1
|
Nguema L, Picard F, El Hajj M, Dupaty L, Fenwick C, Cardinaud S, Wiedemann A, Pantaleo G, Zurawski S, Centlivre M, Zurawski G, Lévy Y, Godot V. Subunit protein CD40.SARS.CoV2 vaccine induces SARS-CoV-2-specific stem cell-like memory CD8 + T cells. EBioMedicine 2025; 111:105479. [PMID: 39667270 PMCID: PMC11697708 DOI: 10.1016/j.ebiom.2024.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Ideally, vaccination should induce protective long-lived humoral and cellular immunity. Current licensed COVID-19 mRNA vaccines focused on the spike (S) region induce neutralizing antibodies that rapidly wane. METHODS Herein, we show that a subunit vaccine (CD40.CoV2) targeting spike and nucleocapsid antigens to CD40-expressing cells elicits broad specific human (hu)Th1 CD4+ and CD8+ T cells in humanized mice. FINDINGS CD40.CoV2 vaccination selectively enriched long-lived spike- and nucleocapsid-specific CD8+ progenitors with stem-cell-like memory (Tscm) properties, whereas mRNA BNT162b2 induced effector memory CD8+ T cells. CD8+ Tscm cells produced IFNγ and TNF upon antigenic restimulation and showed a high proliferation rate. We demonstrate that CD40 activation is specifically required for the generation of huCD8+ Tscm cells. INTERPRETATION These results support the development of a CD40-vaccine platform capable of eliciting long-lasting T-cell immunity. FUNDING This work was supported by Inserm, Université Paris-Est Créteil, and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR.
Collapse
Affiliation(s)
- Laury Nguema
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Florence Picard
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Marwa El Hajj
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Léa Dupaty
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Craig Fenwick
- Service of Immunology and Allergy Lausanne University Hospital, Swiss Vaccine Research Institute, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sylvain Cardinaud
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Aurélie Wiedemann
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Giuseppe Pantaleo
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Service of Immunology and Allergy Lausanne University Hospital, Swiss Vaccine Research Institute, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sandra Zurawski
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Mireille Centlivre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Gerard Zurawski
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yves Lévy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| | - Véronique Godot
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France.
| |
Collapse
|
2
|
Hor JL, Schrom EC, Wong-Rolle A, Vistain L, Shang W, Dong Q, Zhao C, Jin C, Germain RN. PD-1 controls differentiation, survival, and TCR affinity evolution of stem-like CD8+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606241. [PMID: 39211103 PMCID: PMC11360996 DOI: 10.1101/2024.08.02.606241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Stem-like progenitors are a critical subset of cytotoxic T cells that self-renew and give rise to expanded populations of effector cells critical for successful checkpoint blockade immunotherapy. Emerging evidence suggests that the tumor-draining lymph nodes can support the continuous generation of these stem-like cells that replenish the tumor sites and act as a critical source of expanded effector populations, underlining the importance of understanding what factors promote and maintain activated T cells in the stem-like state. Using advanced 3D multiplex immunofluorescence imaging, here we identified antigen-presentation niches in tumor-draining lymph nodes that support the expansion, maintenance, and affinity evolution of a unique population of TCF-1+PD-1+SLAMF6 hi stem-like CD8+ T cells. Our results show that contrary to the prevailing view that persistent TCR signaling drives terminal effector differentiation, prolonged antigen engagement well beyond the initial priming phase sustained the proliferation and self-renewal of these stem-like T cells in vivo . The inhibitory PD-1 pathway plays a central role in this process by mediating the fine-tuning of TCR and co-stimulatory signal input that enables selective expansion of high affinity TCR stem-like clones, enabling them to act as a renewable source of high affinity effector cells. PD-1 checkpoint blockade disrupts this fine tuning of input signaling, leading to terminal differentiation to the effector state or death of the most avid anti-tumor stem-like cells. Our results thus reveal an unexpected relationship between TCR ligand affinity recognition, a key negative feedback regulatory loop, and T cell stemness programming. Furthermore, these findings raise questions about whether anti-PD-1 checkpoint blockade during cancer immunotherapy provides a short-term anti-tumor effect that comes at the cost of diminishing efficacy due to progressive loss of these critical high affinity stem-like precursors.
Collapse
|
3
|
Zhu Q, Zhang X, Lu F, Miao S, Zhang C, Liu Z, Gao Z, Qi M, An X, Geng P, Wang S, Ren H, Han F, Zhang R, Zha D. RUNX1-BMP2 promotes vasculogenic mimicry in laryngeal squamous cell carcinoma via activation of the PI3K-AKT signaling pathway. Cell Commun Signal 2024; 22:227. [PMID: 38610001 PMCID: PMC11010429 DOI: 10.1186/s12964-024-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck. Vasculogenic mimicry (VM) is crucial for tumor growth and metastasis and refers to the formation of fluid channels by invasive tumor cells rather than endothelial cells. However, the regulatory mechanisms underlying VM during the malignant progression of LSCC remain largely unknown. METHODS Gene expression and clinical data for LSCC were obtained from the TCGA and Gene GEO (GSE27020) databases. A risk prediction model associated with VM was established using LASSO and Cox regression analyses. Based on their risk scores, patients with LSCC were categorized into high- and low-risk groups. The disparities in immune infiltration, tumor mutational burden (TMB), and functional enrichment between these two groups were examined. The core genes in LSCC were identified using the machine learning (SVM-RFE) and WGCNA algorithms. Subsequently, the involvement of bone morphogenetic protein 2 (BMP2) in VM and metastasis was investigated both in vitro and in vivo. To elucidate the downstream signaling pathways regulated by BMP2, western blotting was performed. Additionally, ChIP experiments were employed to identify the key transcription factors responsible for modulating the expression of BMP2. RESULTS We established a new precise prognostic model for LSCC related to VM based on three genes: BMP2, EPO, and AGPS. The ROC curves from both TCGA and GSE27020 validation cohorts demonstrated precision survival prediction capabilities, with the nomogram showing some net clinical benefit. Multiple algorithm analyses indicated BMP2 as a potential core gene. Further experiments suggested that BMP2 promotes VM and metastasis in LSCC. The malignant progression of LSCC is promoted by BMP2 via the activation of the PI3K-AKT signaling pathway, with the high expression of BMP2 in LSCC resulting from its transcriptional activation by runt-related transcription factor 1 (RUNX1). CONCLUSION BMP2 predicts poor prognosis in LSCC, promotes LSCC VM and metastasis through the PI3K-AKT signaling pathway, and is transcriptionally regulated by RUNX1. BMP2 may be a novel, precise, diagnostic, and therapeutic biomarker of LSCC.
Collapse
Affiliation(s)
- Qingwen Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xinyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Fei Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Siyu Miao
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Chunyang Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Zhenzhen Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Zejun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Meihao Qi
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xiaogang An
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Panling Geng
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Sufang Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hongbo Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Fugen Han
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ruyue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - DingJun Zha
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Borroni E, Borsotti C, Cirsmaru RA, Kalandadze V, Famà R, Merlin S, Brown B, Follenzi A. Immune tolerance promotion by LSEC-specific lentiviral vector-mediated expression of the transgene regulated by the stabilin-2 promoter. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102116. [PMID: 38333675 PMCID: PMC10850788 DOI: 10.1016/j.omtn.2024.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) are specialized endocytic cells that clear the body from blood-borne pathogens and waste macromolecules through scavenger receptors (SRs). Among the various SRs expressed by LSECs is stabilin-2 (STAB2), a class H SR that binds to several ligands, among which endogenous coagulation products. Given the well-established tolerogenic function of LSECs, we asked whether the STAB2 promoter (STAB2p) would enable us to achieve LSEC-specific lentiviral vector (LV)-mediated transgene expression, and whether the expression of this transgene would be maintained over the long term due to tolerance induction. Here, we show that STAB2p ensures LSEC-specific green fluorescent protein (GFP) expression by LV in the absence of a specific cytotoxic CD8+ T cell immune response, even in the presence of GFP-specific CD8+ T cells, confirming the robust tolerogenic function of LSECs. Finally, we show that our delivery system can partially and permanently restore FVIII activity in a mouse model of severe hemophilia A without the formation of anti-FVIII antibodies. Overall, our findings establish the suitability of STAB2p for long-term LSEC-restricted expression of therapeutic proteins, such as FVIII, or to achieve antigen-specific immune tolerance in auto-immune diseases.
Collapse
Affiliation(s)
- Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Roberta A. Cirsmaru
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Vakhtang Kalandadze
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rosella Famà
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Brian Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C.Arrigo, Alessandria, Italy
| |
Collapse
|
5
|
Zwijnenburg AJ, Pokharel J, Varnaitė R, Zheng W, Hoffer E, Shryki I, Comet NR, Ehrström M, Gredmark-Russ S, Eidsmo L, Gerlach C. Graded expression of the chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and enables cross-species interpretation. Immunity 2023; 56:1955-1974.e10. [PMID: 37490909 DOI: 10.1016/j.immuni.2023.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
T cells differentiate into functionally distinct states upon antigen encounter. These states are delineated by different cell surface markers for murine and human T cells, which hamper cross-species translation of T cell properties. We aimed to identify surface markers that reflect the graded nature of CD8+ T cell differentiation and delineate functionally comparable states in mice and humans. CITEseq analyses revealed that graded expression of CX3CR1, encoding the chemokine receptor CX3CR1, correlated with the CD8+ T cell differentiation gradient. CX3CR1 expression distinguished human and murine CD8+ and CD4+ T cell states, as defined by migratory and functional properties. Graded CX3CR1 expression, refined with CD62L, accurately captured the high-dimensional T cell differentiation continuum. Furthermore, the CX3CR1 expression gradient delineated states with comparable properties in humans and mice in steady state and on longitudinally tracked virus-specific CD8+ T cells in both species. Thus, graded CX3CR1 expression provides a strategy to translate the behavior of distinct T cell differentiation states across species.
Collapse
Affiliation(s)
- Anthonie Johan Zwijnenburg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Jyoti Pokharel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Renata Varnaitė
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Iman Shryki
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Natalia Ramirez Comet
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden; Nordiska Kliniken, 11151 Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden, 90187 Umeå, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden.
| |
Collapse
|
6
|
Baars I, Jaedtka M, Dewitz LA, Fu Y, Franz T, Mohr J, Gintschel P, Berlin H, Degen A, Freier S, Rygol S, Schraven B, Kahlfuß S, van Zandbergen G, Müller AJ. Leishmania major drives host phagocyte death and cell-to-cell transfer depending on intracellular pathogen proliferation rate. JCI Insight 2023; 8:e169020. [PMID: 37310793 PMCID: PMC10443809 DOI: 10.1172/jci.insight.169020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
The virulence of intracellular pathogens relies largely on the ability to survive and replicate within phagocytes but also on release and transfer into new host cells. Such cell-to-cell transfer could represent a target for counteracting microbial pathogenesis. However, our understanding of the underlying cellular and molecular processes remains woefully insufficient. Using intravital 2-photon microscopy of caspase-3 activation in the Leishmania major-infected (L. major-infected) live skin, we showed increased apoptosis in cells infected by the parasite. Also, transfer of the parasite to new host cells occurred directly without a detectable extracellular state and was associated with concomitant uptake of cellular material from the original host cell. These in vivo findings were fully recapitulated in infections of isolated human phagocytes. Furthermore, we observed that high pathogen proliferation increased cell death in infected cells, and long-term residency within an infected host cell was only possible for slowly proliferating parasites. Our results therefore suggest that L. major drives its own dissemination to new phagocytes by inducing host cell death in a proliferation-dependent manner.
Collapse
Affiliation(s)
- Iris Baars
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Moritz Jaedtka
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Leon-Alexander Dewitz
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yan Fu
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tobias Franz
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Juliane Mohr
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patricia Gintschel
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannes Berlin
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Angelina Degen
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sandra Freier
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Rygol
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuß
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas J. Müller
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
7
|
von Werdt D, Gungor B, Barreto de Albuquerque J, Gruber T, Zysset D, Kwong Chung CKC, Corrêa-Ferreira A, Berchtold R, Page N, Schenk M, Kehrl JH, Merkler D, Imhof BA, Stein JV, Abe J, Turchinovich G, Finke D, Hayday AC, Corazza N, Mueller C. Regulator of G-protein signaling 1 critically supports CD8 + T RM cell-mediated intestinal immunity. Front Immunol 2023; 14:1085895. [PMID: 37153600 PMCID: PMC10158727 DOI: 10.3389/fimmu.2023.1085895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023] Open
Abstract
Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens.
Collapse
Affiliation(s)
- Diego von Werdt
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Bilgi Gungor
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Thomas Gruber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Daniel Zysset
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Cheong K. C. Kwong Chung
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Gastrointestinal Health, Immunology, Nestlé Research, Lausanne, Switzerland
| | - Antonia Corrêa-Ferreira
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Regina Berchtold
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Page
- Department of Pathology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Mirjam Schenk
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - John H. Kehrl
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Doron Merkler
- Department of Pathology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Beat A. Imhof
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Gleb Turchinovich
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Finke
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Nadia Corazza
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- *Correspondence: Christoph Mueller, ; Nadia Corazza,
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Christoph Mueller, ; Nadia Corazza,
| |
Collapse
|
8
|
Hong HS, Mbah NE, Shan M, Loesel K, Lin L, Sajjakulnukit P, Correa LO, Andren A, Lin J, Hayashi A, Magnuson B, Chen J, Li Z, Xie Y, Zhang L, Goldstein DR, Carty SA, Lei YL, Opipari AW, Argüello RJ, Kryczek I, Kamada N, Zou W, Franchi L, Lyssiotis CA. OXPHOS promotes apoptotic resistance and cellular persistence in T H17 cells in the periphery and tumor microenvironment. Sci Immunol 2022; 7:eabm8182. [PMID: 36399539 PMCID: PMC9853437 DOI: 10.1126/sciimmunol.abm8182] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell proliferation and cytokine production are bioenergetically and biosynthetically costly. The inability to meet these metabolic demands results in altered differentiation, accompanied by impaired effector function, and attrition of the immune response. Interleukin-17-producing CD4 T cells (TH17s) are mediators of host defense, autoimmunity, and antitumor immunity in the setting of adoptive T cell therapy. TH17s are long-lived cells that require mitochondrial oxidative phosphorylation (OXPHOS) for effector function in vivo. Considering that TH17s polarized under standardized culture conditions are predominately glycolytic, little is known about how OXPHOS regulates TH17 processes, such as their ability to persist and thus contribute to protracted immune responses. Here, we modified standardized culture medium and identified a culture system that reliably induces OXPHOS dependence in TH17s. We found that TH17s cultured under OXPHOS conditions metabolically resembled their in vivo counterparts, whereas glycolytic cultures were dissimilar. OXPHOS TH17s exhibited increased mitochondrial fitness, glutamine anaplerosis, and an antiapoptotic phenotype marked by high BCL-XL and low BIM. Limited mitophagy, mediated by mitochondrial fusion regulator OPA-1, was critical to apoptotic resistance in OXPHOS TH17s. By contrast, glycolytic TH17s exhibited more mitophagy and an imbalance in BCL-XL to BIM, thereby priming them for apoptosis. In addition, through adoptive transfer experiments, we demonstrated that OXPHOS protected TH17s from apoptosis while enhancing their persistence in the periphery and tumor microenvironment in a murine model of melanoma. Together, our work demonstrates how metabolism regulates TH17 cell fate and highlights the potential for therapies that target OXPHOS in TH17-driven diseases.
Collapse
Affiliation(s)
- Hanna S. Hong
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nneka E. Mbah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mengrou Shan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kristen Loesel
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lin Lin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter Sajjakulnukit
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Luis O. Correa
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Lin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Atsushi Hayashi
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brian Magnuson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Judy Chen
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhaoheng Li
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel R. Goldstein
- Institute of Gerontology; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shannon A. Carty
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yu Leo Lei
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Anthony W. Opipari
- Department of Obstetrics and Gynecology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Rafael J. Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Ilona Kryczek
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Nobuhiko Kamada
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weiping Zou
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Luigi Franchi
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Costas A. Lyssiotis
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Dhuppar S, Murugaiyan G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol 2022; 43:917-931. [PMID: 36220689 PMCID: PMC9617792 DOI: 10.1016/j.it.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Current address: Centre for Business Innovation, The Indian School of Business, Hyderabad 500111, India
| | - Gopal Murugaiyan
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
11
|
Washburn RL, Hibler T, Kaur G, Dufour JM. Sertoli Cell Immune Regulation: A Double-Edged Sword. Front Immunol 2022; 13:913502. [PMID: 35757731 PMCID: PMC9218077 DOI: 10.3389/fimmu.2022.913502] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
The testis must create and maintain an immune privileged environment to protect maturing germ cells from autoimmune destruction. The establishment of this protective environment is due, at least in part, to Sertoli cells. Sertoli cells line the seminiferous tubules and form the blood-testis barrier (BTB), a barrier between advanced germ cells and the immune system. The BTB compartmentalizes the germ cells and facilitates the appropriate microenvironment necessary for spermatogenesis. Further, Sertoli cells modulate innate and adaptive immune processes through production of immunoregulatory compounds. Sertoli cells, when transplanted ectopically (outside the testis), can also protect transplanted tissue from the recipient’s immune system and reduce immune complications in autoimmune diseases primarily by immune regulation. These properties make Sertoli cells an attractive candidate for inflammatory disease treatments and cell-based therapies. Conversely, the same properties that protect the germ cells also allow the testis to act as a reservoir site for infections. Interestingly, Sertoli cells also have the ability to mount an antimicrobial response, if necessary, as in the case of infections. This review aims to explore how Sertoli cells act as a double-edged sword to both protect germ cells from an autoimmune response and activate innate and adaptive immune responses to fight off infections.
Collapse
Affiliation(s)
- Rachel L Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Immunology and Infectious Disease Concentration, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Taylor Hibler
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Immunology and Infectious Disease Concentration, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Immunology and Infectious Disease Concentration, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
12
|
Fumagalli V, Venzin V, Di Lucia P, Moalli F, Ficht X, Ambrosi G, Giustini L, Andreata F, Grillo M, Magini D, Ravà M, Friedrich C, Fontenot JD, Bousso P, Gilmore SA, Khan S, Baca M, Vivier E, Gasteiger G, Kuka M, Guidotti LG, Iannacone M. Group 1 ILCs regulate T cell-mediated liver immunopathology by controlling local IL-2 availability. Sci Immunol 2022; 7:eabi6112. [PMID: 35213210 DOI: 10.1126/sciimmunol.abi6112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Group 1 innate lymphoid cells (ILCs), which comprise both natural killer (NK) cells and ILC1s, are important innate effectors that can also positively and negatively influence adaptive immune responses. The latter function is generally ascribed to the ability of NK cells to recognize and kill activated T cells. Here, we used multiphoton intravital microscopy in mouse models of hepatitis B to study the intrahepatic behavior of group 1 ILCs and their cross-talk with hepatitis B virus (HBV)-specific CD8+ T cells. We found that hepatocellular antigen recognition by effector CD8+ T cells triggered a prominent increase in the number of hepatic NK cells and ILC1s. Group 1 ILCs colocalized and engaged in prolonged interactions with effector CD8+ T cells undergoing hepatocellular antigen recognition; however, they did not induce T cell apoptosis. Rather, group 1 ILCs constrained CD8+ T cell proliferation by controlling local interleukin-2 (IL-2) availability. Accordingly, group 1 ILC depletion, or genetic removal of their IL-2 receptor a chain, considerably increased the number of intrahepatic HBV-specific effector CD8+ T cells and the attendant immunopathology. Together, these results reveal a role for group 1 ILCs in controlling T cell-mediated liver immunopathology by limiting local IL-2 concentration and have implications for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Venzin
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Moalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gioia Ambrosi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marta Grillo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diletta Magini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximiliams-Universität Würzburg, Würzburg, Germany
| | | | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | | | | | | | - Eric Vivier
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France.,Innate Pharma Research Laboratories, Innate Pharma, Marseille 13276, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille 13005, France
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximiliams-Universität Würzburg, Würzburg, Germany
| | - Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy.,Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
13
|
McFall-Boegeman H, Huang X. Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. Expert Rev Vaccines 2022; 21:453-469. [PMID: 35023430 PMCID: PMC8960355 DOI: 10.1080/14760584.2022.2029415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccination can be effective defense against many infectious agents and the corresponding diseases. Discoveries elucidating the mechanisms of the immune system have given hopes to developing vaccines against diseases recalcitrant to current treatment/prevention strategies. One such finding is the ability of immunogenic biological nanoparticles to powerfully boost the immunogenicity of poorer antigens conjugated to them with virus-like particle (VLP)-based vaccines as a key example. VLPs take advantage of the well-defined molecular structures associated with sub-unit vaccines and the immunostimulatory nature of conjugate vaccines. AREAS COVERED In this review, we will discuss how advances in understanding the immune system can inform VLP-based vaccine design and how VLP-based vaccines have uncovered underlying mechanisms in the immune system. EXPERT OPINION As our understanding of mechanisms underlying the immune system increases, that knowledge should inform our vaccine design. Testing of proof-of-concept vaccines in the lab should seek to elucidate the underlying mechanisms of immune responses. The integration of these approaches will allow for VLP-based vaccines to live up to their promise as a powerful plug-and-play platform for next generation vaccine development.
Collapse
Affiliation(s)
- Hunter McFall-Boegeman
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
14
|
Xu A, Leary SC, Islam MF, Wu Z, Bhanumathy KK, Ara A, Chibbar R, Fleywald A, Ahmed KA, Xiang J. Prosurvival IL-7-Stimulated Weak Strength of mTORC1-S6K Controls T Cell Memory via Transcriptional FOXO1-TCF1-Id3 and Metabolic AMPKα1-ULK1-ATG7 Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:155-168. [PMID: 34872976 DOI: 10.4049/jimmunol.2100452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
CD8+ memory T (TM) cells play a critical role in immune defense against infection. Two common γ-chain family cytokines, IL-2 and IL-7, although triggering the same mTORC1-S6K pathway, distinctly induce effector T (TE) cells and TM cells, respectively, but the underlying mechanism(s) remains elusive. In this study, we generated IL-7R-/and AMPKα1-knockout (KO)/OTI mice. By using genetic and pharmaceutical tools, we demonstrate that IL-7 deficiency represses expression of FOXO1, TCF1, p-AMPKα1 (T172), and p-ULK1 (S555) and abolishes T cell memory differentiation in IL-7R KO T cells after Listeria monocytogenesis rLmOVA infection. IL-2- and IL-7-stimulated strong and weak S6K (IL-2/S6Kstrong and IL-7/S6Kweak) signals control short-lived IL-7R-CD62L-KLRG1+ TE and long-term IL-7R+CD62L+KLRG1- TM cell formations, respectively. To assess underlying molecular pathway(s), we performed flow cytometry, Western blotting, confocal microscopy, and Seahorse assay analyses by using the IL-7/S6Kweak-stimulated TM (IL-7/TM) and the control IL-2/S6Kstrong-stimulated TE (IL-2/TE) cells. We determine that the IL-7/S6Kweak signal activates transcriptional FOXO1, TCF1, and Id3 and metabolic p-AMPKα1, p-ULK1, and ATG7 molecules in IL-7/TM cells. IL-7/TM cells upregulate IL-7R and CD62L, promote mitochondria biogenesis and fatty acid oxidation metabolism, and show long-term cell survival and functional recall responses. Interestingly, AMPKα1 deficiency abolishes the AMPKα1 but maintains the FOXO1 pathway and induces a metabolic switch from fatty acid oxidation to glycolysis in AMPKα1 KO IL-7/TM cells, leading to loss of cell survival and recall responses. Taken together, our data demonstrate that IL-7-stimulated weak strength of mTORC1-S6K signaling controls T cell memory via activation of transcriptional FOXO1-TCF1-Id3 and metabolic AMPKα1-ULK1-ATG7 pathways. This (to our knowledge) novel finding provides a new mechanism for a distinct IL-2/IL-7 stimulation model in T cell memory and greatly impacts vaccine development.
Collapse
Affiliation(s)
- Aizhang Xu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Md Fahmid Islam
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zhaojia Wu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kalpana Kalyanasundaram Bhanumathy
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anjuman Ara
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rajni Chibbar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Andrew Fleywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada; .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Krueger PD, Osum KC, Jenkins MK. CD4 + Memory T-Cell Formation during Type 1 Immune Responses. Cold Spring Harb Perspect Biol 2021; 13:a038141. [PMID: 33903156 PMCID: PMC8635001 DOI: 10.1101/cshperspect.a038141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Naive CD4+ T cells become memory cells after proliferating in response to their cognate major histocompatibility complex class II (MHCII)-bound peptide and passing through an effector cell stage. The process by which CD4+ memory T cells emerge from the effector cell pool, however, is less well understood than in the case of CD8+ T cells. During certain acute infections, naive CD4+ T cells proliferate and differentiate into various forms of type 1 (Th1) and follicular helper (Tfh) effector cells. We review the evidence that about 10% of the cells in each of these subsets survive to become memory cells that resemble their effector cell precursors. The roles that asymmetric cell division, the TCF-1 transcription factor, metabolic activity, reactive oxygen species, and the IL-7 receptor play in the effector to memory cell transition are discussed. We propose a speculative model in which the metabolic activity needed for rapid clonal expansion also generates toxic products that induce apoptosis in most effector cells. Memory cells then arise from the effector cells in each subset that are at the low end of the metabolic activity spectrum.
Collapse
Affiliation(s)
- Peter D Krueger
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Kevin C Osum
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Marc K Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
16
|
Abstract
Apoptosis is a process in which cells are genetically regulated to cause a series of changes in morphology and metabolic activity, which ultimately lead to cell death. Apoptosis plays a vital role in the entire life cycle of an organism. Too much or too little apoptosis can cause a variety of diseases. Therefore, efficient and convenient methods for detecting apoptosis are necessary for clinical treatment and drug development. Traditional methods for detecting apoptosis may cause damage to the body during sample collection, such as for flow cytometry analysis. So it is necessary to monitor apoptosis without invasion in vivo. Optical imaging technique provides a more sensitive and economical way for apoptosis visualization. A subset of engineered reporter genes based on fluorescent proteins or luciferases are currently developed to monitor the dynamic changes in apoptotic markers, such as activation of caspases and exposure of phosphatidylserine on the surface of dying cells. These reporters detect apoptosis when cells have not undergone significant morphological changes, providing conditions for early diagnosis of tumors. In addition, these reporters show considerable value in high-throughput screening of apoptosis-related drugs and evaluation of their efficacy in treating tumors. In this review, we will discuss the recent research progress in the optical imaging of apoptosis based on the genetically encoded reporter genes.
Collapse
|
17
|
Hughes LD, Wang Y, Meli AP, Rothlin CV, Ghosh S. Decoding Cell Death: From a Veritable Library of Babel to Vade Mecum? Annu Rev Immunol 2021; 39:791-817. [PMID: 33902311 DOI: 10.1146/annurev-immunol-102819-072601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a requisite feature of development and homeostasis but can also be indicative of infections, injuries, and pathologies. In concordance with these heterogeneous contexts, an array of disparate effector responses occur downstream of cell death and its clearance-spanning tissue morphogenesis, homeostatic turnover, host defense, active dampening of inflammation, and tissue repair. This raises a fundamental question of how a single contextually appropriate response ensues after an event of PCD. To explore how complex inputs may together tailor the specificity of the resulting effector response, here we consider (a) the varying contexts during which different cell death modalities are observed, (b) the nature of the information that can be passed on by cell corpses, and (c) the ways by which efferocyte populations synthesize signals from dying cells with those from the surrounding microenvironment.
Collapse
Affiliation(s)
- Lindsey D Hughes
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Yaqiu Wang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Alexandre P Meli
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , , .,Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA;
| | - Sourav Ghosh
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; .,Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
18
|
Rose DL, Reagin KL, Oliva KE, Tompkins SM, Klonowski KD. Enhanced generation of influenza-specific tissue resident memory CD8 T cells in NK-depleted mice. Sci Rep 2021; 11:8969. [PMID: 33903648 PMCID: PMC8076325 DOI: 10.1038/s41598-021-88268-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells are among the first effectors to directly contact influenza and influenza-infected cells and their activation affects not only their intrinsic functions, but also subsequent CD8+ T cell responses. We utilized a NK cell depletion model to interrogate the contribution of NK cells to the development of anti-influenza CD8+ T cell memory. NK cell ablation increased the number of influenza-specific memory CD8+ T cells in the respiratory tract and lung-draining lymph node. Interestingly, animals depleted of NK cells during primary influenza infection were protected as well as their NK-intact counterparts despite significantly fewer reactivated CD8+ T cells infiltrating the respiratory tract after lethal, heterosubtypic challenge. Instead, protection in NK-deficient animals seems to be conferred by rapid reactivation of an enlarged pool of lung tissue-resident (TRM) memory cells within two days post challenge. Further interrogation of how NK cell ablation enhances respiratory TRM indicated that TRM development is independent of global and NK cell derived IFN-γ. These data suggest that reduction in NK cell activation after vaccination with live, non-lethal influenza virus increases compartmentalized, broadly protective memory CD8+ T cell generation and decreases the risk of CD8+ T cell-mediated pathology following subsequent influenza infections.
Collapse
Affiliation(s)
- David L Rose
- Department of Shared Resources, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Katie L Reagin
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kimberly E Oliva
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
19
|
Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS, Yan WT, Wang Z, Shang L, Huang Y, Zhang Q, Xiong K. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front Cell Dev Biol 2021; 9:634690. [PMID: 33748119 PMCID: PMC7970050 DOI: 10.3389/fcell.2021.634690] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past few years, the field of regulated cell death continues to expand and novel mechanisms that orchestrate multiple regulated cell death pathways are being unveiled. Meanwhile, researchers are focused on targeting these regulated pathways which are closely associated with various diseases for diagnosis, treatment, and prognosis. However, the complexity of the mechanisms and the difficulties of distinguishing among various regulated types of cell death make it harder to carry out the work and delay its progression. Here, we provide a systematic guideline for the fundamental detection and distinction of the major regulated cell death pathways following morphological, biochemical, and functional perspectives. Moreover, a comprehensive evaluation of different assay methods is critically reviewed, helping researchers to make a reliable selection from among the cell death assays. Also, we highlight the recent events that have demonstrated some novel regulated cell death processes, including newly reported biomarkers (e.g., non-coding RNA, exosomes, and proteins) and detection techniques.
Collapse
Affiliation(s)
- Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhi-xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-han Lin
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jia-qi Shan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing-wei Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-xuan Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lv-shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
20
|
Khaw YM, Tierney A, Cunningham C, Soto-Díaz K, Kang E, Steelman AJ, Inoue M. Astrocytes lure CXCR2-expressing CD4 + T cells to gray matter via TAK1-mediated chemokine production in a mouse model of multiple sclerosis. Proc Natl Acad Sci U S A 2021; 118:e2017213118. [PMID: 33597297 PMCID: PMC7923593 DOI: 10.1073/pnas.2017213118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disease of the central nervous system driven by peripheral immune cell infiltration and glial activation. The pathological hallmark of MS is demyelination, and mounting evidence suggests neuronal damage in gray matter is a major contributor to disease irreversibility. While T cells are found in both gray and white matter of MS tissue, they are typically confined to the white matter of the most commonly used mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Here, we used a modified EAE mouse model (Type-B EAE) that displays severe neuronal damage to investigate the interplay between peripheral immune cells and glial cells in the event of neuronal damage. We show that CD4+ T cells migrate to the spinal cord gray matter, preferentially to ventral horns. Compared to CD4+ T cells in white matter, gray matter-infiltrated CD4+ T cells were mostly immobilized and interacted with neurons, which are behaviors associated with detrimental effects to normal neuronal function. T cell-specific deletion of CXCR2 significantly decreased CD4+ T cell infiltration into gray matter in Type-B EAE mice. Further, astrocyte-targeted deletion of TAK1 inhibited production of CXCR2 ligands such as CXCL1 in gray matter, successfully prevented T cell migration into spinal cord gray matter, and averted neuronal damage and motor dysfunction in Type-B EAE mice. This study identifies astrocyte chemokine production as a requisite for the invasion of CD4+T cell into the gray matter to induce neuronal damage.
Collapse
Affiliation(s)
- Yee Ming Khaw
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Abbey Tierney
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802
- School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Claire Cunningham
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802
- School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Katiria Soto-Díaz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Eunjoo Kang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Makoto Inoue
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802;
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
21
|
Peng Q, Weng K, Li S, Xu R, Wang Y, Wu Y. A Perspective of Epigenetic Regulation in Radiotherapy. Front Cell Dev Biol 2021; 9:624312. [PMID: 33681204 PMCID: PMC7930394 DOI: 10.3389/fcell.2021.624312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) has been employed as a tumoricidal modality for more than 100 years and on 470,000 patients each year in the United States. The ionizing radiation causes genetic changes and results in cell death. However, since the biological mechanism of radiation remains unclear, there is a pressing need to understand this mechanism to improve the killing effect on tumors and reduce the side effects on normal cells. DNA break and epigenetic remodeling can be induced by radiotherapy. Hence the modulation of histone modification enzymes may tune the radiosensitivity of cancer cells. For instance, histone deacetylase (HDAC) inhibitors sensitize irradiated cancer cells by amplifying the DNA damage signaling and inhibiting double-strand DNA break repair to influence the irradiated cells’ survival. However, the combination of epigenetic drugs and radiotherapy has only been evaluated in several ongoing clinical trials for limited cancer types, partly due to a lack of knowledge on the potential mechanisms on how radiation induces epigenetic regulation and chromatin remodeling. Here, we review recent advances of radiotherapy and radiotherapy-induced epigenetic remodeling and introduce related technologies for epigenetic monitoring. Particularly, we exploit the application of fluorescence resonance energy transfer (FRET) biosensors to visualize dynamic epigenetic regulations in single living cells and tissue upon radiotherapy and drug treatment. We aim to bridge FRET biosensor, epigenetics, and radiotherapy, providing a perspective of using FRET to assess epigenetics and provide guidance for radiotherapy to improve cancer treatment. In the end, we discuss the feasibility of a combination of epigenetic drugs and radiotherapy as new approaches for cancer therapeutics.
Collapse
Affiliation(s)
- Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States.,Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| | - Shitian Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Richard Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yongzhong Wu
- Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
22
|
Afifi MA. The Parasites Caught In-Action: Imaging at the Host-Parasite Interface. J Microsc Ultrastruct 2021; 9:1-6. [PMID: 33850705 PMCID: PMC8030542 DOI: 10.4103/jmau.jmau_1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/02/2020] [Accepted: 01/21/2020] [Indexed: 11/24/2022] Open
Abstract
For many decades, scientists were unable to expose the invisible existence of the parasites in their living hosts, except by scarification and then dissection of the animal model. This process just demonstrates a dead parasite in a dead host. Using this approach, very limited information can be obtained concerning the dynamics of infection and the pathways utilized by the parasite to survive within a hostile host's environment. Introduction of ultra-high-speed imaging techniques, with a time domain of barely few microseconds or even less, has revolutionized the "in vivo dissection" of the parasites. Such methods provide platforms for imaging host-parasite interactions at diverse scales, down to the molecular level. These have complementary advantages and relative assets in investigating host-parasite interactions. Therefore, better elucidation of such interaction may require the usage of more than one approach. Precise in vivo quantification, of the parasite load within the host, and better insight into the kinetics of infection are the two main advantages of the novel imaging procedures. However, imaging parasite-host interplay is still a challenging approach due to many constraints related to the parasite biology, the tissue environment within which the parasites exist, and the logistic technical limitations. This review was planned to assist better understanding of how much the new imaging techniques impacted the recent advances in parasite biology, especially the immunobiology of protozoan parasites.
Collapse
Affiliation(s)
- Mohammed A. Afifi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
23
|
Abstract
In the final stages of apoptosis, apoptotic cells can generate a variety of membrane-bound vesicles known as apoptotic extracellular vesicles (ApoEVs). Apoptotic bodies (ApoBDs), a major subset of ApoEVs, are formed through a process termed apoptotic cell disassembly characterised by a series of tightly regulated morphological steps including plasma membrane blebbing, apoptotic membrane protrusion formation and fragmentation into ApoBDs. To better characterise the properties of ApoBDs and elucidate their function, a number of methods including differential centrifugation, filtration and fluorescence-activated cell sorting were developed to isolate ApoBDs. Furthermore, it has become increasingly clear that ApoBD formation can contribute to various biological processes such as apoptotic cell clearance and intercellular communication. Together, recent literature demonstrates that apoptotic cell disassembly and thus, ApoBD formation, is an important process downstream of apoptotic cell death. In this chapter, we discuss the current understandings of the molecular mechanisms involved in regulating apoptotic cell disassembly, techniques for ApoBD isolation, and the functional roles of ApoBDs in physiological and pathological settings.
Collapse
|
24
|
Poorebrahim M, Melief J, Pico de Coaña Y, L Wickström S, Cid-Arregui A, Kiessling R. Counteracting CAR T cell dysfunction. Oncogene 2021; 40:421-435. [PMID: 33168929 PMCID: PMC7808935 DOI: 10.1038/s41388-020-01501-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
In spite of high rates of complete remission following chimeric antigen receptor (CAR) T cell therapy, the efficacy of this approach is limited by generation of dysfunctional CAR T cells in vivo, conceivably induced by immunosuppressive tumor microenvironment (TME) and excessive antigen exposure. Exhaustion and senescence are two critical dysfunctional states that impose a pivotal hurdle for successful CAR T cell therapies. Recently, modified CAR T cells with an "exhaustion-resistant" phenotype have shown superior antitumor functions and prolonged lifespan. In addition, several studies have indicated the feasibility of senescence delay in CAR T cells. Here, we review the latest reports regarding blockade of CAR T cell exhaustion and senescence with a particular focus on the exhaustion-inducing pathways. Subsequently, we describe what potential these latest insights offer for boosting the potency of adoptive cell transfer (ACT) therapies involving CAR T cells. Furthermore, we discuss how induction of costimulation, cytokine exposure, and TME modulation can impact on CAR T cell efficacy and persistence, while potential safety issues associated with reinvigorated CAR T cells will also be addressed.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. .,Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jeroen Melief
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yago Pico de Coaña
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stina L Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cid-Arregui
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Atkin-Smith GK, Miles MA, Tixeira R, Lay FT, Duan M, Hawkins CJ, Phan TK, Paone S, Mathivanan S, Hulett MD, Chen W, Poon IKH. Plexin B2 Is a Regulator of Monocyte Apoptotic Cell Disassembly. Cell Rep 2020; 29:1821-1831.e3. [PMID: 31722200 DOI: 10.1016/j.celrep.2019.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/10/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
Billions of cells undergo apoptosis daily and often fragment into small, membrane-bound extracellular vesicles termed apoptotic bodies (ApoBDs). We demonstrate that apoptotic monocytes undergo a highly coordinated disassembly process and form long, beaded protrusions (coined as beaded apoptopodia), which fragment to release ApoBDs. Here, we find that the protein plexin B2 (PlexB2), a transmembrane receptor that regulates axonal guidance in neurons, is enriched in the ApoBDs of THP1 monocytes and is a caspase 3/7 substrate. To determine whether PlexB2 is involved in the disassembly of apoptotic monocytes, we generate PlexB2-deficient THP1 monocytes and demonstrate that lack of PlexB2 impairs the formation of beaded apoptopodia and ApoBDs. Consequently, the loss of PlexB2 in apoptotic THP1 monocytes impairs their uptake by both professional and non-professional phagocytes. Altogether, these data identify PlexB2 as a positive regulator of apoptotic monocyte disassembly and demonstrate the importance of this process in apoptotic cell clearance.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Stephanie Paone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
26
|
Gupta SS, Sharp R, Hofferek C, Kuai L, Dorn GW, Wang J, Chen M. NIX-Mediated Mitophagy Promotes Effector Memory Formation in Antigen-Specific CD8 + T Cells. Cell Rep 2020; 29:1862-1877.e7. [PMID: 31722203 PMCID: PMC6886713 DOI: 10.1016/j.celrep.2019.10.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a critical role in the maintenance of immunological memory. However, the molecular mechanisms involved in autophagy-regulated effector memory formation in CD8+ T cells remain unclear. Here we show that deficiency in NIX-dependent mitophagy leads to metabolic defects in effector memory T cells. Deletion of NIX caused HIF1α accumulation and altered cellular metabolism from long-chain fatty acid to short/branched-chain fatty acid oxidation, thereby compromising ATP synthesis during effector memory formation. Preventing HIF1α accumulation restored long-chain fatty acid metabolism and effector memory formation in antigen-specific CD8+ T cells. Our study suggests that NIX-mediated mitophagy is critical for effector memory formation in T cells. Gupta et al. demonstrate that mitophagy mediated by NIX, a mitochondrial outer membrane protein, plays a critical role in CD8+ T cell effector memory formation by regulating mitochondrial superoxide-dependent HIF1α protein accumulation and fatty acid metabolism. These findings elucidate the molecular mechanisms regulating T cell effector memory formation against viruses.
Collapse
Affiliation(s)
- Shubhranshu S Gupta
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert Sharp
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colby Hofferek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Le Kuai
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Chitirala P, Chang HF, Martzloff P, Harenberg C, Ravichandran K, Abdulreda MH, Berggren PO, Krause E, Schirra C, Leinders-Zufall T, Benseler F, Brose N, Rettig J. Studying the biology of cytotoxic T lymphocytes in vivo with a fluorescent granzyme B-mTFP knock-in mouse. eLife 2020; 9:e58065. [PMID: 32696761 PMCID: PMC7375811 DOI: 10.7554/elife.58065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Understanding T cell function in vivo is of key importance for basic and translational immunology alike. To study T cells in vivo, we developed a new knock-in mouse line, which expresses a fusion protein of granzyme B, a key component of cytotoxic granules involved in T cell-mediated target cell-killing, and monomeric teal fluorescent protein from the endogenous Gzmb locus. Homozygous knock-ins, which are viable and fertile, have cytotoxic T lymphocytes with endogeneously fluorescent cytotoxic granules but wild-type-like killing capacity. Expression of the fluorescent fusion protein allows quantitative analyses of cytotoxic granule maturation, transport and fusion in vitro with super-resolution imaging techniques, and two-photon microscopy in living knock-ins enables the visualization of tissue rejection through individual target cell-killing events in vivo. Thus, the new mouse line is an ideal tool to study cytotoxic T lymphocyte biology and to optimize personalized immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Praneeth Chitirala
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland UniversityHomburgGermany
| | - Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland UniversityHomburgGermany
| | - Paloma Martzloff
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland UniversityHomburgGermany
| | - Christiane Harenberg
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental MedicineGöttingenGermany
| | - Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland UniversityHomburgGermany
| | - Midhat H Abdulreda
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of MedicineMiamiUnited States
- Department of Surgery, University of Miami Miller School of MedicineMiamiUnited States
- Department of Microbiology and Immunology, University of Miami Miller School of MedicineMiamiUnited States
- Department of Ophthalmology, University of Miami Miller School of MedicineMiamiUnited States
| | - Per-Olof Berggren
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of MedicineMiamiUnited States
- Department of Surgery, University of Miami Miller School of MedicineMiamiUnited States
- Diabetes Research Institute FederationHollywoodUnited States
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland UniversityHomburgGermany
| | - Claudia Schirra
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland UniversityHomburgGermany
| | - Trese Leinders-Zufall
- Sensory and Neuroendocrine Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland UniversityHomburgGermany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental MedicineGöttingenGermany
| | - Nils Brose
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental MedicineGöttingenGermany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland UniversityHomburgGermany
| |
Collapse
|
28
|
Jiang L, Poon IKH. Methods for monitoring the progression of cell death, cell disassembly and cell clearance. Apoptosis 2020; 24:208-220. [PMID: 30684146 DOI: 10.1007/s10495-018-01511-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell death through apoptosis, necrosis, necroptosis and pyroptosis, as well as the clearance of dead cells are crucial biological processes in the human body. Likewise, disassembly of dying cells during apoptosis to generate cell fragments known as apoptotic bodies may also play important roles in regulating cell clearance and intercellular communication. Recent advances in the field have led to the development of new experimental systems to identify cells at different stages of cell death, measure the levels of apoptotic cell disassembly, and monitor the cell clearance process using a range of in vitro, ex vivo and in vivo models. In this article, we will provide a comprehensive review of the methods for monitoring the progression of cell death, cell disassembly and cell clearance.
Collapse
Affiliation(s)
- Lanzhou Jiang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
29
|
Cazaux M, Grandjean CL, Lemaître F, Garcia Z, Beck RJ, Milo I, Postat J, Beltman JB, Cheadle EJ, Bousso P. Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity. J Exp Med 2019; 216:1038-1049. [PMID: 30936262 PMCID: PMC6504219 DOI: 10.1084/jem.20182375] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
Cazaux et al. use intravital imaging to dissect anti-CD19 CAR T cell activity. This study uncovers both anatomical and functional diversity in the outcome of anti-CD19 CAR T cell interactions with tumor cells impacting engraftment, killing dynamics, and tumor immunoediting. CAR T cells represent a potentially curative strategy for B cell malignancies. However, the outcome and dynamics of CAR T cell interactions in distinct anatomical sites are poorly understood. Using intravital imaging, we tracked interactions established by anti-CD19 CAR T cells in B cell lymphoma–bearing mice. Circulating targets trapped CAR T cells in the lungs, reducing their access to lymphoid organs. In the bone marrow, tumor apoptosis was largely due to CAR T cells that engaged, killed, and detached from their targets within 25 min. Notably, not all CAR T cell contacts elicited calcium signaling or killing while interacting with tumors, uncovering extensive functional heterogeneity. Mathematical modeling revealed that direct killing was sufficient for tumor regression. Finally, antigen-loss variants emerged in the bone marrow, but not in lymph nodes, where CAR T cell cytotoxic activity was reduced. Our results identify a previously unappreciated level of diversity in the outcomes of CAR T cell interactions in vivo, with important clinical implications.
Collapse
Affiliation(s)
- Marine Cazaux
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Capucine L Grandjean
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France
| | - Richard J Beck
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Idan Milo
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France
| | - Jérémy Postat
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleanor J Cheadle
- Targeted Therapy Group, Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France
| |
Collapse
|
30
|
Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy. Viruses 2018; 10:v10060337. [PMID: 29925766 PMCID: PMC6024644 DOI: 10.3390/v10060337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Viral pathogens have adapted to the host organism to exploit the cellular machinery for virus replication and to modulate the host cells for efficient systemic dissemination and immune evasion. Much of our knowledge of the effects that virus infections have on cells originates from in vitro imaging studies using experimental culture systems consisting of cell lines and primary cells. Recently, intravital microscopy using multi-photon excitation of fluorophores has been applied to observe virus dissemination and pathogenesis in real-time under physiological conditions in living organisms. Critical steps during viral infection and pathogenesis could be studied by direct visualization of fluorescent virus particles, virus-infected cells, and the immune response to viral infection. In this review, I summarize the latest research on in vivo studies of viral infections using multi-photon intravital microscopy (MP-IVM). Initially, the underlying principle of multi-photon microscopy is introduced and experimental challenges during microsurgical animal preparation and fluorescent labeling strategies for intravital imaging are discussed. I will further highlight recent studies that combine MP-IVM with optogenetic tools and transcriptional analysis as a powerful approach to extend the significance of in vivo imaging studies of viral pathogens.
Collapse
|
31
|
Horton BL, Williams JB, Cabanov A, Spranger S, Gajewski TF. Intratumoral CD8 + T-cell Apoptosis Is a Major Component of T-cell Dysfunction and Impedes Antitumor Immunity. Cancer Immunol Res 2018; 6:14-24. [PMID: 29097422 PMCID: PMC5754226 DOI: 10.1158/2326-6066.cir-17-0249] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/05/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022]
Abstract
Subsets of human tumors are infiltrated with tumor antigen-specific CD8+ T cells [tumor-infiltrating lymphocytes (TILs)] despite tumor progression. These TILs are thought to be inactivated by the immunosuppressive tumor microenvironment, through the engagement of inhibitory receptors such as CTLA-4 and PD-1. However, antigen-specific CD8+ TILs are not functionally inert but are undergoing activation in situ Here, we show that antigen-specific CD8+ TILs are actively proliferating, yet also undergo high rates of apoptosis, leading to a vicious cycle of activation and death that limits immune efficacy. Preventing CD8+ TIL apoptosis by Bcl-xL overexpression enabled accumulation and improved tumor control. Effective combination immunotherapy with an agonist 4-1BB mAb plus either CTLA-4 or PD-L1 neutralization led to a marked accumulation of specific CD8+ TILs through decreased apoptosis rather than increased T-cell entry or proliferation. Our data suggest that antigen-driven apoptosis of CD8+ TILs is a barrier to effective spontaneous antitumor immunity and should be considered as a critical factor in the development of cancer immunotherapies. Cancer Immunol Res; 6(1); 14-24. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Apoptosis/genetics
- Apoptosis/immunology
- Biomarkers
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- DNA Damage
- Disease Models, Animal
- Disease Progression
- Gene Expression Profiling
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Melanoma, Experimental
- Mice
- Mice, Knockout
- Molecular Targeted Therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
Collapse
Affiliation(s)
- Brendan L Horton
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Jason B Williams
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Alexandra Cabanov
- The Committee on Immunology, University of Chicago, Chicago, Illinois
| | - Stefani Spranger
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Thomas F Gajewski
- Department of Pathology, University of Chicago, Chicago, Illinois.
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| |
Collapse
|
32
|
|
33
|
Jaigirdar SA, Benson RA, Elmesmari A, Kurowska-Stolarska MS, McInnes IB, Garside P, MacLeod MKL. Sphingosine-1-Phosphate Promotes the Persistence of Activated CD4 T Cells in Inflamed Sites. Front Immunol 2017; 8:1627. [PMID: 29225602 PMCID: PMC5705559 DOI: 10.3389/fimmu.2017.01627] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022] Open
Abstract
Inflammation can be protective or pathogenic depending on context and timeframe. Acute inflammation, including the accumulation of CD4 T cells, accompanies protective immune responses to pathogens, but the presence of activated CD4 T cells at sites of inflammation is associated with chronic inflammatory disease. While significant progress has been made in understanding the migration of CD4 T cells into inflamed sites, the signals that lead to their persistence are poorly characterized. Using a murine ear model of acute inflammation and intravital two-photon imaging, we have dissected the signals that mediate CD4 T cell persistence. We report the unexpected finding that the bioactive lipid, sphingosine-1-phosphate (S1P), is both necessary and sufficient for the persistence of activated CD4 T cells at peripheral tissues in acute inflammation. S1P mediated the enhanced motility of CD4 T cells at inflamed tissues but did not affect their migration to the downstream draining lymph node. We found that sphingosine kinase-1, which regulates S1P production is increased at inflamed sites in mice and in patients with the chronic inflammatory disease, rheumatoid arthritis. Together, these data suggest that S1P, or its regulators, may be key targets to promote or disrupt accumulation of CD4 T cells at inflamed tissues.
Collapse
Affiliation(s)
- Shafqat Ahrar Jaigirdar
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Robert A Benson
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Aziza Elmesmari
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Iain B McInnes
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Megan K L MacLeod
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
34
|
Tran HT, Fransen M, Dimitrakopoulou D, Van Imschoot G, Willemarck N, Vleminckx K. Caspase-9 has a nonapoptotic function in Xenopus embryonic primitive blood formation. J Cell Sci 2017; 130:2371-2381. [PMID: 28576973 DOI: 10.1242/jcs.186411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/30/2017] [Indexed: 12/29/2022] Open
Abstract
Caspases constitute a family of cysteine proteases centrally involved in programmed cell death, which is an integral part of normal embryonic and fetal development. However, it has become clear that specific caspases also have functions independent of cell death. In order to identify novel apoptotic and nonapoptotic developmental caspase functions, we designed and transgenically integrated novel fluorescent caspase reporter constructs in developing Xenopus embryos and tadpoles. This model organism has an external development, allowing direct and continuous monitoring. These studies uncovered a nonapoptotic role for the initiator caspase-9 in primitive blood formation. Functional experiments further corroborated that caspase-9, but possibly not the executioners caspase-3 and caspase-7, are required for primitive erythropoiesis in the early embryo. These data reveal a novel nonapoptotic function for the initiator caspase-9 and, for the first time, implicate nonapoptotic caspase activity in primitive blood formation.
Collapse
Affiliation(s)
- Hong Thi Tran
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Mathias Fransen
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | | | - Griet Van Imschoot
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,VIB-UGent Center for Inflammation Research, B-9052 Ghent, Belgium
| | - Nicolas Willemarck
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
35
|
Lodygin D, Flügel A. Intravital real-time analysis of T-cell activation in health and disease. Cell Calcium 2017; 64:118-129. [DOI: 10.1016/j.ceca.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 01/27/2023]
|
36
|
Ahmed KA, Xiang J. mTORC1 regulates mannose-6-phosphate receptor transport and T-cell vulnerability to regulatory T cells by controlling kinesin KIF13A. Cell Discov 2017; 3:17011. [PMID: 28496990 PMCID: PMC5404257 DOI: 10.1038/celldisc.2017.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Mannose-6-phosphate receptor (M6PR) that facilitates cellular uptake of M6P-bearing proteins, including serine-protease granzyme-B (Gzm-B) has an important role in T-cell activation, migration and contraction. However, molecular mechanisms controlling M6PR expression in T cells remain poorly understood. Here, we show that M6PR expression on T cells is distinctively controlled by two common γ-chain cytokines interleukin-2 (IL-2) and IL-7, and the differential M6PR expression is not caused by an altered synthesis of M6PR protein, but is a result of distinct regulation of kinesin-3 motor-protein KIF13A that transport M6PR onto cell surfaces. Using signaling pathway-specific inhibitors, we determine that IL-2 and IL-7 distinctly regulate KIF13A and β1-adaptin and cell-surface M6PR by controlling a kinase mammalian target of rapamycin complex-1 (mTORC1). Inflammatory cytokine IL-2 and prosurvival cytokine IL-7 induce strong and weak activation of mTORC1, leading to up- and downregulation of motor-protein KIF13A and KIF13A-motorized M6PR on T cells, and formation of IL-2 and IL-7 effectors with M6PRhigh and M6PRlow cell-surface expression, respectively. Inhibition of mTORC1 by rapamycin reduces T-cell expression of KIF13A and cell-surface M6PR, and increases T-cell survival in Listeria monocytogenes-infected mice. Using regulatory T (Treg)-cell-enriched mouse tumor model, we determine that M6PRhigh IL-2 effectors but not M6PRlow IL-7 effectors adoptively transferred into tumors are vulnerable to Treg Gzm-B-mediated cell apoptosis. Inhibition of mTORC1 or small interfering RNA-mediated knockdown of KIF13A or M6PR renders IL-2 effectors refractory to Treg Gzm-B lethal hit. Overall, our data offer novel mechanistic insights into T-cell M6PR regulation, and Treg-resistant/Treg-susceptible phenomenon. Furthermore, regulation of T-cell fate vis-à-vis Treg suppression via the mTORC1-KIF13A-M6PR axis provides a proof of concept for therapeutic strategies to target cancer, infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
37
|
Atkin-Smith GK, Paone S, Zanker DJ, Duan M, Phan TK, Chen W, Hulett MD, Poon IKH. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Sci Rep 2017; 7:39846. [PMID: 28057919 PMCID: PMC5216387 DOI: 10.1038/srep39846] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
Apoptotic bodies (ApoBDs) are membrane-bound extracellular vesicles that can mediate intercellular communication in physiological and pathological settings. By combining recently developed analytical strategies with fluorescence-activated cell sorting (FACS), we have developed a method that enables the isolation of ApoBDs from cultured cells to 99% purity. In addition, this approach also enables the identification and isolation of cell type-specific ApoBDs from tissue, bodily fluid and blood-derived samples.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Stephanie Paone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Damien J Zanker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Than K Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
38
|
Abstract
T cells can become activated in lymph nodes following a diverse set of interactions with antigen-presenting cells. These cellular contacts range from short and dynamic to stable and long-lasting interactions, termed kinapses and synapses, respectively. Here, we describe a methodology to generate naïve T cells expressing a fluorescent probe of interest through the generation of bone marrow chimeras and to image T cell dynamics using intravital two-photon microscopy. In these settings, the formation of kinapses and synapses can be triggered by the administration of low and high affinity peptides, respectively. Finally, 3D cell tracking can help classify distinct T cell behaviors. These approaches should offer new possibilities for dissecting the process of T cell activation in vivo.
Collapse
Affiliation(s)
- Hélène D Moreau
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015, Paris, France
- INSERM U1223, 75015, Paris, France
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Philippe Bousso
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015, Paris, France.
- INSERM U1223, 75015, Paris, France.
| |
Collapse
|
39
|
Okada T, Takahashi S, Ishida A, Ishigame H. In vivo multiphoton imaging of immune cell dynamics. Pflugers Arch 2016; 468:1793-1801. [PMID: 27659161 PMCID: PMC5138265 DOI: 10.1007/s00424-016-1882-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
Abstract
Multiphoton imaging has been utilized to analyze in vivo immune cell dynamics over the last 15 years. Particularly, it has deepened the understanding of how immune responses are organized by immune cell migration and interactions. In this review, we first describe the following technical advances in recent imaging studies that contributed to the new findings on the regulation of immune responses and inflammation. Improved multicolor imaging of immune cell behavior has revealed that their interactions are spatiotemporally coordinated to achieve efficient and long-term immunity. The use of photoactivatable and photoconvertible fluorescent proteins has increased duration and volume of cell tracking, even enabling the analysis of inter-organ migration of immune cells. In addition, visualization of immune cell activation using biosensors for intracellular calcium concentration and signaling molecule activities has started to give further mechanistic insights. Then, we also introduce recent imaging analyses of interactions between immune cells and non-immune cells including endothelial, fibroblastic, epithelial, and nerve cells. It is argued that future imaging studies that apply updated technical advances to analyze interactions between immune cells and non-immune cells will be important for thorough physiological understanding of the immune system.
Collapse
Affiliation(s)
- Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Sonoko Takahashi
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Azusa Ishida
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Harumichi Ishigame
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
40
|
Atkin-Smith GK, Poon IKH. Disassembly of the Dying: Mechanisms and Functions. Trends Cell Biol 2016; 27:151-162. [PMID: 27647018 DOI: 10.1016/j.tcb.2016.08.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/10/2016] [Accepted: 08/25/2016] [Indexed: 01/29/2023]
Abstract
The disassembly of an apoptotic cell into subcellular fragments, termed apoptotic bodies (ApoBDs), is a hallmark of apoptosis. Although the generation of ApoBDs is generally understood as being stochastic, it is becoming increasingly clear that ApoBD formation is a highly regulated process involving distinct morphological steps and molecular factors. Functionally, ApoBDs could facilitate the efficient clearance of apoptotic material by surrounding phagocytes as well as mediate the transfer of biomolecules including microRNAs and proteins between cells to aid in intercellular communications. Therefore, the formation of ApoBDs is an important process downstream from apoptotic cell death. We discuss here the mechanisms and functions of apoptotic cell disassembly.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
41
|
Abstract
The phagocytic clearance of dying cells in a tissue is a highly orchestrated series of intercellular events coordinated by a complex signaling network. Recent data from genetic, biochemical, and live-imaging approaches have greatly enhanced our understanding of the dynamics of cell clearance and how the process is orchestrated at the cellular and tissue levels. We discuss how networks regulating apoptotic cell clearance are integrated to enable a rapid, efficient, and high-capacity clearance system within tissues.
Collapse
Affiliation(s)
- Michael R Elliott
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA; Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
42
|
Qian L, Zhang CW, Mao Y, Li L, Gao N, Lim KL, Xu QH, Yao SQ. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models. Sci Rep 2016; 6:26385. [PMID: 27210613 PMCID: PMC4876444 DOI: 10.1038/srep26385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/29/2016] [Indexed: 01/23/2023] Open
Abstract
Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes.
Collapse
Affiliation(s)
- Linghui Qian
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Cheng-Wu Zhang
- Key Laboratory of Flexible Electronics &Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, P. R. China.,National Neuroscience Institute, 308433, Singapore
| | - Yanli Mao
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Lin Li
- Key Laboratory of Flexible Electronics &Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Nengyue Gao
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | | | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 117543, Singapore
| |
Collapse
|
43
|
Jain R, Tikoo S, Weninger W. Recent advances in microscopic techniques for visualizing leukocytes in vivo. F1000Res 2016; 5:F1000 Faculty Rev-915. [PMID: 27239292 PMCID: PMC4874443 DOI: 10.12688/f1000research.8127.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo.
Collapse
Affiliation(s)
- Rohit Jain
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Shweta Tikoo
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
44
|
Devarajan P, Bautista B, Vong AM, McKinstry KK, Strutt TM, Swain SL. New Insights into the Generation of CD4 Memory May Shape Future Vaccine Strategies for Influenza. Front Immunol 2016; 7:136. [PMID: 27148257 PMCID: PMC4827017 DOI: 10.3389/fimmu.2016.00136] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/28/2016] [Indexed: 12/18/2022] Open
Abstract
Influenza viral evolution presents a formidable challenge to vaccination due to the virus' ability to rapidly mutate to evade immune responses. Live influenza infections generate large and diverse CD4 effector T cell responses that yield highly protective, long-lasting CD4 T cell memory that can target conserved viral epitopes. We review advances in our understanding of mechanisms involved in generating CD4 T cell responses against the influenza A virus (IAV), focusing on specialized follicular helper (TFH) and CD4 cytotoxic (ThCTL) effector subsets and on CD4 T cell memory. We also discuss two recent findings in context of enhancing vaccine responses. First, helper T cells require priming with APC secreting high levels of IL-6. Second, the transition of IAV-generated effectors to memory depends on IL-2, costimulation and antigen signals, just before effectors reach peak numbers, defined as the "memory checkpoint." The need for these signals during the checkpoint could explain why many current influenza vaccines are poorly effective and elicit poor cellular immunity. We suggest that CD4 memory generation can be enhanced by re-vaccinating at this time. Our best hope lies in a universal vaccine that will not need to be formulated yearly against seasonal antigenically novel influenza strains and will also be protective against a pandemic strain. We suggest a vaccine approach that elicits a powerful T cell response, by initially inducing high levels of APC activation and later providing antigen at the memory checkpoint, may take us a step closer to such a universal influenza vaccine.
Collapse
Affiliation(s)
| | - Bianca Bautista
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | - Karl Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | - Tara M Strutt
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| |
Collapse
|
45
|
Abstract
Genetically-encoded fluorescence resonance energy transfer (FRET) reporters are powerful tools to analyze cell signaling and function at single cell resolution in standard two-dimensional cell cultures, but these reporters rarely have been applied to three-dimensional environments. FRET interactions between donor and acceptor molecules typically are determined by changes in relative fluorescence intensities, but wavelength-dependent differences in absorption of light complicate this analysis method in three-dimensional settings. Here we report fluorescence lifetime imaging microscopy (FLIM) with phasor analysis, a method that displays fluorescence lifetimes on a pixel-wise basis in real time, to quantify apoptosis in breast cancer cells stably expressing a genetically encoded FRET reporter. This microscopic imaging technology allowed us to identify treatment-induced apoptosis in single breast cancer cells in environments ranging from two-dimensional cell culture, spheroids with cancer and bone marrow stromal cells, and living mice with orthotopic human breast cancer xenografts. Using this imaging strategy, we showed that combined metabolic therapy targeting glycolysis and glutamine pathways significantly reduced overall breast cancer metabolism and induced apoptosis. We also determined that distinct subpopulations of bone marrow stromal cells control resistance of breast cancer cells to chemotherapy, suggesting heterogeneity of treatment responses of malignant cells in different bone marrow niches. Overall, this study establishes FLIM with phasor analysis as an imaging tool for apoptosis in cell-based assays and living mice, enabling real-time, cellular-level assessment of treatment efficacy and heterogeneity.
Collapse
Affiliation(s)
| | | | | | - Gary D. Luker
- Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
46
|
The Role of Aggregates of Therapeutic Protein Products in Immunogenicity: An Evaluation by Mathematical Modeling. J Immunol Res 2015; 2015:401956. [PMID: 26682236 PMCID: PMC4670651 DOI: 10.1155/2015/401956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/07/2015] [Indexed: 01/12/2023] Open
Abstract
Therapeutic protein products (TPP) have been widely used to treat a variety of human diseases, including cancer, hemophilia, and autoimmune diseases. However, TPP can induce unwanted immune responses that can impact both drug efficacy and patient safety. The presence of aggregates is of particular concern as they have been implicated in inducing both T cell-independent and T cell-dependent immune responses. We used mathematical modeling to evaluate several mechanisms through which aggregates of TPP could contribute to the development of immunogenicity. Modeling interactions between aggregates and B cell receptors demonstrated that aggregates are unlikely to induce T cell-independent immune responses by cross-linking B cell receptors because the amount of signal transducing complex that can form under physiologically relevant conditions is limited. We systematically evaluate the role of aggregates in inducing T cell-dependent immune responses using a recently developed multiscale mechanistic mathematical model. Our analysis indicates that aggregates could contribute to T cell-dependent immune response by inducing high affinity epitopes which may not be present in the nonaggregated TPP and/or by enhancing danger signals to break tolerance. In summary, our computational analysis is suggestive of novel insights into the mechanisms underlying aggregate-induced immunogenicity, which could be used to develop mitigation strategies.
Collapse
|
47
|
Lorenzi T, Chisholm RH, Melensi M, Lorz A, Delitala M. Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion. Immunology 2015; 146:271-80. [PMID: 26119966 DOI: 10.1111/imm.12500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 02/01/2023] Open
Abstract
T cells are key players in immune action against the invasion of target cells expressing non-self antigens. During an immune response, antigen-specific T cells dynamically sculpt the antigenic distribution of target cells, and target cells concurrently shape the host's repertoire of antigen-specific T cells. The succession of these reciprocal selective sweeps can result in 'chase-and-escape' dynamics and lead to immune evasion. It has been proposed that immune evasion can be countered by immunotherapy strategies aimed at regulating the three phases of the immune response orchestrated by antigen-specific T cells: expansion, contraction and memory. Here, we test this hypothesis with a mathematical model that considers the immune response as a selection contest between T cells and target cells. The outcomes of our model suggest that shortening the duration of the contraction phase and stabilizing as many T cells as possible inside the long-lived memory reservoir, using dual immunotherapies based on the cytokines interleukin-7 and/or interleukin-15 in combination with molecular factors that can keep the immunomodulatory action of these interleukins under control, should be an important focus of future immunotherapy research.
Collapse
Affiliation(s)
- Tommaso Lorenzi
- Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan Cedex, France
| | - Rebecca H Chisholm
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Matteo Melensi
- Department of Health Sciences, A. Avogadro Università del Piemonte Orientale, Novara, Italy
| | - Alexander Lorz
- MAMBA Team, INRIA-Paris-Rocquencourt, Le Chesnay Cedex, France.,Laboratoire Jacques-Louis Lions, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Paris, France.,Laboratoire Jacques-Louis Lions, CNRS, UMR 7598, Paris, France
| | - Marcello Delitala
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| |
Collapse
|
48
|
Hoekstra ME, Dijkgraaf FE, Schumacher TN, Rohr JC. Assessing T lymphocyte function and differentiation by genetically encoded reporter systems. Trends Immunol 2015; 36:392-400. [DOI: 10.1016/j.it.2015.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
|
49
|
Durlanik S, Thiel A. Requirement of immune system heterogeneity for protective immunity. Vaccine 2015; 33:5308-12. [PMID: 26073012 DOI: 10.1016/j.vaccine.2015.05.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/24/2023]
Abstract
Although our knowledge on the immune system and immunological memory has expanded enormously during the last decades, the development of strategies to induce robust protective memory against infections and tumors remains challenging. Intense efforts and immense resources have been put into the development of vaccines. However, effective tools to assess protective immunity, beyond neutralizing antibody titers and cytotoxic T cell activity, are still missing. Previous trials have primarily focused on individual cell subsets to induce and maintain protection while current research emphasizes the importance of functional heterogeneity and necessity of efficient communication within the immunological network. In this review, established knowledge as well as current perspectives on protective immunological memory will be discussed comprehensively.
Collapse
Affiliation(s)
- Sibel Durlanik
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, CVK, Föhrer Str. 15, Berlin 13353, Germany.
| | - Andreas Thiel
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, CVK, Föhrer Str. 15, Berlin 13353, Germany
| |
Collapse
|
50
|
Ahmed KA, Wang L, Griebel P, Mousseau DD, Xiang J. Differential expression of mannose-6-phosphate receptor regulates T cell contraction. J Leukoc Biol 2015; 98:313-8. [PMID: 25990242 DOI: 10.1189/jlb.2hi0215-049rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/09/2015] [Indexed: 11/24/2022] Open
Abstract
CD8(+) T cells provide protection against pathogens and cancer. After encountering a pathogenic antigen, CD8(+) T cells undergo a triphasic program of rapid proliferation, contraction, and memory formation. Most (∼90-95%) CD8(+) T cells die after vigorous proliferation in the T cell contraction phase, yet the mechanism that triggers apoptotic T cell death remains elusive. This study tested the hypothesis that differential cell-surface expression of M6PR, a multifunctional receptor that regulates lysozyme biogenesis, but also uptakes apoptosis-inducing serine-protease Gzm-B, critically determines life vs. death decisions in T cells. We demonstrate that M6PR-expression on CD8(+) T cell surfaces is dynamically regulated during LmOVA bacterial infection. Notably, time-lapse, confocal microscopy and flow cytometry confirms that M6PR(low) effectors, but not M6PR(high) effectors, escape Gzm-B lethal-hit derived from CD4(+)25(+) Treg cells. Adoptive cotransfer of M6PR(low) effectors and M6PR(high) effectors sorted from LmOVA-infected, congenic mice at the peak of CD8(+) T cell response, reveals that M6PR(low) effectors with the CD8(+) T cell memory precursor phenotype preferentially survive the CD8(+) T cell contraction and differentiate into functional, long-lasting memory CD8(+) T cells. Taken together, our data provide the first evidence, to our knowledge, that selective M6PR down-regulation has a critical role in CD8(+) T cell survival, and our findings have implications for efficient vaccine design and immunotherapy.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- *Cancer Cluster, Saskatchewan Cancer Agency, Department of Oncology, Vaccine and Infectious Disease Organization - International Vaccine Centre, and Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lu Wang
- *Cancer Cluster, Saskatchewan Cancer Agency, Department of Oncology, Vaccine and Infectious Disease Organization - International Vaccine Centre, and Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Philip Griebel
- *Cancer Cluster, Saskatchewan Cancer Agency, Department of Oncology, Vaccine and Infectious Disease Organization - International Vaccine Centre, and Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darrell D Mousseau
- *Cancer Cluster, Saskatchewan Cancer Agency, Department of Oncology, Vaccine and Infectious Disease Organization - International Vaccine Centre, and Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- *Cancer Cluster, Saskatchewan Cancer Agency, Department of Oncology, Vaccine and Infectious Disease Organization - International Vaccine Centre, and Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|