1
|
Rachad EY, Deimel SH, Epple L, Gadgil YV, Jürgensen AM, Springer M, Lin CH, Nawrot MP, Lin S, Fiala A. Functional dissection of a neuronal brain circuit mediating higher-order associative learning. Cell Rep 2025; 44:115593. [PMID: 40249705 DOI: 10.1016/j.celrep.2025.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/28/2025] [Accepted: 03/30/2025] [Indexed: 04/20/2025] Open
Abstract
A central feature characterizing the neural architecture of many species' brains is their capacity to form associative chains through learning. In elementary forms of associative learning, stimuli coinciding with reward or punishment become attractive or repulsive. Notably, stimuli previously learned as attractive or repulsive can themselves serve as reinforcers, establishing a cascading effect whereby they become associated with additional stimuli. When this iterative process is perpetuated, it results in higher-order associations. Here, we use odor conditioning in Drosophila and computational modeling to dissect the architecture of neuronal networks underlying higher-order associative learning. We show that the responsible circuit, situated in the mushroom bodies of the brain, is characterized by parallel processing of odor information and by recurrent excitatory and inhibitory feedback loops that empower odors to gain control over the dopaminergic valence-signaling system. Our findings establish a paradigmatic framework of a neuronal circuit diagram enabling the acquisition of associative chains.
Collapse
Affiliation(s)
- El Yazid Rachad
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Lisa Epple
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Yogesh Vasant Gadgil
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Anna-Maria Jürgensen
- Computational Systems Neuroscience, University of Cologne, 50674 Cologne, Germany
| | - Magdalena Springer
- Computational Systems Neuroscience, University of Cologne, 50674 Cologne, Germany
| | - Chen-Han Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, University of Cologne, 50674 Cologne, Germany
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - André Fiala
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Pech U, Janssens J, Schoovaerts N, Kuenen S, Calatayud Aristoy C, Gallego SF, Makhzami S, Hulselmans GJ, Poovathingal S, Davie K, Bademosi AT, Swerts J, Vilain S, Aerts S, Verstreken P. Synaptic deregulation of cholinergic projection neurons causes olfactory dysfunction across five fly Parkinsonism models. eLife 2025; 13:RP98348. [PMID: 40178224 PMCID: PMC11968104 DOI: 10.7554/elife.98348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson's disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.
Collapse
Affiliation(s)
- Ulrike Pech
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Jasper Janssens
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Carles Calatayud Aristoy
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Samira Makhzami
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Gert J Hulselmans
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Suresh Poovathingal
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
- VIB-KU Leuven Center for Brain and Disease Research Technologies, Single Cell, Microfluidics and Bioinformatics Expertise UnitsLeuvenBelgium
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
- VIB-KU Leuven Center for Brain and Disease Research Technologies, Single Cell, Microfluidics and Bioinformatics Expertise UnitsLeuvenBelgium
| | - Adekunle T Bademosi
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Sven Vilain
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| |
Collapse
|
3
|
Deal SL, Bei D, Gibson SB, Delgado-Seo H, Fujita Y, Wilwayco K, Seto ES, Yamamoto S. RNAi-based screen for pigmentation in Drosophila melanogaster reveals regulators of brain dopamine and sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.20.549932. [PMID: 40236063 PMCID: PMC11996387 DOI: 10.1101/2023.07.20.549932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The dopaminergic system has been extensively studied for its role in behavior in animals as well as human neuropsychiatric and neurological diseases. However, we still know little about how dopamine levels are tightly regulated in vivo . To identify novel regulators of dopamine, we utilized Drosophila melanogaster cuticle pigmentation as a readout, where dopamine is a precursor to melanin. We measured dopamine from genes known to be critical for cuticle pigmentation and performed an RNAi-based screen to identify new regulators of pigmentation. We found 153 potential pigmentation genes, which were enriched for conserved homologs and disease- associated genes as well as developmental signaling pathways and mitochondria-associated proteins. From 35 prioritized candidates, we found 10 caused significant reduction in head dopamine levels and one caused an increase. Two genes, clueless and mask (multiple ankyrin repeats single KH domain), upon knockdown, reduced dopamine levels in the brain. Further examination suggests that Mask regulates the transcription of the rate-limiting dopamine synthesis enzyme, tyrosine hydroxylase , and its knockdown causes dopamine-dependent sleep phenotypes. In summary, by studying genes that affect cuticle pigmentation, a phenotype seemingly unrelated to the nervous system, we were able to identify several genes that affect dopamine metabolism as well as a novel regulator of behavior.
Collapse
|
4
|
Singh DND, Roberts ARE, Wang X, Li G, Quesada Moraga E, Alliband D, Ballou E, Tsai HJ, Hidalgo A. Toll-1-dependent immune evasion induced by fungal infection leads to cell loss in the Drosophila brain. PLoS Biol 2025; 23:e3003020. [PMID: 39946503 PMCID: PMC11825051 DOI: 10.1371/journal.pbio.3003020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
Fungi can intervene in hosts' brain function. In humans, they can drive neuroinflammation, neurodegenerative diseases and psychiatric disorders. However, how fungi alter the host brain is unknown. The mechanism underlying innate immunity to fungi is well-known and universally conserved downstream of shared Toll/TLR receptors, which via the adaptor MyD88 and the transcription factor Dif/NFκB, induce the expression of antimicrobial peptides (AMPs). However, in the brain, Toll-1 could also drive an alternative pathway via Sarm, which causes cell death instead. Sarm is the universal inhibitor of MyD88 and could drive immune evasion. Here, we show that exposure to the fungus Beauveria bassiana reduced fly life span, impaired locomotion and caused neurodegeneration. Beauveria bassiana entered the Drosophila brain and induced the up-regulation of AMPs, and the Toll adaptors wek and sarm, within the brain. RNAi knockdown of Toll-1, wek or sarm concomitantly with infection prevented B. bassiana-induced cell loss. By contrast, over-expression of wek or sarm was sufficient to cause neuronal loss in the absence of infection. Thus, B. bassiana caused cell loss in the host brain via Toll-1/Wek/Sarm signalling driving immune evasion. A similar activation of Sarm downstream of TLRs upon fungal infections could underlie psychiatric and neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Deepanshu N. D. Singh
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Abigail R. E. Roberts
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaocui Wang
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Guiyi Li
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - David Alliband
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Ballou
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Hung-Ji Tsai
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alicia Hidalgo
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Sun J, Rojo-Cortes F, Ulian-Benitez S, Forero MG, Li G, Singh DND, Wang X, Cachero S, Moreira M, Kavanagh D, Jefferis GSXE, Croset V, Hidalgo A. A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit. eLife 2024; 13:RP102222. [PMID: 39704728 DOI: 10.7554/elife.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, over-expressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.
Collapse
Affiliation(s)
- Jun Sun
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Francisca Rojo-Cortes
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Suzana Ulian-Benitez
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Manuel G Forero
- Semillero Lún, Grupo D+Tec, Universidad de Ibagué, Ibagué, Colombia
| | - Guiyi Li
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Deepanshu N D Singh
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaocui Wang
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Marta Moreira
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Dean Kavanagh
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | | | - Vincent Croset
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Alicia Hidalgo
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Decet M, Scott P, Kuenen S, Meftah D, Swerts J, Calatayud C, Gallego SF, Kaempf N, Nachman E, Praschberger R, Schoovaerts N, Tang CC, Eidelberg D, Al Adawi S, Al Asmi A, Nandhagopal R, Verstreken P. A candidate loss-of-function variant in SGIP1 causes synaptic dysfunction and recessive parkinsonism. Cell Rep Med 2024; 5:101749. [PMID: 39332416 PMCID: PMC11513836 DOI: 10.1016/j.xcrm.2024.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/14/2024] [Accepted: 08/31/2024] [Indexed: 09/29/2024]
Abstract
Synaptic dysfunction is recognized as an early step in the pathophysiology of parkinsonism. Several genetic mutations affecting the integrity of synaptic proteins cause or increase the risk of developing disease. We have identified a candidate causative mutation in synaptic "SH3GL2 Interacting Protein 1" (SGIP1), linked to early-onset parkinsonism in a consanguineous Arab family. Additionally, affected siblings display intellectual, cognitive, and behavioral dysfunction. Metabolic network analysis of [18F]-fluorodeoxyglucose positron emission tomography scans shows patterns very similar to those of idiopathic Parkinson's disease. We show that the identified SGIP1 mutation causes a loss of protein function, and analyses in newly created Drosophila models reveal movement defects, synaptic transmission dysfunction, and neurodegeneration, including dopaminergic synapse loss. Histology and correlative light and electron microscopy reveal the absence of synaptic multivesicular bodies and the accumulation of degradative organelles. This research delineates a putative form of recessive parkinsonism, converging on defective synaptic proteostasis and opening avenues for diagnosis, genetic counseling, and treatment.
Collapse
Affiliation(s)
- Marianna Decet
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrick Scott
- Laboratory of Molecular Biology, Sainte-Justine University Hospital Center, Montréal QC H3T 1C5, Canada
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Douja Meftah
- Laboratory of Pulmonary Physiology, Department of Pediatrics, Sainte-Justine University Hospital Center, Montréal QC H3T 1C5, Canada
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Carles Calatayud
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Natalie Kaempf
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Eliana Nachman
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Roman Praschberger
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Samir Al Adawi
- Department of Behavioral Medicine, College of Medicine & Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman
| | - Abdullah Al Asmi
- Neurology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman
| | - Ramachandiran Nandhagopal
- Neurology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Vannelli A, Mariano V, Bagni C, Kanellopoulos AK. Activation of the 5-HT1A Receptor by Eltoprazine Restores Mitochondrial and Motor Deficits in a Drosophila Model of Fragile X Syndrome. Int J Mol Sci 2024; 25:8787. [PMID: 39201473 PMCID: PMC11354613 DOI: 10.3390/ijms25168787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Neurons rely on mitochondrial energy metabolism for essential functions like neurogenesis, neurotransmission, and synaptic plasticity. Mitochondrial dysfunctions are associated with neurodevelopmental disorders including Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, which also presents with motor skill deficits. However, the precise role of mitochondria in the pathophysiology of FXS remains largely unknown. Notably, previous studies have linked the serotonergic system and mitochondrial activity to FXS. Our study investigates the potential therapeutic role of serotonin receptor 1A (5-HT1A) in FXS. Using the Drosophila model of FXS, we demonstrated that treatment with eltoprazine, a 5-HT1A agonist, can ameliorate synaptic transmission, correct mitochondrial deficits, and ultimately improve motor behavior. While these findings suggest that the 5-HT1A-mitochondrial axis may be a promising therapeutic target, further investigation is needed in the context of FXS.
Collapse
Affiliation(s)
- Anna Vannelli
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | | |
Collapse
|
8
|
Haddadi M, Haghi M, Rezaei N, Kiani Z, Akkülah T, Celik A. APOE and Alzheimer's disease: Pathologic clues from transgenic Drosophila melanogaster. Arch Gerontol Geriatr 2024; 123:105420. [PMID: 38537387 DOI: 10.1016/j.archger.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 06/06/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Apolipoprotein E4 (ApoE4) is the main genetic risk factor in the development of late-onset AD. However, the exact mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We utilized Drosophila melanogaster to examine the neurotoxic effects of various human APOE isoforms when expressed specifically in glial and neural cells. We assessed impacts on mitochondrial dynamics, ER stress, lipid metabolism, and bio-metal ion concentrations in the central nervous system (CNS) of the transgenic flies. Dachshund antibody staining revealed a reduction in the number of Kenyon cells. Behavioral investigations including ethanol tolerance and learning and memory performance demonstrated neuronal dysfunction in APOE4-expressing larvae and adult flies. Transcription level of marf and drp-1 were found to be elevated in APOE4 flies, while atf4, atf6, and xbp-1 s showed down regulation. Enhanced concentrations of triglyceride and cholesterol in the CNS were observed in APOE4 transgenic flies, with especially pronounced effects upon glial-specific expression of the gene. Spectrophotometry of brain homogenate revealed enhanced Fe++ and Zn++ ion levels in conjunction with diminished Cu++ levels upon APOE4 expression. To explore therapeutic strategies, we subjected the flies to heat-shock treatment, aiming to activate heat-shock proteins (HSPs) and assess their potential to mitigate the neurotoxic effects of APOE isoforms. The results showed potential therapeutic benefits for APOE4-expressing flies, hinting at an ability to attenuate memory deterioration. Overall, our findings suggest that APOE4 can alter lipid metabolism, bio metal ion homeostasis, and disrupt the harmonious fission-fusion balance of neuronal and glial mitochondria, ultimately inducing ER stress. These alterations mirror the main clinical manifestations of AD in patients. Therefore, our work underscores the suitability of Drosophila as a fertile model for probing the pathological roles of APOE and furthering our understanding of diverse isoform-specific functions.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran; Genetics and Non-communicable Diseases Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Niloofar Rezaei
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Zahra Kiani
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Taha Akkülah
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| |
Collapse
|
9
|
Petitgas C, Seugnet L, Dulac A, Matassi G, Mteyrek A, Fima R, Strehaiano M, Dagorret J, Chérif-Zahar B, Marie S, Ceballos-Picot I, Birman S. Metabolic and neurobehavioral disturbances induced by purine recycling deficiency in Drosophila. eLife 2024; 12:RP88510. [PMID: 38700995 PMCID: PMC11068357 DOI: 10.7554/elife.88510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.
Collapse
Affiliation(s)
- Céline Petitgas
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
- Metabolomic and Proteomic Biochemistry Laboratory, Necker-Enfants Malades Hospital and Paris Cité UniversityParisFrance
| | - Laurent Seugnet
- Integrated Physiology of the Brain Arousal Systems (WAKING), Lyon Neuroscience Research Centre, INSERM/CNRS/UCBL1BronFrance
| | - Amina Dulac
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Giorgio Matassi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of UdineUdineItaly
- UMR “Ecology and Dynamics of Anthropogenic Systems” (EDYSAN), CNRS, Université de Picardie Jules VerneAmiensFrance
| | - Ali Mteyrek
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Rebecca Fima
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Marion Strehaiano
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Joana Dagorret
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Baya Chérif-Zahar
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Sandrine Marie
- Laboratory of Metabolic Diseases, Cliniques Universitaires Saint-Luc, Université catholique de LouvainBrusselsBelgium
| | - Irène Ceballos-Picot
- Metabolomic and Proteomic Biochemistry Laboratory, Necker-Enfants Malades Hospital and Paris Cité UniversityParisFrance
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| |
Collapse
|
10
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
11
|
Chan ICW, Chen N, Hernandez J, Meltzer H, Park A, Stahl A. Future avenues in Drosophila mushroom body research. Learn Mem 2024; 31:a053863. [PMID: 38862172 PMCID: PMC11199946 DOI: 10.1101/lm.053863.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
How does the brain translate sensory information into complex behaviors? With relatively small neuronal numbers, readable behavioral outputs, and an unparalleled genetic toolkit, the Drosophila mushroom body (MB) offers an excellent model to address this question in the context of associative learning and memory. Recent technological breakthroughs, such as the freshly completed full-brain connectome, multiomics approaches, CRISPR-mediated gene editing, and machine learning techniques, led to major advancements in our understanding of the MB circuit at the molecular, structural, physiological, and functional levels. Despite significant progress in individual MB areas, the field still faces the fundamental challenge of resolving how these different levels combine and interact to ultimately control the behavior of an individual fly. In this review, we discuss various aspects of MB research, with a focus on the current knowledge gaps, and an outlook on the future methodological developments required to reach an overall view of the neurobiological basis of learning and memory.
Collapse
Affiliation(s)
- Ivy Chi Wai Chan
- Dynamics of Neuronal Circuits Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Developmental Biology, RWTH Aachen University, Aachen, Germany
| | - Nannan Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - John Hernandez
- Neuroscience Department, Brown University, Providence, Rhode Island 02906, USA
| | - Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Annie Park
- Department of Physiology, Anatomy and Genetics, Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
12
|
Thiem J, Viskadourou M, Gaitanidis A, Stravopodis DJ, Strauß R, Duch C, Consoulas C. Biological aging of two innate behaviors of Drosophila melanogaster: Escape climbing versus courtship learning and memory. PLoS One 2024; 19:e0293252. [PMID: 38593121 PMCID: PMC11003613 DOI: 10.1371/journal.pone.0293252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Motor and cognitive aging can severely affect life quality of elderly people and burden health care systems. In search for diagnostic behavioral biomarkers, it has been suggested that walking speed can predict forms of cognitive decline, but in humans, it remains challenging to separate the effects of biological aging and lifestyle. We examined a possible association of motor and cognitive decline in Drosophila, a genetic model organism of healthy aging. Long term courtship memory is present in young male flies but absent already during mid life (4-8 weeks). By contrast, courtship learning index and short term memory (STM) are surprisingly robust and remain stable through mid (4-8 weeks) and healthy late life (>8 weeks), until courtship performance collapses suddenly at ~4.5 days prior to death. By contrast, climbing speed declines gradually during late life (>8 weeks). The collapse of courtship performance and short term memory close to the end of life occur later and progress with a different time course than the gradual late life decline in climbing speed. Thus, during healthy aging in male Drosophila, climbing and courtship motor behaviors decline differentially. Moreover, cognitive and motor performances decline at different time courses. Differential behavioral decline during aging may indicate different underlying causes, or alternatively, a common cause but different thresholds for defects in different behaviors.
Collapse
Affiliation(s)
- Jessica Thiem
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Maria Viskadourou
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alexandros Gaitanidis
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Roland Strauß
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Christos Consoulas
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
13
|
Zhang J, Tang T, Zhang R, Wen L, Deng X, Xu X, Yang W, Jin F, Cao Y, Lu Y, Yu XQ. Maintaining Toll signaling in Drosophila brain is required to sustain autophagy for dopamine neuron survival. iScience 2024; 27:108795. [PMID: 38292423 PMCID: PMC10825691 DOI: 10.1016/j.isci.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Macroautophagy/autophagy is a conserved process in eukaryotic cells to degrade and recycle damaged intracellular components. Higher level of autophagy in the brain has been observed, and autophagy dysfunction has an impact on neuronal health, but the molecular mechanism is unclear. In this study, we showed that overexpression of Toll-1 and Toll-7 receptors, as well as active Spätzle proteins in Drosophila S2 cells enhanced autophagy, and Toll-1/Toll-7 activated autophagy was dependent on Tube-Pelle-PP2A. Interestingly, Toll-1 but not Toll-7 mediated autophagy was dMyd88 dependent. Importantly, we observed that loss of functions in Toll-1 and Toll-7 receptors and PP2A activity in flies decreased autophagy level, resulting in the loss of dopamine (DA) neurons and reduced fly motion. Our results indicated that proper activation of Toll-1 and Toll-7 pathways and PP2A activity in the brain are necessary to sustain autophagy level for DA neuron survival.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wanying Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yang Cao
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
14
|
Zhou F, Tichy AM, Imambocus BN, Sakharwade S, Rodriguez Jimenez FJ, González Martínez M, Jahan I, Habib M, Wilhelmy N, Burre V, Lömker T, Sauter K, Helfrich-Förster C, Pielage J, Grunwald Kadow IC, Janovjak H, Soba P. Optimized design and in vivo application of optogenetically functionalized Drosophila dopamine receptors. Nat Commun 2023; 14:8434. [PMID: 38114457 PMCID: PMC10730509 DOI: 10.1038/s41467-023-43970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
Neuromodulatory signaling via G protein-coupled receptors (GPCRs) plays a pivotal role in regulating neural network function and animal behavior. The recent development of optogenetic tools to induce G protein-mediated signaling provides the promise of acute and cell type-specific manipulation of neuromodulatory signals. However, designing and deploying optogenetically functionalized GPCRs (optoXRs) with accurate specificity and activity to mimic endogenous signaling in vivo remains challenging. Here we optimize the design of optoXRs by considering evolutionary conserved GPCR-G protein interactions and demonstrate the feasibility of this approach using two Drosophila Dopamine receptors (optoDopRs). These optoDopRs exhibit high signaling specificity and light sensitivity in vitro. In vivo, we show receptor and cell type-specific effects of dopaminergic signaling in various behaviors, including the ability of optoDopRs to rescue the loss of the endogenous receptors. This work demonstrates that optoXRs can enable optical control of neuromodulatory receptor-specific signaling in functional and behavioral studies.
Collapse
Affiliation(s)
- Fangmin Zhou
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Alexandra-Madelaine Tichy
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 3800, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 3800, Clayton, Victoria, Australia
| | - Bibi Nusreen Imambocus
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Shreyas Sakharwade
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Francisco J Rodriguez Jimenez
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
- ZIEL-Institute of Life and Health, Technical University of Munich, School of Life Sciences, 85354, Freising, Germany
| | - Marco González Martínez
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
| | - Ishrat Jahan
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
| | - Margarita Habib
- Neurobiology and Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Nina Wilhelmy
- Division of Neurobiology and Zoology, RPTU University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Vanessa Burre
- Division of Neurobiology and Zoology, RPTU University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Tatjana Lömker
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kathrin Sauter
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | | | - Jan Pielage
- Division of Neurobiology and Zoology, RPTU University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ilona C Grunwald Kadow
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
- ZIEL-Institute of Life and Health, Technical University of Munich, School of Life Sciences, 85354, Freising, Germany
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 3800, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 3800, Clayton, Victoria, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, 5042, Bedford Park, South Australia, Australia
| | - Peter Soba
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany.
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
15
|
Tower J. Markers and mechanisms of death in Drosophila. FRONTIERS IN AGING 2023; 4:1292040. [PMID: 38149028 PMCID: PMC10749947 DOI: 10.3389/fragi.2023.1292040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
Parameters correlated with age and mortality in Drosophila melanogaster include decreased negative geotaxis and centrophobism behaviors, decreased climbing and walking speed, and darkened pigments in oenocytes and eye. Cessation of egg laying predicts death within approximately 5 days. Endogenous green fluorescence in eye and body increases hours prior to death. Many flies exhibit erratic movement hours before death, often leading to falls. Loss of intestinal barrier integrity (IBI) is assayed by feeding blue dye ("Smurf" phenotype), and Smurf flies typically die within 0-48 h. Some studies report most flies exhibit Smurf, whereas multiple groups report most flies die without exhibiting Smurf. Transgenic reporters containing heat shock gene promoters and innate immune response gene promoters progressively increase expression with age, and partly predict remaining life span. Innate immune reporters increase with age in every fly, prior to any Smurf phenotype, in presence or absence of antibiotics. Many flies die on their side or supine (on their back) position. The data suggest three mechanisms for death of Drosophila. One is loss of IBI, as revealed by Smurf assay. The second is nervous system malfunction, leading to erratic behavior, locomotor malfunction, and falls. The aged fly is often unable to right itself after a fall to a side-ways or supine position, leading to inability to access the food and subsequent dehydration/starvation. Finally, some flies die upright without Smurf phenotype, suggesting a possible third mechanism. The frequency of these mechanisms varies between strains and culture conditions, which may affect efficacy of life span interventions.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Stickley L, Koch R, Nagoshi E. The utility and caveat of split-GAL4s in the study of neurodegeneration. Fly (Austin) 2023; 17:2192847. [PMID: 36959085 PMCID: PMC10038051 DOI: 10.1080/19336934.2023.2192847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, afflicting over 1% of the population of age 60 y and above. The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is the primary cause of its characteristic motor symptoms. Studies using Drosophila melanogaster and other model systems have provided much insight into the pathogenesis of PD. However, little is known why certain cell types are selectively susceptible to degeneration in PD. Here, we describe an approach to identify vulnerable subpopulations of neurons in the genetic background linked to PD in Drosophila, using the split-GAL4 drivers that enable genetic manipulation of a small number of defined cell populations. We identify split-GAL4 lines that target neurons selectively vulnerable in a model of leucine-rich repeat kinase 2 (LRRK2)-linked familial PD, demonstrating the utility of this approach. We also show an unexpected caveat of the split-GAL4 system in ageing-related research: an age-dependent increase in the number of GAL4-labelled cells.
Collapse
Affiliation(s)
- Luca Stickley
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Rafael Koch
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Majcin Dorcikova M, Duret LC, Pottié E, Nagoshi E. Circadian clock disruption promotes the degeneration of dopaminergic neurons in male Drosophila. Nat Commun 2023; 14:5908. [PMID: 37737209 PMCID: PMC10516932 DOI: 10.1038/s41467-023-41540-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Sleep and circadian rhythm disruptions are frequent comorbidities of Parkinson's disease (PD), a disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, the causal role of circadian clocks in the degenerative process remains uncertain. We demonstrated here that circadian clocks regulate the rhythmicity and magnitude of the vulnerability of DA neurons to oxidative stress in male Drosophila. Circadian pacemaker neurons are presynaptic to a subset of DA neurons and rhythmically modulate their susceptibility to degeneration. The arrhythmic period (per) gene null mutation exacerbates the age-dependent loss of DA neurons and, in combination with brief oxidative stress, causes premature animal death. These findings suggest that circadian clock disruption promotes dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Michaëla Majcin Dorcikova
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Lou C Duret
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Emma Pottié
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland.
| |
Collapse
|
18
|
Shabir S, Sehgal A, Dutta J, Devgon I, Singh SK, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Basalamah MAM, Faidah H, Bantun F, Saati AA, Vamanu E, Singh MP. Therapeutic Potential of Green-Engineered ZnO Nanoparticles on Rotenone-Exposed D. melanogaster (Oregon R +): Unveiling Ameliorated Biochemical, Cellular, and Behavioral Parameters. Antioxidants (Basel) 2023; 12:1679. [PMID: 37759981 PMCID: PMC10525955 DOI: 10.3390/antiox12091679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology holds significant ameliorative potential against neurodegenerative diseases, as it can protect the therapeutic substance and allow for its sustained release. In this study, the reducing and capping agents of Urtica dioica (UD), Matricaria chamomilla (MC), and Murraya koenigii (MK) extracts were used to synthesize bio-mediated zinc oxide nanoparticles (ZnO-NPs) against bacteria (Staphylococcus aureus and Escherichia coli) and against rotenone-induced toxicities in D. melanogaster for the first time. Their optical and structural properties were analyzed via FT-IR, DLS, XRD, EDS, SEM, UV-Vis, and zeta potential. The antioxidant and antimicrobial properties of the fabricated ZnO-NPs were evaluated employing cell-free models (DPPH and ABTS) and the well diffusion method, respectively. Rotenone (500 µM) was administered to Drosophila third instar larvae and freshly emerged flies for 24-120 h, either alone or in combination with plant extracts (UD, MC, an MK) and their biogenic ZnO-NPs. A comparative study on the protective effects of synthesized NPs was undertaken against rotenone-induced neurotoxic, cytotoxic, and behavioral alterations using an acetylcholinesterase inhibition assay, dye exclusion test, and locomotor parameters. The findings revealed that among the plant-derived ZnO-NPs, MK-ZnO NPs exhibit strong antimicrobial and antioxidant activities, followed by UD-ZnO NPs and MC-ZnO NPs. In this regard, ethno-nano medicinal therapeutic uses mimic similar effects in D. melanogaster by suppressing oxidative stress by restoring biochemical parameters (AchE and proteotoxicity activity) and lower cellular toxicity. These findings suggest that green-engineered ZnO-NPs have the potential to significantly enhance outcomes, with the promise of effective therapies for neurodegeneration, and could be used as a great alternative for clinical development.
Collapse
Affiliation(s)
- Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Amit Sehgal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joydeep Dutta
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Inderpal Devgon
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, Uttar Pradesh, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | | | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology and Centre of Genomics and Bioinformatics, DDU Gorakhpur University, Gorakhpur 273009, Uttar Pradesh, India
| |
Collapse
|
19
|
Eidhof I, Krebbers A, van de Warrenburg B, Schenck A. Ataxia-associated DNA repair genes protect the Drosophila mushroom body and locomotor function against glutamate signaling-associated damage. Front Neural Circuits 2023; 17:1148947. [PMID: 37476399 PMCID: PMC10354283 DOI: 10.3389/fncir.2023.1148947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
The precise control of motor movements is of fundamental importance to all behaviors in the animal kingdom. Efficient motor behavior depends on dedicated neuronal circuits - such as those in the cerebellum - that are controlled by extensive genetic programs. Autosomal recessive cerebellar ataxias (ARCAs) provide a valuable entry point into how interactions between genetic programs maintain cerebellar motor circuits. We previously identified a striking enrichment of DNA repair genes in ARCAs. How dysfunction of ARCA-associated DNA repair genes leads to preferential cerebellar dysfunction and impaired motor function is however unknown. The expression of ARCA DNA repair genes is not specific to the cerebellum. Only a limited number of animal models for DNA repair ARCAs exist, and, even for these, the interconnection between DNA repair defects, cerebellar circuit dysfunction, and motor behavior is barely established. We used Drosophila melanogaster to characterize the function of ARCA-associated DNA repair genes in the mushroom body (MB), a structure in the Drosophila central brain that shares structural features with the cerebellum. Here, we demonstrate that the MB is required for efficient startle-induced and spontaneous motor behaviors. Inhibition of synaptic transmission and loss-of-function of ARCA-associated DNA repair genes in the MB affected motor behavior in several assays. These motor deficits correlated with increased levels of MB DNA damage, MB Kenyon cell apoptosis and/or alterations in MB morphology. We further show that expression of genes involved in glutamate signaling pathways are highly, specifically, and persistently elevated in the postnatal human cerebellum. Manipulation of glutamate signaling in the MB induced motor defects, Kenyon cell DNA damage and apoptosis. Importantly, pharmacological reduction of glutamate signaling in the ARCA DNA repair models rescued the identified motor deficits, suggesting a role for aberrant glutamate signaling in ARCA-DNA repair disorders. In conclusion, our data highlight the importance of ARCA-associated DNA repair genes and glutamate signaling pathways to the cerebellum, the Drosophila MB and motor behavior. We propose that glutamate signaling may confer preferential cerebellar vulnerability in ARCA-associated DNA repair disorders. Targeting glutamate signaling could provide an exciting therapeutic entry point in this large group of so far untreatable disorders.
Collapse
Affiliation(s)
- Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Szinyákovics J, Keresztes F, Kiss EA, Falcsik G, Vellai T, Kovács T. Potent New Targets for Autophagy Enhancement to Delay Neuronal Ageing. Cells 2023; 12:1753. [PMID: 37443788 PMCID: PMC10341134 DOI: 10.3390/cells12131753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy is a lysosomal-dependent degradation process of eukaryotic cells responsible for breaking down unnecessary and damaged intracellular components. Autophagic activity gradually declines with age due to genetic control, and this change contributes to the accumulation of cellular damage at advanced ages, thereby causing cells to lose their functionality and viability. This could be particularly problematic in post-mitotic cells including neurons, the mass destruction of which leads to various neurodegenerative diseases. Here, we aim to uncover new regulatory points where autophagy could be specifically activated and test these potential drug targets in neurodegenerative disease models of Drosophila melanogaster. One possible way to activate autophagy is by enhancing autophagosome-lysosome fusion that creates the autolysosome in which the enzymatic degradation happens. The HOPS (homotypic fusion and protein sorting) and SNARE (Snap receptor) protein complexes regulate the fusion process. The HOPS complex forms a bridge between the lysosome and autophagosome with the assistance of small GTPase proteins. Thus, small GTPases are essential for autolysosome maturation, and among these proteins, Rab2 (Ras-associated binding 2), Rab7, and Arl8 (Arf-like 8) are required to degrade the autophagic cargo. For our experiments, we used Drosophila melanogaster as a model organism. Nerve-specific small GTPases were silenced and overexpressed. We examined the effects of these genetic interventions on lifespan, climbing ability, and autophagy. Finally, we also studied the activation of small GTPases in a Parkinson's disease model. Our results revealed that GTP-locked, constitutively active Rab2 (Rab2-CA) and Arl8 (Arl8-CA) expression reduces the levels of the autophagic substrate p62/Ref(2)P in neurons, extends lifespan, and improves the climbing ability of animals during ageing. However, Rab7-CA expression dramatically shortens lifespan and inhibits autophagy. Rab2-CA expression also increases lifespan in a Parkinson's disease model fly strain overexpressing human mutant (A53T) α-synuclein protein. Data provided by this study suggests that Rab2 and Arl8 serve as potential targets for autophagy enhancement in the Drosophila nervous system. In the future, it might be interesting to assess the effect of Rab2 and Arl8 coactivation on autophagy, and it would also be worthwhile to validate these findings in a mammalian model and human cell lines. Molecules that specifically inhibit Rab2 or Arl8 serve as potent drug candidates to modulate the activity of the autophagic process in treating neurodegenerative pathologies. In the future, it would be reasonable to investigate which GAP enzyme can inhibit Rab2 or Arl8 specifically, but not affect Rab7, with similar medical purposes.
Collapse
Affiliation(s)
- Janka Szinyákovics
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
- ELKH-ELTE Genetic Research Group, H-1117 Budapest, Hungary
| | - Fanni Keresztes
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Eszter Anna Kiss
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| | - Gergő Falcsik
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- ELKH-ELTE Genetic Research Group, H-1117 Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| |
Collapse
|
21
|
Chen CY, Chao YM, Cho CC, Chen CS, Lin WY, Chen YH, Cassar M, Lu CS, Yang JL, Chan JYH, Juo SHH. Cerebral Semaphorin3D is a novel risk factor for age-associated cognitive impairment. Cell Commun Signal 2023; 21:140. [PMID: 37316917 DOI: 10.1186/s12964-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND We previously reported that miR-195 exerts neuroprotection by inhibiting Sema3A and cerebral miR-195 levels decreased with age, both of which urged us to explore the role of miR-195 and miR-195-regulated Sema3 family members in age-associated dementia. METHODS miR-195a KO mice were used to assess the effect of miR-195 on aging and cognitive functions. Sema3D was predicted as a miR-195 target by TargetScan and then verified by luciferase reporter assay, while effects of Sema3D and miR-195 on neural senescence were assessed by beta-galactosidase and dendritic spine density. Cerebral Sema3D was over-expressed by lentivirus and suppressed by si-RNA, and effects of over-expression of Sema3D and knockdown of miR-195 on cognitive functions were assessed by Morris Water Maze, Y-maze, and open field test. The effect of Sema3D on lifespan was assessed in Drosophila. Sema3D inhibitor was developed using homology modeling and virtual screening. One-way and two-way repeated measures ANOVA were applied to assess longitudinal data on mouse cognitive tests. RESULTS Cognitive impairment and reduced density of dendritic spine were observed in miR-195a knockout mice. Sema3D was identified to be a direct target of miR-195 and a possible contributor to age-associated neurodegeneration as Sema3D levels showed age-dependent increase in rodent brains. Injection of Sema3D-expressing lentivirus caused significant memory deficits while silencing hippocampal Sema3D improved cognition. Repeated injections of Sema3D-expressing lentivirus to elevate cerebral Sema3D for 10 weeks revealed a time-dependent decline of working memory. More importantly, analysis of the data on the Gene Expression Omnibus database showed that Sema3D levels were significantly higher in dementia patients than normal controls (p < 0.001). Over-expression of homolog Sema3D gene in the nervous system of Drosophila reduced locomotor activity and lifespan by 25%. Mechanistically, Sema3D might reduce stemness and number of neural stem cells and potentially disrupt neuronal autophagy. Rapamycin restored density of dendritic spines in the hippocampus from mice injected with Sema3D lentivirus. Our novel small molecule increased viability of Sema3D-treated neurons and might improve autophagy efficiency, which suggested Sema3D could be a potential drug target. Video Abstract CONCLUSION: Our results highlight the importance of Sema3D in age-associated dementia. Sema3D could be a novel drug target for dementia treatment.
Collapse
Affiliation(s)
- Chien-Yuan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Chang Cho
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Yong Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Brain Diseases Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Marlène Cassar
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Institut du Cerveau Et de La Moelle Epinière (ICM)-Sorbonne, UniversitéInserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cecilia S Lu
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Suh-Hang H Juo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
22
|
Murashov AK, Pak ES, Mar J, O’Brien K, Fisher-Wellman K, Bhat KM. Paternal Western diet causes transgenerational increase in food consumption in Drosophila with parallel alterations in the offspring brain proteome and microRNAs. FASEB J 2023; 37:e22966. [PMID: 37227156 PMCID: PMC10234493 DOI: 10.1096/fj.202300239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Several lines of evidence indicate that ancestral diet might play an important role in determining offspring's metabolic traits. However, it is not yet clear whether ancestral diet can affect offspring's food choices and feeding behavior. In the current study, taking advantage of Drosophila model system, we demonstrate that paternal Western diet (WD) increases offspring food consumption up to the fourth generation. Paternal WD also induced alterations in F1 offspring brain proteome. Using enrichment analyses of pathways for upregulated and downregulated proteins, we found that upregulated proteins had significant enrichments in terms related to translation and translation factors, whereas downregulated proteins displayed enrichments in small molecule metabolic processes, TCA cycles, and electron transport chain (ETC). Using MIENTURNET miRNA prediction tool, dme-miR-10-3p was identified as the top conserved miRNA predicted to target proteins regulated by ancestral diet. RNAi-based knockdown of miR-10 in the brain significantly increased food consumption, implicating miR-10 as a potential factor in programming feeding behavior. Together, these findings suggest that ancestral nutrition may influence offspring feeding behavior through alterations in miRNAs.
Collapse
Affiliation(s)
- Alexander K. Murashov
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Elena S. Pak
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jordan Mar
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| | - Kevin O’Brien
- Department of Biostatistics, College of Allied Health Sciences, East Carolina University, Greenville, NC
| | - Kelsey Fisher-Wellman
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
23
|
Zhang J, Lentz L, Goldammer J, Iliescu J, Tanimura J, Riemensperger TD. Asymmetric Presynaptic Depletion of Dopamine Neurons in a Drosophila Model of Parkinson's Disease. Int J Mol Sci 2023; 24:8585. [PMID: 37239942 PMCID: PMC10218197 DOI: 10.3390/ijms24108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) often displays a strong unilateral predominance in arising symptoms. PD is correlated with dopamine neuron (DAN) degeneration in the substantia nigra pars compacta (SNPC), and in many patients, DANs appear to be affected more severely on one hemisphere than the other. The reason for this asymmetric onset is far from being understood. Drosophila melanogaster has proven its merit to model molecular and cellular aspects of the development of PD. However, the cellular hallmark of the asymmetric degeneration of DANs in PD has not yet been described in Drosophila. We ectopically express human α-synuclein (hα-syn) together with presynaptically targeted syt::HA in single DANs that innervate the Antler (ATL), a symmetric neuropil located in the dorsomedial protocerebrum. We find that expression of hα-syn in DANs innervating the ATL yields asymmetric depletion of synaptic connectivity. Our study represents the first example of unilateral predominance in an invertebrate model of PD and will pave the way to the investigation of unilateral predominance in the development of neurodegenerative diseases in the genetically versatile invertebrate model Drosophila.
Collapse
Affiliation(s)
- Jiajun Zhang
- Institute of Zoology, Experimental Morphology and Neuroanatomy, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Lucie Lentz
- Institute of Zoology, Experimental Morphology and Neuroanatomy, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Jens Goldammer
- Institute of Zoology, Experimental Morphology and Neuroanatomy, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Jessica Iliescu
- Institute of Zoology, Experimental Morphology and Neuroanatomy, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Jun Tanimura
- Neuronal Circuit Division, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Thomas Dieter Riemensperger
- Institute of Zoology, Experimental Morphology and Neuroanatomy, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
24
|
Dumitrescu E, Copeland JM, Venton BJ. Parkin Knockdown Modulates Dopamine Release in the Central Complex, but Not the Mushroom Body Heel, of Aging Drosophila. ACS Chem Neurosci 2023; 14:198-208. [PMID: 36576890 PMCID: PMC9897283 DOI: 10.1021/acschemneuro.2c00277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons leading to reduced locomotion. Mutations of parkin gene in Drosophila produce the same phenotypes as vertebrate models, but the effect of parkin knockdown on dopamine release is not known. Here, we report age-dependent, spatial variation of dopamine release in the brain of parkin-RNAi adult Drosophila. Dopamine was repetitively stimulated by local application of acetylcholine and quantified by fast-scan cyclic voltammetry in the central complex or mushroom body heel. In the central complex, the main area controlling locomotor function, dopamine release is maintained for repeated stimulations in aged control flies, but lower concentrations of dopamine are released in the central complex of aged parkin-RNAi flies. In the mushroom body heel, the dopamine release decrease in older parkin-RNAi flies is similar to controls. There is not significant dopaminergic neuronal loss even in older parkin knockdown flies, which indicates that the changes in stimulated dopamine release are due to alterations of neuronal function. In young parkin-RNAi flies, locomotion is inhibited by 30%, while in older parkin-RNAi flies it is inhibited by 85%. Overall, stimulated dopamine release is modulated by parkin in an age and brain region dependent manner. Correlating the functional state of the dopaminergic system with behavioral phenotypes provides unique insights into the PD mechanism. Drosophila can be used to study dopamine functionality in PD, elucidate how genetics influence dopamine, and test potential therapies to maintain dopamine release.
Collapse
Affiliation(s)
- Eduard Dumitrescu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | | | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901,Corresponding Author: , 434-243-2132
| |
Collapse
|
25
|
Ren M, Yang Y, Heng KHY, Ng LY, Chong CYY, Ng YT, Gorur-Shandilya S, Lee RMQ, Lim KL, Zhang J, Koh TW. MED13 and glycolysis are conserved modifiers of α-synuclein-associated neurodegeneration. Cell Rep 2022; 41:111852. [PMID: 36543134 DOI: 10.1016/j.celrep.2022.111852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
α-Synuclein (α-syn) is important in synucleinopathies such as Parkinson's disease (PD). While genome-wide association studies (GWASs) of synucleinopathies have identified many risk loci, the underlying genes have not been shown for most loci. Using Drosophila, we screened 3,471 mutant chromosomes for genetic modifiers of α-synuclein and identified 12 genes. Eleven modifiers have human orthologs associated with diseases, including MED13 and CDC27, which lie within PD GWAS loci. Drosophila Skd/Med13 and glycolytic enzymes are co-upregulated by α-syn-associated neurodegeneration. While elevated α-syn compromises mitochondrial function, co-expressing skd/Med13 RNAi and α-syn synergistically increase the ratio of oxidized-to-reduced glutathione. The resulting neurodegeneration can be suppressed by overexpressing a glycolytic enzyme or treatment with deferoxamine, suggesting that compensatory glycolysis is neuroprotective. In addition, the functional relationship between α-synuclein, MED13, and glycolytic enzymes is conserved between flies and mice. We propose that hypoxia-inducible factor and MED13 are part of a druggable pathway for PD.
Collapse
Affiliation(s)
- Mengda Ren
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308207, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Ying Yang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China
| | | | - Lu Yi Ng
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Yan Ting Ng
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308207, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China; China National Health and Disease Human Brain Tissue Resource Center, Hangzhou, Zhejiang 310002, China
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
26
|
Sabandal PR, Saldes EB, Han KA. Acetylcholine deficit causes dysfunctional inhibitory control in an aging-dependent manner. Sci Rep 2022; 12:20903. [PMID: 36463374 PMCID: PMC9719532 DOI: 10.1038/s41598-022-25402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Inhibitory control is a key executive function that limits unnecessary thoughts and actions, enabling an organism to appropriately execute goal-driven behaviors. The efficiency of this inhibitory capacity declines with normal aging or in neurodegenerative dementias similar to memory or other cognitive functions. Acetylcholine signaling is crucial for executive function and also diminishes with aging. Acetylcholine's contribution to the aging- or dementia-related decline in inhibitory control, however, remains elusive. We addressed this in Drosophila using a Go/No-Go task that measures inhibition capacity. Here, we report that inhibition capacity declines with aging in wild-type flies, which is mitigated by lessening acetylcholine breakdown and augmented by reducing acetylcholine biosynthesis. We identified the mushroom body (MB) γ neurons as a chief neural site for acetylcholine's contribution to the aging-associated inhibitory control deficit. In addition, we found that the MB output neurons MBON-γ2α'1 having dendrites at the MB γ2 and α'1 lobes and axons projecting to the superior medial protocerebrum and the crepine is critical for sustained movement suppression per se. This study reveals, for the first time, the central role of acetylcholine in the aging-associated loss of inhibitory control and provides a framework for further mechanistic studies.
Collapse
Affiliation(s)
- Paul Rafael Sabandal
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| | - Erick Benjamin Saldes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Kyung-An Han
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
27
|
Synthesis of Green Engineered Silver Nanoparticles through Urtica dioica: An Inhibition of Microbes and Alleviation of Cellular and Organismal Toxicity in Drosophila melanogaster. Antibiotics (Basel) 2022; 11:antibiotics11121690. [PMID: 36551347 PMCID: PMC9774676 DOI: 10.3390/antibiotics11121690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Plant fractions have a diversity of biomolecules that can be used to make complicated reactions for the bioactive fabrication of metal nanoparticles (NPs), in addition to being beneficial as antioxidant medications or dietary supplements. The current study shows that Urtica dioica (UD) and biologically synthesized silver nanoparticles (AgNPs) of UD have antibacterial and antioxidant properties against bacteria (Escherichia coli and Pseudomonas putida) and Drosophila melanogaster (Oregon R+). According to their ability to scavenge free radicals, DPPH, ABTS, TFC, and TPC initially estimated the antioxidant potential of UD and UD AgNPs. The fabricated AgNPs were analyzed (UV−Vis, FTIR, EDS, and SEM) to determine the functional groups (alcohol, carboxylic acids, phenol, proteins, and aldehydes) and to observe the shape (agglomerated crystalline and rod-shaped structure). The disc diffusion method was used to test the antimicrobial properties of synthesized Ag-NPs against E. coli and P. putida. For 24 to 120 h, newly enclosed flies and third instar larvae of Drosophila were treated with UD and UD AgNPs. After exposure, tests for biochemical effects (acetylcholinesterase inhibition and protein estimation assays), cytotoxicity (dye exclusion), and behavioral effects (jumping and climbing assays) were conducted. The results showed that nanoparticles were found to have potent antimicrobial activity against all microbial strains tested at various concentrations. In this regard, ethno-medicinal characteristics exhibit a similar impact in D. melanogaster, showing (p < 0.05) significantly decreased cellular toxicity (trypan blue dye), enhanced biochemical markers (AChE efficacy and proteotoxicity), and improved behavioral patterns in the organism treated with UD AgNPs, especially in comparison to UD extract. The results of this study may help in the utilization of specific plants as reliable sources of natural antioxidants that may have been beneficial in the synthesis of metallic NPs, which aids in the production of nanomedicine and other therapeutic applications.
Collapse
|
28
|
Rahmani Z, Surabhi S, Rojo-Cortés F, Dulac A, Jenny A, Birman S. Lamp1 Deficiency Enhances Sensitivity to α-Synuclein and Oxidative Stress in Drosophila Models of Parkinson Disease. Int J Mol Sci 2022; 23:13078. [PMID: 36361864 PMCID: PMC9657416 DOI: 10.3390/ijms232113078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2023] Open
Abstract
Parkinson disease (PD) is a common neurodegenerative condition affecting people predominantly at old age that is characterized by a progressive loss of midbrain dopaminergic neurons and by the accumulation of α-synuclein-containing intraneuronal inclusions known as Lewy bodies. Defects in cellular degradation processes such as the autophagy-lysosomal pathway are suspected to be involved in PD progression. The mammalian Lysosomal-associated membrane proteins LAMP1 and LAMP2 are transmembrane glycoproteins localized in lysosomes and late endosomes that are involved in autophagosome/lysosome maturation and function. Here, we show that the lack of Drosophila Lamp1, the homolog of LAMP1 and LAMP2, severely increased fly susceptibility to paraquat, a pro-oxidant compound known as a potential PD inducer in humans. Moreover, the loss of Lamp1 also exacerbated the progressive locomotor defects induced by the expression of PD-associated mutant α-synuclein A30P (α-synA30P) in dopaminergic neurons. Remarkably, the ubiquitous re-expression of Lamp1 in a mutant context fully suppressed all these defects and conferred significant resistance towards both PD factors above that of wild-type flies. Immunostaining analysis showed that the brain levels of α-synA30P were unexpectedly decreased in young adult Lamp1-deficient flies expressing this protein in comparison to non-mutant controls. This suggests that Lamp1 could neutralize α-synuclein toxicity by promoting the formation of non-pathogenic aggregates in neurons. Overall, our findings reveal a novel role for Drosophila Lamp1 in protecting against oxidative stress and α-synuclein neurotoxicity in PD models, thus furthering our understanding of the function of its mammalian homologs.
Collapse
Affiliation(s)
- Zohra Rahmani
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, UMR 8249, CNRS, ESPCI Paris, PSL University, 75005 Paris, France
| | - Satya Surabhi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Francisca Rojo-Cortés
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, UMR 8249, CNRS, ESPCI Paris, PSL University, 75005 Paris, France
| | - Amina Dulac
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, UMR 8249, CNRS, ESPCI Paris, PSL University, 75005 Paris, France
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, UMR 8249, CNRS, ESPCI Paris, PSL University, 75005 Paris, France
| |
Collapse
|
29
|
Ryu TH, Subramanian M, Yeom E, Yu K. The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila. Mol Cells 2022; 45:640-648. [PMID: 35993164 PMCID: PMC9448647 DOI: 10.14348/molcells.2022.0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022] Open
Abstract
CD133, also known as prominin-1, was first identified as a biomarker of mammalian cancer and neural stem cells. Previous studies have shown that the prominin-like (promL) gene, an orthologue of mammalian CD133 in Drosophila, plays a role in glucose and lipid metabolism, body growth, and longevity. Because locomotion is required for food sourcing and ultimately the regulation of metabolism, we examined the function of promL in Drosophila locomotion. Both promL mutants and pan-neuronal promL inhibition flies displayed reduced spontaneous locomotor activity. As dopamine is known to modulate locomotion, we also examined the effects of promL inhibition on the dopamine concentration and mRNA expression levels of tyrosine hydroxylase (TH) and DOPA decarboxylase (Ddc), the enzymes responsible for dopamine biosynthesis, in the heads of flies. Compared with those in control flies, the levels of dopamine and the mRNAs encoding TH and Ddc were lower in promL mutant and pan-neuronal promL inhibition flies. In addition, an immunostaining analysis revealed that, compared with control flies, promL mutant and pan-neuronal promL inhibition flies had lower levels of the TH protein in protocerebral anterior medial (PAM) neurons, a subset of dopaminergic neurons. Inhibition of promL in these PAM neurons reduced the locomotor activity of the flies. Overall, these findings indicate that promL expressed in PAM dopaminergic neurons regulates locomotion by controlling dopamine synthesis in Drosophila.
Collapse
Affiliation(s)
- Tae Hoon Ryu
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Manivannan Subramanian
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Kweon Yu
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
30
|
Kaźmierczak M, Nicola SM. The Arousal-motor Hypothesis of Dopamine Function: Evidence that Dopamine Facilitates Reward Seeking in Part by Maintaining Arousal. Neuroscience 2022; 499:64-103. [PMID: 35853563 PMCID: PMC9479757 DOI: 10.1016/j.neuroscience.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Dopamine facilitates approach to reward via its actions on dopamine receptors in the nucleus accumbens. For example, blocking either D1 or D2 dopamine receptors in the accumbens reduces the proportion of reward-predictive cues to which rats respond with cued approach. Recent evidence indicates that accumbens dopamine also promotes wakefulness and arousal, but the relationship between dopamine's roles in arousal and reward seeking remains unexplored. Here, we show that the ability of systemic or intra-accumbens injections of the D1 antagonist SCH23390 to reduce cued approach to reward depends on the animal's state of arousal. Handling the animal, a manipulation known to increase arousal, was sufficient to reverse the behavioral effects of the antagonist. In addition, SCH23390 reduced spontaneous locomotion and increased time spent in sleep postures, both consistent with reduced arousal, but also increased time spent immobile in postures inconsistent with sleep. In contrast, the ability of the D2 antagonist haloperidol to reduce cued approach was not reversible by handling. Haloperidol reduced spontaneous locomotion but did not increase sleep postures, instead increasing immobility in non-sleep postures. We place these results in the context of the extensive literature on dopamine's contributions to behavior, and propose the arousal-motor hypothesis. This novel synthesis, which proposes that two main functions of dopamine are to promote arousal and facilitate motor behavior, accounts both for our findings and many previous behavioral observations that have led to disparate and conflicting conclusions.
Collapse
Affiliation(s)
- Marcin Kaźmierczak
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forchheimer 111, Bronx, NY 10461, USA
| | - Saleem M Nicola
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forchheimer 111, Bronx, NY 10461, USA.
| |
Collapse
|
31
|
Discovery of levodopa-induced dyskinesia-associated genes using genomic studies in patients and Drosophila behavioral analyses. Commun Biol 2022; 5:872. [PMID: 36008531 PMCID: PMC9411113 DOI: 10.1038/s42003-022-03830-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022] Open
Abstract
Although levodopa is the most effective medication for Parkinson’s disease, long-term levodopa treatment is largely compromised due to late motor complications, including levodopa-induced dyskinesia (LID). However, the genetic basis of LID pathogenesis has not been fully understood. Here, we discover genes pathogenic for LID using Drosophila genetics and behavioral analyses combined with genome-wide association studies on 578 patients clinically diagnosed with LID. Similar to the therapeutic effect of levodopa in patients, acute levodopa treatments restore the motor defect of Parkinson’s disease model flies, while prolonged treatments cause LID-related symptoms, such as increased yawing, freezing and abrupt acceleration of locomotion. These symptoms require dopamine 1-like receptor 1 and are induced by neuronal overexpression of the receptor. Among genes selected from our analyses in the patient genome, neuronal knockdown of adenylyl cyclase 2 suppresses the levodopa-induced phenotypes and the receptor overexpression-induced symptoms in Drosophila. Together, our study provides genetic insights for LID pathogenesis through the D1-like receptor-adenylyl cyclase 2 signaling axis. A combined research approach using GWAS on Parkinson's disease patients and a Drosophila model of L-DOPA-induced dyskinesia (LID) reveals that LID is linked to ADCY2 signaling.
Collapse
|
32
|
Shabir S, Yousuf S, Singh SK, Vamanu E, Singh MP. Ethnopharmacological Effects of Urtica dioica, Matricaria chamomilla, and Murraya koenigii on Rotenone-Exposed D. melanogaster: An Attenuation of Cellular, Biochemical, and Organismal Markers. Antioxidants (Basel) 2022; 11:1623. [PMID: 36009342 PMCID: PMC9405140 DOI: 10.3390/antiox11081623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Natural antioxidants derived from plants have been proven to have significant inhibitory effects on the free radicals of living organisms during actively metabolization. Excessive production of free radicals increases the risk of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and motor sclerosis. This study aimed to compare the ethnopharmacological effects of Urtica dioica (UD), Matricaria chamomilla (MC), and Murraya koenigii (MK) on the amelioration of rotenone-induced toxicity in wild-type Drosophila melanogaster (Oregon R+) at biochemical, cellular, and behavioral levels. Phytoextracts were prepared from all three plants, i.e., UD, MC, and MK (aqueous and ethanolic fractions), and their bioactive compounds were evaluated using in vitro biochemical parameters (DPPH, ABTS, TPC, and TFC), UV-Vis, followed by FT-IR and HPLC. Third instar larvae and freshly eclosed flies were treated with 500 µM rotenone alone or in combination with UD, MC, and MK for 24 to 120 h. Following exposure, cytotoxicity (dye exclusion test), biochemical (protein estimation and acetylcholinesterase inhibition assays), and behavioral assays (climbing and jumping assays) were performed. Among all three plant extracts, MK exhibited the highest antioxidant properties due to the highest TPC, TFC, DPPH, and ABTS, followed by UD, then MC. The overall trend was MK > UD > MC. In this context, ethnopharmacological properties mimic the same effect in Drosophila, exhibiting significantly (p < 0.05) reduced cytotoxicity (trypan blue), improved biochemical parameters (proteotoxicity and AChE activity), and better behavioral parameters in the organisms cotreated with phyto extracts compared with rotenone. Conclusively, UV-Vis, FTIR, and HPLC analyses differentiated the plant extracts. The findings of this research may be beneficial in the use of select herbs as viable sources of phyto-ingredients that could be of interest in nutraceutical development and various clinical applications.
Collapse
Affiliation(s)
- Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Sumaira Yousuf
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P. Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
33
|
Lin WQ, Ngian ZK, Koh TW, Ong CT. Altered stability of nuclear lamin-B marks the onset of aging in male Drosophila. PLoS One 2022; 17:e0265223. [PMID: 35324942 PMCID: PMC8947137 DOI: 10.1371/journal.pone.0265223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022] Open
Abstract
Epigenetic alterations occur during aging, but it remains unclear what epigenetic features are associated with the onset of physiological decline in animals. Nuclear lamin-B forms the filamentous meshwork underneath the nuclear envelope, providing the structural scaffold necessary for genome organization and gene regulation. We found that reduced level of nuclear lamin-B protein coincides with the decline in locomotor activity and stress resistance in young adult male Drosophila. Ubiquitous lamin-B expression improves locomotor activity of the male flies at the expense of lower stress resistance and shorten lifespan. This observation suggests that tissue-specific expression of lamin-B may regulate different aspects of animal physiology during aging. To test this hypothesis, specific GAL-4 lines were used to drive the expression of lamin-B in specific neuronal populations and muscle tissues in male flies. Ectopic expression of lamin-B in the dopaminergic neurons within the protocerebral anterior medial region of the brain improves the locomotor activity of the male flies with little impact on their stress responses and lifespan. Interestingly, age-dependent decrease in the level of lamin-B protein is independent of its mRNA expression. Instead, cellular thermal shift assay showed that lamin-B and CP190 insulator protein undergo significant change in their solubility during aging. This suggests that the increased solubility of lamin-B protein may contribute to its reduced stability and degradation during aging.
Collapse
Affiliation(s)
- Wei-Qi Lin
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Zhen-Kai Ngian
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Chin-Tong Ong
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
34
|
Miozzo F, Valencia-Alarcón EP, Stickley L, Majcin Dorcikova M, Petrelli F, Tas D, Loncle N, Nikonenko I, Bou Dib P, Nagoshi E. Maintenance of mitochondrial integrity in midbrain dopaminergic neurons governed by a conserved developmental transcription factor. Nat Commun 2022; 13:1426. [PMID: 35301315 PMCID: PMC8931002 DOI: 10.1038/s41467-022-29075-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Progressive degeneration of dopaminergic (DA) neurons in the substantia nigra is a hallmark of Parkinson’s disease (PD). Dysregulation of developmental transcription factors is implicated in dopaminergic neurodegeneration, but the underlying molecular mechanisms remain largely unknown. Drosophila Fer2 is a prime example of a developmental transcription factor required for the birth and maintenance of midbrain DA neurons. Using an approach combining ChIP-seq, RNA-seq, and genetic epistasis experiments with PD-linked genes, here we demonstrate that Fer2 controls a transcriptional network to maintain mitochondrial structure and function, and thus confers dopaminergic neuroprotection against genetic and oxidative insults. We further show that conditional ablation of Nato3, a mouse homolog of Fer2, in differentiated DA neurons causes mitochondrial abnormalities and locomotor impairments in aged mice. Our results reveal the essential and conserved role of Fer2 homologs in the mitochondrial maintenance of midbrain DA neurons, opening new perspectives for modeling and treating PD. Mitochondrial dysfunction in dopaminergic neurons is a pathological hallmark of Parkinson’s disease. Here, the authors find a conserved mechanism by which a single transcription factor controls mitochondrial health in dopaminergic neurons during the aging process.
Collapse
Affiliation(s)
- Federico Miozzo
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.,Neuroscience Institute - CNR (IN-CNR), Milan, Italy
| | - Eva P Valencia-Alarcón
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Luca Stickley
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Michaëla Majcin Dorcikova
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland
| | | | - Damla Tas
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.,The Janssen Pharmaceutical Companies of Johnson & Johnson, Bern, Switzerland
| | - Nicolas Loncle
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.,Puma Biotechnology, Inc., Berkeley, CA, USA
| | - Irina Nikonenko
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Peter Bou Dib
- Institute of Cell Biology, University of Bern, CH-3012, Bern, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
35
|
Couto SDF, Araujo SM, Bortolotto VC, Dahleh MMM, Musachio EAS, Pinheiro FC, Romio LC, do Sacramento M, Alves D, Prigol M. Effectiveness of 7-chloro-4-(phenylselanyl) quinoline in improving learning, short-term memory, and anxiety-like behaviors in a mimetic model of Parkinson's disease in Drosophila melanogaster. NEW J CHEM 2022. [DOI: 10.1039/d2nj04011e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The potential of 4-PSQ on psychomotor and non-motor behaviors of PD, such as spontaneous locomotor activity, learning, memory, and anxiety.
Collapse
Affiliation(s)
- Shanda de Freitas Couto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
- Departamento de Nutrição – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Franciane Cabral Pinheiro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Leugim Corteze Romio
- Departamento de Matemática – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Manoela do Sacramento
- Laboratório de Síntese Orgânica Limpa – LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA) – Universidade Federal de Pelotas – Campus Universitário, S/N – Prédio/Bloco: 30 e 32, Capão do Leão, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa – LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA) – Universidade Federal de Pelotas – Campus Universitário, S/N – Prédio/Bloco: 30 e 32, Capão do Leão, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
- Departamento de Nutrição – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| |
Collapse
|
36
|
Hernandez-Diaz S, Ghimire S, Sanchez-Mirasierra I, Montecinos-Oliva C, Swerts J, Kuenen S, Verstreken P, Soukup SF. Endophilin-B regulates autophagy during synapse development and neurodegeneration. Neurobiol Dis 2021; 163:105595. [PMID: 34933093 DOI: 10.1016/j.nbd.2021.105595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023] Open
Abstract
Synapses are critical for neuronal communication and brain function. To maintain neuronal homeostasis, synapses rely on autophagy. Autophagic alterations cause neurodegeneration and synaptic dysfunction is a feature in neurodegenerative diseases. In Parkinson's disease (PD), where the loss of synapses precedes dopaminergic neuron loss, various PD-causative proteins are involved in the regulation of autophagy. So far only a few factors regulating autophagy at the synapse have been identified and the molecular mechanisms underlying autophagy at the synapse is only partially understood. Here, we describe Endophilin-B (EndoB) as a novel player in the regulation of synaptic autophagy in health and disease. We demonstrate that EndoB is required for autophagosome biogenesis at the synapse, whereas the loss of EndoB blocks the autophagy induction promoted by the PD mutation LRRK2G2019S. We show that EndoB is required to prevent neuronal loss. Moreover, loss of EndoB in the Drosophila visual system leads to an increase in synaptic contacts between photoreceptor terminals and their post-synaptic synapses. These data confirm the role of autophagy in synaptic contact formation and neuronal survival.
Collapse
Affiliation(s)
| | - Saurav Ghimire
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | | - Jef Swerts
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Sabine Kuenen
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | | |
Collapse
|
37
|
Driscoll M, Buchert SN, Coleman V, McLaughlin M, Nguyen A, Sitaraman D. Compartment specific regulation of sleep by mushroom body requires GABA and dopaminergic signaling. Sci Rep 2021; 11:20067. [PMID: 34625611 PMCID: PMC8501079 DOI: 10.1038/s41598-021-99531-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Sleep is a fundamental behavioral state important for survival and is universal in animals with sufficiently complex nervous systems. As a highly conserved neurobehavioral state, sleep has been described in species ranging from jellyfish to humans. Biogenic amines like dopamine, serotonin and norepinephrine have been shown to be critical for sleep regulation across species but the precise circuit mechanisms underlying how amines control persistence of sleep, arousal and wakefulness remain unclear. The fruit fly, Drosophila melanogaster, provides a powerful model system for the study of sleep and circuit mechanisms underlying state transitions and persistence of states to meet the organisms motivational and cognitive needs. In Drosophila, two neuropils in the central brain, the mushroom body (MB) and the central complex (CX) have been shown to influence sleep homeostasis and receive aminergic neuromodulator input critical to sleep–wake switch. Dopamine neurons (DANs) are prevalent neuromodulator inputs to the MB but the mechanisms by which they interact with and regulate sleep- and wake-promoting neurons within MB are unknown. Here we investigate the role of subsets of PAM-DANs that signal wakefulness and project to wake-promoting compartments of the MB. We find that PAM-DANs are GABA responsive and require GABAA-Rdl receptor in regulating sleep. In mapping the pathways downstream of PAM neurons innervating γ5 and β′2 MB compartments we find that wakefulness is regulated by both DopR1 and DopR2 receptors in downstream Kenyon cells (KCs) and mushroom body output neurons (MBONs). Taken together, we have identified and characterized a dopamine modulated sleep microcircuit within the mushroom body that has previously been shown to convey information about positive and negative valence critical for memory formation. These studies will pave way for understanding how flies balance sleep, wakefulness and arousal.
Collapse
Affiliation(s)
- Margaret Driscoll
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Steven N Buchert
- Department of Psychology, College of Science, California State University- East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA
| | - Victoria Coleman
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Morgan McLaughlin
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Amanda Nguyen
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Divya Sitaraman
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA. .,Department of Psychology, College of Science, California State University- East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA.
| |
Collapse
|
38
|
Erhardt B, Marcora MS, Frenkel L, Bochicchio PA, Bodin DH, Silva BA, Farías MI, Allo MÁ, Höcht C, Ferrari CC, Pitossi FJ, Leal MC. Plasma membrane calcium ATPase downregulation in dopaminergic neurons alters cellular physiology and motor behaviour in Drosophila melanogaster. Eur J Neurosci 2021; 54:5915-5931. [PMID: 34312939 DOI: 10.1111/ejn.15401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
The accumulation of Ca2+ and its subsequent increase in oxidative stress is proposed to be involved in selective dysfunctionality of dopaminergic neurons, the main cell type affected in Parkinson's disease. To test the in vivo impact of Ca2+ increment in dopaminergic neurons physiology, we downregulated the plasma membrane Ca2+ ATPase (PMCA), a pump that extrudes cytosolic Ca2+ , by expressing PMCARNAi in Drosophila melanogaster dopaminergic neurons. In these animals, we observed major locomotor alterations paralleled to higher cytosolic Ca2+ and increased levels of oxidative stress in mitochondria. Interestingly, although no overt degeneration of dopaminergic neurons was observed, evidences of neuronal dysfunctionality were detected such as increases in presynaptic vesicles in dopaminergic neurons and in the levels of dopamine in the brain, as well as presence of toxic effects when PMCA was downregulated in the eye. Moreover, reduced PMCA levels were found in a Drosophila model of Parkinson's disease, Parkin knock-out, expanding the functional relevance of PMCA reduction to other Parkinson's disease-related models. In all, we have generated a new model to study motor abnormalities caused by increments in Ca2+ that lead to augmented oxidative stress in a dopaminergic environment, added to a rise in synaptic vesicles and dopamine levels.
Collapse
Affiliation(s)
- Brenda Erhardt
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Fundación Instituto Leloir, Buenos Aires, Argentina
| | - María Silvina Marcora
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Buenos Aires, Argentina
| | - Lía Frenkel
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Pablo Alejandro Bochicchio
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Diego Hernán Bodin
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Berenice Anabel Silva
- Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - María Isabel Farías
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Miguel Ángel Allo
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christian Höcht
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Cintia Ferrari
- Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Juan Pitossi
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Fundación Instituto Leloir, Buenos Aires, Argentina
| | - María Celeste Leal
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Fundación Instituto Leloir, Buenos Aires, Argentina
| |
Collapse
|
39
|
Lee KM, Talikoti A, Shelton K, Grotewiel M. Tyramine synthesis, vesicular packaging, and the SNARE complex function coordinately in astrocytes to regulate Drosophila alcohol sedation. Addict Biol 2021; 26:e13019. [PMID: 33538092 PMCID: PMC8225576 DOI: 10.1111/adb.13019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Identifying mechanisms underlying alcohol-related behaviors could provide important insights regarding the etiology of alcohol use disorder. To date, most genetic studies on alcohol-related behavior in model organisms have focused on neurons, leaving the causal roles of glial mechanisms less comprehensively investigated. Here, we report our studies on the role of Tyrosine decarboxylase 2 (Tdc2), which converts tyrosine to the catecholamine tyramine, in glial cells in Drosophila alcohol sedation. Using genetic approaches that drove transgene expression constitutively in all glia, constitutively in astrocytes and conditionally in glia during adulthood, we found that knockdown and overexpression of Tdc2, respectively, increased and decreased the sensitivity to alcohol sedation in flies. Manipulation of the genes tyramine β-hydroxylase and tyrosine hydroxylase, which respectively synthesize octopamine and dopamine from tyramine and tyrosine, had no discernable effect on alcohol sedation, suggesting that Tdc2 affects alcohol sedation by regulating tyramine production. We also found that knockdown of the vesicular monoamine transporter (VMAT) and disruption of the SNARE complex in all glia or selectively in astrocytes increased sensitivity to alcohol sedation and that both VMAT and the SNARE complex functioned downstream of Tdc2. Our studies support a model in which the synthesis of tyramine and vesicle-mediated release of tyramine from adult astrocytes regulates alcohol sedation in Drosophila. Considering that tyramine is functionally orthologous to norepinephrine in mammals, our results raise the possibility that gliotransmitter synthesis release could be a conserved mechanism influencing behavioral responses to alcohol as well as alcohol use disorder.
Collapse
Affiliation(s)
- Kristen M. Lee
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ananya Talikoti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Keith Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mike Grotewiel
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
40
|
Glia-derived temporal signals orchestrate neurogenesis in the Drosophila mushroom body. Proc Natl Acad Sci U S A 2021; 118:2020098118. [PMID: 34078666 DOI: 10.1073/pnas.2020098118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsic mechanisms such as temporal series of transcription factors orchestrate neurogenesis from a limited number of neural progenitors in the brain. Extrinsic regulations, however, remain largely unexplored. Here we describe a two-step glia-derived signal that regulates neurogenesis in the Drosophila mushroom body (MB). In a temporal manner, glial-specific ubiquitin ligase dSmurf activates non-cell-autonomous Hedgehog signaling propagation by targeting the receptor Patched to suppress and promote the exit of MB neuroblast (NB) proliferation, thereby specifying the correct α/β cell number without affecting differentiation. Independent of NB proliferation, dSmurf also stabilizes the expression of the cell-adhesion molecule Fasciclin II (FasII) via its WW domains and regulates FasII homophilic interaction between glia and MB axons to refine α/β-lobe integrity. Our findings provide insights into how extrinsic glia-to-neuron communication coordinates with NB proliferation capacity to regulate MB neurogenesis; glial proteostasis is likely a generalized mechanism in orchestrating neurogenesis.
Collapse
|
41
|
Liao S, Amcoff M, Nässel DR. Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103495. [PMID: 33171202 DOI: 10.1016/j.ibmb.2020.103495] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Excess consumption of high-fat diet (HFD) is likely to result in obesity and increases the predisposition to associated health disorders. Drosophila melanogaster has emerged as an important model to study the effects of HFD on metabolism, gut function, behavior, and ageing. In this study, we investigated the effects of HFD on physiology and behavior of female flies at different time-points over several weeks. We found that HFD decreases lifespan, and also with age leads to accelerated decline of climbing ability in both virgins and mated flies. In virgins HFD also increased sleep fragmentation with age. Furthermore, long-term exposure to HFD results in elevated adipokinetic hormone (AKH) transcript levels and an enlarged crop with increased lipid stores. We detected no long-term effects of HFD on body mass, or levels of triacylglycerides (TAG), glycogen or glucose, although fecundity was diminished. However, one week of HFD resulted in decreased body mass and elevated TAG levels in mated flies. Finally, we investigated the role of AKH in regulating effects of HFD during aging. Both with normal diet (ND) and HFD, Akh mutant flies displayed increased longevity compared to control flies. However, both mutants and controls showed shortened lifespan on HFD compared to ND. In flies exposed to ND, fecundity is decreased in Akh mutants compared to controls after one week, but increased after three weeks. However, HFD leads to a similar decrease in fecundity in both genotypes after both exposure times. Thus, long-term exposure to HFD increases AKH signaling, impairs lifespan and fecundity and augments age-related behavioral senescence.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
42
|
Pütz SM, Kram J, Rauh E, Kaiser S, Toews R, Lueningschroer-Wang Y, Rieger D, Raabe T. Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like phenotypes in Drosophila. Dis Model Mech 2021; 14:dmm047811. [PMID: 34125184 PMCID: PMC8246267 DOI: 10.1242/dmm.047811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) provokes bradykinesia, resting tremor, rigidity and postural instability, and also non-motor symptoms such as depression, anxiety, sleep and cognitive impairments. Similar phenotypes can be induced in Drosophila melanogaster through modification of PD-relevant genes or the administration of PD-inducing toxins. Recent studies correlated deregulation of human p21-activated kinase 4 (PAK4) with PD, leaving open the question of a causative relationship of mutations in this gene for manifestation of PD symptoms. To determine whether flies lacking the PAK4 homolog Mushroom bodies tiny (Mbt) show PD-like phenotypes, we tested for a variety of PD criteria. Here, we demonstrate that mbt mutant flies show PD-like phenotypes including age-dependent movement deficits, reduced life expectancy and fragmented sleep. They also react to a stressful situation with higher immobility, indicating an influence of Mbt on emotional behavior. Loss of Mbt function has a negative effect on the number of dopaminergic protocerebral anterior medial (PAM) neurons, most likely caused by a proliferation defect of neural progenitors. The age-dependent movement deficits are not accompanied by a corresponding further loss of PAM neurons. Previous studies highlighted the importance of a small PAM subgroup for age-dependent PD motor impairments. We show that impaired motor skills are caused by a lack of Mbt in this PAM subgroup. In addition, a broader re-expression of Mbt in PAM neurons improves life expectancy. Conversely, selective Mbt knockout in the same cells shortens lifespan. We conclude that mutations in Mbt/PAK4 can play a causative role in the development of PD phenotypes.
Collapse
Affiliation(s)
- Stephanie M. Pütz
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Jette Kram
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Elisa Rauh
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Sophie Kaiser
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Romy Toews
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Yi Lueningschroer-Wang
- Neurobiology and Genetics, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Thomas Raabe
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
43
|
Davis J, Da Silva Santos C, Zavala NC, Gans N, Patracuolla D, Fehrenbach M, Babcock DT. Characterizing dopaminergic neuron vulnerability using Genome-wide analysis. Genetics 2021; 218:6284964. [PMID: 34038543 PMCID: PMC8864742 DOI: 10.1093/genetics/iyab081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Parkinson’s disease (PD) is primarily characterized by the loss of dopaminergic (DA) neurons in the brain. However, little is known about why DA neurons are selectively vulnerable to PD. To identify genes that are associated with DA neuron loss, we screened through 201 wild-caught populations of Drosophila melanogaster as part of the Drosophila Genetic Reference Panel. Here, we identify the top-associated genes containing single-nucleotide polymorphisms that render DA neurons vulnerable. These genes were further analyzed by using mutant analysis and tissue-specific knockdown for functional validation. We found that this loss of DA neurons caused progressive locomotor dysfunction in mutants and gene knockdown analysis. The identification of genes associated with the progressive loss of DA neurons should help to uncover factors that render these neurons vulnerable in PD, and possibly develop strategies to make these neurons more resilient.
Collapse
Affiliation(s)
- Jacinta Davis
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | | | | | - Nicholas Gans
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Daniel Patracuolla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Monica Fehrenbach
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Daniel T Babcock
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
44
|
Ikarashi M, Tanimoto H. Drosophila acquires seconds-scale rhythmic behavior. J Exp Biol 2021; 224:238112. [PMID: 33795422 DOI: 10.1242/jeb.242443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
Detection of the temporal structure of stimuli is crucial for prediction. While perception of interval timing is relevant for immediate behavioral adaptations, it has scarcely been investigated, especially in invertebrates. Here, we examined whether the fruit fly, Drosophila melanogaster, can acquire rhythmic behavior in the range of seconds. To this end, we developed a novel temporal conditioning paradigm utilizing repeated electric shocks. Combined automatic behavioral annotation and time-frequency analysis revealed that behavioral rhythms continued after cessation of the shocks. Furthermore, we found that aging impaired interval timing. This study thus not only demonstrates the ability of insects to acquire behavioral rhythms of a few seconds, but highlights a life-course decline of temporal coordination, which is also common in mammals.
Collapse
Affiliation(s)
- Masayoshi Ikarashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| |
Collapse
|
45
|
Bridi JC, Bereczki E, Smith SK, Poças GM, Kottler B, Domingos PM, Elliott CJ, Aarsland D, Hirth F. Presynaptic accumulation of α-synuclein causes synaptopathy and progressive neurodegeneration in Drosophila. Brain Commun 2021; 3:fcab049. [PMID: 33997781 PMCID: PMC8111063 DOI: 10.1093/braincomms/fcab049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Alpha-synuclein (α-syn) mislocalization and accumulation in intracellular inclusions is the major pathological hallmark of degenerative synucleinopathies, including Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies. Typical symptoms are behavioural abnormalities including motor deficits that mark disease progression, while non-motor symptoms and synaptic deficits are already apparent during the early stages of disease. Synucleinopathies have therefore been considered synaptopathies that exhibit synaptic dysfunction prior to neurodegeneration. However, the mechanisms and events underlying synaptopathy are largely unknown. Here we investigated the cascade of pathological events underlying α-syn accumulation and toxicity in a Drosophila model of synucleinopathy by employing a combination of histological, biochemical, behavioural and electrophysiological assays. Our findings demonstrate that targeted expression of human α-syn leads to its accumulation in presynaptic terminals that caused downregulation of synaptic proteins, cysteine string protein, synapsin, and syntaxin 1A, and a reduction in the number of Bruchpilot puncta, the core component of the presynaptic active zone essential for its structural integrity and function. These α-syn-mediated presynaptic alterations resulted in impaired neuronal function, which triggered behavioural deficits in ageing Drosophila that occurred prior to progressive degeneration of dopaminergic neurons. Comparable alterations in presynaptic active zone protein were found in patient brain samples of dementia with Lewy bodies. Together, these findings demonstrate that presynaptic accumulation of α-syn impairs the active zone and neuronal function, which together cause synaptopathy that results in behavioural deficits and the progressive loss of dopaminergic neurons. This sequence of events resembles the cytological and behavioural phenotypes that characterise the onset and progression of synucleinopathies, suggesting that α-syn-mediated synaptopathy is an initiating cause of age-related neurodegeneration.
Collapse
Affiliation(s)
- Jessika C Bridi
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm 171 77, Sweden
| | - Saffron K Smith
- Department of Biology and York Biomedical Research Institute, University of York, York YO1 5DD, UK
| | - Gonçalo M Poças
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Lisbon 2780-157, Portugal
- School of Biological Sciences, Monash University, Melbourne, VIC 34QP+JV, Australia
| | - Benjamin Kottler
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Lisbon 2780-157, Portugal
| | - Christopher J Elliott
- Department of Biology and York Biomedical Research Institute, University of York, York YO1 5DD, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger 4068, Norway
| | - Frank Hirth
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| |
Collapse
|
46
|
Hedgehog Signaling Modulates Glial Proteostasis and Lifespan. Cell Rep 2021; 30:2627-2643.e5. [PMID: 32101741 DOI: 10.1016/j.celrep.2020.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
The conserved Hedgehog signaling pathway has well-established roles in development. However, its function during adulthood remains largely unknown. Here, we investigated whether the Hedgehog signaling pathway is active during adult life in Drosophila melanogaster, and we uncovered a protective function for Hedgehog signaling in coordinating correct proteostasis in glial cells. Adult-specific depletion of Hedgehog reduces lifespan, locomotor activity, and dopaminergic neuron integrity. Conversely, increased expression of Hedgehog extends lifespan and improves fitness. Moreover, Hedgehog pathway activation in glia rescues the lifespan and age-associated defects of hedgehog mutants. The Hedgehog pathway regulates downstream chaperones, whose overexpression in glial cells was sufficient to rescue the shortened lifespan and proteostasis defects of hedgehog mutants. Finally, we demonstrate the protective ability of Hedgehog signaling in a Drosophila Alzheimer's disease model expressing human amyloid beta in the glia. Overall, we propose that Hedgehog signaling is requisite for lifespan determination and correct proteostasis in glial cells.
Collapse
|
47
|
Inoshita T, Takemoto D, Imai Y. Analysis of Dopaminergic Functions in Drosophila. Methods Mol Biol 2021; 2322:185-193. [PMID: 34043204 DOI: 10.1007/978-1-0716-1495-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dopaminergic (DA) neurons regulate various physiological functions, including motor function, emotion, learning, sleep, and arousal. Degeneration of DA neurons in the substantia nigra of the midbrain causes motor disturbance in Parkinson's disease (PD). Studies on familial PD have revealed that a subset of PD genes encode proteins that regulate mitochondrial function and synaptic dynamics. Drosophila is a powerful model of PD, whereby genetic interactions of PD genes with well-conserved cellular signaling can be evaluated. Morphological changes in mitochondria, along with dysfunction and degeneration of DA neurons, have been reported in many studies using Drosophila PD models. In this chapter, we will describe imaging methods to visualize mitochondria in DA neurons and to evaluate spontaneous neural activity of DA neurons in the Drosophila brain.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisaku Takemoto
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
48
|
Inoshita T, Imai Y. Cytosolic and Mitochondrial Ca 2+ Imaging in Drosophila Dopaminergic Neurons. Methods Mol Biol 2021; 2322:207-214. [PMID: 34043206 DOI: 10.1007/978-1-0716-1495-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ATP-producing organelle mitochondrion controls cellular or synaptic Ca2+ concentrations through temporal uptake of Ca2+ outside of the mitochondria. Although intracellular Ca2+ influx occurs during neuronal activity, a persistently higher concentration of intracellular Ca2+ is neurotoxic. Healthy mitochondria ensure rapid Ca2+ uptake, which is necessary for proper neuronal activity. Mitochondrial Ca2+ buffering activity decreases in aged or sick neurons. In this chapter, we will introduce our protocol for evaluating Ca2+ buffering activity through the mitochondria during neuronal activity of dopaminergic neurons.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
49
|
Siju KP, De Backer JF, Grunwald Kadow IC. Dopamine modulation of sensory processing and adaptive behavior in flies. Cell Tissue Res 2021; 383:207-225. [PMID: 33515291 PMCID: PMC7873103 DOI: 10.1007/s00441-020-03371-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Behavioral flexibility for appropriate action selection is an advantage when animals are faced with decisions that will determine their survival or death. In order to arrive at the right decision, animals evaluate information from their external environment, internal state, and past experiences. How these different signals are integrated and modulated in the brain, and how context- and state-dependent behavioral decisions are controlled are poorly understood questions. Studying the molecules that help convey and integrate such information in neural circuits is an important way to approach these questions. Many years of work in different model organisms have shown that dopamine is a critical neuromodulator for (reward based) associative learning. However, recent findings in vertebrates and invertebrates have demonstrated the complexity and heterogeneity of dopaminergic neuron populations and their functional implications in many adaptive behaviors important for survival. For example, dopaminergic neurons can integrate external sensory information, internal and behavioral states, and learned experience in the decision making circuitry. Several recent advances in methodologies and the availability of a synaptic level connectome of the whole-brain circuitry of Drosophila melanogaster make the fly an attractive system to study the roles of dopamine in decision making and state-dependent behavior. In particular, a learning and memory center-the mushroom body-is richly innervated by dopaminergic neurons that enable it to integrate multi-modal information according to state and context, and to modulate decision-making and behavior.
Collapse
Affiliation(s)
- K. P. Siju
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jean-Francois De Backer
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ilona C. Grunwald Kadow
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
50
|
Hu J, Liu J, Zhu Y, Diaz-Perez Z, Sheridan M, Royer H, Leibensperger R, Maizel D, Brand L, Popendorf KJ, Gaston CJ, Zhai RG. Exposure to Aerosolized Algal Toxins in South Florida Increases Short- and Long-Term Health Risk in Drosophila Model of Aging. Toxins (Basel) 2020; 12:E787. [PMID: 33322328 PMCID: PMC7763642 DOI: 10.3390/toxins12120787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
Harmful algal blooms (HABs) are a rising health and environmental concern in the United States, particularly in South Florida. Skin contact and the ingestion of contaminated water or fish and other seafood have been proven to have severe toxicity to humans in some cases. However, the impact of aerosolized HAB toxins is poorly understood. In particular, knowledge regarding either the immediate or long-term effects of exposure to aerosolized cyanotoxins produced by freshwater blue-green algae does not exist. The aim of this study was to probe the toxicity of aerosolized cyanobacterial blooms using Drosophila melanogaster as an animal model. The exposure of aerosolized HABs at an early age leads to the most severe long-term impact on health and longevity among all age groups. Young groups and old males showed a strong acute response to HAB exposure. In addition, brain morphological analysis using fluorescence imaging reveals significant indications of brain degeneration in females exposed to aerosolized HABs in early or late stages. These results indicate that one-time exposure to aerosolized HAB particles causes a significant health risk, both immediately and in the long-term. Interestingly, age at the time of exposure plays an important role in the specific nature of the impact of aerosol HABs. As BMAA and microcystin have been found to be the significant toxins in cyanobacteria, the concentration of both toxins in the water and aerosols was examined. BMAA and microcystin are consistently detected in HAB waters, although their concentrations do not always correlate with the severity of the health impact, suggesting the potential contribution from additional toxins present in the aerosolized HAB. This study demonstrates, for the first time, the health risk of exposure to aerosolized HAB, and further highlights the critical need and importance of understanding the toxicity of aerosolized cyanobacteria HAB particles and determining the immediate and long-term health impacts of HAB exposure.
Collapse
Affiliation(s)
- Jiaming Hu
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (J.H.); (M.S.); (H.R.); (R.L.III); (C.J.G.)
- Programs in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jiaqi Liu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (Y.Z.); (Z.D.-P.)
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (Y.Z.); (Z.D.-P.)
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (Y.Z.); (Z.D.-P.)
| | - Michael Sheridan
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (J.H.); (M.S.); (H.R.); (R.L.III); (C.J.G.)
| | - Haley Royer
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (J.H.); (M.S.); (H.R.); (R.L.III); (C.J.G.)
| | - Raymond Leibensperger
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (J.H.); (M.S.); (H.R.); (R.L.III); (C.J.G.)
| | - Daniela Maizel
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (D.M.); (K.J.P.)
| | - Larry Brand
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA;
| | - Kimberly J. Popendorf
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (D.M.); (K.J.P.)
| | - Cassandra J. Gaston
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (J.H.); (M.S.); (H.R.); (R.L.III); (C.J.G.)
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (Y.Z.); (Z.D.-P.)
| |
Collapse
|