1
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2025; 480:1495-1518. [PMID: 39287890 PMCID: PMC11842487 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
2
|
Xu N, Wu Z, Pan J, Xu X, Wei Q. CAR-T cell therapy: Advances in digestive system malignant tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200872. [PMID: 39377038 PMCID: PMC11456800 DOI: 10.1016/j.omton.2024.200872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Malignant tumors of the digestive system have had a notoriously dismal prognosis throughout history. Immunotherapy, radiotherapy, surgery, and chemotherapy are the primary therapeutic approaches for digestive system cancers. The rate of recurrence and metastasis, nevertheless, remains elevated. As one of the immunotherapies, chimeric antigen receptor T cell (CAR-T) therapy has demonstrated a promising antitumor effect in hematologic cancer. Despite undergoing numerous clinical trials, the ineffective antitumor effect and adverse effects of CAR-T cell therapy in the treatment of digestive system cancers continue to impede its clinical translation. It is necessary to surmount the restricted options for targeting proteins, the obstacles that impede CAR-T cell infiltration into solid tumors, and the limited survival time in vivo. We examined and summarized the developments, obstacles, and countermeasures associated with CAR-T therapy in digestive system cancers. Emphasis was placed on the regulatory functions of potential antigen targets, the tumor microenvironment, and immune evasion in CAR-T therapy. Thus, our analysis has furnished an all-encompassing comprehension of CAR-T cell therapy in digestive system cancers, which will generate tremendous enthusiasm for subsequent in-depth research into CAR-T-based therapies in digestive system cancers.
Collapse
Affiliation(s)
- Nan Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Zhonglin Wu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jun Pan
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
3
|
Khaliulin M, Valiullina A, Petukhov A, Yuan Y, Spada S, Bulatov E. Breaking the shield of solid tumors: a combined approach for enhanced efficacy of CAR-T cells. Cancer Immunol Immunother 2024; 74:3. [PMID: 39487875 PMCID: PMC11531461 DOI: 10.1007/s00262-024-03817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
The use of chimeric antigen receptor (CAR)-T cells has enhanced the range of available therapeutic modalities in the context of cancer treatment. CAR-T cells have demonstrated considerable efficacy in the targeted eradication of blood cancer cells, thereby stimulating substantial interest in the advancement of such therapeutic approaches. However, the efficacy of CAR-T cells against solid tumor cells has been limited due to the presence of various obstacles. Solid tumors exhibit antigenic diversity and an immunosuppressive microenvironment, which presents a challenge for immune cells attempting to penetrate the tumor. CAR-T cells also demonstrate decreased proliferative activity and cytotoxicity. Furthermore, concerns exist regarding tumor antigen loss and therapy-associated toxicity. Currently, scientists are working to enhance the structure of the CAR and improve the survival and efficiency of CAR-T cells in recognizing tumor antigens in solid tumors. Chemotherapy drugs are frequently employed in the treatment of malignant neoplasms and can also be used prior to cell therapy to enhance CAR-T cell engraftment. Recent studies have demonstrated that chemotherapy drugs can mitigate the suppressive impact of TME, eliminate the physical barrier by destroying the tumor stroma, and facilitate greater penetration of immune cells and CAR-T cells into the tumor. This, in turn, increases their survival, persistence, and cytotoxicity, as well as affects the metabolism of immune cells inside the tumor. However, the effectiveness of the combined approach against solid tumors depends on several factors, including the type of tumor, dosage, population of CAR-T cells, and individual characteristics of the body. This review examines the principal obstacles to the utilization of CAR-T cells against solid tumors, proposes solutions to these issues, and assesses the potential advantages of a combined approach to radiation exposure, which has the potential to enhance the sensitivity of the tumor to other agents.
Collapse
Affiliation(s)
- Marat Khaliulin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Alexey Petukhov
- Nazarbaev University, Qabanbay Batyr Ave 53, 010000, Astana, Kazakhstan
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, People's Republic of China
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997.
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia, 119048.
| |
Collapse
|
4
|
Blobner J, Dengler L, Eberle C, Herold JJ, Xu T, Beck A, Mühlbauer A, Müller KJ, Teske N, Karschnia P, van den Heuvel D, Schallerer F, Ishikawa-Ankerhold H, Thon N, Tonn JC, Subklewe M, Kobold S, Harter PN, Buchholz VR, von Baumgarten L. PD-1 blockade does not improve efficacy of EpCAM-directed CAR T-cell in lung cancer brain metastasis. Cancer Immunol Immunother 2024; 73:255. [PMID: 39358663 PMCID: PMC11447167 DOI: 10.1007/s00262-024-03837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Lung cancer brain metastasis has a devastating prognosis, necessitating innovative treatment strategies. While chimeric antigen receptor (CAR) T-cell show promise in hematologic malignancies, their efficacy in solid tumors, including brain metastasis, is limited by the immunosuppressive tumor environment. The PD-L1/PD-1 pathway inhibits CAR T-cell activity in the tumor microenvironment, presenting a potential target to enhance therapeutic efficacy. This study aims to evaluate the impact of anti-PD-1 antibodies on CAR T-cell in treating lung cancer brain metastasis. METHODS We utilized a murine immunocompetent, syngeneic orthotopic cerebral metastasis model for repetitive intracerebral two-photon laser scanning microscopy, enabling in vivo characterization of red fluorescent tumor cells and CAR T-cell at a single-cell level over time. Red fluorescent EpCAM-transduced Lewis lung carcinoma cells (EpCAM/tdtLL/2 cells) were implanted intracranially. Following the formation of brain metastasis, EpCAM-directed CAR T-cell were injected into adjacent brain tissue, and animals received either anti-PD-1 or an isotype control. RESULTS Compared to controls receiving T-cell lacking a CAR, mice receiving EpCAM-directed CAR T-cell showed higher intratumoral CAR T-cell densities in the beginning after intraparenchymal injection. This finding was accompanied with reduced tumor growth and translated into a survival benefit. Additional anti-PD-1 treatment, however, did not affect intratumoral CAR T-cell persistence nor tumor growth and thereby did not provide an additional therapeutic effect. CONCLUSION CAR T-cell therapy for brain malignancies appears promising. However, additional anti-PD-1 treatment did not enhance intratumoral CAR T-cell persistence or effector function, highlighting the need for novel strategies to improve CAR T-cell therapy in solid tumors.
Collapse
Affiliation(s)
- Jens Blobner
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Division of Neuro-Oncology, Department of Neurosurgery, Ludwig Maximilians University School of Medicine, Marchioninistrasse 15, 81377, Munich, Germany
| | - Laura Dengler
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Constantin Eberle
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Julika J Herold
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Tao Xu
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Department of Neurology, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
| | - Alexander Beck
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Center for Neuropathology and Prion Research, Faculty of Medicine LMU Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Anton Mühlbauer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675, Munich, Germany
| | - Katharina J Müller
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Department of Neurology, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
| | - Nico Teske
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Dominic van den Heuvel
- Department of Medicine I, Ludwig-Maximilians-University School of Medicine, Munich, Germany
| | - Ferdinand Schallerer
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | | | - Niklas Thon
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Division of Neuro-Oncology, Department of Neurosurgery, Ludwig Maximilians University School of Medicine, Marchioninistrasse 15, 81377, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Marion Subklewe
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Department of Medicine III, Ludwig-Maximilians-University School of Medicine, Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Sebastian Kobold
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Department of Medicine IV, Division of Clinical Pharmacology, LMU University Hospital Munich, Munich, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Center for Neuropathology and Prion Research, Faculty of Medicine LMU Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Department of Neurology, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany.
- Division of Neuro-Oncology, Department of Neurosurgery, Ludwig Maximilians University School of Medicine, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
5
|
Lu J, Huo W, Ma Y, Wang X, Yu J. Suppressive immune microenvironment and CART therapy for glioblastoma: Future prospects and challenges. Cancer Lett 2024; 600:217185. [PMID: 39142498 DOI: 10.1016/j.canlet.2024.217185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Glioblastoma, a highly malignant intracranial tumor, has acquired slow progress in treatment. Previous clinical trials involving targeted therapy and immune checkpoint inhibitors have shown no significant benefits in treating glioblastoma. This ineffectiveness is largely due to the complex immunosuppressive environment of glioblastoma. Glioblastoma cells exhibit low immunogenicity and strong heterogeneity and the immune microenvironment is replete with inhibitory cytokines, numerous immunosuppressive cells, and insufficient effective T cells. Fortunately, recent Phase I clinical trials of CART therapy for glioblastoma have confirmed its safety, with a small subset of patients achieving survival benefits. However, CART therapy continues to face challenges, including blood-brain barrier obstruction, antigen loss, and an immunosuppressive tumor microenvironment (TME). This article provides a detailed examination of glioblastoma's immune microenvironment, both from intrinsic and extrinsic tumor cell factors, reviews current clinical and basic research on multi-targets CART treatment, and concludes by outlining the key challenges in using CART cells for glioblastoma therapy.
Collapse
Affiliation(s)
- Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Wen Huo
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, China
| | - Yingze Ma
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Xin Wang
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
6
|
Zarychta J, Kowalczyk A, Marszołek A, Zawitkowska J, Lejman M. Strategies to overcome tumor microenvironment immunosuppressive effect on the functioning of CAR-T cells in high-grade glioma. Ther Adv Med Oncol 2024; 16:17588359241266140. [PMID: 39156126 PMCID: PMC11327996 DOI: 10.1177/17588359241266140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 08/20/2024] Open
Abstract
Despite significant progress in the treatment of some types of cancer, high-grade gliomas (HGGs) remain a significant clinical problem. In the case of glioblastoma (GBM), the most common solid tumor of the central nervous system in adults, the average survival time from diagnosis is only 15-18 months, despite the use of intensive multimodal therapy. Chimeric antigen receptor (CAR)-expressing T cells, which have already been approved by the Food and Drug Administration for use in the treatment of certain hematologic malignancies, are a new, promising therapeutic option. However, the efficacy of CAR-T cells in solid tumors is lower due to the immunosuppressive tumor microenvironment (TME). Reprogramming the immunosuppressive TME toward a pro-inflammatory phenotype therefore seems particularly important because it may allow for increasing the effectiveness of CAR-T cells in the therapy of solid tumors. The following literature review aims to present the results of preclinical studies showing the possibilities of improving the efficacy of CAR-T in the TME of GBM by reprogramming the TME toward a pro-inflammatory phenotype. It may be achievable thanks to the use of CAR-T in a synergistic therapy in combination with oncolytic viruses, radiotherapy, or epigenetic inhibitors, as well as by supporting CAR-T cells crossing of the blood-brain barrier, normalizing impaired angiogenesis in the TME, improving CAR-T effector functions by cytokine signaling or by blocking/knocking out T-cell inhibitors, and modulating the microRNA expression. The use of CAR-T cells modified in this way in synergistic therapy could lead to the longer survival of patients with HGG by inducing an endogenous anti-tumor response.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Anna Marszołek
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Racławickie 1, Lublin 20-093, Poland
| |
Collapse
|
7
|
Hao M, Zhou Y, Chen S, Jin Y, Li X, Xue L, Shen M, Li W, Zhang C. Spatiotemporally Controlled T-Cell Combination Therapy for Solid Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401100. [PMID: 38634209 PMCID: PMC11220647 DOI: 10.1002/advs.202401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Due to multidimensional complexity of solid tumor, development of rational T-cell combinations and corresponding formulations is still challenging. Herein, a triple combination of T cells are developed with Indoleamine 2,3-dioxygenase inhibitors (IDOi) and Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). To maximize synergism, a spatiotemporally controlled T-cell engineering technology to formulate triple drugs into one cell therapeutic, is established. Specifically, a sequentially responsive core-shell nanoparticle (SRN) encapsulating IDOi and CDK4/6i is anchored onto T cells. The yielded SRN-T cells migrated into solid tumor, and achieved a 1st release of IDOi in acidic tumor microenvironment (TME). Released IDOi restored tryptophan supply in TME, which activated effector T cells and inhibited Tregs. Meanwhile, 1st released core is internalized by tumor cells and degraded by glutathione (GSH), to realize a 2nd release of CDK4/6i, which induced up-regulated expression of C-X-C motif chemokine ligand 10 (CXCL10) and C-C motif chemokine ligand 5 (CCL5), and thus significantly increased tumor infiltration of T cells. Together, with an enhanced recruitment and activation, T cells significantly suppressed tumor growth, and prolonged survival of tumor-bearing mice. This study demonstrated rationality and superiority of a tri-drug combination mediated by spatiotemporally controlled cell-engineering technology, which provides a new treatment regimen for solid tumor.
Collapse
Affiliation(s)
- Meixi Hao
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Ying Zhou
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Sijia Chen
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yu Jin
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Xiuqi Li
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Lingjing Xue
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Mingxuan Shen
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Weishuo Li
- Center for Molecular MetabolismSchool of Environmental and Biological EngineeringNanjing University of Science and Technology200 Xiao Ling Wei StreetNanjing210094China
| | - Can Zhang
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
8
|
Zhu N, Chen S, Jin Y, Wang M, Fang L, Xue L, Hua D, Zhang Z, Jia M, Hao M, Zhang C. Enhancing Glioblastoma Immunotherapy with Integrated Chimeric Antigen Receptor T Cells through the Re-Education of Tumor-Associated Microglia and Macrophages. ACS NANO 2024; 18:11165-11182. [PMID: 38626338 DOI: 10.1021/acsnano.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.
Collapse
Affiliation(s)
- Nianci Zhu
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Sijia Chen
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Yu Jin
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Meng Wang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Luyao Fang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Dexiang Hua
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Meng Jia
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Meixi Hao
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
9
|
Szulc A, Woźniak M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers (Basel) 2024; 16:1483. [PMID: 38672570 PMCID: PMC11047913 DOI: 10.3390/cancers16081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
10
|
Khaliulin MR, Safin RN, Kunst MA, Bulatov ER. The use of T-cells with chimeric antigen receptor (CAR-T) in combination with chemotherapy and radiotherapy for the treatment of solid tumors. ADVANCES IN MOLECULAR ONCOLOGY 2024; 11:31-45. [DOI: 10.17650/2313-805x-2024-11-1-31-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The introduction of chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematological diseases, particularly in combating blood cancer. The success of this cell therapy approach has led to the development of approximately seven commercial CAR-T based drugs. However, the application of CAR-T therapy for solid tumors has proven to be less effective due to challenges such as the varied antigens in solid tumors, an immunosuppressive tumor environment, limited immune cell infiltration, reduced CAR-T cell activity and toxicity issues. To solve these problems, scientists are making efforts to improve and improve the methods of treatment of solid tumors. Chemotherapy is the standard treatment for a large number of malignant neoplasms. It is also used before starting cell therapy for lymphodepletion and better engraftment of injected CAR-T cells. It has been shown that chemotherapy can reduce the immunosuppressive effect of the tumor microenvironment, destroy the stroma, and promote better infiltration of the tumor by CAR-T cells, improving their survival, persistence, cytotoxicity, and influencing the metabolism of immune cells inside the tumor. The effectiveness of combining chemotherapy and CAR-T cell therapy relies on various factors such as tumor type, dosage, treatment schedule, CAR-T cell composition, and individual biological traits. Similarly, radiation therapy can enhance tumor cell vulnerability to specific treatments while also supporting tumor cell survival.In this review, we discuss the use of CAR-T therapy to combat solid tumors, regarding the challenges of treating solid tumors, ways to overcome them, and also touch upon the possibility of using combination treatments to improve the effectiveness of cell therapy.
Collapse
Affiliation(s)
| | - R. N. Safin
- Republican Clinical Oncology Dispensary named after Prof. M.Z. Sigal Russia
| | - M. A. Kunst
- Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan
| | - E. R. Bulatov
- Kazan (Volga Region) Federal University; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| |
Collapse
|
11
|
Liu C, Li Y, Li Y, Hu M, Wang H, Lu S, Li Z, Dilimulati D, Jiao S, Lu S, Zhao W. Sufficiently activated mature natural killer cells derived from peripheral blood mononuclear cells substantially enhance antitumor activity. Immun Inflamm Dis 2024; 12:e1143. [PMID: 38270321 PMCID: PMC10777885 DOI: 10.1002/iid3.1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Peripheral blood-derived natural killer (NK) cells spontaneously lyse tumor cells without prior sensitization. However, NK cells in peripheral blood (PBNK cells) are in a resting state and exhibit inhibitory phenotypes and impaired cytotoxicity. Thus, strengthening the cytotoxic effector function of PBNK cells and improving NK cell expansion in vitro for a convenient allogeneic therapy are essential. MATERIALS AND METHODS Pure cytokine activation and expansion of NK cells (super NK [SNK]) from peripheral blood mononuclear cells were studied. Markers of activated and inhibited NK cells and cytokine secretion by NK cells were examined using flow cytometry. NK cell antitumor activity in vitro was assessed using lactate dehydrogenase (LDH) cytotoxicity assay and an Incucyte real-time imaging system. Additionally, the function of SNK cells against ascites caused by ovarian cancer in NOD-Prkdc(em26Cd52)il2rg(em26Cd22)/Nju (NCG) mice was determined. In a further investigation of the differences between PBNK and SNK, the mRNA of both cells was sequenced and analyzed. RESULTS Human peripheral blood mononuclear cells showed selective NK cell expansion upon cytokine activation and culture. Both SNK and PBNK cells expressed activation markers, but at different levels, and SNK cells secreted more cytokines related to cytotoxicity than PBNK cells did. Accordingly, SNK cells exhibited strong antitumor activity ex vivo and improved NCG mice survival after intraperitoneal ovarian cancer transplantation. Mechanistically, SNK cells expressed more genes associated with nucleotide metabolism, fatty acid, and ATP metabolism than PBNK cells. CONCLUSION SNK cells derived from peripheral blood mononuclear cells have sufficiently activated mature characteristics and high antitumor activity, rendering them a highly promising and essential therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Chuanling Liu
- Department of OncologyChinese PLA General HospitalBeijingChina
| | - Yingying Li
- Research and Development DepartmentBeijing DCTY® Biotech Co., LtdBeijingChina
| | - Yanrong Li
- Research and Development DepartmentBeijing DCTY® Biotech Co., LtdBeijingChina
| | - Meng Hu
- Research and Development DepartmentBeijing DCTY® Biotech Co., LtdBeijingChina
| | - Haiyan Wang
- Research and Development DepartmentBeijing DCTY® Biotech Co., LtdBeijingChina
| | - Shasha Lu
- Research and Development DepartmentBeijing DCTY® Biotech Co., LtdBeijingChina
| | - Zhao Li
- Research and Development DepartmentBeijing DCTY® Biotech Co., LtdBeijingChina
| | - Dilinuer Dilimulati
- Research and Development DepartmentBeijing DCTY® Biotech Co., LtdBeijingChina
| | - Shunchang Jiao
- Department of OncologyChinese PLA General HospitalBeijingChina
| | - Shelian Lu
- Research and Development DepartmentBeijing DCTY® Biotech Co., LtdBeijingChina
| | - Weihong Zhao
- Department of OncologyChinese PLA General HospitalBeijingChina
| |
Collapse
|
12
|
Tang OY, Binder ZA, O'Rourke DM, Bagley SJ. Optimizing CAR-T Therapy for Glioblastoma. Mol Diagn Ther 2023; 27:643-660. [PMID: 37700186 DOI: 10.1007/s40291-023-00671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination therapies to overcome the immune-hostile microenvironment.
Collapse
Affiliation(s)
- Oliver Y Tang
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Alsajjan R, Mason WP. Bispecific T-Cell Engagers and Chimeric Antigen Receptor T-Cell Therapies in Glioblastoma: An Update. Curr Oncol 2023; 30:8501-8549. [PMID: 37754534 PMCID: PMC10529026 DOI: 10.3390/curroncol30090619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. The prognosis is extremely poor even with standard treatment of maximal safe resection, radiotherapy, and chemotherapy. Recurrence is inevitable within months, and treatment options are very limited. Chimeric antigen receptor T-cell therapy (CART) and bispecific T-cell engagers (TCEs) are two emerging immunotherapies that can redirect T-cells for tumor-specific killing and have shown remarkable success in hematological malignancies and been under extensive study for application in glioblastoma. While there have been multiple clinical trials showing preliminary evidence of safety and efficacy for CART, bispecific TCEs are still in the early stages of clinical testing, with preclinical studies showing very promising results. However, there are multiple shared challenges that need to be addressed in the future, including the route of delivery, antigen escape, the immunosuppressive tumor microenvironment, and toxicity resulting from the limited choice of tumor-specific antigens. Efforts are underway to optimize the design of both these treatments and find the ideal combination therapy to overcome these challenges. In this review, we describe the work that has been performed as well as novel approaches in glioblastoma and in other solid tumors that may be applicable in the future.
Collapse
Affiliation(s)
- Roa Alsajjan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
- Division of Neurology, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Warren P. Mason
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
14
|
Foster JB, Alonso MM, Sayour E, Davidson TB, Persson ML, Dun MD, Kline C, Mueller S, Vitanza NA, van der Lugt J. Translational considerations for immunotherapy clinical trials in pediatric neuro-oncology. Neoplasia 2023; 42:100909. [PMID: 37244226 DOI: 10.1016/j.neo.2023.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
While immunotherapy for pediatric cancer has made great strides in recent decades, including the FDA approval of agents such as dinutuximab and tisgenlecleucel, these successes have rarely impacted children with pediatric central nervous system (CNS) tumors. As our understanding of the biological underpinnings of these tumors evolves, new immunotherapeutics are undergoing rapid clinical translation specifically designed for children with CNS tumors. Most recently, there have been notable clinical successes with oncolytic viruses, vaccines, adoptive cellular therapy, and immune checkpoint inhibition. In this article, the immunotherapy working group of the Pacific Pediatric Neuro-Oncology Consortium (PNOC) reviews the current and future state of immunotherapeutic CNS clinical trials with a focus on clinical trial development. Based on recent therapeutic trials, we discuss unique immunotherapy clinical trial challenges, including toxicity considerations, disease assessment, and correlative studies. Combinatorial strategies and future directions will be addressed. Through internationally collaborative efforts and consortia, we aim to direct this promising field of immuno-oncology to the next frontier of successful application against pediatric CNS tumors.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.
| | - Marta M Alonso
- Department of Pediatrics, Program of Solid Tumors, University Clinic of Navarra, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Elias Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
| | - Tom B Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Mark Hughes Foundation Centre for Brain Cancer Research, Paediatric Program, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Cassie Kline
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Sabine Mueller
- Department of Neurology, Department of Neurosurgery and Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
15
|
Cheng K, Feng X, Chai Z, Wang Z, Liu Z, Yan Z, Wang Y, Zhang S. 4-1BB-Based CAR T Cells Effectively Reverse Exhaustion and Enhance the Anti-Tumor Immune Response through Autocrine PD-L1 scFv Antibody. Int J Mol Sci 2023; 24:ijms24044197. [PMID: 36835603 PMCID: PMC9961031 DOI: 10.3390/ijms24044197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Exhaustion of chimeric antigen receptor (CAR) T cells is one of the limitations for CAR T efficacy in solid tumors and for tumor recurrence after initial CAR T treatment. Tumor treatment with a combination of programmed cell death receptor-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blockage and CD28-based CAR T cells has been intensively studied. However, it remains largely unclear whether autocrine single-chain variable fragments (scFv) PD-L1 antibody can improve 4-1BB-based CAR T cell anti-tumor activity and revert CAR T cell exhaustion. Here, we studied T cells engineered with autocrine PD-L1 scFv and 4-1BB-containing CAR. The antitumor activity and exhaustion of CAR T cells were investigated in vitro and in a xenograft cancer model using NCG mice. CAR T cells with autocrine PD-L1 scFv antibody demonstrate enhanced anti-tumor activity in solid tumors and hematologic malignancies by blocking the PD-1/PD-L1 signaling. Importantly, we found that CAR T exhaustion was largely diminished by autocrine PD-L1 scFv antibody in vivo. As such, 4-1BB CAR T with autocrine PD-L1 scFv antibody combined the power of CAR T cells and the immune checkpoint inhibitor, thereby increasing the anti-tumor immune function and CAR T persistence, providing a cell therapy solution for a better clinical outcome.
Collapse
Affiliation(s)
- Kang Cheng
- Laboratory of Biotechnology Drugs, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangming Feng
- Laboratory of Biotechnology Drugs, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhirong Chai
- Laboratory of Epigenetics and Translational Medicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhenzhen Wang
- Laboratory of Biotechnology Drugs, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zheng Liu
- Laboratory of Epigenetics and Translational Medicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhanchao Yan
- Laboratory of Epigenetics and Translational Medicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yanming Wang
- Laboratory of Epigenetics and Translational Medicine, School of Life Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (Y.W.); (S.Z.)
| | - Shoutao Zhang
- Laboratory of Biotechnology Drugs, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450001, China
- Correspondence: (Y.W.); (S.Z.)
| |
Collapse
|
16
|
Boccalatte F, Mina R, Aroldi A, Leone S, Suryadevara CM, Placantonakis DG, Bruno B. Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors. Cancers (Basel) 2022; 14:5108. [PMID: 36291891 PMCID: PMC9600451 DOI: 10.3390/cancers14205108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells in solid tumors have so far yielded limited results, in terms of therapeutic effects, as compared to the dramatic results observed for hematological malignancies. Many factors involve both the tumor cells and the microenvironment. The lack of specific target antigens and severe, potentially fatal, toxicities caused by on-target off-tumor toxicities constitute major hurdles. Furthermore, the tumor microenvironment is usually characterized by chronic inflammation, the presence of immunosuppressive molecules, and immune cells that can reduce CAR T cell efficacy and facilitate antigen escape. Nonetheless, solid tumors are under investigation as possible targets despite their complexity, which represents a significant challenge. In preclinical mouse models, CAR T cells are able to efficiently recognize and kill several tumor xenografts. Overall, in the next few years, there will be intensive research into optimizing novel cell therapies to improve their effector functions and keep untoward effects in check. In this review, we provide an update on the state-of-the-art CAR T cell therapies in solid tumors, focusing on the preclinical studies and preliminary clinical findings aimed at developing optimal strategies to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Francesco Boccalatte
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Roberto Mina
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, MB, Italy
| | - Sarah Leone
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Carter M. Suryadevara
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center/Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benedetto Bruno
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| |
Collapse
|
17
|
Zhang P, Zhang Y, Ji N. Challenges in the Treatment of Glioblastoma by Chimeric Antigen Receptor T-Cell Immunotherapy and Possible Solutions. Front Immunol 2022; 13:927132. [PMID: 35874698 PMCID: PMC9300859 DOI: 10.3389/fimmu.2022.927132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), one of the most lethal brain cancers in adults, accounts for 48.6% of all malignant primary CNS tumors diagnosed each year. The 5-year survival rate of GBM patients remains less than 10% even after they receive the standard-of-care treatment, including maximal safe resection, adjuvant radiation, and chemotherapy with temozolomide. Therefore, new therapeutic modalities are urgently needed for this deadly cancer. The last decade has witnessed great advances in chimeric antigen receptor T (CAR-T) cell immunotherapy for the treatment of hematological malignancies. Up to now, the US FDA has approved six CAR-T cell products in treating hematopoietic cancers including B-cell acute lymphoblastic leukemia, lymphoma, and multiple myeloma. Meanwhile, the number of clinical trials on CAR-T cell has increased significantly, with more than 80% from China and the United States. With its achievements in liquid cancers, the clinical efficacy of CAR-T cell therapy has also been explored in a variety of solid malignancies that include GBMs. However, attempts to expand CAR-T cell immunotherapy in GBMs have not yet presented promising results in hematopoietic malignancies. Like other solid tumors, CAR-T cell therapies against GBM still face several challenges, such as tumor heterogeneity, tumor immunosuppressive microenvironment, and CAR-T cell persistence. Hence, developing strategies to overcome these challenges will be necessary to accelerate the transition of CAR-T cell immunotherapy against GBMs from bench to bedside.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- *Correspondence: Nan Ji,
| |
Collapse
|
18
|
Zhang J, Siller-Farfán JA. Current and future perspectives of chimeric antigen receptors against glioblastoma. IMMUNOTHERAPY ADVANCES 2022; 2:ltac014. [PMID: 36284838 PMCID: PMC9585667 DOI: 10.1093/immadv/ltac014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of cancer in the central nervous system; even with treatment, it has a 5-year survival rate of 7.2%. The adoptive cell transfer (ACT) of T cells expressing chimeric antigen receptors (CARs) has shown a remarkable success against hematological malignancies, namely leukemia and multiple myeloma. However, CAR T cell therapy against solid tumors, and more specifically GBM, is still riddled with challenges preventing its widespread adoption. Here, we first establish the obstacles in ACT against GBM, including on-target/off-tumor toxicity, antigen modulation, tumor heterogeneity, and the immunosuppressive tumor microenvironment. We then present recent preclinical and clinical studies targeting well-characterized GBM antigens, which include the interleukin-13 receptor α2 and the epidermal growth factor receptor. Afterward, we turn our attention to alternative targets in GBM, including less-explored antigens such as B7-H3 (CD276), carbonic anhydrase IX, and the GD2 ganglioside. We also discuss additional target ligands, namely CD70, and natural killer group 2 member D ligands. Finally, we present the possibilities afforded by novel CAR architectures. In particular, we examine the use of armored CARs to improve the survival and proliferation of CAR T cells. We conclude by discussing the advantages of tandem and synNotch CARs when targeting multiple GBM antigens.
Collapse
Affiliation(s)
- Josephine Zhang
- Department of Biology, Johns Hopkins University, 3400 N Charles St , Baltimore 21218, United States
- St Anne’s College, University of Oxford, Woodstock Rd , Oxford OX2 6HS, United Kingdom
| | - Jesús A Siller-Farfán
- Sir William Dunn School of Pathology, University of Oxford, S Parks Rd , Oxford OX1 3DP, United Kingdom
| |
Collapse
|
19
|
Antonucci L, Canciani G, Mastronuzzi A, Carai A, Del Baldo G, Del Bufalo F. CAR-T Therapy for Pediatric High-Grade Gliomas: Peculiarities, Current Investigations and Future Strategies. Front Immunol 2022; 13:867154. [PMID: 35603195 PMCID: PMC9115105 DOI: 10.3389/fimmu.2022.867154] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
High-Grade Gliomas (HGG) are among the deadliest malignant tumors of central nervous system (CNS) in pediatrics. Despite aggressive multimodal treatment - including surgical resection, radiotherapy and chemotherapy - long-term prognosis of patients remains dismal with a 5-year survival rate less than 20%. Increased understanding of genetic and epigenetic features of pediatric HGGs (pHGGs) revealed important differences with adult gliomas, which need to be considered in order to identify innovative and more effective therapeutic approaches. Immunotherapy is based on different techniques aimed to redirect the patient own immune system to fight specifically cancer cells. In particular, T-lymphocytes can be genetically modified to express chimeric proteins, known as chimeric antigen receptors (CARs), targeting selected tumor-associated antigens (TAA). Disialoganglioside GD2 (GD-2) and B7-H3 are highly expressed on pHGGs and have been evaluated as possible targets in pediatric clinical trials, in addition to the antigens common to adult glioblastoma – such as interleukin-13 receptor alpha 2 (IL-13α2), human epidermal growth factor receptor 2 (HER-2) and erythropoietin-producing human hepatocellular carcinoma A2 receptor (EphA2). CAR-T therapy has shown promise in preclinical model of pHGGs but failed to achieve the same success obtained for hematological malignancies. Several limitations, including the immunosuppressive tumor microenvironment (TME), the heterogeneity in target antigen expression and the difficulty of accessing the tumor site, impair the efficacy of T-cells. pHGGs display an immunologically cold TME with poor T-cell infiltration and scarce immune surveillance. The secretion of immunosuppressive cytokines (TGF-β, IL-10) and the presence of immune-suppressive cells – like tumor-associated macrophages/microglia (TAMs) and myeloid-derived suppressor cells (MDSCs) - limit the effectiveness of immune system to eradicate tumor cells. Innovative immunotherapeutic strategies are necessary to overcome these hurdles and improve ability of T-cells to eradicate tumor. In this review we describe the distinguishing features of HGGs of the pediatric population and of their TME, with a focus on the most promising CAR-T therapies overcoming these hurdles.
Collapse
Affiliation(s)
- Laura Antonucci
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gabriele Canciani
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
20
|
Persson ML, Douglas AM, Alvaro F, Faridi P, Larsen MR, Alonso MM, Vitanza NA, Dun MD. The intrinsic and microenvironmental features of diffuse midline glioma; implications for the development of effective immunotherapeutic treatment strategies. Neuro Oncol 2022; 24:1408-1422. [PMID: 35481923 PMCID: PMC9435509 DOI: 10.1093/neuonc/noac117] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diffuse midline glioma (DMG), including those of the brainstem (diffuse intrinsic pontine glioma), are pediatric tumors of the central nervous system (CNS). Recognized as the most lethal of all childhood cancers, palliative radiotherapy remains the only proven treatment option, however, even for those that respond, survival is only temporarily extended. DMG harbor an immunologically “cold” tumor microenvironment (TME) with few infiltrating immune cells. The mechanisms underpinning the cold TME are not well understood. Low expression levels of immune checkpoint proteins, including PD-1, PD-L1, and CTLA-4, are recurring features of DMG and likely contribute to the lack of response to immune checkpoint inhibitors (ICIs). The unique epigenetic signatures (including stem cell-like methylation patterns), a low tumor mutational burden, and recurring somatic mutations (H3K27M, TP53, ACVR1, MYC, and PIK3CA), possibly play a role in the reduced efficacy of traditional immunotherapies. Therefore, to circumvent the lack of efficacy thus far seen for the use of ICIs, adoptive cell transfer (including chimeric antigen receptor T cells) and the use of oncolytic viruses, are currently being evaluated for the treatment of DMG. It remains an absolute imperative that we improve our understanding of DMG’s intrinsic and TME features if patients are to realize the potential benefits offered by these sophisticated treatments. Herein, we summarize the limitations of immunotherapeutic approaches, highlight the emerging safety and clinical efficacy shown for sophisticated cell-based therapies, as well as the evolving knowledge underpinning the DMG-immune axis, to guide the development of immunotherapies that we hope will improve outcomes.
Collapse
Affiliation(s)
- Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Frank Alvaro
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Martin R Larsen
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Marta M Alonso
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for Applied Medical Research (CIMA), Pamplona, Spain
| | - Nicholas A Vitanza
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Hematology, Oncology, Bone Marrow Transplant, and Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
21
|
Nguyen A, Johanning G, Shi Y. Emerging Novel Combined CAR-T Cell Therapies. Cancers (Basel) 2022; 14:cancers14061403. [PMID: 35326556 PMCID: PMC8945996 DOI: 10.3390/cancers14061403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary As a result of FDA approval of CAR-T cell treatments in the last few years, this immunotherapy has provided further direction to precision medicine through its combination with other therapeutic approaches. In the past year, several review articles have been published focusing on advances in this fast-developing field, especially with respect to efforts to overcome hurdles associated with applying CAR-T cells in solid tumors. This review paper focuses on combining CAR-T cell therapy with small molecule drugs, up-to-date progress in CAR-T cell therapy research, and advances in combined CAR-T immunotherapy with other treatments targeting solid tumors. Abstract Chimeric antigen receptors (CAR) T cells are T cells engineered to express membrane receptors with high specificity to recognize specific target antigens presented by cancer cells and are co-stimulated with intracellular signals to increase the T cell response. CAR-T cell therapy is emerging as a novel therapeutic approach to improve T cell specificity that will lead to advances in precision medicine. CAR-T cells have had impressive outcomes in hematological malignancies. However, there continue to be significant limitations of these therapeutic responses in targeting solid malignancies such as heterogeneous antigens in solid tumors, tumor immunosuppressive microenvironment, risk of on-target/off-tumor, infiltrating CAR-T cells, immunosuppressive checkpoint molecules, and cytokines. This review paper summarizes recent approaches and innovations through combination therapies of CAR-T cells and other immunotherapy or small molecule drugs to counter the above disadvantages to potentiate the activity of CAR-T cells.
Collapse
Affiliation(s)
- Anh Nguyen
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA;
| | | | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- Correspondence:
| |
Collapse
|
22
|
Jiang Y, Wen W, Yang F, Han D, Zhang W, Qin W. Prospect of Prostate Cancer Treatment: Armed CAR-T or Combination Therapy. Cancers (Basel) 2022; 14:cancers14040967. [PMID: 35205714 PMCID: PMC8869943 DOI: 10.3390/cancers14040967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
The incidence rate of prostate cancer is higher in male cancers. With a hidden initiation of disease and long duration, prostate cancer seriously affects men's physical and mental health. Prostate cancer is initially androgen-dependent, and endocrine therapy can achieve good results. However, after 18-24 months of endocrine therapy, most patients eventually develop castration-resistant prostate cancer (CRPC), which becomes metastatic castration resistant prostate cancer (mCRPC) that is difficult to treat. Chimeric Antigen Receptor T cell (CAR-T) therapy is an emerging immune cell therapy that brings hope to cancer patients. CAR-T has shown considerable advantages in the treatment of hematologic tumors. However, there are still obstacles to CAR-T treatment of solid tumors because the physical barrier and the tumor microenvironment inhibit the function of CAR-T cells. In this article, we review the progress of CAR-T therapy in the treatment of prostate cancer and discuss the prospects and challenges of armed CAR-T and combined treatment strategies. At present, there are still many obstacles in the treatment of prostate cancer with CAR-T, but when these obstacles are solved, CAR-T cells can become a favorable weapon for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
| | - Weihong Wen
- Department of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (W.W.); (W.Q.)
| | - Fa Yang
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
| | - Donghui Han
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
| | - Wuhe Zhang
- Department of Urology, Air Force 986 Hospital, Xi’an 710054, China;
| | - Weijun Qin
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
- Correspondence: (W.W.); (W.Q.)
| |
Collapse
|
23
|
Budi HS, Ahmad FN, Achmad H, Ansari MJ, Mikhailova MV, Suksatan W, Chupradit S, Shomali N, Marofi F. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress. Stem Cell Res Ther 2022; 13:40. [PMID: 35093187 PMCID: PMC8800342 DOI: 10.1186/s13287-022-02719-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Due to the overexpression or amplification of human epidermal growth factor receptor 2 (HER2) with poor prognosis in a myriad of human tumors, recent studies have focused on HER2-targeted therapies. Deregulation in HER2 signaling pathways is accompanied by sustained tumor cells growth concomitant with their migration and also tumor angiogenesis and metastasis by stimulation of proliferation of a network of blood vessels. A large number of studies have provided clear evidence that the emerging HER2-directed treatments could be the outcome of patients suffering from HER2 positive breast and also gastric/gastroesophageal cancers. Thanks to its great anti-tumor competence, immunotherapy using HER2-specific chimeric antigen receptor (CAR) expressing immune cell has recently attracted increasing attention. Human T cells and also natural killer (NK) cells can largely be found in the tumor microenvironment, mainly contributing to the tumor immune surveillance. Such properties make them perfect candidate for genetically modification to express constructed CARs. Herein, we will describe the potential targets of the HER2 signaling in tumor cells to clarify HER2-mediated tumorigenesis and also discuss recent findings respecting the HER2-specific CAR-expressing immune cells (CAR T and CAR NK cell) for the treatment of HER2-expressing tumors.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132 Indonesia
| | | | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer 2022; 21:28. [PMID: 35062949 PMCID: PMC8780712 DOI: 10.1186/s12943-021-01489-2] [Citation(s) in RCA: 718] [Impact Index Per Article: 239.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Antibodies targeting programmed cell death protein-1 (PD-1) or its ligand PD-L1 rescue T cells from exhausted status and revive immune response against cancer cells. Based on the immense success in clinical trials, ten α-PD-1 (nivolumab, pembrolizumab, cemiplimab, sintilimab, camrelizumab, toripalimab, tislelizumab, zimberelimab, prolgolimab, and dostarlimab) and three α-PD-L1 antibodies (atezolizumab, durvalumab, and avelumab) have been approved for various types of cancers. Nevertheless, the low response rate of α-PD-1/PD-L1 therapy remains to be resolved. For most cancer patients, PD-1/PD-L1 pathway is not the sole speed-limiting factor of antitumor immunity, and it is insufficient to motivate effective antitumor immune response by blocking PD-1/PD-L1 axis. It has been validated that some combination therapies, including α-PD-1/PD-L1 plus chemotherapy, radiotherapy, angiogenesis inhibitors, targeted therapy, other immune checkpoint inhibitors, agonists of the co-stimulatory molecule, stimulator of interferon genes agonists, fecal microbiota transplantation, epigenetic modulators, or metabolic modulators, have superior antitumor efficacies and higher response rates. Moreover, bifunctional or bispecific antibodies containing α-PD-1/PD-L1 moiety also elicited more potent antitumor activity. These combination strategies simultaneously boost multiple processes in cancer-immunity cycle, remove immunosuppressive brakes, and orchestrate an immunosupportive tumor microenvironment. In this review, we summarized the synergistic antitumor efficacies and mechanisms of α-PD-1/PD-L1 in combination with other therapies. Moreover, we focused on the advances of α-PD-1/PD-L1-based immunomodulatory strategies in clinical studies. Given the heterogeneity across patients and cancer types, individualized combination selection could improve the effects of α-PD-1/PD-L1-based immunomodulatory strategies and relieve treatment resistance.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
25
|
Abdoli Shadbad M, Hemmat N, Khaze Shahgoli V, Derakhshani A, Baradaran F, Brunetti O, Fasano R, Bernardini R, Silvestris N, Baradaran B. A Systematic Review on PD-1 Blockade and PD-1 Gene-Editing of CAR-T Cells for Glioma Therapy: From Deciphering to Personalized Medicine. Front Immunol 2022; 12:788211. [PMID: 35126356 PMCID: PMC8807490 DOI: 10.3389/fimmu.2021.788211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Background Programmed cell death protein 1 (PD-1) can attenuate chimeric antigen receptor-T (CAR-T) cell-mediated anti-tumoral immune responses. In this regard, co-administration of anti-PD-1 with CAR-T cells and PD-1 gene-editing of CAR-T cells have been suggested to disrupt this inhibitory axis. Herein, we aim to investigate the advantages and disadvantages of these two approaches and propose a novel strategy to ameliorate the prognosis of glioma patients. Methods Scopus, Embase, and Web of Science were systematically searched to obtain relevant peer-reviewed studies published before March 7, 2021. Then, the current study was conducted based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements. The random-effect model was applied to evaluate the effect size of administrated agents on the survival of animal models bearing gliomas using RevMan version 5.4. The Cochran Q test and I2 were performed to assess the possible between-study heterogeneity. Egger's and Begg and Mazumdar's tests were performed to objectively assess potential asymmetry and publication bias using CMA version 2. Results Anti-PD-1 can substantially increase the survival of animal models on second-generation CAR-T cells. Also, PD-1 knockdown can remarkably prolong the survival of animal models on third-generation CAR-T cells. Regardless of the CAR-T generations, PD-1 gene-edited CAR-T cells can considerably enhance the survival of animal-bearing gliomas compared to the conventional CAR-T cells. Conclusions The single-cell sequencing of tumoral cells and cells residing in the tumor microenvironment can provide valuable insights into the patient-derived neoantigens and the expression profile of inhibitory immune checkpoint molecules in tumor bulk. Thus, single-cell sequencing-guided fourth-generation CAR-T cells can cover patient-derived neoantigens expressed in various subpopulations of tumoral cells and inhibit related inhibitory immune checkpoint molecules. The proposed approach can improve anti-tumoral immune responses, decrease the risk of immune-related adverse events, reduce the risk of glioma relapse, and address the vast inter-and intra-heterogeneity of gliomas.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Farzad Baradaran
- Department of Computer (Computer engineering–Artificial Intelligence), Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Rossella Fasano
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, Zamani M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int 2022; 22:2. [PMID: 34980128 PMCID: PMC8725311 DOI: 10.1186/s12935-021-02407-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs) therapy has become a promising therapeutic strategy with encouraging therapeutic outcomes due to their durable anti-tumor effects. Though, tumor inherent or acquired resistance to ICIs accompanied with treatment-related toxicities hamper their clinical utility. Overall, about 60-70% of patients (e.g., melanoma and lung cancer) who received ICIs show no objective response to intervention. The resistance to ICIs mainly caused by alterations in the tumor microenvironment (TME), which in turn, supports angiogenesis and also blocks immune cell antitumor activities, facilitating tumor cells' evasion from host immunosurveillance. Thereby, it has been supposed and also validated that combination therapy with ICIs and other therapeutic means, ranging from chemoradiotherapy to targeted therapies as well as cancer vaccines, can capably compromise tumor resistance to immune checkpoint blocked therapy. Herein, we have focused on the therapeutic benefits of ICIs as a groundbreaking approach in the context of tumor immunotherapy and also deliver an overview concerning the therapeutic influences of the addition of ICIs to other modalities to circumvent tumor resistance to ICIs.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Angelina O. Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ramadhan Ado Khanamir
- Internal Medicine and Surgery Department, College of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | | | | | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
27
|
Yu M, Zhang Q, Xu S, Yin T, Li F. Successful treatment of refractory retroperitoneal Epstein-Barr virus-positive diffuse large B-cell lymphoma with secondary hemophagocytic syndrome by sequential combination regimen of PD-1 blockade and chimeric antigen receptor T cells: a case report. Anticancer Drugs 2022; 33:e769-e775. [PMID: 34387604 DOI: 10.1097/cad.0000000000001187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epstein-Barr virus (EBV) is convincingly contributed to the development of several types of lymphomas such as NK/T cell lymphoma, Burkitt lymphoma, plasmablastic lymphoma, and diffuse large B cell lymphoma (DLBCL). Herein, we reported an atypical case of EBV-positive DLBCL in an immunocompetent young male patient who presented with epistaxis due to hypergammaglobulinemia. 2-Deoxy-2-[fluorine-8] fluoro-d-glucose PET/computed tomography showed multiple highly metabolic retroperitoneal tissue masses with the involvement of bilateral adrenal gland. Ultrasonography-guided biopsy revealed a significant number of lymphocytes and plasma-like cells that are immunopositive for plasma-cell markers and partly positive for pan-B cell markers. The Ki-67 proliferation index was 20%. The extensive distribution of EBV-encoded small RNAs was confirmed by in-situ hybridization. Due to atypical/overlapping pathological characteristics, it was initially misdiagnosed as extramedullary plasmacytoma and treated with two cycles of bortezomib, lenalidomide, and dexamethasone. Disease progression occurred and pathology consultation for the retroperitoneal biopsies modified the diagnosis to EBV-positive DLBCL with plasma cell differentiation. The treatment was adjusted to etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, rituximab, and lenalidomide (R2-EPOCH), but no response was observed after three cycles of treatment and he developed hemophagocytic syndrome during treatment. A monotherapy of anti-programmed cell death-1 (PD-1) treatment with tiririzumab was administered, successfully controlling hemophagocytic syndrome and EBV infection. The response assessment was partial for EBV-positive DLBCL, subsequent anti-CD19 chimeric antigen receptor-T (CAR-T) cell therapy resulted in complete remission including lumps, immunoglobulins, and negative EBV-DNA 1.5 months later. The present case study proved the possibility of PD-1 blockade in controlling EBV infection and associated hemophagocytic syndrome and offered an example of the combination of CAR-T therapy and PD-1 blockade for refractory EBV-positive DLBCL in clinic.
Collapse
Affiliation(s)
- Min Yu
- Department of Hematology, The First Affiliated Hospital of Nanchang University
- Department of Lymphomatous diseases, Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province
| | - Qian Zhang
- Department of Hematology, The First Affiliated Hospital of Nanchang University
- Department of Lymphomatous diseases, Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province
| | - Shan Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Ting Yin
- Department of Hematology, The First Affiliated Hospital of Nanchang University
- Department of Lymphomatous diseases, Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University
- Department of Lymphomatous diseases, Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province
| |
Collapse
|
28
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Cenciarelli C. Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme. Cancer Med 2021; 10:5019-5030. [PMID: 34145792 PMCID: PMC8335808 DOI: 10.1002/cam4.4064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors with an unfavorable prognosis and overall survival of approximately 20 months following diagnosis. The current treatment for GBM includes surgical resections and chemo- and radiotherapeutic modalities, which are not effective. CAR-T immunotherapy has been proven effective for CD19-positive blood malignancies, and the application of CAR-T cell therapy for solid tumors including GBM offers great hope for this aggressive tumor which has a limited response to current treatments. CAR-T technology depends on the use of patient-specific T cells genetically engineered to express specific tumor-associated antigens (TAAs). Interaction of CAR-T cells with tumor cells triggers the destruction/elimination of these cells by the induction of cytotoxicity and the release of different cytokines. Despite the great promise of CAR-T cell-based therapy several challenges exist. These include the heterogeneity of GBM cancer cells, aberrant various signaling pathways involved in tumor progression, antigen escape, the hostile inhibitory GBM microenvironment, T cell dysfunction, blood-brain barrier, and defective antigen presentation. All need to be addressed before full application at the clinical level can begin. Herein we provide a focused review of the rationale for the use of different types of CAR-T cells (including FcγRs), the different GBM-associated antigens, the challenges still facing CAR-T-based therapy, and means to overcome such challenges. Finally, we enumerate currently completed and ongoing clinical trials, highlighting the different ways such trials are designed to overcome specific problems. Exploitation of the full potential of CAR-T cell therapy for GBM depends on their solution.
Collapse
MESH Headings
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- Antigen Presentation
- Antigens, Neoplasm/immunology
- Blood-Brain Barrier
- Brain Neoplasms/immunology
- Brain Neoplasms/therapy
- Cell Movement/immunology
- Cell Movement/physiology
- Clinical Trials as Topic
- Disease Progression
- ErbB Receptors/immunology
- Forecasting
- Glioblastoma/immunology
- Glioblastoma/therapy
- Humans
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Interleukin-13 Receptor alpha2 Subunit/immunology
- Lymphocyte Activation
- Lymphocyte Depletion
- Receptor, ErbB-2/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/therapeutic use
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- T-Lymphocytes/physiology
- Tumor Escape
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Hany E. Marei
- Department of Cytology and HistologyFaculty of Veterinary MedicineMansoura UniversityMansouraEgypt
| | | | | | - Anwarul Hasan
- Department of Mechanical and Industrial EngineeringCollege of EngineeringQatar UniversityDohaQatar
| | - Thomas Caceci
- Biomedical SciencesVirginia Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Giacomo Pozzoli
- Pharmacology UnitFondazione Policlinico A. GemelliIRCCSRomeItaly
| | | |
Collapse
|
29
|
Park CH. Making Potent CAR T Cells Using Genetic Engineering and Synergistic Agents. Cancers (Basel) 2021; 13:cancers13133236. [PMID: 34209505 PMCID: PMC8269169 DOI: 10.3390/cancers13133236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapies are emerging as powerful weapons for the treatment of malignancies. Chimeric antigen receptor (CAR)-engineered T cells have shown dramatic clinical results in patients with hematological malignancies. However, it is still challenging for CAR T cell therapy to be successful in several types of blood cancer and most solid tumors. Many attempts have been made to enhance the efficacy of CAR T cell therapy by modifying the CAR construct using combination agents, such as compounds, antibodies, or radiation. At present, technology to improve CAR T cell therapy is rapidly developing. In this review, we particularly emphasize the most recent studies utilizing genetic engineering and synergistic agents to improve CAR T cell therapy.
Collapse
Affiliation(s)
- Chi Hoon Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea; ; Tel.: +82-42-860-7416; Fax: +82-42-861-4246
- Medicinal & Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
30
|
Zhu G, Zhang Q, Zhang J, Liu F. Targeting Tumor-Associated Antigen: A Promising CAR-T Therapeutic Strategy for Glioblastoma Treatment. Front Pharmacol 2021; 12:661606. [PMID: 34248623 PMCID: PMC8264285 DOI: 10.3389/fphar.2021.661606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023] Open
Abstract
Chimeric antigen receptor T cells (CAR-T) therapy is a prospective therapeutic strategy for blood cancers tumor, especially leukemia, but it is not effective for solid tumors. Glioblastoma (GBM) is a highly immunosuppressive and deadly malignant tumor with poor responses to immunotherapies. Although CAR-T therapeutic strategies were used for glioma in preclinical trials, the current proliferation activity of CAR-T is not sufficient, and malignant glioma usually recruit immunosuppressive cells to form a tumor microenvironment that hinders CAR-T infiltration, depletes CAR-T, and impairs their efficacy. Moreover, specific environments such as hypoxia and nutritional deficiency can hinder the killing effect of CAR-T, limiting their therapeutic effect. The normal brain lack lymphocytes, but CAR-T usually can recognize specific antigens and regulate the tumor immune microenvironment to increase and decrease pro- and anti-inflammatory factors, respectively. This increases the number of T cells and ultimately enhances anti-tumor effects. CAR-T therapy has become an indispensable modality for glioma due to the specific tumor-associated antigens (TAAs). This review describes the characteristics of CAR-T specific antigen recognition and changing tumor immune microenvironment, as well as ongoing research into CAR-T therapy targeting TAAs in GBM and their potential clinical application.
Collapse
Affiliation(s)
- Guidong Zhu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China.,Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China
| |
Collapse
|
31
|
Quintarelli C, Camera A, Ciccone R, Alessi I, Del Bufalo F, Carai A, Del Baldo G, Mastronuzzi A, De Angelis B. Innovative and Promising Strategies to Enhance Effectiveness of Immunotherapy for CNS Tumors: Where Are We? Front Immunol 2021; 12:634031. [PMID: 34163465 PMCID: PMC8216238 DOI: 10.3389/fimmu.2021.634031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are several immunotherapy approaches for the treatment of Central Nervous System (CNS) tumors under evaluation, currently none of these approaches have received approval from the regulatory agencies. CNS tumors, especially glioblastomas, are tumors characterized by highly immunosuppressive tumor microenvironment, limiting the possibility of effectively eliciting an immune response. Moreover, the peculiar anatomic location of these tumors poses relevant challenges in terms of safety, since uncontrolled hyper inflammation could lead to cerebral edema and cranial hypertension. The most promising strategies of immunotherapy in neuro-oncology consist of the use of autologous T cells redirected against tumor cells through chimeric antigen receptor (CAR) constructs or genetically modified T-cell receptors. Trials based on native or genetically engineered oncolytic viruses and on vaccination with tumor-associated antigen peptides are also under evaluation. Despite some sporadic complete remissions achieved in clinical trials, the outcome of patients with CNS tumors treated with different immunotherapeutic approaches remains poor. Based on the lessons learned from these unsatisfactory experiences, novel immune-therapy approaches aimed at overcoming the profound immunosuppressive microenvironment of these diseases are bringing new hope to reach the cure for CNS tumors.
Collapse
Affiliation(s)
- Concetta Quintarelli
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonio Camera
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Roselia Ciccone
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Iside Alessi
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giada Del Baldo
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Biagio De Angelis
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
32
|
Sun R, Zhou Y, Han L, Pan Z, Chen J, Zong H, Bian Y, Jiang H, Zhang B, Zhu J. A Rational Designed Novel Bispecific Antibody for the Treatment of GBM. Biomedicines 2021; 9:biomedicines9060640. [PMID: 34204931 PMCID: PMC8230177 DOI: 10.3390/biomedicines9060640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) is highly and specifically expressed in a subset of lethal glioblastoma (GBM), making the receptor a unique therapeutic target for GBM. Recently, bispecific antibodies (BsAbs) have shown exciting clinical benefits in cancer immunotherapy. Here, we report remarkable results for GBM treatment with a BsAb constructed by the "BAPTS" method. The BsAb was characterized through LC/MS, SEC-HPLC, and SPR. Furthermore, the BsAb was evaluated in vitro for bioactivities through FACS, antigen-dependent T-cell-mediated cytotoxicity, and a cytokine secretion assay, as well as in vivo for antitumor activity and pharmacokinetic (PK) parameters through immunodeficient NOD/SCID and BALB/c mouse models. The results indicated that the EGFRvIII-BsAb eliminated EGFRvIII-positive GBM cells by recruiting and stimulating effector T cells secreting cytotoxic cytokines that killed GBM cells in vitro. The results demonstrated the antitumor potential and long circulation time of EGFRvIII-BsAb in NOD/SCID mice bearing de2-7 subcutaneously heterotopic transplantation tumors and BALB/c mice. In conclusion, our experiments in both in vitro and in vivo have shown the remarkable antitumor activities of EGFRvIII-BsAb, highlighting its potential in clinical applications for the treatment of GBM. Additional merits, including a long circulation time and low immunogenicity, have also made the novel BsAb a promising therapeutic candidate.
Collapse
Affiliation(s)
- Rui Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Yuexian Zhou
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Lei Han
- Jecho Biopharmaceuticals Co., Ltd. No. 2018 Zhongtian Avenue, Binhai New Area, Tianjin 300457, China; (L.H.); (H.J.)
- Jecho Biopharmaceutical Institute, No. 58 Yuanmei Road, Minhang District, Shanghai 200241, China
| | - Zhidi Pan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Jie Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Huifang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Hua Jiang
- Jecho Biopharmaceuticals Co., Ltd. No. 2018 Zhongtian Avenue, Binhai New Area, Tianjin 300457, China; (L.H.); (H.J.)
- Jecho Laboratories Inc., 7320 Executive Way, Frederick, MD 21704, USA
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
- Correspondence: (B.Z.); (J.Z.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
- Jecho Laboratories Inc., 7320 Executive Way, Frederick, MD 21704, USA
- Correspondence: (B.Z.); (J.Z.)
| |
Collapse
|
33
|
Yang P, Cao X, Cai H, Feng P, Chen X, Zhu Y, Yang Y, An W, Yang Y, Jie J. The exosomes derived from CAR-T cell efficiently target mesothelin and reduce triple-negative breast cancer growth. Cell Immunol 2021; 360:104262. [PMID: 33373818 DOI: 10.1016/j.cellimm.2020.104262] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023]
Abstract
Genetically engineered T cells expressing a chimeric antigen receptor (CAR) have rapidly developed into a powerful and innovative therapeutic modality for cancer patients. However, the problem of dose-dependent systemic toxicity cannot be ignored. In this study, exosomes derived from mesothelin (MSLN)-targeted CAR-T cells were isolated, and we found that they maintain most characteristics of the parental T cells, including surface expression of the CARs and CD3. Furthermore, CAR-carrying exosomes significantly inhibited the growth of both endogenous and exogenous MSLN-positive triple-negative breast cancer (TNBC) cells. The expression of the effector molecules perforin and granzyme B may be a mechanism of tumor killing. More importantly, a highly effective tumor inhibition rate without obvious side effects was observed with the administration of CAR-T cell exosomes in vivo. Thus, the use of CAR-T cell exosomes has great therapeutic potential against MSLN-expressing TNBC.
Collapse
Affiliation(s)
- Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China; Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, 150081 Harbin, China
| | - Xingjian Cao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Huilong Cai
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, 150081 Harbin, China
| | - Panfeng Feng
- Department of Pharmacy, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001 Nantong, China
| | - Xiang Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Yihua Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, 150081 Harbin, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, 150081 Harbin, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China.
| | - Jing Jie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China.
| |
Collapse
|
34
|
Guo F, Cui J. CAR-T in solid tumors: Blazing a new trail through the brambles. Life Sci 2020; 260:118300. [DOI: 10.1016/j.lfs.2020.118300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
|
35
|
Gardell JL, Matsumoto LR, Chinn H, DeGolier KR, Kreuser SA, Prieskorn B, Balcaitis S, Davis A, Ellenbogen RG, Crane CA. Human macrophages engineered to secrete a bispecific T cell engager support antigen-dependent T cell responses to glioblastoma. J Immunother Cancer 2020; 8:jitc-2020-001202. [PMID: 33122397 PMCID: PMC7597484 DOI: 10.1136/jitc-2020-001202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Targeted and effective treatment options are needed for solid tumors, including glioblastoma (GBM), where survival rates with standard treatments are typically less than 2 years from diagnosis. Solid tumors pose many barriers to immunotherapies, including therapy half-life and persistence, tumor penetrance, and targeting. Therapeutics delivered systemically may not traffic to the tumor site. If cellular therapies or drugs are able to access the tumor site, or can be delivered directly within the tumor, treatments may not persist for the duration necessary to reduce or eliminate tumor burden. An approach that allows durable and titratable local therapeutic protein delivery could improve antitumor efficacy while minimizing toxicities or unwanted on-target, off-tissue effects. METHODS In this study, human monocyte-derived macrophages were genetically engineered to secrete a bispecific T cell engager (BiTE) specific to the mutated epidermal growth factor variant III (EGFRvIII) expressed by some GBM tumors. We investigated the ability of lentivirally modified macrophages to secrete a functional BiTE that can bind target tumor antigen and activate T cells. Secreted BiTE protein was assayed in a range of T cell functional assays in vitro and in subcutaneous and intracranial GBM xenograft models. Finally, we tested genetically engineered macrophages (GEMs) secreting BiTE and the proinflammatory cytokine interleukin (IL)-12 to amplify T cell responses in vitro and in vivo. RESULTS Transduced human macrophages secreted a lentivirally encoded functional EGFRvIII-targeted BiTE protein capable of inducing T cell activation, proliferation, degranulation, and killing of antigen-specific tumor cells. Furthermore, BiTE secreting macrophages reduced early tumor burden in both subcutaneous and intracranial mouse models of GBM, a response which was enhanced using macrophages that were dual transduced to secrete both the BiTE protein and single chain IL-12, preventing tumor growth in an aggressive GBM model. CONCLUSIONS The ability of macrophages to infiltrate and persist in solid tumor tissue could overcome many of the obstacles associated with systemic delivery of immunotherapies. We have found that human GEMs can locally and constitutively express one or more therapeutic proteins, which may help recruit T cells and transform the immunosuppressive tumor microenvironment to better support antitumor immunity.
Collapse
Affiliation(s)
- Jennifer L Gardell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lisa R Matsumoto
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Harrison Chinn
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kole R DeGolier
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Immunology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Shannon A Kreuser
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Brooke Prieskorn
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Stephanie Balcaitis
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Amira Davis
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Richard G Ellenbogen
- Division of Pediatric Neurosurgery, Seattle Children's Hospital, Seattle, Washington, USA.,Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Courtney A Crane
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA .,Ben Towne Center for Childhood Cancer, Seattle Children's Research Institute, Seattle, Washington, USA.,Mozart Therapeutics, Seattle, WA, USE
| |
Collapse
|