1
|
Oura Y, Ishii M, Miyata H, Ikeda N, Sakurai T, Suehiro F, Komabashiri N, Nishimura M. Evaluation of the effect of platelet-derived growth factor-BB on the biological activity of human mandibular bone marrow-derived mesenchymal stem cells. Arch Oral Biol 2025; 174:106244. [PMID: 40168781 DOI: 10.1016/j.archoralbio.2025.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/03/2025]
Abstract
OBJECTIVE This study aimed to investigate the effects of platelet-derived growth factor-BB (PDGF-BB) on the biological activities of human mandibular bone marrow-derived mesenchymal stem cells (MBMSCs). DESIGN PDGF-BB (20 ng/mL) was used to treat MBMSCs, and its effects on their proliferation, osteogenic differentiation, and migration were evaluated. Cell proliferation was evaluated using a WST-1 assay. Osteogenic differentiation was evaluated by measuring the mineralization potential and alkaline phosphatase activity. Cell migration was evaluated using wound healing and Transwell chamber assays. Cytoskeletal reorganization and adhesion dynamics were evaluated using immunofluorescence staining. Changes in intracellular signaling in MBMSCs induced by PDGF-BB stimulation were evaluated using western blotting. Furthermore, we investigated Girdin signaling as the molecular mechanisms underlying the regulation of PDGF-BB-induced cell migration. RESULTS PDGF-BB treatment did not affect the proliferation or osteogenic differentiation of MBMSCs. PDGF-BB promoted the migration of MBMSCs. PDGF-BB treatment enhanced F-actin filament formation and paxillin localization at the leading edge of cells. PDGF-BB treatment activated Akt signaling in MBMSCs, and the inhibition of Akt signaling effectively suppressed PDGF-BB-induced Akt activation and migration. PDGF-BB promoted the phosphorylation of Girdin in MBMSCs, and the inhibition of Akt signaling attenuated PDGF-BB-induced Girdin activation. CONCLUSION This study demonstrated that PDGF-BB strongly induces the migration of MBMSCs without affecting their proliferation or osteogenic differentiation. Furthermore, PDGF-BB-induced migration of MBMSCs may be mediated through the Akt/Girdin signaling pathway. These findings provide important insight into the molecular mechanisms underlying PDGF-BB-induced periodontal tissue regeneration.
Collapse
Affiliation(s)
- Yurika Oura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masakazu Ishii
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan.
| | - Haruka Miyata
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Nao Ikeda
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Tomoaki Sakurai
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Fumio Suehiro
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Naohiro Komabashiri
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| |
Collapse
|
2
|
Liu J, Li Y, Lian X, Zhang C, Feng J, Tao H, Wang Z. Potential target within the tumor microenvironment - MT1-MMP. Front Immunol 2025; 16:1517519. [PMID: 40196128 PMCID: PMC11973285 DOI: 10.3389/fimmu.2025.1517519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Matrix metalloproteinases are integral to the modification of the tumor microenvironment and facilitate tumor progression by degrading the extracellular matrix, releasing cytokines, and influencing the recruitment of immune cells. Among the matrix metalloproteinases, membrane-type matrix metalloproteinase 1 (MT1-MMP/MMP14) is the first identified membrane-type MMP and acts as an essential proteolytic enzyme that enables tumor infiltration and metastatic progression. Given the pivotal role of MT1-MMP in tumor progression and the correlation between its overexpression in tumors and unfavorable prognoses across multiple cancer types, a comprehensive understanding of the potential functional mechanisms of MT1-MMP is essential. This knowledge will aid in the advancement of diverse anti-tumor therapies aimed at targeting MT1-MMP. Although contemporary research has highlighted the considerable potential of MT1-MMP in targeted cancer therapy, studies pertaining to its application in cell therapy remain relatively limited. In this review, we delineate the structural characteristics and regulatory mechanisms of MT1-MMP expression, as well as its biological significance in tumorigenesis. Finally, we discussed the current status and prospects of anti-tumor therapies targeting MT1-MMP.
Collapse
Affiliation(s)
- Jinlong Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yijing Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueqi Lian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenglin Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianing Feng
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongfei Tao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhimin Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Brown EJ, Balaguer-Lluna L, Cribbs AP, Philpott M, Campo L, Browne M, Wong JF, Oppermann U, Carcaboso ÁM, Bullock AN, Farnie G. PRMT5 inhibition shows in vitro efficacy against H3K27M-altered diffuse midline glioma, but does not extend survival in vivo. Sci Rep 2024; 14:328. [PMID: 38172189 PMCID: PMC10764357 DOI: 10.1038/s41598-023-48652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
H3K27-altered Diffuse Midline Glioma (DMG) is a universally fatal paediatric brainstem tumour. The prevalent driver mutation H3K27M creates a unique epigenetic landscape that may also establish therapeutic vulnerabilities to epigenetic inhibitors. However, while HDAC, EZH2 and BET inhibitors have proven somewhat effective in pre-clinical models, none have translated into clinical benefit due to either poor blood-brain barrier penetration, lack of efficacy or toxicity. Thus, there remains an urgent need for new DMG treatments. Here, we performed wider screening of an epigenetic inhibitor library and identified inhibitors of protein arginine methyltransferases (PRMTs) among the top hits reducing DMG cell viability. Two of the most effective inhibitors, LLY-283 and GSK591, were targeted against PRMT5 using distinct binding mechanisms and reduced the viability of a subset of DMG cells expressing wild-type TP53 and mutant ACVR1. RNA-sequencing and phenotypic analyses revealed that LLY-283 could reduce the viability, clonogenicity and invasion of DMG cells in vitro, representing three clinically important phenotypes, but failed to prolong survival in an orthotopic xenograft model. Together, these data show the challenges of DMG treatment and highlight PRMT5 inhibitors for consideration in future studies of combination treatments.
Collapse
Affiliation(s)
- Elizabeth J Brown
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Leire Balaguer-Lluna
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Adam P Cribbs
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Martin Philpott
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Leticia Campo
- Department of Oncology, Experimental Cancer Medicine Centre, University of Oxford, Oxford, UK
| | - Molly Browne
- Department of Oncology, Experimental Cancer Medicine Centre, University of Oxford, Oxford, UK
| | - Jong Fu Wong
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Udo Oppermann
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Ángel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Alex N Bullock
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Gillian Farnie
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK.
- Cancer Research Horizons, The Francis Crick Institute, London, UK.
| |
Collapse
|
5
|
Cao Z, Liu Y, Wang Y, Leng P. Research progress on the role of PDGF/PDGFR in type 2 diabetes. Biomed Pharmacother 2023; 164:114983. [PMID: 37290188 DOI: 10.1016/j.biopha.2023.114983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) are basic proteins stored in the α granules of platelets. PDGFs and their receptors (PDGFRs) are widely expressed in platelets, fibroblasts, vascular endothelial cells, platelets, pericytes, smooth muscle cells and tumor cells. The activation of PDGFR plays a number of critical roles in physiological functions and diseases, including normal embryonic development, cellular differentiation, and responses to tissue damage. In recent years, emerging experimental evidence has shown that activation of the PDGF/PDGFR pathway is involved in the development of diabetes and its complications, such as atherosclerosis, diabetic foot ulcers, diabetic nephropathy, and retinopathy. Research on targeting PDGF/PDGFR as a treatment has also made great progress. In this mini-review, we summarized the role of PDGF in diabetes, as well as the research progress on targeted diabetes therapy, which provides a new strategy for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Zhanqi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yijie Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yini Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
6
|
Goh D, Yang Y, Lee EH, Hui JHP, Yang Z. Managing the Heterogeneity of Mesenchymal Stem Cells for Cartilage Regenerative Therapy: A Review. Bioengineering (Basel) 2023; 10:bioengineering10030355. [PMID: 36978745 PMCID: PMC10045936 DOI: 10.3390/bioengineering10030355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/12/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Articular cartilage defects commonly result from trauma and are associated with significant morbidity. Since cartilage is an avascular, aneural, and alymphatic tissue with a poor intrinsic healing ability, the regeneration of functional hyaline cartilage remains a difficult clinical problem. Mesenchymal stem cells (MSCs) are multipotent cells with multilineage differentiation potential, including the ability to differentiate into chondrocytes. Due to their availability and ease of ex vivo expansion, clinicians are increasingly applying MSCs in the treatment of cartilage lesions. However, despite encouraging pre-clinical and clinical data, inconsistencies in MSC proliferative and chondrogenic potential depending on donor, tissue source, cell subset, culture conditions, and handling techniques remain a key barrier to widespread clinical application of MSC therapy in cartilage regeneration. In this review, we highlight the strategies to manage the heterogeneity of MSCs ex vivo for more effective cartilage repair, including reducing the MSC culture expansion period, and selecting MSCs with higher chondrogenic potential through specific genetic markers, surface markers, and biophysical attributes. The accomplishment of a less heterogeneous population of culture-expanded MSCs may improve the scalability, reproducibility, and standardisation of MSC therapy for clinical application in cartilage regeneration.
Collapse
Affiliation(s)
- Doreen Goh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
| | - Yanmeng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - James Hoi Po Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Correspondence: ; Tel.: +65-6516-5398
| |
Collapse
|
7
|
Zhang J, Zhang W, Sun T, Wang J, Li Y, Liu J, Li Z. The Influence of Intervertebral Disc Microenvironment on the Biological Behavior of Engrafted Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:8671482. [PMID: 36387746 PMCID: PMC9663214 DOI: 10.1155/2022/8671482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2024] Open
Abstract
Intervertebral disc degeneration is the main cause of low back pain. Traditional treatment methods cannot repair degenerated intervertebral disc tissue. The emergence of stem cell therapy makes it possible to regenerate and repair degenerated intervertebral disc tissue. At present, mesenchymal stem cells are the most studied, and different types of mesenchymal stem cells have their own characteristics. However, due to the harsh and complex internal microenvironment of the intervertebral disc, it will affect the biological behaviors of the implanted mesenchymal stem cells, such as viability, proliferation, migration, and chondrogenic differentiation, thereby affecting the therapeutic effect. This review is aimed at summarizing the influence of each intervertebral disc microenvironmental factor on the biological behavior of mesenchymal stem cells, so as to provide new ideas for using tissue engineering technology to assist stem cells to overcome the influence of the microenvironment in the future.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Ying Li
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| | - Jing Liu
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| |
Collapse
|
8
|
Hamid HA, Sarmadi VH, Prasad V, Ramasamy R, Miskon A. Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios. J Zhejiang Univ Sci B 2022; 23:42-57. [PMID: 35029087 PMCID: PMC8758935 DOI: 10.1631/jzus.b2100443] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has been regarded as one of the most revolutionary breakthroughs in the history of modern medicine owing to its myriad of immunoregulatory and regenerative properties. With the rapid progress in the fields of osteo- and musculoskeletal therapies, the demand for MSC-based treatment modalities is becoming increasingly prominent. In this endeavor, researchers around the world have devised new and innovative techniques to support the proliferation of MSCs while minimizing the loss of hallmark features of stem cells. One such example is electromagnetic field (EMF) exposure, which is an alternative approach with promising potential. In this review, we present a critical discourse on the efficiency, practicability, and limitations of some of the relevant methods, with insurmountable evidence backing the implementation of EMF as a feasible strategy for the clinically relevant expansion of MSCs.
Collapse
Affiliation(s)
- Haslinda Abdul Hamid
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran 144961 4535, Iran.,Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran 199671 4353, Iran
| | - Vivek Prasad
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Rajesh Ramasamy
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Azizi Miskon
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
9
|
Xiao L, Zhang H, Yang X, Mahati S, Wu G, Xiaheding Y, Bao YX, Xiao H. Role of phosphatidylinositol 3-kinase signaling pathway in radiation-induced liver injury. Kaohsiung J Med Sci 2020; 36:990-997. [PMID: 32729224 DOI: 10.1002/kjm2.12279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is one of critical cytokines in radiation-induced liver injury. Hepatic stellate cells (HSC) are activated in the early stage of radiation-induced liver injury. However, it is currently unclear whether phosphatidylinositol 3-kinase (PI3K/Akt) signal pathway is activated in radiation-induced liver injury. Herein, male Sprague-Dawley rats were irradiated with 6 MV X-rays (30 Gy) on the right liver. Next, Hematoxylin and eosin staining, Masson staining, and electron microscopy were performed to examine pathological changes. Immunohistochemistry was performed to assess the expression of TGF-β1, α-SMA, and p-Akt (S473) in liver tissues. In vitro, rat HSC cell line HSC-T6 cells were given different doses of 6 MV X-ray irradiation (10 and 20 Gy) and treated with LY294002. The expression of α-SMA and p-Akt in mRNA and protein levels were measured by reverse transcription-polymerase chain reactioin (RT-PCR) and Western blot. TGF-β1 expression was detected by enzyme-linked immuno sorbent assay (ELISA). After irradiation, the liver tissues showed obvious pathological changes, indicating the establishment of the radiation-induced liver injury. Expression levels of TGF-β1, α-SMA, and p-Akt (S473) protein in liver tissues were significantly increased after irradiation, and this increase was in a time-dependent manner, suggesting the activation of HSC and PI3K/Akt signal pathway. in vitro experiments showed that the TGF-β1 secreted by HSCs, and the expression of Akt and α-SMA at mRNA and protein levels were significantly increased in irradiation groups. However, the expression of TGF-β1, Akt, and α-SMA were significantly decreased in PI3K/Akt signal pathway inhibitor LY294002-treated group. Our results suggest that during radiation-induced liver injury, HSCs are activated by TGF-β1-mediated PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Lei Xiao
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- School of Public Health of Xinjiang Medical University, Urumqi, China
| | - Hua Zhang
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xin Yang
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shaya Mahati
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ge Wu
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yiliyaer Xiaheding
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yong-Xing Bao
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Xiao
- School of Public Health of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
10
|
Fang J, Huang X, Han X, Zheng Z, Hu C, Chen T, Yang X, Ouyang X, Chen Z, Wei H. Endothelial progenitor cells promote viability and nerve regenerative ability of mesenchymal stem cells through PDGF-BB/PDGFR-β signaling. Aging (Albany NY) 2020; 12:106-121. [PMID: 31899688 PMCID: PMC6977666 DOI: 10.18632/aging.102604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Denervation-induced erectile dysfunction (ED) is a prevailing health problem. Our previous study revealed that endothelial progenitor cells (EPCs) promoted the effect of mesenchymal stem cells (MSCs) on restoration of denervation-induced ED in rats. However, underling mechanisms are still largely elusive. In this study, EPCs and MSCs were co-cultured and resorted to co-EPCs and co-MSCs. EPCs-derived paracrine factors containing PDGF-BB (platelet-derived growth factor) were detected, and MSCs were pre-treated with PDGF-BB, while co-MSCs were pre-treated with PDGFR inhibitor AG1296. Either viability or nerve regenerative ability of MSCs was evaluated. In addition, inhibition of either PI3K/Akt or MEK/Erk pathway was performed to evaluate the role of PI3K/Akt and MEK/Erk pathway in PDGF-BB-induced viability of MSCs. The results revealed that PDGF-BB significantly increased the proportion of PDGFR-β+ MSCs, and promoted both in-vitro and in-vivo viability, as well as nerve regenerative capacity and erectile function restoration of MSCs in rats. Inhibition of PI3K/Akt, MEK/Erk pathway or mTOR led to decrease of PDGF-BB/PDGFR-β induced viability of MSCs. To our knowledge, our study first demonstrates that EPCs promote viability and potential nerve regenerative ability of MSCs through PDGF-BB/PDGFR-β signaling and its downstream PI3K/Akt and MEK/Erk pathways. mTOR acts as a co-mediator in PI3K/Akt and MEK/Erk pathways.
Collapse
Affiliation(s)
- Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xuna Huang
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoyan Han
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zongheng Zheng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Cheng Hu
- Department of Urinary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tufeng Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaofeng Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
11
|
Blázquez R, Sánchez-Margallo FM, Reinecke J, Álvarez V, López E, Marinaro F, Casado JG. Conditioned Serum Enhances the Chondrogenic and Immunomodulatory Behavior of Mesenchymal Stem Cells. Front Pharmacol 2019; 10:699. [PMID: 31316380 PMCID: PMC6609570 DOI: 10.3389/fphar.2019.00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis is one of the most common chronic health conditions associated with pain and disability. Advanced therapies based on mesenchymal stem cells have become valuable options for the treatment of these pathologies. Conditioned serum (CS, “Orthokine”) has been used intra-articularly for osteoarthritic patients. In this work, we hypothesized that the rich content on anti-inflammatory proteins and growth factors of CS may exert a beneficial effect on the biological activity of human adipose-derived mesenchymal stem cells (hAdMSCs). In vitro studies were designed using hAdMSCs cocultured with CS at different concentrations (2.5, 5, and 10%). Chondrogenic differentiation assays and immunomodulatory experiments using in vitro-stimulated lymphocytes were performed. Our results demonstrated that CS significantly enhanced the differentiation of hAdMSCs toward chondrocytes. Moreover, hAdMSCs pre-sensitized with CS reduced the lymphocyte proliferation as well as their differentiation toward activated lymphocytes. These results suggest that in vivo coadministration of CS and hAdMSCs may have a beneficial effect on the therapeutic potential of hAdMSCs. Moreover, these results indicate that intra-articular administration of CS might influence the biological behavior of resident stem cells increasing their chondrogenic differentiation and inherent immunomodulatory activity. To our knowledge, this is the first in vitro study reporting this combination.
Collapse
Affiliation(s)
- Rebeca Blázquez
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Julio Reinecke
- Research and Development Department, ORTHOGEN AG, Düsseldorf, Germany
| | - Verónica Álvarez
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Esther López
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, "Jesús Usón" Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
12
|
Wan G, Liu Y, Zhu J, Guo L, Li C, Yang Y, Gu X, Deng LL, Lu C. SLFN5 suppresses cancer cell migration and invasion by inhibiting MT1-MMP expression via AKT/GSK-3β/β-catenin pathway. Cell Signal 2019; 59:1-12. [PMID: 30844429 DOI: 10.1016/j.cellsig.2019.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/17/2019] [Accepted: 03/02/2019] [Indexed: 12/30/2022]
Abstract
Human SLFN5 inhibits invasions of IFNα-sensitive renal clear-cell carcinoma and melanoma cells. However, whether this inhibition is confined to these IFNα-sensitive cancers is unclear. Here we show that SLFN5 expressions on both mRNA and protein levels are significantly higher in non/low-invasive cancer cell lines (breast cancer cell line MCF7, colorectal cancer cell line HCT116 and lung cancer cell line A549) than in highly-invasive cancer cell lines (fibrosarcoma cell line HT1080 and renal clear cell cancer cell line 786-0). SLFN5 knockdown in non/low-invasive cancer cell lines enhanced MT1-MMP expression and increased migration and invasion in vitro, and in vivo. Furthermore, SLFN5 overexpression in HT1080 and 786-0 inhibited MT1-MMP expression and repressed migration and invasion. MT1-MMP is instrumental in SLFN5-controlled inhibition of cancer cell migration and invasion, as shown by MT1-MMP-knockdown and -overexpression analyses. SLFN5 knockdown activated AKT/GSK-3β/β-catenin pathway by promotion AKT phosphorylation and subsequent GSK-3β phosphorylation, further β-catenin translocation into nucleus as un-phosphorylated protein at Ser33, 37 and 45 and Thr41 sites. This is the first study to report that SLFN5 inhibits cancer migration and invasiveness in several common cancer cell lines by repressing MT1-MMP expression via the AKT/GSK-3β/β-catenin signalling pathway, suggesting that SLFN5 plays wide inhibitory roles in various cancers.
Collapse
Affiliation(s)
- Guoqing Wan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yihao Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiang Zhu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lijuan Guo
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chenhong Li
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yue Yang
- Department of Pathology, Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xuefeng Gu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li-Li Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Changlian Lu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
13
|
Fu X, Halim A, Tian B, Luo Q, Song G. MT1-MMP downregulation via the PI3K/Akt signaling pathway is required for the mechanical stretching-inhibited invasion of bone-marrow-derived mesenchymal stem cells. J Cell Physiol 2019; 234:14133-14144. [PMID: 30659604 DOI: 10.1002/jcp.28105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Mobilization from the bone marrow and the migration of bone-marrow-derived mesenchymal stem cells (BMSCs) through the peripheral circulation to injured tissue sites are regulated by multiple mechanical and chemical factors. We previously demonstrated that mechanical stretching promotes the migration but inhibits the invasion of BMSCs. However, the involved mechanisms, especially the mechanism of stretching-inhibited BMSC invasion, have not been thoroughly elucidated to date. In this study, we found that mechanical stretching with a 10% amplitude at a 1-Hz frequency for 8 hr significantly reduces BMSC invasion and downregulates the expression of membrane type-1 matrix metalloproteinases (MT1-MMP) at both the messenger RNA and protein levels. The overexpression of MT1-MMP restores mechanical stretching-reduced BMSC invasion. Moreover, phosphatidylinositol 3-kinase (PI3K)-dependent Akt phosphorylation in BMSCs was found to be inactivated by mechanical stretching. Pharmacological inhibitors of PI3K/Akt signaling (LY294002 or A443654) reduced the expression of MT1-MMP and impaired BMSC invasion. In addition, the upregulation of Akt phosphorylation by a pharmacological activator (SC79) increased MT1-MMP expression and suppressed mechanical stretching-reduced BMSC invasion. Taken together, our results suggest that mechanical stretching inhibits BMSC invasion by downregulating MT1-MMP expression by suppressing the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaorong Fu
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Alexander Halim
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Boren Tian
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Qing Luo
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Guanbin Song
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| |
Collapse
|
14
|
Wang C, Liu Y, He D. Diverse effects of platelet-derived growth factor-BB on cell signaling pathways. Cytokine 2019; 113:13-20. [DOI: 10.1016/j.cyto.2018.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
|
15
|
The Effects of Platelet-Derived Growth Factor-BB on Bone Marrow Stromal Cell-Mediated Vascularized Bone Regeneration. Stem Cells Int 2018; 2018:3272098. [PMID: 30515221 PMCID: PMC6234453 DOI: 10.1155/2018/3272098] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Regenerative medicine for bone tissue mainly depends on efficient recruitment of endogenous or transplanted stem cells to guide bone regeneration. Platelet-derived growth factor (PDGF) is a functional factor that has been widely used in tissue regeneration and repair. However, the short half-life of PDGF limits its efficacy, and the mechanism by which PDGF regulates stem cell-based bone regeneration still needs to be elucidated. In this study, we established genetically modified PDGF-B-overexpressing bone marrow stromal cells (BMSCs) using a lentiviral vector and then explored the mechanism by which PDGF-BB regulates BMSC-based vascularized bone regeneration. Our results demonstrated that PDGF-BB increased osteogenic differentiation but inhibited adipogenic differentiation of BMSCs via the extracellular signal-related kinase 1/2 (ERK1/2) signaling pathway. In addition, secreted PDGF-BB significantly enhanced human umbilical vein endothelial cell (HUVEC) migration and angiogenesis via the phosphatidylinositol 3 kinase (PI3K)/AKT and ERK1/2 signaling pathways. We evaluated the effect of PDGF-B-modified BMSCs on bone regeneration using a critical-sized rat calvarial defect model. Radiography, micro-CT, and histological analyses revealed that PDGF-BB overexpression improved BMSC-mediated angiogenesis and osteogenesis during bone regeneration. These results suggest that PDGF-BB facilitates BMSC-based bone regeneration by enhancing the osteogenic and angiogenic abilities of BMSCs.
Collapse
|
16
|
PDGF Restores the Defective Phenotype of Adipose-Derived Mesenchymal Stromal Cells from Diabetic Patients. Mol Ther 2018; 26:2696-2709. [PMID: 30195725 DOI: 10.1016/j.ymthe.2018.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that affects 415 million people worldwide. This pathology is often associated with long-term complications, such as critical limb ischemia (CLI), which increases the risk of limb loss and mortality. Mesenchymal stromal cells (MSCs) represent a promising option for the treatment of diabetes complications. Although MSCs are widely used in autologous cell-based therapy, their effects may be influenced by the constant crosstalk between the graft and the host, which could affect the MSC fate potential. In this context, we previously reported that MSCs derived from diabetic patients with CLI have a defective phenotype that manifests as reduced fibrinolytic activity, thereby enhancing the thrombotic risk and compromising patient safety. Here, we found that MSCs derived from diabetic patients with CLI not only exhibit a prothrombotic profile but also have altered multi-differentiation potential, reduced proliferation, and inhibited migration and homing to sites of inflammation. We further demonstrated that this aberrant cell phenotype is reversed by the platelet-derived growth factor (PDGF) BB, indicating that PDGF signaling is a key regulator of MSC functionality. These findings provide an attractive approach to improve the therapeutic efficacy of MSCs in autologous therapy for diabetic patients.
Collapse
|
17
|
Madhurakkat Perikamana SK, Lee J, Ahmad T, Kim EM, Byun H, Lee S, Shin H. Harnessing biochemical and structural cues for tenogenic differentiation of adipose derived stem cells (ADSCs) and development of an in vitro tissue interface mimicking tendon-bone insertion graft. Biomaterials 2018. [PMID: 29522987 DOI: 10.1016/j.biomaterials.2018.02.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tendon-bone interface tissue is extremely challenging to engineer because it exhibits complex gradients of structure, composition, biologics, and cellular phenotypes. As a step toward engineering these transitional zones, we initially analyzed how different (topographical or biological) cues affect tenogenic differentiation of adipose-derived stem cells (ADSCs). We immobilized platelet-derived growth factor - BB (PDGF-BB) using polydopamine (PD) chemistry on random and aligned nanofibers and investigated ADSC proliferation and tenogenic differentiation. Immobilized PDGF greatly enhanced the proliferation and tenogenic differentiation of ADSCs; however, nanofiber alignment had no effect. Interestingly, the PDGF immobilized aligned nanofiber group showed a synergistic effect with maximum expression of tenogenic markers for 14 days. We also generated a nanofiber surface with spatially controlled presentation of immobilized PDGF on an aligned architecture, mimicking native tendon tissue. A gradient of immobilized PDGF was able to control the phenotypic differentiation of ADSCs into tenocytes in a spatially controlled manner, as confirmed by analysis of the expression of tenogenic markers and immunofluorescence staining. We further explored the gradient formation strategy by generation of a symmetrical gradient on the nanofiber surface for the generation of a structure mimicking bone-patellar-tendon-bone with provision for gradient immobilization of PDGF and controlled mineralization. Our study reveals that, together with biochemical cues, favorable topographical cues are important for tenogenic differentiation of ADSCs, and gradient presentation of PDGF can be used as a tool for engineering stem cell-based bone-tendon interface tissues.
Collapse
Affiliation(s)
- Sajeesh Kumar Madhurakkat Perikamana
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Taufiq Ahmad
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
18
|
Sugg KB, Markworth JF, Disser NP, Rizzi AM, Talarek JR, Sarver DC, Brooks SV, Mendias CL. Postnatal tendon growth and remodeling require platelet-derived growth factor receptor signaling. Am J Physiol Cell Physiol 2017; 314:C389-C403. [PMID: 29341790 DOI: 10.1152/ajpcell.00258.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the fundamental biological activities of many cells that compose musculoskeletal tissues. However, little is known about the role of PDGFR signaling during tendon growth and remodeling in adult animals. Using the hindlimb synergist ablation model of tendon growth, our objectives were to determine the role of PDGFR signaling in the adaptation of tendons subjected to a mechanical growth stimulus, as well as to investigate the biological mechanisms behind this response. We demonstrate that both PDGFRs, PDGFRα and PDGFRβ, are expressed in tendon fibroblasts and that the inhibition of PDGFR signaling suppresses the normal growth of tendon tissue in response to mechanical growth cues due to defects in fibroblast proliferation and migration. We also identify membrane type-1 matrix metalloproteinase (MT1-MMP) as an essential proteinase for the migration of tendon fibroblasts through their extracellular matrix. Furthermore, we report that MT1-MMP translation is regulated by phosphoinositide 3-kinase/Akt signaling, while ERK1/2 controls posttranslational trafficking of MT1-MMP to the plasma membrane of tendon fibroblasts. Taken together, these findings demonstrate that PDGFR signaling is necessary for postnatal tendon growth and remodeling and that MT1-MMP is a critical mediator of tendon fibroblast migration and a potential target for the treatment of tendon injuries and diseases.
Collapse
Affiliation(s)
- Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - James F Markworth
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Nathaniel P Disser
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Andrew M Rizzi
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Jeffrey R Talarek
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan Medical School , Ann Arbor, Michigan
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan.,Hospital for Special Surgery , New York, New York
| |
Collapse
|
19
|
Shu T, Liu C, Pang M, Wang J, Liu B, Zhou W, Wang X, Wu T, Wang Q, Rong L. Effects and mechanisms of matrix metalloproteinase2 on neural differentiation of induced pluripotent stem cells. Brain Res 2017; 1678:407-418. [PMID: 29137974 DOI: 10.1016/j.brainres.2017.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 01/22/2023]
Abstract
Induced pluripotent stem cells (iPSCs) possess the potential to differentiate into neural lineage cells. Matrix metalloproteinase 2 (MMP2), an endopeptidase in the extracellular matrix, has been shown to protect neural cells from injury. However, the mechanisms and effects of MMP2 on neural differentiation of iPSCs remain poorly understood. Here, we demonstrated a role for MMP2 in the differentiation of iPSCs to neurons via the AKT pathway. Treatment of iPSCs with MMP2 promoted their proliferation and differentiation into neural stem cells (NSCs), and then into neurons. The transcript and protein expression of Nestin and microtubule-associated protein 2 (MAP2) increased. Moreover, MMP2 markedly induced the expression of phospho-AKT (pAKT) during these differentiation stages. Consistently, silencing MMP2 using siRNA attenuated the expression of Nestin, MAP2 and pAKT, compared with the control group. In addition, the increasing levels of Nestin, MAP2 and pAKT in the MMP2 group were declined by pretreatment with the phosphoinositide 3-kinase (PI3K)/AKT inhibitor, LY294002. Furthermore, the study detected that TrkA and TrkB were perhaps the potential receptors for these effects of MMP2 on neural differentiation through PI3K/AKT signaling pathway. Taken together, these results suggest that MMP2 induces the differentiation of iPSCs into neurons by regulating the AKT signaling pathway.
Collapse
Affiliation(s)
- Tao Shu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Chang Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Mao Pang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Juan Wang
- Department of Gynaecology, Common Splendor International Health Management, Guangzhou, Guangdong 510000, China
| | - Bin Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Wei Zhou
- Department of Orthopedics, The 3rd Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xuan Wang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Tao Wu
- Department of Emergency, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Qiyou Wang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Limin Rong
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
20
|
Cheng Y, Gu W, Zhang G, Li X, Guo X. Activation of Notch1 signaling alleviates dysfunction of bone marrow-derived mesenchymal stem cells induced by cigarette smoke extract. Int J Chron Obstruct Pulmon Dis 2017; 12:3133-3147. [PMID: 29138545 PMCID: PMC5667796 DOI: 10.2147/copd.s146201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are considered attractive therapeutic agents for the treatment of COPD. However, little is known about the impact of Notch on the proliferation, migration, and survival of MSCs in a cigarette smoke (CS) microenvironment. Here, we used CS extract to mimic the CS microenvironment in vitro, with the intention to investigate the effect of Notch in regulating proliferation, migration, and survival of BM-MSCs. Rat bone marrow mesenchymal stem cells were infected with lentivirus vector containing the intracellular domain of Notch1 (N1ICD) and challenged with CS extract. Cell proliferation was detected by Ki67 staining and expression of cell cycle-related proteins. A transwell assay was used to measure cell migration and the expression of apoptotic proteins was examined. The proliferation of BM-MSCs overexpressing N1ICD significantly increased. Consistently, levels of cyclin D1, p-Rb, and E2F-1 increased in N1ICD overexpressing cells. N1ICD overexpression also increased cell migration compared with the control group. N1ICD overexpression equilibrated the expression of Bax and Bcl-2, and blocked caspase-3 cleavage, contributing to the inhibition of apoptosis. Moreover, blockade of the PI3K/Akt pathway suppressed the aforementioned cytoprotective effects of N1ICD. In conclusion, activation of Notch signaling improved proliferation, migration, and survival of BM-MSCs in a CS microenvironment partly through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Gu
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guorui Zhang
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Li
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejun Guo
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Zhang M, Jiang F, Zhang X, Wang S, Jin Y, Zhang W, Jiang X. The Effects of Platelet-Derived Growth Factor-BB on Human Dental Pulp Stem Cells Mediated Dentin-Pulp Complex Regeneration. Stem Cells Transl Med 2017; 6:2126-2134. [PMID: 29064632 PMCID: PMC5702518 DOI: 10.1002/sctm.17-0033] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Dentin‐pulp complex regeneration is a promising alternative treatment for the irreversible pulpitis caused by tooth trauma or dental caries. This process mainly relies on the recruitment of endogenous or the transplanted dental pulp stem cells (DPSCs) to guide dentin‐pulp tissue formation. Platelet‐derived growth factor (PDGF), a well‐known potent mitogenic, angiogenic, and chemoattractive agent, has been widely used in tissue regeneration. However, the mechanisms underlying the therapeutic effects of PDGF on dentin‐pulp complex regeneration are still unclear. In this study, we tested the effect of PDGF‐BB on dentin‐pulp tissue regeneration by establishing PDGF‐BB gene‐modified human dental pulp stem cells (hDPSCs) using a lentivirus. Our results showed that PDGF‐BB can significantly enhance hDPSC proliferation and odontoblastic differentiation. Furthermore, PDGF‐BB and vascular endothelial growth factor (VEGF) secreted by hDPSCs enhanced angiogenesis. The chemoattractive effect of PDGF‐BB on hDPSCs was also confirmed using a Transwell chemotactic migration model. We further determined that PDGF‐BB facilitates hDPSCs migration via the activation of the phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway. In vivo, CM‐DiI‐labeled hDPSCs were injected subcutaneously into mice, and our results showed that more labeled cells were recruited to the sites implanted with calcium phosphate cement scaffolds containing PDGF‐BB gene‐modified hDPSCs. Finally, the tissue‐engineered complexes were implanted subcutaneously in mice for 12 weeks, the Lenti‐PDGF group generated more dentin‐like mineralized tissue which showed positive staining for the DSPP protein, similar to tooth dentin tissue, and was surrounded by highly vascularized dental pulp‐like connective tissue. Taken together, our data demonstrated that the PDGF‐BB possesses a powerful function in prompting stem cell‐based dentin‐pulp tissue regeneration. Stem Cells Translational Medicine2017;6:2126–2134
Collapse
Affiliation(s)
- Maolin Zhang
- Department of Prosthodontics, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| | - Fei Jiang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Polyclinic, Affiliated Hospital of Stomatology, Nanjing, People's Republic of China
| | - Xiaochen Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| | - Shaoyi Wang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| | - Yuqin Jin
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Pleniceanu O, Shukrun R, Omer D, Vax E, Kanter I, Dziedzic K, Pode-Shakked N, Mark-Daniei M, Pri-Chen S, Gnatek Y, Alfandary H, Varda-Bloom N, Bar-Lev DD, Bollag N, Shtainfeld R, Armon L, Urbach A, Kalisky T, Nagler A, Harari-Steinberg O, Arbiser JL, Dekel B. Peroxisome proliferator-activated receptor gamma (PPARγ) is central to the initiation and propagation of human angiomyolipoma, suggesting its potential as a therapeutic target. EMBO Mol Med 2017; 9:508-530. [PMID: 28275008 PMCID: PMC5376758 DOI: 10.15252/emmm.201506111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiomyolipoma (AML), the most common benign renal tumor, can result in severe morbidity from hemorrhage and renal failure. While mTORC1 activation is involved in its growth, mTORC1 inhibitors fail to eradicate AML, highlighting the need for new therapies. Moreover, the identity of the AML cell of origin is obscure. AML research, however, is hampered by the lack of in vivo models. Here, we establish a human AML‐xenograft (Xn) model in mice, recapitulating AML at the histological and molecular levels. Microarray analysis demonstrated tumor growth in vivo to involve robust PPARG‐pathway activation. Similarly, immunostaining revealed strong PPARG expression in human AML specimens. Accordingly, we demonstrate that while PPARG agonism accelerates AML growth, PPARG antagonism is inhibitory, strongly suppressing AML proliferation and tumor‐initiating capacity, via a TGFB‐mediated inhibition of PDGFB and CTGF. Finally, we show striking similarity between AML cell lines and mesenchymal stem cells (MSCs) in terms of antigen and gene expression and differentiation potential. Altogether, we establish the first in vivo human AML model, which provides evidence that AML may originate in a PPARG‐activated renal MSC lineage that is skewed toward adipocytes and smooth muscle and away from osteoblasts, and uncover PPARG as a regulator of AML growth, which could serve as an attractive therapeutic target.
Collapse
Affiliation(s)
- Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Racheli Shukrun
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Einav Vax
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Kanter
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Klaudyna Dziedzic
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mark-Daniei
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sara Pri-Chen
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Hadas Alfandary
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Nephrology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Nira Varda-Bloom
- Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel
| | - Dekel D Bar-Lev
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Naomi Bollag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Rachel Shtainfeld
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tomer Kalisky
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Arnon Nagler
- Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.,Winship Cancer Institute, Atlanta Veterans Administration Hospital, Atlanta, GA, USA
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel .,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Zhao J, Poelaert KCK, Steukers L, Favoreel HW, Li Y, Chowdhury SI, van Drunen Littel-van den Hurk S, Caij B, Nauwynck HJ. Us3 and Us9 proteins contribute to the stromal invasion of bovine herpesvirus 1 in the respiratory mucosa. J Gen Virol 2017; 98:1089-1096. [DOI: 10.1099/jgv.0.000764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Jing Zhao
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Katrien C. K Poelaert
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lennert Steukers
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Yewei Li
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Shafiqul I Chowdhury
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Brigitte Caij
- Department of Virology, Veterinary and Agrochemical Research Centre (VAR-CODA CERVA), Groeselenberg 99, B-1180 Brussels, Belgium
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
24
|
The US3 Protein of Pseudorabies Virus Drives Viral Passage across the Basement Membrane in Porcine Respiratory Mucosa Explants. J Virol 2016; 90:10945-10950. [PMID: 27681139 DOI: 10.1128/jvi.01577-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
Passage of the basement membrane (BM), which forms a barrier between the epithelium and the underlying lamina propria, represents an important step in the early pathogenesis of different alphaherpesviruses. Rho GTPase signaling plays an important role in transmigration of cells across the BM during physiological and pathological processes. We reported earlier that the US3 protein kinase of the alphaherpesvirus pseudorabies virus (PRV) interferes with Rho GTPase signaling and causes a reorganization of the host cell cytoskeleton, which as a consequence, enhances viral cell-to-cell spread in epithelial cell cultures. Here, using an ex vivo system of porcine nasal respiratory mucosa explants that allows to study PRV invasion through the BM, we found that a PRV strain that lacks US3 expression (ΔUS3 PRV) showed a reduced spread in mucosal epithelium and was virtually unable to breach the BM, in contrast to isogenic wild-type (WT) or US3 rescue PRV strains. Interestingly, addition of IPA3, an inhibitor of p21-activated kinases that blocks the effects of US3 on the cytoskeleton, suppressed the ability of WT PRV to spread across the BM. In addition, artificial suppression of RhoA signaling using CPC3 (cell-permeable C3 transferase) to mimic the effects of US3 on Rho GTPase signaling, significantly increased passage of ΔUS3 PRV through the BM, whereas it did not significantly affect BM passage of WT or US3 rescue PRV. In conclusion, these data indicate that US3 plays an important role in PRV mucosal invasion across the BM, which involves its interference with Rho GTPase signaling. This is the first report describing an alphaherpesvirus protein that drives viral BM passage. IMPORTANCE Many viruses, including alphaherpesviruses, primarily replicate in epithelial cells of surface mucosae, such as the respiratory mucosa. Some of these viruses breach the basement membrane underlying these epithelial cells to reach underlying connective tissue and blood vessels and invade the host. Hence, epithelial spread and basement membrane passage represent crucial but still poorly understood early steps in (alphaherpes)virus pathogenesis. Here, using ex vivo porcine respiratory mucosa explants, we show that the conserved US3 protein of the porcine alphaherpesvirus pseudorabies virus (PRV) is critical for passage of PRV across the basement membrane and contributes to efficient viral epithelial spread. In addition, we show that US3-mediated viral epithelial spread and passage across the basement membrane depend at least in part on the ability of this viral protein to modulate cellular Rho GTPase signaling. This is the first report that identifies an alphaherpesvirus protein that drives viral basement membrane passage.
Collapse
|
25
|
Abstract
Mesenchymal stem cells (MSCs) have great potential as a source of cells for cell-based therapy because of their ability for self-renewal and differentiation into functional cells. Moreover, matrix metalloproteinases (MMPs) have a critical role in the differentiation of MSCs into different lineages. MSCs also interact with exogenous MMPs at their surface, and regulate the pericellular localization of MMP activities. The fate of MSCs is regulated by specific MMPs associated with a key cell lineage. Recent reports suggest the integration of MMPs in the differentiation, angiogenesis, proliferation, and migration of MSCs. These interactions are not fully understood and warrant further investigation, especially for their application as therapeutic tools to treat different diseases. Therefore, overexpression of a single MMP or tissue-specific inhibitor of metalloproteinase in MSCs may promote transdifferentiation into a specific cell lineage, which can be used for the treatment of some diseases. In this review, we critically discuss the identification of various MMPs and the signaling pathways that affect the differentiation, migration, angiogenesis, and proliferation of MSCs.
Collapse
Affiliation(s)
- Sami G Almalki
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
26
|
Zhang Y, Chen S, Liu B, Zhou H, Hu S, Zhou Y, Han T, Chen Y. Exendin-4 promotes proliferation of adipose-derived stem cells through ERK and JNK signaling pathways. In Vitro Cell Dev Biol Anim 2016; 52:598-606. [DOI: 10.1007/s11626-016-0003-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/14/2016] [Indexed: 01/29/2023]
|
27
|
Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep 2016; 6:21176. [PMID: 26880204 PMCID: PMC4754777 DOI: 10.1038/srep21176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/19/2016] [Indexed: 01/02/2023] Open
Abstract
Restenosis or occlusion after vascular procedures is ascribed to intimal hyperplasia. Transforming growth factor (TGF)-β1 is involved in recruitment of mesenchymal stem cells (MSCs) following arterial injury, and its release from latent TGF-binding protein by matrix metalloproteinase (MMP)-14-induced proteolysis contributes to neointima formation. However, the relationship between MMP-14 and TGF-β1 activation in restenosis is unknown. This study investigated the relationship using a rat model of balloon-induced injury. Rats were assigned to vehicle-, SB431542 (SB)-, or recombinant human (rh)TGF-β1-treated groups and examined at various time points after balloon-induced injury for expression of TGF-β1/Smad signalling pathway components, MMP-14 and MSCs markers including Nestin, CD29, and Sca1+CD29+CD11b/c−CD45−. Intimal hyperplasia was reduced in SB- and rhTGF-β1-treated rats. The expression of TGF-β1, TGF-β1RI, and Smad2/3 was decreased, but the levels of phosphorylated Smad2/3 were higher in SB-treated rats than vehicle-treated after 7 days to 14 days. rhTGF-β1 administration decreased the expression of TGF-β1/Smad pathway proteins, except for TGF-β1RI. Nestin and CD29 expression and the number of Sca1+CD29+CD11b−CD45− cells were reduced, whereas MMP-14 expression was increased after SB431542 and rhTGF-β1 administration. These results suggest that TGF-β1/Smad signalling and MMP-14 act to recruit MSCs which differentiate to vascular smooth muscle cells and mesenchymal-like cells that participate in arterial repair/remodelling.
Collapse
|
28
|
Jin IG, Kim JH, Wu HG, Hwang SJ. Effect of mesenchymal stem cells and platelet-derived growth factor on the healing of radiation induced ulcer in rats. Tissue Eng Regen Med 2016; 13:78-90. [PMID: 30603388 DOI: 10.1007/s13770-015-0055-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 07/26/2015] [Accepted: 08/24/2015] [Indexed: 01/05/2023] Open
Abstract
Radiation-induced skin ulceration is a frequent complication of radiation therapy. This study investigated the effects of rat mesenchymal stem cells (rMSCs) and platelet-derived growth factor (PDGF) on the healing of radiation-induced soft tissue injury. Sprague-Dawley rats (n=17) were irradiated on the right and left buttocks with a single dose of 50 Gy. The right buttocks were administered with phosphatebuffered solution as a control. The left buttocks were administered with either rMSCs (2×106 cells), PDGF (8 µg), or PDGF combined with rMSCs. Administration was done at three weeks after irradiation. Wound healing was analyzed by calculating the percentage of residual ulcerated skin area compared to the total irradiated area during the five week healing period after administration. Modified skin scores were also assessed. Finally, skin lesions were histologically evaluated. More than 40% of the irradiated skin area within the irradiated zone underwent ulceration within 16 days postirradiation, with peak ulceration exceeding 50% around three weeks post-irradiation. Administration of rMSCs or PDGF alone did not confer any significant healing effect. The combined rMSCs+PDGF treatment significantly reduced the wound size compared with the nontreated control up to two weeks postinjection. Regarding the histological examination, lesions administered with PDGF (either alone or mixed with rMSCs) resulted in a greater deposition of highly organized collagen fibers throughout the dermis layer, compared with the control. In conclusion, the combined administration of rMSCs and PDGF efficiently enhanced the healing of radiation-induced skin ulceration.
Collapse
Affiliation(s)
- Im Geon Jin
- 1Department of Oral & Maxillofacial Surgery, School of Dentistry, Brain Korea 21 Plus, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jin Ho Kim
- 2Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Hong-Gyun Wu
- 2Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Soon Jung Hwang
- 1Department of Oral & Maxillofacial Surgery, School of Dentistry, Brain Korea 21 Plus, Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Hye Kim J, Gyu Park S, Kim WK, Song SU, Sung JH. Functional regulation of adipose-derived stem cells by PDGF-D. Stem Cells 2015; 33:542-56. [PMID: 25332166 DOI: 10.1002/stem.1865] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/20/2022]
Abstract
Platelet-derived growth factor-D (PDGF-D) was recently identified, and acts as potent mitogen for mesenchymal cells. PDGF-D also induces cellular transformation and promotes tumor growth. However, the functional role of PDGF-D in adipose-derived stem cells (ASCs) has not been identified. Therefore, we primarily investigated the autocrine and paracrine roles of PDGF-D in this study. Furthermore, we identified the signaling pathways and the molecular mechanisms involved in PDGF-D-induced stimulation of ASCs. It is of interest that PDGF-B is not expressed, but PDGF-D and PDGF receptor-β are expressed in ASCs. PDGF-D showed the strongest mitogenic effect on ASCs, and PDGF-D regulates the proliferation and migration of ASCs through the PI3K/Akt pathways. PDGF-D also increases the proliferation and migration of ASCs through generation of mitochondrial reactive oxygen species (mtROS) and mitochondrial fission. mtROS generation and fission were mediated by p66Shc phosphorylation, and BCL2-related protein A1 and Serpine peptidase inhibitor, clade E, member 1 mediated the proliferation and migration of ASCs. In addition, PDGF-D upregulated the mRNA expression of diverse growth factors such as vascular endothelial growth factor A, fibroblast growth factor 1 (FGF1), FGF5, leukemia inhibitory factor, inhibin, beta A, interleukin 11, and heparin-binding EGF-like growth factor. Therefore, the preconditioning of PDGF-D enhanced the hair-regenerative potential of ASCs. PDGF-D-induced growth factor expression was attenuated by a pharmacological inhibitor of mitogen-activated protein kinase pathway. In summary, PDGF-D is highly expressed by ASCs, where it acts as a potent mitogenic factor. PDGF-D also upregulates growth factor expression in ASCs. Therefore, PDGF-D can be considered a novel ASC stimulator, and used as a preconditioning agent before ASC transplantation.
Collapse
Affiliation(s)
- Ji Hye Kim
- College of Pharmacy, Yonsei University, Incheon, Korea
| | | | | | | | | |
Collapse
|
30
|
Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci Rep 2015; 5:12898. [PMID: 26250571 PMCID: PMC4528192 DOI: 10.1038/srep12898] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) are regarded as an attractive source of therapeutic stem cells for myocardial infarction. However, their limited self-renewal capacity, low migration capacity and poor viability after transplantation hamper the clinical use of MSC; thus, a strategy to enhance the biological functions of MSC is required. Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, exerts cell-protective effects on many types of cells. However, little information is available regarding the influence of Ex-4 on MSC. In our study, MSC were isolated from bone marrow and cultured in vitro. After treatment with Ex-4, MSC displayed a higher proliferative capacity, increased C-X-C motif receptor 4 (CXCR4) expression and an enhanced migration response. Moreover, in H2O2-induced apoptosis, Ex-4 preserved mitochondrial function through scavenging ROS and balancing the expression of anti- and pro-apoptotic proteins, leading to the inhibition of the mitochondria-dependent cell death pathways and increased cell survival. Moreover, higher phospho-Akt (p-Akt) expression was observed after Ex-4 intervention. However, blockade of the PI3K/Akt pathway with inhibitors suppressed the above cytoprotective effects of Ex-4, suggesting that the PI3K/Akt pathway is partly responsible for Ex-4-mediated MSC growth, mobilization and survival. These findings provide an attractive method of maximizing the effectiveness of MSC-based therapies in clinical applications.
Collapse
|
31
|
Qin Z, Feng J, Liu Y, Deng LL, Lu C. PDGF-D promotes dermal fibroblast invasion in 3-dimensional extracellular matrix via Snail-mediated MT1-MMP upregulation. Tumour Biol 2015; 37:591-9. [PMID: 26234766 DOI: 10.1007/s13277-015-3828-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Increasing attention has been focused on the malignant tumor microenvironment, which plays important roles in tumor occurrence, progression and metastasis. Fibroblasts are recruited by platelet-derived growth factor (PDGFs) and invade the tumor microenvironment. In the PDGF family, PDGF-B has been reported to play an important role in the recruitment and invasion programs. However, whether PDGF-D plays a role in these programs remains unclear. We generated a recombinant plasmid expressing human PDGF-D and transfected the plasmid to dermal fibroblasts to examine the effects on cell invasive activities in 3D type I collagen gels. PDGF-D plasmid transfection enhanced fibroblast invasive activities both in invasive cell numbers and invasion depth in 3D collagen gels. These effects were blocked by Snail-specific siRNA transfection. PDGF-D transfection significantly induced Snail expression at both mRNA and protein levels. PDGF-D further upregulated MT1-MMP mRNA and protein expressions and this was inhibited when Snail was knocked down by siRNA. Both Snail and MT1-MMP expressions in fibroblasts and cellular invasive activities in 3D collagen induced by PDGF-D were inhibited by LY294002, SP600125, and U1026, the inhibitors of PI3K, JNK, and ERK1/2 signaling pathways, respectively. However, no effects were observed in response to the P38MAPK signaling pathway inhibitor SB203580. These effects of PDGF-D were confirmed by using the culture supernatants of the transfectants. Taken together, these data demonstrate that PDGF-D plays important roles in the recruitment and invasion programs of fibroblasts via the activation of PI3K, JNK and ERK1/2 signaling pathways, and upregulation of Snail and downstream effecter MT1-MMP. These findings indicate that PDGF-D is an important player in the tumor microenvironment for fibroblast recruitment.
Collapse
Affiliation(s)
- Zhuo Qin
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University Harbin, 157 Baojian Rd, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Jinfa Feng
- Department of General Surgery, Heilongjiang Province Hospital, Harbin, Heilongjiang, 150000, People's Republic of China
| | - Yusi Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University Harbin, 157 Baojian Rd, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Li-Li Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Changlian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University Harbin, 157 Baojian Rd, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
32
|
Oh SY, Lee SJ, Jung YH, Lee HJ, Han HJ. Arachidonic acid promotes skin wound healing through induction of human MSC migration by MT3-MMP-mediated fibronectin degradation. Cell Death Dis 2015; 6:e1750. [PMID: 25950480 PMCID: PMC4669694 DOI: 10.1038/cddis.2015.114] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
Abstract
Arachidonic acid (AA) is largely released during injury, but it has not been fully studied yet how AA modulates wound repair with stem cells. Therefore, we investigated skin wound-healing effect of AA-stimulated human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in vivo and its molecular mechanism in vitro. We found that transplantation of hUCB-MSCs pre-treated with AA enhanced wound filling, re-epithelization, and angiogenesis in a mouse skin excisional wound model. AA significantly promoted hUCB-MSCs migration after a 24 h incubation, which was inhibited by the knockdown of G-protein-coupled receptor 40 (GPR40). AA activated mammalian target of rapamycin complex 2 (mTORC2) and Aktser473 through the GPR40/phosphoinositide 3-kinase (PI3K) signaling, which was responsible for the stimulation of an atypical protein kinase C (PKC) isoform, PKCζ. Subsequently, AA stimulated phosphorylation of p38 MAPK and transcription factor Sp1, and induced membrane type 3-matrix metalloproteinase (MT3-MMP)-dependent fibronectin degradation in promoting hUCB-MSCs motility. Finally, the silencing of MT3-MMP in AA-stimulated hUCB-MSCs failed to promote the repair of skin wounds owing to impaired cell motility. In conclusion, AA enhances skin wound healing through induction of hUCB-MSCs motility by MT3-MMP-mediated fibronectin degradation, which relies on GPR40-dependent mTORC2 signaling pathways.
Collapse
Affiliation(s)
- S Y Oh
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 151-741, Korea
| | - S-J Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 151-741, Korea
| | - Y H Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 151-741, Korea
| | - H J Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 151-741, Korea
| | - H J Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 151-741, Korea
| |
Collapse
|
33
|
Sun L, Lin P, Qin Z, Liu Y, Deng LL, Lu C. Hypoxia promotes HO-8910PM ovarian cancer cell invasion via Snail-mediated MT1-MMP upregulation. Exp Biol Med (Maywood) 2015; 240:1434-45. [PMID: 25681470 DOI: 10.1177/1535370215570205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms of ovarian cancer cell invasion under hypoxia remain unclear. Here we employed a 3D collagen model and chick chorioallantoic membrane (CAM) invasion assay to explore the influence of hypoxia on ovarian cancer cell invasion. Hypoxia (both 1% O2 and CoCl2 150 and 250 µM) induced HO-8910PM ovarian cancer cell invasion in 3D collagen and collagenolysis determined by hydroxyproline. Pretreatment with a hypoxia inducible factor-1α inhibitor, YC-1, or MMP inhibitor, GM6001, significantly inhibited 3D collagen invasion and degradation and cell proliferation. Hypoxia stimulated both mRNA and protein expressions of membrane-type 1 matrix metalloproteinase (MT1-MMP) and promoted MT1-MMP translocation to the cell surface in an YC-1 sensitive manner. MT1-siRNA transfection inhibited hypoxia-induced invasion, proliferation, and collagen degradation of cells in 3D collagen. Hypoxia stimulated Snail mRNA and protein expression as well as translocation to nucleus in an YC-1 sensitive manner. Overexpression of Snail with a recombinant plasmid in HO-8910PM cells resulted in an enhanced invasion in 3D collagen. Transfection with Snail-specific siRNA significantly decreased MT1-MMP expression and 3D collagen invasion. Hypoxia-treated cells significantly broke the upper CAM surface of 11-day-old chick embryos and infiltrated interstitial tissue, completely blocked in the presence of YC-1 or GM6001, or after MT1-MMP siRNA or Snail siRNA transfection. Together, these data suggest that hypoxia promotes HO-8910PM ovarian cancer cell traffic through 3D matrix via Snail-mediated MT1-MMP upregulation, a possible molecular mechanism of ovarian cancer cell invasion under hypoxia.
Collapse
Affiliation(s)
- Lijun Sun
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| | - Ping Lin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Zhuo Qin
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| | - Yusi Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| | - Li-Li Deng
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Changlian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
34
|
Aschner Y, Zemans RL, Yamashita CM, Downey GP. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS. Chest 2014; 146:1081-1091. [PMID: 25287998 DOI: 10.1378/chest.14-0397] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) and ARDS fall within a spectrum of pulmonary disease that is characterized by hypoxemia, noncardiogenic pulmonary edema, and dysregulated and excessive inflammation. While mortality rates have improved with the advent of specialized ICUs and lung protective mechanical ventilation strategies, few other therapies have proven effective in the management of ARDS, which remains a significant clinical problem. Further development of biomarkers of disease severity, response to therapy, and prognosis is urgently needed. Several novel pathways have been identified and studied with respect to the pathogenesis of ALI and ARDS that show promise in bridging some of these gaps. This review will focus on the roles of matrix metalloproteinases and protein tyrosine kinases in the pathobiology of ALI in humans, and in animal models and in vitro studies. These molecules can act independently, as well as coordinately, in a feed-forward manner via activation of tyrosine kinase-regulated pathways that are pivotal in the development of ARDS. Specific signaling events involving proteolytic processing by matrix metalloproteinases that contribute to ALI, including cytokine and chemokine activation and release, neutrophil recruitment, transmigration and activation, and disruption of the intact alveolar-capillary barrier, will be explored in the context of these novel molecular pathways.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO
| | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO
| | - Cory M Yamashita
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Gregory P Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO; Immunology, University of Colorado Denver, Aurora, CO.
| |
Collapse
|
35
|
Jin Y, Zhang W, Liu Y, Zhang M, Xu L, Wu Q, Zhang X, Zhu Z, Huang Q, Jiang X. rhPDGF-BB Via ERK Pathway Osteogenesis and Adipogenesis Balancing in ADSCs for Critical-Sized Calvarial Defect Repair. Tissue Eng Part A 2014; 20:3303-13. [PMID: 24568547 DOI: 10.1089/ten.tea.2013.0556] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yuqin Jin
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Lab of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Lab of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Lab of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Maolin Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lianyi Xu
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Lab of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qianju Wu
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Lab of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiuli Zhang
- Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Lab of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ziyuan Zhu
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qingfeng Huang
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Lab of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1809-18. [DOI: 10.1016/j.nano.2014.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 01/22/2023]
|
37
|
Kim MJ, Kim KM, Kim J, Kim KN. BMP-2 promotes oral squamous carcinoma cell invasion by inducing CCL5 release. PLoS One 2014; 9:e108170. [PMID: 25271422 PMCID: PMC4182698 DOI: 10.1371/journal.pone.0108170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2)-containing bone grafts are useful regenerative materials for oral and maxillofacial surgery; however, several in vitro and in vivo studies previously reported cancer progression-related adverse effects caused by BMP-2. In this study, by quantifying the rhBMP-2 content released from bone grafts, the rhBMP-2 concentration that did not show cytotoxicity in each cell line was determined and applied to the in vitro monoculture or coculture model in the invasion assay. Our results showed that 1 ng/ml rhBMP-2, while not affecting cancer cell viability, significantly increased the invasion ability of the cancer cells cocultured with fibroblasts. Cocultured medium with rhBMP-2 also contained increased levels of matrix metalloproteinases. rhBMP-2-treated cocultured fibroblasts did not show a prominent difference in mRNA expression profile. Some cytokines, however, were detected in the conditioned medium by a human cytokine antibody array. Among them, the cancer invasion-related factor CCL5 was quantified by ELISA. Interestingly, CCL5 neutralizing antibodies significantly reduced the invasion of oral cancer cells. In conclusion, our results suggest that 1 ng/ml rhBMP-2 may induce invasion of oral squamous cell carcinoma (OSCC) cells by CCL5 release in coculture models. Therefore, we propose that a careful clinical examination before the use of rhBMP-2-containing biomaterials is indispensable for using rhBMP-2 treatment to prevent cancer progression.
Collapse
Affiliation(s)
- Mi-joo Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Dental Devices Testing & Evaluation Center, Brain Korea 21 Plus project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Kwang-mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Dental Devices Testing & Evaluation Center, Brain Korea 21 Plus project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Jin Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Kyoung-nam Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Dental Devices Testing & Evaluation Center, Brain Korea 21 Plus project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Hajifathali A, Saba F, Atashi A, Soleimani M, Mortaz E, Rasekhi M. The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res 2014; 358:651-65. [PMID: 25173883 DOI: 10.1007/s00441-014-1984-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells found in many adult tissues, especially bone marrow (BM) and are capable of differentiation into various lineage cells such as osteoblasts, adipocytes, chondrocytes and myocytes. Moreover, MSCs can be mobilized from connective tissue into circulation and from there to damaged sites to contribute to regeneration processes. MSCs commitment and differentiation are controlled by complex activities involving signal transduction through cytokines and catecholamines. There has been an increasing interest in recent years in the neural system, functioning in the support of stem cells like MSCs. Recent efforts have indicated that the catecholamine released from neural and not neural cells could be affected characteristics of MSCs. However, there have not been review studies of most aspects involved in catecholamines-mediated functions of MSCs. Thus, in this review paper, we will try to describe the current state of catecholamines in MSCs destination and discuss strategies being used for catecholamines for migration of these cells to damaged tissues. Then, the role of the nervous system in the induction of osteogenesis, adipogenesis, chondrogenesis and myogenesis from MSCs is discussed. Recent progress in studies of signaling transduction of catecholamines in determination of the final fate of MSCs is highlighted. Hence, the knowledge of interaction between MSCs with the neural system could be applied towards the development of new diagnostic and treatment alternatives for human diseases.
Collapse
Affiliation(s)
- Abbas Hajifathali
- Bone Marrow Transplantation Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
39
|
Windmolders S, De Boeck A, Koninckx R, Daniëls A, De Wever O, Bracke M, Hendrikx M, Hensen K, Rummens JL. Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident Cardiac Atrial appendage Stem Cells. J Mol Cell Cardiol 2013; 66:177-88. [PMID: 24326234 DOI: 10.1016/j.yjmcc.2013.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/12/2013] [Accepted: 11/28/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) modulate cardiac healing after myocardial injury through the release of paracrine factors, but the exact mechanisms are still unknown. One possible mechanism is through mobilization of endogenous cardiac stem cells (CSCs). This study aimed to test the pro-migratory effect of MSC conditioned medium (MSC-CM) on endogenous CSCs from human cardiac tissue. By using a three-dimensional collagen assay, we found that MSC-CM improved migration of cells from human cardiac tissue. Cell counts, perimeter and area measurements were utilized to quantify migration effects. To examine whether resident stem cells were among the migrating cells, specific stem cell properties were investigated. The migrating cells displayed strong similarities with resident Cardiac Atrial appendage Stem Cells (CASCs), including a clonogenic potential of ~21.5% and expression of pluripotency associated genes like Oct-4, Nanog, c-Myc and Klf-4. Similar to CASCs, migrating cells demonstrated high aldehyde dehydrogenase activity and were able to differentiate towards cardiomyocytes. Receptor tyrosine kinase analysis and collagen assays performed with recombinant platelet derived growth factor (PDGF)-AA and Imatinib Mesylate, a PDGF receptor inhibitor, suggested a role for the PDGF-AA/PDGF receptor α axis in enhancing the migration process of CASCs. In conclusion, our findings demonstrate that factors present in MSC-CM improve migration of resident stem cells from human cardiac tissue. These data open doors towards future therapies in which MSC secreted factors, like PDGF-AA, can be utilized to enhance the recruitment of CASCs towards the site of myocardial injury.
Collapse
Affiliation(s)
- Severina Windmolders
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Astrid De Boeck
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Remco Koninckx
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Annick Daniëls
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium.
| | - Olivier De Wever
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Marc Bracke
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Marc Hendrikx
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium; Department of Cardiothoracic Surgery, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium.
| | - Karen Hensen
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Jean-Luc Rummens
- Laboratory of Experimental Hematology, Jessa Hospital, Campus Virga Jesse, Stadsomvaart 11, 3500 Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| |
Collapse
|