 47:182-195. [PMID: 26343178 DOI: 10.1016/j.fsi.2015.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/03/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
In innate immunity, the regulation of the immunologic gene expression plays a vital role in defense against pathogenic threat. The class F scavenger receptors (SCARFs), a kind of crucial immunologic type I transmembrane receptors, mainly involve in the signal transmission and eliminating pathogens in host immune system. In this study, the SREC-I and SREC-II of SCARFs in Larimichthys crocea (designated as LycSREC1 and LycSREC2 respectively) were first identified, the potential genetic locus relationships with other species were depicted and the features of gene expression after Vibrio alginolyticus stimulation were tested. The results demonstrated that the complete ORF sequences of two candidates were 3024 bp and 2832 bp (KM884873 and KM884874) respectively including some important domains and motifs, such as EGF/EGF-like domains, TRAF2-binding consensus motif, generic motif and atipical motif. The gene location maps and genetic locus interpreted that the DNA sequences of LycSREC1 and LycSREC2 were 7603 bp and 4883 bp, and some locus had changed compared with human being, but three more crucial genetic locus were conservative among ten species. Furthermore, quantitative real-time PCR (qRT-PCR) analysis indicated that the highest mRNA expression of LycSREC1 and LycSREC2 were both in liver among eight detected tissues, and their expression were up-regulated by V. alginolyticus stimulation. All these findings would contribute to better understanding the biologic function of SCARFs in defending against pathogenic bacteria challenge and further exploring the innate immune of sciaenidae fish.
Collapse
Affiliation(s)
- Jianyu He
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Wei Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Shaoping Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Wan Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
17
|
Laass MW, Röber N, Range U, Noß L, Roggenbuck D, Conrad K. Loss and Gain of Tolerance to Pancreatic Glycoprotein 2 in Celiac Disease. PLoS One 2015; 10:e0128104. [PMID: 26047356 PMCID: PMC4457647 DOI: 10.1371/journal.pone.0128104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 04/23/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autoantibodies against pancreatic secretory-granule membrane glycoprotein 2 (GP2) have been demonstrated in patients with Crohn's disease but recently also with celiac disease (CD). Both entities are characterized by intestinal barrier impairment with increased gut permeability. Pathophysiological hallmark of CD is a permanent loss of tolerance to alimentary gliadin and a transient loss of tolerance to the autoantigen human tissue transglutaminase (tTG). Therefore, we explored the behavior of loss of tolerance to GP2 reported in CD. METHODS We assessed prevalences and levels of autoantibodies against GP2, CD-specific antibodies to endomysial antigens and tTG as well as Crohn's disease-specific anti-Saccharomyces cerevisiae antibodies in sera of 174 patients with active CD, 84 patients under gluten-free diet (GFD) and 129 controls. Furthermore, we looked for an association between anti-GP2 antibody positivity and degree of mucosal damage in CD. RESULTS We found significantly elevated anti-GP2 IgA positivity in active CD patients (19.5%) compared to CD patients under GFD (0.0%) and controls (5.4%, p < 0.001, respectively). Anti-GP2 IgA levels correlated significantly with CD-specific antibodies (p < 0.001). Anti-GP2 autoantibody positivity disappeared under GFD similarly to CD-specific autoantibodies against tTG and endomysial antigens. For the first time, IgA antibody levels to GP2 are demonstrated to be associated with degree of villous atrophy according to Marsh classification. CONCLUSIONS Anti-GP2 IgA seems to be associated with disease activity in a distinct subgroup of patients with CD. The observed loss of tolerance to GP2 in a subset of patients with CD is transient and disappears under GFD.
Collapse
Affiliation(s)
- Martin W. Laass
- Children’s Hospital, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- * E-mail:
| | - Nadja Röber
- Institute of Immunology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ursula Range
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Lydia Noß
- Children’s Hospital, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dirk Roggenbuck
- GA Generic Assays GmbH, 15827 Dahlewitz/Berlin, Germany
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Karsten Conrad
- Institute of Immunology, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
18
|
Liaskos C, Spyrou V, Athanasiou LV, Orfanidou T, Mavropoulos A, Rigopoulou EI, Amiridis GS, Shoenfeld Y, Billinis C, Bogdanos DP. Crohn's disease-specific anti-CUZD1 pancreatic antibodies are absent in ruminants with paratuberculosis. Clin Res Hepatol Gastroenterol 2015; 39:384-390. [PMID: 25575461 DOI: 10.1016/j.clinre.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/23/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic autoantibodies (PABs) specifically recognizing GP2 and/or CUZD1 are present in more than 35% of patients with Crohn's disease (CrD). We have recently provided evidence of the presence of GP2-specific PABs in ruminants with paratuberculosis (ptb), a Mycobacterium avium paratuberculosis (MAP)-induced disease resembling CrD. OBJECTIVE To assess whether anti-CUZD1 antibodies are also present in ruminants with ptb. METHODS A total of 110 samples (73 cattle/37 sheep) were studied including 40 with ptb (24 cattle/16 sheep; 20 anti-GP2 antibody pos) and 70 without ptb (49 cattle/21 sheep; 10 anti-GP2 antibody pos). The samples were pre-characterized for anti-MAP and anti-GP2 antibodies by ELISA. Evidence of MAP was confirmed by PCR. Anti-CUZD1 antibody testing was performed by indirect immunofluorescence (IIF) based on transfected HEK293 cells expressing CUZD1. Anti-sheep or anti-cattle specific antisera were used as revealing antibodies. RESULTS None of the ruminant sera had anti-CUZD1 antibodies by IIF testing at dilutions varying from 1/10 to 1/160. Methodological flaws were prevented by a series of tests. Control sera from anti-CUZD1 positive CrD samples have shown anti-CUZD1 antibody reactivity at various concentrations. Antibody reactivity to GP2-expressing HEK293 cells has confirmed the reactivity to GP2 in ruminant sera found positive for anti-GP2 antibodies by ELISA. CONCLUSION The present study has found no evidence of anti-CUZD1 PABs in MAP-induced ptb. Our findings indicate that the induction of CUZD1-specific PABs is unrelated to MAP infection and that the mechanisms responsible for the loss of tolerance to GP2 and CUZD1 are probably quite distinct.
Collapse
Affiliation(s)
- Christos Liaskos
- Cellular Immunotherapy and Molecular Immunodiagnostics, Biomedical Section, Institute for Research and Technology Thessaly (IReTeTh), ITE, Larissa 41222, Greece; Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 45000 Larissa, Greece.
| | - Vassiliki Spyrou
- Department of Animal Production, Technological Educational Institute of Thessaly, Larissa 41110, Greece.
| | - Labrini V Athanasiou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece.
| | - Timoklia Orfanidou
- Cellular Immunotherapy and Molecular Immunodiagnostics, Biomedical Section, Institute for Research and Technology Thessaly (IReTeTh), ITE, Larissa 41222, Greece.
| | - Athanasios Mavropoulos
- Cellular Immunotherapy and Molecular Immunodiagnostics, Biomedical Section, Institute for Research and Technology Thessaly (IReTeTh), ITE, Larissa 41222, Greece.
| | - Eirini I Rigopoulou
- Division of Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King's College Hospital, London SE5 9RJ, UK.
| | - Georgios S Amiridis
- Department of Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece.
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Charalambos Billinis
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece.
| | - Dimitrios P Bogdanos
- Cellular Immunotherapy and Molecular Immunodiagnostics, Biomedical Section, Institute for Research and Technology Thessaly (IReTeTh), ITE, Larissa 41222, Greece; Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 45000 Larissa, Greece; Division of Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King's College Hospital, London SE5 9RJ, UK.
| |
Collapse
|
19
|
SR-A and SREC-I binding peptides increase HDAd-mediated liver transduction. Gene Ther 2014; 21:950-7. [PMID: 25119377 PMCID: PMC4224584 DOI: 10.1038/gt.2014.71] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/05/2014] [Accepted: 07/09/2014] [Indexed: 12/19/2022]
Abstract
Helper-dependent adenoviral (HDAd) vectors can mediate long-term, high-level transgene expression from transduced hepatocytes without inducing chronic toxicity. However, vector therapeutic index is narrow because of a toxic acute response with potentially lethal consequences elicited by high vector doses. Kupffer cells and liver sinusoidal endothelial cells (LSECs) are major barriers to efficient hepatocyte transduction. We investigated two small peptides (PP1 and PP2) developed by phage display to block scavenger receptor type A (SR-A) and scavenger receptor expressed on endothelial cells type I (SREC-I) respectively, for enhancement of HDAd-mediated hepatocyte transduction efficiency. Pre-incubation of J774A.1 macrophages with either PP1 or PP2 prior to HDAd infection significantly reduced viral vector uptake. In vivo, fluorochrome-conjugated PP1 and PP2 injected intravenously into mice co-localized with both CD68 and CD31 on Kupffer cells and LSECs, respectively. Compared to saline pre-treated animals, intravenous injections of both peptides prior to the injection of an HDAd resulted in up to 3.7- and 2.9-fold increase of hepatic transgene expression with PP1 and PP2, respectively. In addition to hepatocyte transduction, compared to control saline injected mice, pre-treatment with either peptide resulted in no increased levels of serum interleukin-6 (IL-6), the major marker of adenoviral vector acute toxicity. In summary, we developed small peptides that significantly increase hepatocyte transduction efficacy and improve HDAd therapeutic index with potential for clinical applications.
Collapse
|
20
|
Kovács M, Müller KE, Papp M, Lakatos PL, Csöndes M, Veres G. New serological markers in pediatric patients with inflammatory bowel disease. World J Gastroenterol 2014; 20:4873-4882. [PMID: 24803798 PMCID: PMC4009518 DOI: 10.3748/wjg.v20.i17.4873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/16/2014] [Accepted: 03/06/2014] [Indexed: 02/07/2023] Open
Abstract
The spectrum of serological markers associated with inflammatory bowel disease (IBD) is rapidly growing. Due to frequently delayed or missed diagnoses, the application of non-invasive diagnostic tests for IBD, as well as differentiation between ulcerative colitis (UC) and Crohn's disease (CD), would be useful in the pediatric population. In addition, the combination of pancreatic autoantibodies and antibodies against Saccharomyces cerevisiae antibodies/perinuclear cytoplasmic antibody (pANCA) improved the sensitivity of serological markers in pediatric patients with CD and UC. Some studies suggested that age-associated differences in the patterns of antibodies may be present, particularly in the youngest children. In CD, most patients develop stricturing or perforating complications, and a significant number of patients undergo surgery during the disease course. Based on recent knowledge, serum antibodies are qualitatively and quantitatively associated with complicated CD behavior and CD-related surgery. Pediatric UC is characterized by extensive colitis and a high rate of colectomy. In patients with UC, high levels of anti-CBir1 and pANCA are associated with the development of pouchitis after ileal pouch-anal anastomosis. Thus, serologic markers for IBD can be applied to stratify IBD patients into more homogeneous subgroups with respect to disease progression. In conclusion, identification of patients at an increased risk of rapid disease progression is of great interest, as the application of early and more aggressive pharmaceutical intervention could have the potential to alter the natural history of IBD, and reduce complications and hospitalizations.
Collapse
|
21
|
A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog 2014; 10:e1004089. [PMID: 24788600 PMCID: PMC4006915 DOI: 10.1371/journal.ppat.1004089] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/10/2014] [Indexed: 02/02/2023] Open
Abstract
Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization. About 20% of the human population is colonized by Staphylococcus aureus. The reservoir of S. aureus is mainly the human nose. Usually, colonization does not lead to infection and is therefore without symptoms. However, when hospitalized patients exhibit a suppressed immune system, they are at risk of getting infected by their own nasal S. aureus strain. Therefore, it is important to understand the events and mechanisms underlying colonization. Until now S. aureus nasal colonization is only partially understood. One bacterial key factor is a sugar polymer of S. aureus, termed cell wall teichoic acid (WTA), which is involved in S. aureus adhesion to cellular surfaces in the inner part of the nasal cavity. We show here that a receptor-protein, which is expressed on such cells, binds WTA and is thereby involved in adhesion of S. aureus to nasal cells. This mechanism has a strong impact on nasal colonization in an animal model that resembles the situation in the human nose. Most importantly, inhibition of WTA mediated adhesion strongly reduces nasal colonization in the animal model. Therefore we propose that targeting of this glycopolymer-receptor interaction could serve as a novel strategy to control S. aureus nasal colonization.
Collapse
|
22
|
The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat Immunol 2013; 14:917-26. [PMID: 23892722 PMCID: PMC3752698 DOI: 10.1038/ni.2670] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/21/2013] [Indexed: 12/14/2022]
Abstract
Clearance of apoptotic cells is critical for control of tissue homeostasis however the full range of receptor(s) on phagocytes responsible for recognition of apoptotic cells remains to be identified. Here we show that dendritic cells (DCs), macrophages and endothelial cells use scavenger receptor type F family member 1 (SCARF1) to recognize and engulf apoptotic cells via C1q. Loss of SCARF1 impairs uptake of apoptotic cells. Consequently, in SCARF1-deficient mice, dying cells accumulate in tissues leading to a lupus-like disease with the spontaneous generation of autoantibodies to DNA-containing antigens, immune cell activation, dermatitis and nephritis. The discovery of SCARF1 interactions with C1q and apoptotic cells provides insights into molecular mechanisms involved in maintenance of tolerance and prevention of autoimmune disease.
Collapse
|
23
|
Roggenbuck D, Reinhold D, Werner L, Schierack P, Bogdanos DP, Conrad K. Glycoprotein 2 antibodies in Crohn's disease. Adv Clin Chem 2013; 60:187-208. [PMID: 23724745 DOI: 10.1016/b978-0-12-407681-5.00006-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Crohn's disease (CrD) and ulcerative colitis (UC), the two major inflammatory bowel diseases (IBD), remains poorly understood. Autoimmunity is considered to be involved in the triggering and perpetuation of inflammatory processes leading to overt disease. Approximately 30% of CrD patients and less than 8% of UC patients show evidence of humoral autoimmunity to exocrine pancreas, detected by indirect immunofluorescence. Pancreatic autoantibodies (PAB) were described for the first time in 1984, but the autoantigenic target(s) of PABs were identified only in 2009. Utilizing immunoblotting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, the major zymogen granule membrane glycoprotein 2 (GP2) has been discovered as the main PAB autoantigen. The expression of GP2 has been demonstrated at the site of intestinal inflammation, explaining the previously unaddressed contradiction of pancreatic autoimmunity and intestinal inflammation. Recent data demonstrate GP2 to be a specific receptor on microfold (M) cells of intestinal Peyer's patches, which are considered to be the original site of inflammation in CrD. Novel ELISAs, employing recombinant GP2 as the solid phase antigen, have confirmed the presence of IgA and IgG anti-GP2 PABs in CrD patients and revealed an association of anti-GP2 IgA as well as IgG levels with a specific clinical phenotype in CrD. Also, GP2 plays an important role in modulating innate and acquired intestinal immunity. Its urinary homologue, Tamm-Horsfall protein or uromodulin, has a similar effect in the urinary tract, further indicating that GP2 is not just an epiphenomenon of intestinal destruction. This review discusses the role of anti-GP2 autoantibodies as novel CrD-specific markers, the quantification of which provides the basis for further stratification of IBD patients. Given the association with a disease phenotype and the immunomodulating properties of GP2 itself, an important role for GP2 in the immunopathogenesis of IBD cannot be excluded.
Collapse
Affiliation(s)
- Dirk Roggenbuck
- Faculty of Natural Sciences, Lausitz University of Applied Sciences, Senftenberg, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Somma V, Ababneh H, Ababneh A, Gatti S, Romagnoli V, Bendia E, Conrad K, Bogdanos DP, Roggenbuck D, Ciarrocchi G. The Novel Crohn's Disease Marker Anti-GP2 Antibody Is Associated with Ileocolonic Location of Disease. Gastroenterol Res Pract 2013; 2013:683824. [PMID: 23762038 PMCID: PMC3671301 DOI: 10.1155/2013/683824] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/19/2013] [Indexed: 12/19/2022] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) that can affect the whole gastrointestinal tract. The ileocolonic variant of CD, an inflammation of both the ileum and the large intestine, accounts for up to 50% of the cases with CD, whereas Crohn's ileitis affecting the ileum is diagnosed in about 30%. Crohn's colitis, which is confined to the large intestine and accounts for the remaining 20%, is difficult to distinguish from the large bowel inflammation seen in patients with ulcerative colitis (UC). The pathogenesis of CD is not yet completely understood. Autoimmunity is one factor that can partake in the triggering or modulation of inflammatory processes in IBD. The major zymogen-granule membrane glycoprotein 2 (GP2) has been recently identified as a major autoantigenic target in CD. Interestingly, GP2 is mainly expressed in the pancreas and has also been demonstrated to be a membrane-anchored receptor of microfold cells in the follicle-associated epithelium. Remarkably, GP2 is overexpressed at the site of CD inflammation in contrast to the one in UC. By utilizing novel enzyme-linked immunosorbent assays for the detection of GP2-specific IgA and IgG, the loss of tolerance to GP2 has been associated with a specific clinical phenotype in CD, in particular with the ileocolonic location of the disease.
Collapse
Affiliation(s)
| | - Hani Ababneh
- Immunology Department, King Hussein Medical Center, Amman 11855, Jordan
| | | | - Simona Gatti
- Department of Pediatrics, Polytechnic University of Marche, 60123 Ancona, Italy
| | - Vittorio Romagnoli
- Department of Pediatrics, Polytechnic University of Marche, 60123 Ancona, Italy
| | - Emanuele Bendia
- Department of Gastroenterology, “Ospedali Riuniti” University Hospital, 60020 Ancona, Italy
| | - Karsten Conrad
- Institute of Immunology, Technical University, 01307 Dresden, Germany
| | - Dimitrios P. Bogdanos
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London SE5 9RJ, UK
| | - Dirk Roggenbuck
- R/D, Medipan GmbH, 15827 Dahlewitz/Berlin, Germany
- Faculty of Natural Sciences, Lausitz University of Applied Sciences, 01968 Senftenberg, Germany
| | - Gino Ciarrocchi
- Central Analytical Laboratory, “Ospedali Riuniti” University Hospital, 60020 Ancona, Italy
| |
Collapse
|
25
|
Liaskos C, Spyrou V, Roggenbuck D, Athanasiou LV, Orfanidou T, Mavropoulos A, Reinhold D, Rigopoulou EI, Amiridis GS, Billinis C, Bogdanos DP. Crohn's disease-specific pancreatic autoantibodies are specifically present in ruminants with paratuberculosis: implications for the pathogenesis of the human disease. Autoimmunity 2013; 46:388-94. [PMID: 23638886 DOI: 10.3109/08916934.2013.786047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) induces paratuberculosis (ptb) in ruminants and has clinical and histological features resebling Crohn's disease (CD). Pancreatic autoantibodies (PAB) targeting glycoprotein 2 (GP2) are specifically found in CD, but it is currently unknown whether these autoantibodies can be found in ruminants with ptb. IgG anti-MAP and anti-GP2 antibodies were tested by ELISA in 286 ruminants (212 sheep and 74 cattle). PAB testing was performed by indirect immunofluorescence (IIF) using anti-sheep or anti-cattle specific antisera. PCR analysis confirmed the presence of MAP in anti-MAP positive samples. Anti-GP2 antibodies were more prevalent in anti-MAP antibody positive (26.9%) than in anti-MAP negative ruminants (8.7%, p < 0.001). Anti-GP2 antibodies were found in 16/70 (22.9%) anti-MAP positive sheep compared to 10/142 (7%, p = 0.001) anti-MAP antibody negative and in anti-MAP positive cattle than in negative counterparts (5/8 versus 8/66, p = 0.003). Absorbance values for anti-GP2 antibodies were higher in cattle than in sheep (mean 21 AU/mL ± 25.4SD versus 12.2 AU/mL ± 23 SD, p < 0.001). There was no correlation between anti-GP2 and anti-MAP antibody concentrations. Anti-GP2 antibodies persisted up to 1/1000 and showed the characteristic IIF pancreatic pattern seen by anti-GP2 antibody positive CD samples. This is the first study to demonstrate the presence of CD-specific GP2-reactive pancreatic autoantibodies in MAP-infected ruminants. Our data suggest that CD and ptb are characterised by an antigen-driven loss of immunological tolerance to GP2, implying commonalities in the immunopathogenesis of the human and ruminant inflammatory bowel disorder.
Collapse
Affiliation(s)
- Christos Liaskos
- Cellular Immunotherapy and Molecular Immunodiagnostics, Institute of Research and Technology Thessaly, Larissa, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
CUZD1 and anti-CUZD1 antibodies as markers of cancer and inflammatory bowel diseases. Clin Dev Immunol 2013; 2013:968041. [PMID: 23710207 PMCID: PMC3654630 DOI: 10.1155/2013/968041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 03/29/2013] [Indexed: 12/16/2022]
Abstract
CUZD1, the CUB, and zona pellucida-like domains-containing protein 1, is a newly identified antigen of pancreatic autoantibodies (PAB) giving a reticulogranular pattern in patients with inflammatory bowel diseases, and in particular Crohn's disease. The exact mechanisms by which this pancreatic antigen becomes the target of IBD-specific pancreatic autoantibodies are unclear. At the same time, evolving data strongly support a role for CUZD1 in carcinogenesis. Human CUZD1 is mapped at chromosome 10q26.13 and the loss of this region is a frequent event in various malignant tumours. mRNA overexpression of CUZD1 has been noted in ovarian cancer and serum levels of CUZD1 are elevated in women with ovarian cancer and patients suffering from pancreatic cancer. CUZD1 appears to be one of the relatively few biomarkers that serve as both cancer biomarker and autoantigen of autoantibodies in an autoimmune disease unrelated to cancerous organs. This review discusses the role of CUZD1 in cancer and autoimmunity. We anticipate that a better understanding of the function of CUZD1 will help us to understand how it becomes the focus of an autoimmune attack specifically targeting the intestine and its enigmatic role in carcinogenesis.
Collapse
|
27
|
CTLA4-Ig immunosuppressive activity at the level of dendritic cell/T cell crosstalk. Int Immunopharmacol 2013; 15:638-45. [PMID: 23434857 PMCID: PMC3629566 DOI: 10.1016/j.intimp.2013.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/21/2013] [Accepted: 02/07/2013] [Indexed: 11/21/2022]
Abstract
Immunosuppressive cytotoxic T lymphocyte associated antigen-4 immunoglobulin fusion proteins (CTLA4-Ig) block the CD28:CD80/86 costimulatory pathway. On a cellular level, CTLA4-Ig is understood to dampen T cell responses. As a mechanism, CTLA4-Ig has been reported to affect dendritic cell (DC) function via inducing the immunosuppressive indoleamine 2,3 dioxygenase (IDO) pathway and promoting a DC regulatory phenotype. We here probed cellular mechanisms of CTLA4-Ig immunoregulation in an allogeneic setting using C57BL/6 splenic or bone marrow derived DCs (BMDCs) as stimulators of allogeneic Balb/c derived T cells. To address whether CTLA4-Ig immunosuppression affected DCs, we pre-exposed C57BL/6 splenic or BMDCs to CTLA4-Ig and removed unbound CTLA4-Ig before co-culture with allogeneic T cells. CTLA4-Ig disappeared rapidly (within 4 h) from the cell membrane by combined internalization and dissociation. These CTLA4-Ig pre-exposed DCs were fully capable of stimulating allogeneic T cell proliferation, suggesting that CTLA4-Ig does not impair the DC stimulatory capacity. Only the presence of CTLA4-Ig during DC/T cell co-culture resulted in the expected inhibition of proliferation. C57BL/6 splenic or BMDCs exposed to CTLA4-Ig did not display IDO activity. We conclude that CTLA4-Ig immunosuppressive activity does not depend on a DC regulatory phenotype but on its presence during DC/T cell interaction.
Collapse
|
28
|
Piccolo P, Vetrini F, Mithbaokar P, Grove NC, Bertin T, Palmer D, Ng P, Brunetti-Pierri N. SR-A and SREC-I are Kupffer and endothelial cell receptors for helper-dependent adenoviral vectors. Mol Ther 2013; 21:767-74. [PMID: 23358188 DOI: 10.1038/mt.2012.287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Helper-dependent adenoviral (HDAd) vectors can mediate long-term, high-level transgene expression from transduced hepatocytes with no chronic toxicity. However, a toxic acute response with potentially lethal consequences has hindered their clinical applications. Liver sinusoidal endothelial cells (LSECs) and Kupffer cells are major barriers to efficient hepatocyte transduction. Understanding the mechanisms of adenoviral vector uptake by non-parenchymal cells may allow the development of strategies aimed at overcoming these important barriers and to achieve preferential hepatocyte gene transfer with reduced toxicity. Scavenger receptors on Kupffer cells bind adenoviral particles and remove them from the circulation, thus preventing hepatocyte transduction. In the present study, we show that HDAd particles interact in vitro and in vivo with scavenger receptor-A (SR-A) and with scavenger receptor expressed on endothelial cells-I (SREC-I) and we exploited this knowledge to increase the efficiency of hepatocyte transduction by HDAd vectors in vivo through blocking of SR-A and SREC-I with specific fragments antigen-binding (Fabs).
Collapse
|
29
|
Ileal inflammation may trigger the development of GP2-specific pancreatic autoantibodies in patients with Crohn's disease. Clin Dev Immunol 2012; 2012:640835. [PMID: 23118780 PMCID: PMC3483735 DOI: 10.1155/2012/640835] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/07/2012] [Indexed: 12/11/2022]
Abstract
Why zymogen glycoprotein 2 (GP2), the Crohn's disease (CD)-specific pancreatic autoantigen, is the major target of humoral autoimmunity in inflammatory bowel diseases (IBD) is uknown. Recent evidence demonstrates that GP2 is also present on the apical surface of microfold (M) intestinal cells. As the colon lacks GP2-rich M cells, we assumed that patients with colonic CD are seronegative for anti-GP2. Anti-GP2 antibodies were tested in 225 CDs, including 45 patients with colonic location (L2), 45 with terminal ileum (L1) and 135 with ileocolonic involvement; 225 patients with ulcerative colitis (UC) were also tested. Anti-GP2 reactivity was detected in 59 (26.2%) CDs and 15 (6.7%) UCs (P < 0.001). Only 5 CDs with L2 had anti-GP2 antibodies, compared to 54/180 (30.0%, P = 0.0128) of the CDs with L1 and L3. Anti-GP2 antibody positive CD patients had higher ASCA titres compared to seronegative cases. Amongst the 128 CD patients with previous surgical intervention, 45 (35.0%) were anti-GP2 antibody positive compared to 14/97 (14.0%) without surgical (P < 0.001). Our data support the assumption that ileal inflammation is required for the development of anti-GP2 antibodies in CD, and suggest that the intestine rather than the pancreatic juice is the antigenic source required for the initiation of anti-GP2 antibodies.
Collapse
|
30
|
Kovacs M, Lakatos PL, Papp M, Jacobsen S, Nemes E, Polgar M, Solyom E, Bodi P, Horvath A, Muller KE, Molnar K, Szabo D, Cseh A, Dezsofi A, Arato A, Veres G. Pancreatic autoantibodies and autoantibodies against goblet cells in pediatric patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 2012; 55:429-435. [PMID: 22465933 DOI: 10.1097/mpg.0b013e318256b516] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Significance of pancreatic autoantibodies determined by using exocrine pancreas (PAB) and antibodies against recombinant pancreas antigen (rPAB), as well as the importance of autoantibodies against goblet cells (GAB), is not known in pediatric patients with inflammatory bowel disease (IBD). Our aim was to determine the complex analysis of PAB, rPAB, GAB, antibodies against Saccharomyces cerevisiae, and perinuclear components of neutrophils in pediatric patients with IBD. Moreover, association with NOD2/CARD15 and disease phenotype was determined. METHODS A total of 152 pediatric patients (median age 13.9 years) with IBD (103 patients with Crohn disease [CD] and 49 patients with ulcerative colitis [UC]) and 104 controls were included. Serum autoantibodies were determined by indirect immunofluorescence assay. NOD2/CARD15 variants were tested by polymerase chain reaction/restriction fragment length polymorphism. RESULTS The presence of PAB and rPAB was significantly higher in CD (34% and 35.9%) and in UC (20.4% and 24.5%) compared with pediatric control cohort (0% and 0%, P<0.0001). In addition, GAB positivity was significantly increased in patients with UC in comparison with CD and controls, respectively (UC, 12.2%; CD, 1.9%; controls, 1.9%; P=0.02). Specificity of PAB and rPAB was 100%; however, sensitivity was low. The combination of PAB and/or antibodies against Saccharomyces cerevisiae/perinuclear components of neutrophils improved the sensitivity of serological markers in CD (87.4%) and in UC (79.6%); specificities were 89.3% and 93.2%, respectively. Pancreatic autoantibodies (PAB, rPAB) and GAB were not related to clinical presentation, medical therapy, or need for surgery in CD or in UC. CONCLUSIONS Pancreatic autoantibodies and GAB were specific for IBD, but the sensitivity was limited as well because there was lack of correlation with clinical phenotype. Combinations of these antibodies have shown increased sensitivity; therefore, it may be recommended in the diagnostic procedure of IBD.
Collapse
Affiliation(s)
- Marta Kovacs
- Department of Pediatrics, Petz Aladár County and Teaching Hospital, Győr, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Werner L, Paclik D, Fritz C, Reinhold D, Roggenbuck D, Sturm A. Identification of pancreatic glycoprotein 2 as an endogenous immunomodulator of innate and adaptive immune responses. THE JOURNAL OF IMMUNOLOGY 2012; 189:2774-83. [PMID: 22891285 DOI: 10.4049/jimmunol.1103190] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic autoantibodies are Crohn disease-specific serologic markers. The function and immunological role of their recently identified autoantigen, glycoprotein 2 (GP2), are unknown. We therefore investigated the impact of GP2 on modulation of innate and adaptive immune responses to evaluate its potential therapeutic use in mucosal inflammation. Our data indicate a previously unknown function for GP2 as an immunomodulator. GP2 was ubiquitously expressed on cells vital to mucosal immune responses. The expression of GP2 was upregulated on activated human T cells, and it was further influenced by pharmaceutical TNF-α inhibitors. Recombinant GP2 significantly decreased human intestinal epithelial cells, mucosal and peripheral T cell proliferation, apoptosis, and activation, and it distinctly modulated cytokine secretion. Furthermore, intestinal epithelial cells stimulated with GP2 potently attracted T cells. In conclusion, we demonstrate a novel role for GP2 in immune regulation that could provide a platform for new therapeutic interventions in the treatment of Crohn disease.
Collapse
Affiliation(s)
- Lael Werner
- Division of Hepatology and Gastroenterology, Department of Medicine, Charité-Campus Virchow Clinic, Medical University of Berlin, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Bogdanos DP, Roggenbuck D, Reinhold D, Wex T, Pavlidis P, von Arnim U, Malfertheiner P, Forbes A, Conrad K, Laass MW. Pancreatic-specific autoantibodies to glycoprotein 2 mirror disease location and behaviour in younger patients with Crohn's disease. BMC Gastroenterol 2012; 12:102. [PMID: 22866900 PMCID: PMC3449192 DOI: 10.1186/1471-230x-12-102] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/28/2012] [Indexed: 12/12/2022] Open
Abstract
Background Glycoprotein 2 (GP2) was discovered as the major autoantigen of Crohn’s disease (CD)-specific pancreatic autoantibodies (PAB). We investigated anti-GP2 IgA and IgG antibodies as novel serological parameters in CD and assessed their association with distinct disease phenotypes. Methods Anti-GP2 and anti-Saccharomyces cerevisiae (ASCA) IgA and IgG were detected by ELISA employing recombinant human GP2 and phosphopeptidomannan, respectively and PAB by indirect immunofluorescence (IIF) in 271 sera, 169 with CD and 102 with ulcerative colitis (UC). As healthy controls 160 adult blood donors and 65 children were included. Results Anti-GP2 IgG and/or IgA were more prevalent in CD (51/169, 30.2%) than in UC (9/102, 8.9%) patients and in controls (9/225, 4%) (p < 0.001 respectively). ASCA IgG and/or IgA were present in 60/169 (35.5%) in CD and in 7/102 (6.9%) in UC patients (p < 0.001). CD patients with ileocolonic location (L3) showed a significantly higher prevalence of anti-GP2 and ASCA IgA and/or IgG (40/113 and 48/113, respectively; p < 0.05 for both comparisons), whereas CD patients with colonic location (L2) revealed a significantly diminished prevalence for these autoantibody specificities (2/32 and 5/32, respectively, p < 0.05 for both). Anti-GP2 IgG were significantly more prevalent in CD patients with stricturing behaviour (B2) and perianal disease (7/11, p < 0.02) and less prevalent in those with penetrating behaviour (B3) and perianal disease (4/31, p < 0.05). The occurrence of anti-GP2 IgA and/or IgG was significantly more prevalent in CD patients with age at diagnosis of ≤16 years (16/31, p < 0.009). Prevalence of one or more anti-GP2 or ASCA IgA and/or IgG was significantly higher in L3, B2, and A1 and lower in L2 (68/113, 27/41, 23/31, 6/32; p < 0.04, respectively). Conclusions Anti-GP2 IgG and IgA, constituting novel CD specific autoantibodies, appear to be associated with distinct disease phenotypes identifying patients at a younger age, with ileocolonic location, and stricturing behaviour with perianal disease.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Division of Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King’s College Hospital, Denmark Hill Campus, Bessemer Road, London SE5 9RJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Current world literature. Curr Opin Lipidol 2012; 23:156-63. [PMID: 22418573 DOI: 10.1097/mol.0b013e3283521229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2012; 76:442-6. [PMID: 22296764 DOI: 10.1016/j.humimm.2015.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 02/05/2015] [Accepted: 03/11/2015] [Indexed: 12/24/2022]
Abstract
Inflammation is triggered when innate immune cells detect infection or tissue injury. Surveillance mechanisms involve pattern recognition receptors (PRRs) on the cell surface and in the cytoplasm. Most PRRs respond to pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) by triggering activation of NF-κB, AP1, CREB, c/EBP, and IRF transcription factors. Induction of genes encoding enzymes, chemokines, cytokines, adhesion molecules, and regulators of the extracellular matrix promotes the recruitment and activation of leukocytes, which are critical for eliminating foreign particles and host debris. A subset of PRRs activates the protease caspase-1, which causes maturation of the cytokines IL1β and IL18. Cell adhesion molecules and chemokines facilitate leukocyte extravasation from the circulation to the affected site, the chemokines stimulating G-protein-coupled receptors (GPCRs). Binding initiates signals that regulate leukocyte motility and effector functions. Other triggers of inflammation include allergens, which form antibody complexes that stimulate Fc receptors on mast cells. Although the role of inflammation is to resolve infection and injury, increasing evidence indicates that chronic inflammation is a risk factor for cancer.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
35
|
Bogdanos DP, Rigopoulou EI, Smyk DS, Roggenbuck D, Reinhold D, Forbes A, Laass MW, Conrad K. Diagnostic value, clinical utility and pathogenic significance of reactivity to the molecular targets of Crohn's disease specific-pancreatic autoantibodies. Autoimmun Rev 2011; 11:143-8. [PMID: 21983481 DOI: 10.1016/j.autrev.2011.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 12/22/2022]
Abstract
Pancreatic autoantibodies (PAB) giving characteristic staining patterns of the exocrine pancreas by indirect immunoflourescence appear to be specific markers of Crohn's disease (CrD), being present in approximately 30% of patients with CrD and in less than 5% of patients with ulcerative colitis (UC). Some studies have suggested that PAB are associated with specific disease phenotypes and that their detection may be of clinical significance. Thorough investigation of the role of PAB in the immunopathogenesis of inflammatory bowel diseases (IBD) has been hampered due to the lack of identity of their antigenic targets. The recent identification of the pancreatic zymogen granule protein 2 (GP2) as the major target of PAB has led to the development of an enzyme immunoassay that helps determine the diagnostic and clinical relevance of antigen-specific immune responses. Recent studies have demonstrated that GP2 is expressed on the apical surface of intestinal membranous cells of the follicle-associated epithelium, and is essential for host-microbial interaction and the initiation of bacteria-specific mucosal immune responses. This review critically discusses recent reports investigating the diagnostic and clinical utility of GP2-specific autoantibody responses in patients with IBD. Hints towards a better understanding of the immunogenicity of GP2 are also provided.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King's College Hospital, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|