1
|
Bernard PB, Castano AM, Buonarati OR, Camp CR, Hell JW, Benke TA. Early life seizures chronically disrupt L-type voltage gated calcium channel regulation of mGluR mediated long term depression via interactions with protein phosphatase 2A. Neurobiol Dis 2025; 209:106884. [PMID: 40147739 PMCID: PMC12039582 DOI: 10.1016/j.nbd.2025.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025] Open
Abstract
We probed the dependence of metabotropic glutamate receptor dependent long-term depression (mGluR-LTD) on L-type voltage gated calcium channels (LTCCs). In prior work, we found that in a rat model of early life seizures (ELS), exaggerated mGluR-LTD was partly mediated by LTCCs and protein phosphatase 2A (PP2A). Here, we further investigated the interactive role of LTCCs, PP2A, and protein kinase A (PKA) in this same model. PP2Ac is known to bind CaV1.2 and modulate its function; displacement of PP2A (C subunit, or PP2Ac) as well as PKA phosphorylation of CaV1.2 at serine 1928, result in enhanced CaV1.2 function. We found that ELS enhanced LTCC activity. We further found that pharmacological displacement of PP2Ac (but not PP2B/calcineurin) from CaV1.2 enhanced mGluR-LTD in controls. This was occluded by blockade of PP2A or ELS. The LTCC-dihydropyridine agonist BayK 8644 enhanced mGluR-LTD in controls, which was also occluded by ELS. Up-regulation of both intracellular Ca2+ and PKA activity were implicated in ELS enhancement of mGluR-LTD, as LTD was normalized in ELS by depletion of internal calcium stores or blockade of PKA. These results support a dynamic model of mGluR-LTD regulation by LTCCs through PP2Ac binding and phosphorylation by PKA. This regulation is chronically lost after ELS. Together with our prior work, these studies tie hyperactive LTCCs to the chronic ELS behavioral phenotype that includes abnormal working memory, fear conditioning and socialization.
Collapse
Affiliation(s)
- Paul B Bernard
- Departments of Pediatrics, University of Colorado, School of Medicine, United States of America
| | - Anna M Castano
- Departments of Pediatrics, University of Colorado, School of Medicine, United States of America; Pharmacology, University of Colorado, School of Medicine, United States of America
| | - Olivia R Buonarati
- Pharmacology, University of Colorado, School of Medicine, United States of America; Department of Pharmacology, School of Medicine, University of California, Davis, CA, United States of America
| | - Chad R Camp
- Pharmacology, University of Colorado, School of Medicine, United States of America
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, United States of America
| | - Tim A Benke
- Departments of Pediatrics, University of Colorado, School of Medicine, United States of America; Pharmacology, University of Colorado, School of Medicine, United States of America; Neurology, University of Colorado, School of Medicine, United States of America; Otolaryngology, University of Colorado, School of Medicine, United States of America.
| |
Collapse
|
2
|
Xiao ZX, Wang XY, Zhou N, Yi XT, Zhang XQ, Wu QL, Li Z, Zhang X, Xu HM, Xu XF. Pde4b-regulated cAMP signaling pathway in the AUD GABA-S1Tr Sst circuit underlies acute-stress-induced anxiety-like behavior. Cell Rep 2025; 44:115253. [PMID: 39891910 DOI: 10.1016/j.celrep.2025.115253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
Acute-stress-induced anxiety helps animals avoid danger, but the neural and molecular mechanisms controlling this behavior remain largely elusive. Here, we find that acute physical stress activates many neurons in the primary somatosensory cortex, trunk region (S1Tr). Single-cell sequencing reveals that the S1Tr c-fos-positive neurons activated by acute stress are largely GABAergic somatostatin (Sst) neurons. These S1TrSst neurons desensitize during subsequent anxiety-like behavior tests. Inhibiting or inducing apoptosis of S1TrSst neurons mimics acute-stress effects and induces anxiety, while activating these neurons reduces acute-stress-induced anxiety. S1TrSst cells receive inputs from secondary auditory cortex, dorsal area (AUD) GABAergic neurons to modulate this anxiety. Spatial transcriptome sequencing and targeted Pde4b protein knockdown show that acute stress reduces Pde4b-regulated cAMP signaling in AUDGABA-S1TrSst projections, leading to decreased S1TrSst neuron activity in subsequent behavioral tests. Our study reports a neural and molecular mechanism for acute-stress-induced anxiety, providing a basis for treating anxiety disorders.
Collapse
Affiliation(s)
- Zhi-Xin Xiao
- School of Basic Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Xiao-Ya Wang
- School of Basic Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xue-Tong Yi
- School of Basic Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Xiao-Qi Zhang
- School of Basic Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Qi-Lin Wu
- School of Basic Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Zhuo Li
- School of Basic Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Xia Zhang
- School of Basic Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China; Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Hua-Min Xu
- School of Basic Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
| | - Xu-Feng Xu
- School of Basic Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
| |
Collapse
|
3
|
Yoo R, Haji-Ghassemi O, Bader M, Xu J, McFarlane C, Van Petegem F. Crystallographic, kinetic, and calorimetric investigation of PKA interactions with L-type calcium channels and Rad GTPase. J Biol Chem 2025; 301:108039. [PMID: 39615689 PMCID: PMC11728977 DOI: 10.1016/j.jbc.2024.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/22/2024] Open
Abstract
β-Adrenergic signaling activates cAMP-dependent PKA, which regulates the activity of L-type voltage-gated calcium channels such as CaV1.2. Several PKA target sites in the C-terminal tail of CaV1.2 have been identified, and their phosphorylation has been suggested to increase currents in specific tissues or heterologous expression systems. However, augmentation of CaV1.2 currents in the heart is instead mediated by phosphorylation of Rad, a small GTPase that can inhibit CaV1.2. It is unclear how each of the proposed target sites in CaV1.2 and Rad rank toward their recognition by PKA, which could reveal a preferential phosphorylation. Here, we used quantitative assays on three CaV1.2 and four Rad sites. Isothermal titration calorimetry and enzyme kinetics show that there are two Tiers of targets, with CaV1.2 residue Ser1981 and Rad residues Ser25 and Ser272 forming tier one substrates for PKA. These share a common feature with two Arginine residues at specific positions that can anchor the peptide into the substrate binding cleft of PKA. In contrast, PKA shows minimal activity for the other, tier two substrates, characterized by low kcat values and undetectable binding via isothermal titration calorimetry. The existence of two tiers suggests that PKA regulation of the CaV1.2 complex may occur in a graded fashion. We report crystal structures of the PKA catalytic subunit with and without a CaV1.2 and test the importance of several anchoring residues via mutagenesis. Different target sites utilize different anchors, highlighting the plasticity of PKAc to recognize substrates.
Collapse
Affiliation(s)
- Randy Yoo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.
| | - Marvin Bader
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Jiaming Xu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Ciaran McFarlane
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Oz S, Keren-Raifman T, Sharon T, Subramaniam S, Pallien T, Katz M, Tsemakhovich V, Sholokh A, Watad B, Tripathy DR, Sasson G, Chomsky-Hecht O, Vysochek L, Schulz-Christian M, Fecher-Trost C, Zühlke K, Bertinetti D, Herberg FW, Flockerzi V, Hirsch JA, Klussmann E, Weiss S, Dascal N. Tripartite interactions of PKA catalytic subunit and C-terminal domains of cardiac Ca 2+ channel may modulate its β-adrenergic regulation. BMC Biol 2024; 22:276. [PMID: 39609812 PMCID: PMC11603854 DOI: 10.1186/s12915-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The β-adrenergic augmentation of cardiac contraction, by increasing the conductivity of L-type voltage-gated CaV1.2 channels, is of great physiological and pathophysiological importance. Stimulation of β-adrenergic receptors (βAR) activates protein kinase A (PKA) through separation of regulatory (PKAR) from catalytic (PKAC) subunits. Free PKAC phosphorylates the inhibitory protein Rad, leading to increased Ca2+ influx. In cardiomyocytes, the core subunit of CaV1.2, CaV1.2α1, exists in two forms: full-length or truncated (lacking the distal C-terminus (dCT)). Signaling efficiency is believed to emanate from protein interactions within multimolecular complexes, such as anchoring PKA (via PKAR) to CaV1.2α1 by A-kinase anchoring proteins (AKAPs). However, AKAPs are inessential for βAR regulation of CaV1.2 in heterologous models, and their role in cardiomyocytes also remains unclear. RESULTS We show that PKAC interacts with CaV1.2α1 in heart and a heterologous model, independently of Rad, PKAR, or AKAPs. Studies with peptide array assays and purified recombinant proteins demonstrate direct binding of PKAC to two domains in CaV1.2α1-CT: the proximal and distal C-terminal regulatory domains (PCRD and DCRD), which also interact with each other. Data indicate both partial competition and possible simultaneous interaction of PCRD and DCRD with PKAC. The βAR regulation of CaV1.2α1 lacking dCT (which harbors DCRD) was preserved, but subtly altered, in a heterologous model, the Xenopus oocyte. CONCLUSIONS We discover direct interactions between PKAC and two domains in CaV1.2α1. We propose that these tripartite interactions, if present in vivo, may participate in organizing the multimolecular signaling complex and fine-tuning the βAR effect in cardiomyocytes.
Collapse
Affiliation(s)
- Shimrit Oz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- Department of Neuroscience, Faculty of Medicine, The Ruth and Bruce Rappaport, Haifa, 3109601, Israel
| | - Tal Keren-Raifman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Tom Sharon
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Suraj Subramaniam
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Tamara Pallien
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Moshe Katz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Vladimir Tsemakhovich
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Baraa Watad
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Debi Ranjan Tripathy
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
- National Forensic Science University, Radhanagar, Agartala, Tripura, 799001, India
| | - Giorgia Sasson
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Orna Chomsky-Hecht
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Leonid Vysochek
- Heart Center, Sheba Medical Center, Ramat Gan, 5262000, Israel
| | - Maike Schulz-Christian
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claudia Fecher-Trost
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Veit Flockerzi
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Joel A Hirsch
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Sharon Weiss
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| | - Nathan Dascal
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| |
Collapse
|
5
|
Wan D, Lu T, Li C, Hu C. Glucocorticoids Rapidly Modulate Ca V1.2-Mediated Calcium Signals through Kv2.1 Channel Clusters in Hippocampal Neurons. J Neurosci 2024; 44:e0179242024. [PMID: 39299804 PMCID: PMC11551909 DOI: 10.1523/jneurosci.0179-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
The precise regulation of Ca2+ signals plays a crucial role in the physiological functions of neurons. Here, we investigated the rapid effect of glucocorticoids on Ca2+ signals in cultured hippocampal neurons from both female and male rats. In cultured hippocampal neurons, glucocorticoids inhibited the spontaneous somatic Ca2+ spikes generated by Kv2.1-organized Ca2+ microdomains. Furthermore, glucocorticoids rapidly reduced the cell surface expressions of Kv2.1 and CaV1.2 channels in hippocampal neurons. In HEK293 cells transfected with Kv2.1 alone, glucocorticoids significantly reduced the surface expression of Kv2.1 with little effect on K+ currents. In HEK293 cells transfected with CaV1.2 alone, glucocorticoids inhibited CaV1.2 currents but had no effect on the cell surface expression of CaV1.2. Notably, in the presence of wild-type Kv2.1, glucocorticoids caused a decrease in the surface expression of CaV1.2 channels in HEK293 cells. However, this effect was not observed in the presence of nonclustering Kv2.1S586A mutant channels. Live-cell imaging showed that glucocorticoids rapidly decreased Kv2.1 clusters on the plasma membrane. Correspondingly, Western blot results indicated a significant increase in the cytoplasmic level of Kv2.1, suggesting the endocytosis of Kv2.1 clusters. Glucocorticoids rapidly decreased the intracellular cAMP concentration and the phosphorylation level of PKA in hippocampal neurons. The PKA inhibitor H89 mimicked the effect of glucocorticoids on Kv2.1, while the PKA agonist forskolin abrogated the effect. In conclusion, glucocorticoids rapidly suppress CaV1.2-mediated Ca2+ signals in hippocampal neurons by promoting the endocytosis of Kv2.1 channel clusters through reducing PKA activity.
Collapse
Affiliation(s)
- Di Wan
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Tongchuang Lu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Chenyang Li
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Changlong Hu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China,
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| |
Collapse
|
6
|
Benjamin-Zukerman T, Shimon G, Gaine ME, Dakwar A, Peled N, Aboraya M, Masri-Ismail A, Safadi-Safa R, Solomon M, Lev-Ram V, Rissman RA, Mayrhofer JE, Raffeiner A, Mol MO, Argue BMR, McCool S, Doan B, van Swieten J, Stefan E, Abel T, Ilouz R. A mutation in the PRKAR1B gene drives pathological mechanisms of neurodegeneration across species. Brain 2024; 147:3890-3905. [PMID: 38743596 PMCID: PMC11531844 DOI: 10.1093/brain/awae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Protein kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer with two catalytic subunits. Recently, the L50R variant in the gene encoding the RIβ subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIβ-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined post-mortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry and behavioural assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIβ is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIβ-L50R mouse model. We define RIβ-L50R as a causal mutation driving an age-dependent behavioural and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIβ dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the catalytic subunit protects the RIβ-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIβ-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gilat Shimon
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Marie E Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Anwar Dakwar
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Netta Peled
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Mohammad Aboraya
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Ashar Masri-Ismail
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Rania Safadi-Safa
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Meir Solomon
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Varda Lev-Ram
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert A Rissman
- Department of Physiology and Neurosciences, Alzheimer’s Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA 92121, USA
| | - Johanna E Mayrhofer
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Andrea Raffeiner
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Benney M R Argue
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Shaylah McCool
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Binh Doan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - John van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Eduard Stefan
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| |
Collapse
|
7
|
Vierra NC. Compartmentalized signaling in the soma: Coordination of electrical and protein kinase A signaling at neuronal ER-plasma membrane junctions. Bioessays 2024; 46:e2400126. [PMID: 39268818 DOI: 10.1002/bies.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Neuronal information processing depends on converting membrane depolarizations into compartmentalized biochemical signals that can modify neuronal activity and structure. However, our understanding of how neurons translate electrical signals into specific biochemical responses remains limited, especially in the soma where gene expression and ion channel function are crucial for neuronal activity. Here, I emphasize the importance of physically compartmentalizing action potential-triggered biochemical reactions within the soma. Emerging evidence suggests that somatic endoplasmic reticulum-plasma membrane (ER-PM) junctions are specialized organelles that coordinate electrical and biochemical signaling. The juxtaposition of ion channels and signaling proteins at a prominent subset of these sites enables compartmentalized calcium and cAMP-dependent protein kinase (PKA) signaling. I explore the hypothesis that these PKA-containing ER-PM junctions serve as critical sites for translating membrane depolarizations into PKA signals and identify key gaps in knowledge of the assembly, regulation, and neurobiological functions of this somatic signaling system.
Collapse
Affiliation(s)
- Nicholas C Vierra
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Flores‐Tamez VA, Martín‐Aragón Baudel M, Hong J, Taylor JL, Ren L, Le T, Syed AU, Moustafa Y, Singhrao N, Lemus‐Martinez WR, Reddy GR, Ramer V, Man KNM, Bartels P, Chen‐Izu Y, Chen C, Simo S, Dickson EJ, Morotti S, Grandi E, Santana LF, Hell JW, Horne MC, Nieves‐Cintrón M, Navedo MF. α1 C S1928 Phosphorylation of Ca V1.2 Channel Controls Vascular Reactivity and Blood Pressure. J Am Heart Assoc 2024; 13:e035375. [PMID: 39377203 PMCID: PMC11935578 DOI: 10.1161/jaha.124.035375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Increased vascular CaV1.2 channel function causes enhanced arterial tone during hypertension. This is mediated by elevations in angiotensin II/protein kinase C signaling. Yet, the mechanisms underlying these changes are unclear. We hypothesize that α1C phosphorylation at serine 1928 (S1928) is a key event mediating increased CaV1.2 channel function and vascular reactivity during angiotensin II signaling and hypertension. METHODS AND RESULTS The hypothesis was examined in freshly isolated mesenteric arteries and arterial myocytes from control and angiotensin II-infused mice. Specific techniques include superresolution imaging, proximity ligation assay, patch-clamp electrophysiology, Ca2+ imaging, pressure myography, laser speckle imaging, and blood pressure telemetry. Hierarchical "nested" and appropriate parametric or nonparametric t test and ANOVAs were used to assess statistical differences. We found that angiotensin II redistributed the CaV1.2 pore-forming α1C subunit into larger clusters. This was correlated with elevated CaV1.2 channel activity and cooperativity, global intracellular Ca2+ and contraction of arterial myocytes, enhanced myogenic tone, and altered blood flow in wild-type mice. These angiotensin II-induced changes were prevented/ameliorated in cells/arteries from S1928 mutated to alanine knockin mice, which contain a negative modulation of the α1C S1928 phosphorylation site. In angiotensin II-induced hypertension, increased α1C clustering, CaV1.2 activity and cooperativity, myogenic tone, and blood pressure in wild-type cells/tissue/mice were averted/reduced in S1928 mutated to alanine samples. CONCLUSIONS Results suggest an essential role for α1C S1928 phosphorylation in regulating channel distribution, activity and gating modality, and vascular function during angiotensin II signaling and hypertension. Phosphorylation of this single vascular α1C amino acid could be a risk factor for hypertension that may be targeted for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Junyoung Hong
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Jade L. Taylor
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Lu Ren
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Thanhmai Le
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Arsalan U. Syed
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Yumna Moustafa
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Navid Singhrao
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | | | | | - Victoria Ramer
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | | | - Peter Bartels
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Ye Chen‐Izu
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Chao‐Yin Chen
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Sergi Simo
- Department of Cell Biology & Human AnatomyUniversity of California DavisDavisCAUSA
| | - Eamonn J. Dickson
- Department of Physiology & Membrane BiologyUniversity of California DavisDavisCAUSA
| | - Stefano Morotti
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Eleonora Grandi
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - L. Fernando Santana
- Department of Physiology & Membrane BiologyUniversity of California DavisDavisCAUSA
| | - Johannes W. Hell
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - Mary C. Horne
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | | | - Manuel F. Navedo
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| |
Collapse
|
9
|
McCarthy CI, Kavalali ET. Nano-organization of synaptic calcium signaling. Biochem Soc Trans 2024; 52:1459-1471. [PMID: 38752834 PMCID: PMC11346461 DOI: 10.1042/bst20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 06/27/2024]
Abstract
Recent studies suggest an exquisite structural nano-organization within single synapses, where sites of evoked fusion - marked by clustering of synaptic vesicles, active zone proteins and voltage-gated calcium channels - are directly juxtaposed to postsynaptic receptor clusters within nanocolumns. This direct nanometer scale alignment between presynaptic fusion apparatus and postsynaptic receptors is thought to ensure the fidelity of synaptic signaling and possibly allow multiple distinct signals to occur without interference from each other within a single active zone. The functional specificity of this organization is made possible by the inherent nano-organization of calcium signals, where all the different calcium sources such as voltage-gated calcium channels, intracellular stores and store-operated calcium entry have dedicated local targets within their nanodomain to ensure precision of action. Here, we discuss synaptic nano-organization from the perspective of calcium signals, where some of the principal findings from early work in the 1980s continue to inspire current studies that exploit new genetic tools and super-resolution imaging technologies.
Collapse
Affiliation(s)
- Clara I. McCarthy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
| |
Collapse
|
10
|
Belghazi M, Iborra C, Toutendji O, Lasserre M, Debanne D, Goaillard JM, Marquèze-Pouey B. High-Resolution Proteomics Unravel a Native Functional Complex of Cav1.3, SK3, and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Midbrain Dopaminergic Neurons. Cells 2024; 13:944. [PMID: 38891076 PMCID: PMC11172389 DOI: 10.3390/cells13110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Pacemaking activity in substantia nigra dopaminergic neurons is generated by the coordinated activity of a variety of distinct somatodendritic voltage- and calcium-gated ion channels. We investigated whether these functional interactions could arise from a common localization in macromolecular complexes where physical proximity would allow for efficient interaction and co-regulations. For that purpose, we immunopurified six ion channel proteins involved in substantia nigra neuron autonomous firing to identify their molecular interactions. The ion channels chosen as bait were Cav1.2, Cav1.3, HCN2, HCN4, Kv4.3, and SK3 channel proteins, and the methods chosen to determine interactions were co-immunoprecipitation analyzed through immunoblot and mass spectrometry as well as proximity ligation assay. A macromolecular complex composed of Cav1.3, HCN, and SK3 channels was unraveled. In addition, novel potential interactions between SK3 channels and sclerosis tuberous complex (Tsc) proteins, inhibitors of mTOR, and between HCN4 channels and the pro-degenerative protein Sarm1 were uncovered. In order to demonstrate the presence of these molecular interactions in situ, we used proximity ligation assay (PLA) imaging on midbrain slices containing the substantia nigra, and we could ascertain the presence of these protein complexes specifically in substantia nigra dopaminergic neurons. Based on the complementary functional role of the ion channels in the macromolecular complex identified, these results suggest that such tight interactions could partly underly the robustness of pacemaking in dopaminergic neurons.
Collapse
Affiliation(s)
- Maya Belghazi
- CRN2M Centre de Recherche Neurobiologie-Neurophysiologie, CNRS, UMR7286, Aix-Marseille Université, 13015 Marseille, France;
- Institut de Microbiologie de la Méditerranée (IMM), CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Cécile Iborra
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Ophélie Toutendji
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Manon Lasserre
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Dominique Debanne
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Jean-Marc Goaillard
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Béatrice Marquèze-Pouey
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| |
Collapse
|
11
|
Koster KP, Fyke Z, Nguyen TTA, Niqula A, Noriega-González LY, Woolfrey KM, Dell’Acqua ML, Cologna SM, Yoshii A. Akap5 links synaptic dysfunction to neuroinflammatory signaling in a mouse model of infantile neuronal ceroid lipofuscinosis. Front Synaptic Neurosci 2024; 16:1384625. [PMID: 38798824 PMCID: PMC11116793 DOI: 10.3389/fnsyn.2024.1384625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Palmitoylation and depalmitoylation represent dichotomic processes by which a labile posttranslational lipid modification regulates protein trafficking and degradation. The depalmitoylating enzyme, palmitoyl-protein thioesterase 1 (PPT1), is associated with the devastating pediatric neurodegenerative condition, infantile neuronal ceroid lipofuscinosis (CLN1). CLN1 is characterized by the accumulation of autofluorescent lysosomal storage material (AFSM) in neurons and robust neuroinflammation. Converging lines of evidence suggest that in addition to cellular waste accumulation, the symptomology of CLN1 corresponds with disruption of synaptic processes. Indeed, loss of Ppt1 function in cortical neurons dysregulates the synaptic incorporation of the GluA1 AMPA receptor (AMPAR) subunit during a type of synaptic plasticity called synaptic scaling. However, the mechanisms causing this aberration are unknown. Here, we used the Ppt1-/- mouse model (both sexes) to further investigate how Ppt1 regulates synaptic plasticity and how its disruption affects downstream signaling pathways. To this end, we performed a palmitoyl-proteomic screen, which provoked the discovery that Akap5 is excessively palmitoylated at Ppt1-/- synapses. Extending our previous data, in vivo induction of synaptic scaling, which is regulated by Akap5, caused an excessive upregulation of GluA1 in Ppt1-/- mice. This synaptic change was associated with exacerbated disease pathology. Furthermore, the Akap5- and inflammation-associated transcriptional regulator, nuclear factor of activated T cells (NFAT), was sensitized in Ppt1-/- cortical neurons. Suppressing the upstream regulator of NFAT activation, calcineurin, with the FDA-approved therapeutic FK506 (Tacrolimus) modestly improved neuroinflammation in Ppt1-/- mice. These findings indicate that the absence of depalmitoylation stifles synaptic protein trafficking and contributes to neuroinflammation via an Akap5-associated mechanism.
Collapse
Affiliation(s)
- Kevin P. Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zach Fyke
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T. A. Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Amanda Niqula
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Kevin M. Woolfrey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neurology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Sun SED, Levenstein D, Li B, Mandelberg N, Chenouard N, Suutari BS, Sanchez S, Tian G, Rinzel J, Buzsáki G, Tsien RW. Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity. Cell Rep 2024; 43:113839. [PMID: 38507409 DOI: 10.1016/j.celrep.2024.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.
Collapse
Affiliation(s)
- Simón E D Sun
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Daniel Levenstein
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3810 University Street, Montreal, QC, Canada
| | - Boxing Li
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Nataniel Mandelberg
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Nicolas Chenouard
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l'hôpital, 75013 Paris, France
| | - Benjamin S Suutari
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Sandrine Sanchez
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Guoling Tian
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - John Rinzel
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Richard W Tsien
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
13
|
Simmons SC, Flerlage WJ, Langlois LD, Shepard RD, Bouslog C, Thomas EH, Gouty KM, Sanderson JL, Gouty S, Cox BM, Dell'Acqua ML, Nugent FS. AKAP150-anchored PKA regulates synaptic transmission and plasticity, neuronal excitability and CRF neuromodulation in the mouse lateral habenula. Commun Biol 2024; 7:345. [PMID: 38509283 PMCID: PMC10954712 DOI: 10.1038/s42003-024-06041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.
Collapse
Affiliation(s)
- Sarah C Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - William J Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Ludovic D Langlois
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Ryan D Shepard
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Christopher Bouslog
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Emily H Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Kaitlyn M Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Brian M Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Fereshteh S Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA.
| |
Collapse
|
14
|
Martinez TP, Larsen ME, Sullivan E, Woolfrey KM, Dell’Acqua ML. Amyloid-β-induced dendritic spine elimination requires Ca 2+-permeable AMPA receptors, AKAP-Calcineurin-NFAT signaling, and the NFAT target gene Mdm2. eNeuro 2024; 11:ENEURO.0175-23.2024. [PMID: 38331575 PMCID: PMC10925900 DOI: 10.1523/eneuro.0175-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Alzheimer's Disease (AD) is associated with brain accumulation of synaptotoxic amyloid-β (Aβ) peptides produced by the proteolytic processing of amyloid precursor protein (APP). Cognitive impairments associated with AD correlate with dendritic spine and excitatory synapse loss, particularly within the hippocampus. In rodents, soluble Aβ oligomers impair hippocampus-dependent learning and memory, promote dendritic spine loss, inhibit NMDA-type glutamate receptor (NMDAR)-dependent long-term potentiation (LTP), and promote synaptic depression (LTD), at least in part through activation of the Ca2+-CaM-dependent phosphatase calcineurin (CaN). Yet, questions remain regarding Aβ-dependent postsynaptic CaN signaling specifically at the synapse to mediate its synaptotoxicity. Here, we use pharmacologic and genetic approaches to demonstrate a role for postsynaptic signaling via A kinase-anchoring protein 150 (AKAP150)-scaffolded CaN in mediating Aβ-induced dendritic spine loss in hippocampal neurons from rats and mice of both sexes. In particular, we found that Ca2+-permeable AMPA-type glutamate receptors (CP-AMPARs), which were previously shown to signal through AKAP-anchored CaN to promote both LTD and Aβ-dependent inhibition of LTP, are also required upstream of AKAP-CaN signaling to mediate spine loss via overexpression of APP containing multiple mutations linked to familial, early-onset AD and increased Aβ production. In addition, we found that the CaN-dependent nuclear factor of activated T-cells (NFAT) transcription factors are required downstream to promote Aβ-mediated dendritic spine loss. Finally, we identified the E3-ubiquitin ligase Mdm2, which was previously linked to LTD and developmental synapse elimination, as a downstream NFAT target gene upregulated by Aβ whose enzymatic activity is required for Aβ-mediated spine loss.Significance Statement Impaired hippocampal function and synapse loss are hallmarks of AD linked to Aβ oligomers. Aβ exposure acutely blocks hippocampal LTP and enhances LTD and chronically leads to dendritic spine synapse loss. In particular, Aβ hijacks normal plasticity mechanisms, biasing them toward synapse weakening/elimination, with previous studies broadly linking CaN phosphatase signaling to this synaptic dysfunction. However, we do not understand how Aβ engages signaling specifically at synapses. Here we elucidate a synapse-to-nucleus signaling pathway coordinated by the postsynaptic scaffold protein AKAP150 that is activated by Ca2+ influx through CP-AMPARs and transduced to nucleus by CaN-NFAT signaling to transcriptionally upregulate the E3-ubiquitin ligase Mdm2 that is required for Aβ-mediated spine loss. These findings identify Mdm2 as potential therapeutic target for AD.
Collapse
Affiliation(s)
- Tyler P. Martinez
- Pharmacology PhD Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Matthew E. Larsen
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience PhD Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Emily Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kevin M. Woolfrey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neurotechnology Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
15
|
Simmons S, Flerlage W, Langlois L, Shepard R, Bouslog C, Thomas E, Gouty K, Sanderson J, Gouty S, Cox B, Dell’Acqua M, Nugent F. AKAP150-anchored PKA regulation of synaptic transmission and plasticity, neuronal excitability and CRF neuromodulation in the lateral habenula. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570160. [PMID: 38106086 PMCID: PMC10723374 DOI: 10.1101/2023.12.06.570160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Numerous studies of hippocampal synaptic function in learning and memory have established the functional significance of the scaffolding A-kinase anchoring protein 150 (AKAP150) in kinase and phosphatase regulation of synaptic receptor and ion channel trafficking/function and hence synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a critical role in brain's processing of rewarding/aversive experiences. Here we focused on an unexplored role of AKAP150 in the lateral habenula (LHb), a diencephalic brain region that integrates and relays negative reward signals from forebrain striatal and limbic structures to midbrain monoaminergic centers. LHb aberrant activity (specifically hyperactivity) is also linked to depression. Using whole cell patch clamp recordings in LHb of male wildtype (WT) and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), we found that the genetic disruption of PKA anchoring to AKAP150 significantly reduced AMPA receptor (AMPAR)-mediated glutamatergic transmission and prevented the induction of presynaptic endocannabinoid (eCB)-mediated long-term depression (LTD) in LHb neurons. Moreover, ΔPKA mutation potentiated GABAA receptor (GABAAR)-mediated inhibitory transmission postsynaptically while increasing LHb intrinsic neuronal excitability through suppression of medium afterhyperpolarizations (mAHPs). Given that LHb is a highly stress-responsive brain region, we further tested the effects of corticotropin releasing factor (CRF) stress neuromodulator on synaptic transmission and intrinsic excitability of LHb neurons in WT and ΔPKA mice. As in our earlier study in rat LHb, CRF significantly suppressed GABAergic transmission onto LHb neurons and increased intrinsic excitability by diminishing small-conductance potassium (SK) channel-mediated mAHPs. ΔPKA mutation-induced suppression of mAHPs also blunted the synaptic and neuroexcitatory actions of CRF in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPAR and GABAAR synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPAR and potassium channel trafficking and eCB signaling within the LHb.
Collapse
Affiliation(s)
- S.C. Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - W.J. Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - L.D. Langlois
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - R.D. Shepard
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - C. Bouslog
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - E.H. Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - K.M. Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - J.L. Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - S. Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - B.M. Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - M.L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - F.S. Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| |
Collapse
|
16
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 PMCID: PMC12024187 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
17
|
Posner C, Mehta S, Zhang J. Fluorescent biosensor imaging meets deterministic mathematical modelling: quantitative investigation of signalling compartmentalization. J Physiol 2023; 601:4227-4241. [PMID: 37747358 PMCID: PMC10764149 DOI: 10.1113/jp282696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Cells execute specific responses to diverse environmental cues by encoding information in distinctly compartmentalized biochemical signalling reactions. Genetically encoded fluorescent biosensors enable the spatial and temporal monitoring of signalling events in live cells. Temporal and spatiotemporal computational models can be used to interpret biosensor experiments in complex biochemical networks and to explore hypotheses that are difficult to test experimentally. In this review, we first provide brief discussions of the experimental toolkit of fluorescent biosensors as well as computational basics with a focus on temporal and spatiotemporal deterministic models. We then describe how we used this combined approach to identify and investigate a protein kinase A (PKA) - cAMP - Ca2+ oscillatory circuit in MIN6 β cells, a mouse pancreatic β cell system. We describe the application of this combined approach to interrogate how this oscillatory circuit is differentially regulated in a nano-compartment formed at the plasma membrane by the scaffolding protein A kinase anchoring protein 79/150. We leveraged both temporal and spatiotemporal deterministic models to identify the key regulators of this oscillatory circuit, which we confirmed with further experiments. The powerful approach of combining live-cell biosensor imaging with quantitative modelling, as discussed here, should find widespread use in the investigation of spatiotemporal regulation of cell signalling.
Collapse
Affiliation(s)
- Clara Posner
- Department of Pharmacology, University of California, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|
18
|
Vierra NC, Ribeiro-Silva L, Kirmiz M, van der List D, Bhandari P, Mack OA, Carroll J, Le Monnier E, Aicher SA, Shigemoto R, Trimmer JS. Neuronal ER-plasma membrane junctions couple excitation to Ca 2+-activated PKA signaling. Nat Commun 2023; 14:5231. [PMID: 37633939 PMCID: PMC10460453 DOI: 10.1038/s41467-023-40930-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023] Open
Abstract
Junctions between the endoplasmic reticulum (ER) and the plasma membrane (PM) are specialized membrane contacts ubiquitous in eukaryotic cells. Concentration of intracellular signaling machinery near ER-PM junctions allows these domains to serve critical roles in lipid and Ca2+ signaling and homeostasis. Subcellular compartmentalization of protein kinase A (PKA) signaling also regulates essential cellular functions, however, no specific association between PKA and ER-PM junctional domains is known. Here, we show that in brain neurons type I PKA is directed to Kv2.1 channel-dependent ER-PM junctional domains via SPHKAP, a type I PKA-specific anchoring protein. SPHKAP association with type I PKA regulatory subunit RI and ER-resident VAP proteins results in the concentration of type I PKA between stacked ER cisternae associated with ER-PM junctions. This ER-associated PKA signalosome enables reciprocal regulation between PKA and Ca2+ signaling machinery to support Ca2+ influx and excitation-transcription coupling. These data reveal that neuronal ER-PM junctions support a receptor-independent form of PKA signaling driven by membrane depolarization and intracellular Ca2+, allowing conversion of information encoded in electrical signals into biochemical changes universally recognized throughout the cell.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA.
| | - Luisa Ribeiro-Silva
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA
| | - Michael Kirmiz
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA
| | - Deborah van der List
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA
| | - Pradeep Bhandari
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Olivia A Mack
- Chemical Physiology and Biochemistry Department, Oregon Health & Science University, Portland, OR, USA
| | - James Carroll
- Chemical Physiology and Biochemistry Department, Oregon Health & Science University, Portland, OR, USA
| | - Elodie Le Monnier
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Sue A Aicher
- Chemical Physiology and Biochemistry Department, Oregon Health & Science University, Portland, OR, USA
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, USA.
| |
Collapse
|
19
|
Ireton KE, Xing X, Kim K, Weiner JC, Jacobi AA, Grover A, Foote M, Ota Y, Berman R, Hanks T, Hell JW. Regulation of the Ca 2+ Channel Ca V1.2 Supports Spatial Memory and Its Flexibility and LTD. J Neurosci 2023; 43:5559-5573. [PMID: 37419689 PMCID: PMC10376936 DOI: 10.1523/jneurosci.1521-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/30/2023] [Accepted: 05/15/2023] [Indexed: 07/09/2023] Open
Abstract
Widespread release of norepinephrine (NE) throughout the forebrain fosters learning and memory via adrenergic receptor (AR) signaling, but the molecular mechanisms are largely unknown. The β2 AR and its downstream effectors, the trimeric stimulatory Gs-protein, adenylyl cyclase (AC), and the cAMP-dependent protein kinase A (PKA), form a unique signaling complex with the L-type Ca2+ channel (LTCC) CaV1.2. Phosphorylation of CaV1.2 by PKA on Ser1928 is required for the upregulation of Ca2+ influx on β2 AR stimulation and long-term potentiation induced by prolonged theta-tetanus (PTT-LTP) but not LTP induced by two 1-s-long 100-Hz tetani. However, the function of Ser1928 phosphorylation in vivo is unknown. Here, we show that S1928A knock-in (KI) mice of both sexes, which lack PTT-LTP, express deficiencies during initial consolidation of spatial memory. Especially striking is the effect of this mutation on cognitive flexibility as tested by reversal learning. Mechanistically, long-term depression (LTD) has been implicated in reversal learning. It is abrogated in male and female S1928A knock-in mice and by β2 AR antagonists and peptides that displace β2 AR from CaV1.2. This work identifies CaV1.2 as a critical molecular locus that regulates synaptic plasticity, spatial memory and its reversal, and LTD.SIGNIFICANCE STATEMENT We show that phosphorylation of the Ca2+ channel CaV1.2 on Ser1928 is important for consolidation of spatial memory and especially its reversal, and long-term depression (LTD). Identification of Ser1928 as critical for LTD and reversal learning supports the model that LTD underlies flexibility of reference memory.
Collapse
Affiliation(s)
- Kyle E Ireton
- Department of Pharmacology, University of California, Davis, California 95616-8636
- Center for Neuroscience, University of California, Davis, California 95616-8636
| | - Xiaoming Xing
- Department of Pharmacology, University of California, Davis, California 95616-8636
| | - Karam Kim
- Department of Pharmacology, University of California, Davis, California 95616-8636
| | - Justin C Weiner
- Department of Pharmacology, University of California, Davis, California 95616-8636
| | - Ariel A Jacobi
- Department of Pharmacology, University of California, Davis, California 95616-8636
| | - Aarushi Grover
- Department of Pharmacology, University of California, Davis, California 95616-8636
| | - Molly Foote
- Center for Neuroscience, University of California, Davis, California 95616-8636
| | - Yusuke Ota
- Center for Neuroscience, University of California, Davis, California 95616-8636
| | - Robert Berman
- Center for Neuroscience, University of California, Davis, California 95616-8636
| | - Timothy Hanks
- Center for Neuroscience, University of California, Davis, California 95616-8636
- Department of Neurology, University of California, Davis, California 95616-8636
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, California 95616-8636
- Center for Neuroscience, University of California, Davis, California 95616-8636
| |
Collapse
|
20
|
Collins KB, Scott JD. Phosphorylation, compartmentalization, and cardiac function. IUBMB Life 2023; 75:353-369. [PMID: 36177749 PMCID: PMC10049969 DOI: 10.1002/iub.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.
Collapse
Affiliation(s)
- Kerrie B. Collins
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| | - John D. Scott
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| |
Collapse
|
21
|
Urrutia PJ, González-Billault C. A Role for Second Messengers in Axodendritic Neuronal Polarity. J Neurosci 2023; 43:2037-2052. [PMID: 36948585 PMCID: PMC10039749 DOI: 10.1523/jneurosci.1065-19.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile 7510157
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile 8380453
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile 7800003
- Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
22
|
Interaction between A-kinase anchoring protein 5 and protein kinase A mediates CaMKII/HDAC signaling to inhibit cardiomyocyte hypertrophy after hypoxic reoxygenation. Cell Signal 2023; 103:110569. [PMID: 36565899 DOI: 10.1016/j.cellsig.2022.110569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
We reported that A-kinase anchoring protein 5 (AKAP5) played a role in cardiomyocyte apoptosis after hypoxia-reoxygenation (H/R). The role of AKAP5 in cardiomyocyte hypertrophy has not been fully elucidated. Herein we investigated whether AKAP5 regulates cardiomyocyte hypertrophy through calcium/calmodulin-dependent protein kinase II (CaMKII). After H/R, deficiency of AKAP5 in H9C2 cardiomyocytes and neonatal rat cardiac myocytes activated CaMKII and stimulated cardiomyocyte hypertrophy. AKAP5 upregulation limited this. Low expression of AKAP5 increased CaMKII interaction with histone deacetylases 4/5 (HDAC4/5) and increased nuclear export of HDAC4/5. In addition, AKAP5 interactions with protein kinase A (PKA) and phospholamban (PLN) were diminished. Moreover, the phosphorylation of PLN was decreased, and intracellular calcium increased. Interference of this process with St-Ht31 increased CaMKII signaling, decreased PLN phosphorylation and promoted post-H/R cell hypertrophy. And PKA-anchoring deficient AKAP5ΔPKA could not attenuate hypoxia-reoxygenation-induced cardiomyocyte hypertrophy, but AKAP5 could. Altogether, AKAP5 downregulation exacerbated H/R-induced hypertrophy in cardiomyocytes. This was due to, in part, to less in AKAP5-PKA interaction and the accumulation of intracellular Ca2+ with a subsequent increase in CaMKII activity.
Collapse
|
23
|
Cui Y, Gollasch M, Kassmann M. Arterial myogenic response and aging. Ageing Res Rev 2023; 84:101813. [PMID: 36470339 DOI: 10.1016/j.arr.2022.101813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The arterial myogenic response is an inherent property of resistance arteries. Myogenic tone is crucial for maintaining a relatively constant blood flow in response to changes in intraluminal pressure and protects delicate organs from excessive blood flow. Although this fundamental physiological phenomenon has been extensively studied, the underlying molecular mechanisms are largely unknown. Recent studies identified a crucial role of mechano-activated angiotensin II type 1 receptors (AT1R) in this process. The development of myogenic response is affected by aging. In this review, we summarize recent progress made to understand the role of AT1R and other mechanosensors in the control of arterial myogenic response. We discuss age-related alterations in myogenic response and possible underlying mechanisms and implications for healthy aging.
Collapse
Affiliation(s)
- Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125 Berlin, Germany
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Mario Kassmann
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany.
| |
Collapse
|
24
|
Barsegyan A, McGaugh JL, Roozendaal B. Glucocorticoid effects on working memory impairment require l-type calcium channel activity within prefrontal cortex. Neurobiol Learn Mem 2023; 197:107700. [PMID: 36410654 DOI: 10.1016/j.nlm.2022.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 11/13/2022] [Indexed: 11/20/2022]
Abstract
Previous findings have indicated that glucocorticoid hormones impair working memory via an interaction with the β-adrenoceptor-cAMP signaling cascade to rapidly increase cAMP-dependent protein kinase (PKA) activity within the prefrontal cortex (PFC). However, it remains elusive how such activation of PKA can affect downstream cellular mechanisms in regulating PFC cognitive function. PKA is known to activate l-type voltage-gated Ca2+ channels (LTCCs) which regulate a broad range of cellular processes, including neuronal excitability and neurotransmitter release. The present experiments examined whether LTCC activity within the PFC is required in mediating glucocorticoid and PKA effects on spatial working memory. Male Sprague Dawley rats received bilateral administration of the LTCC inhibitor diltiazem together with either the glucocorticoid receptor agonist RU 28362 or PKA activator Sp-cAMPS into the PFC before testing on a delayed alternation task in a T-maze. Both RU 28362 and Sp-cAMPS impaired working memory, whereas the LTCC inhibitor diltiazem fully blocked the working memory impairment induced by either RU 28362 or Sp-cAMPS. Conversely, bilateral administration of the LTCC agonist Bay K8644 into the PFC was sufficient to impair working memory. Thus, these findings provide support for the view that glucocorticoids, via an interaction with the β-adrenergic signaling cascade and enhanced PKA activity levels, impair working memory by increasing LTCC activity in the PFC.
Collapse
Affiliation(s)
- Areg Barsegyan
- Dept. Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - James L McGaugh
- Center for the Neurobiology of Learning and Memory, Dept. Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-3800, USA
| | - Benno Roozendaal
- Dept. Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Abstract
The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.
Collapse
Affiliation(s)
- Kevin G Herold
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John W Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Martín-Aragón Baudel M, Hong J, Hell JW, Nieves-Cintrón M, Navedo MF. Mechanisms of Vascular Ca V1.2 Channel Regulation During Diabetic Hyperglycemia. Handb Exp Pharmacol 2023; 279:41-58. [PMID: 36598607 DOI: 10.1007/164_2022_628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diabetes is a leading cause of disability and mortality worldwide. A major underlying factor in diabetes is the excessive glucose levels in the bloodstream (e.g., hyperglycemia). Vascular complications directly result from this metabolic abnormality, leading to disabling and life-threatening conditions. Dysfunction of vascular smooth muscle cells is a well-recognized factor mediating vascular complications during diabetic hyperglycemia. The function of vascular smooth muscle cells is exquisitely controlled by different ion channels. Among the ion channels, the L-type CaV1.2 channel plays a key role as it is the main Ca2+ entry pathway regulating vascular smooth muscle contractile state. The activity of CaV1.2 channels in vascular smooth muscle is altered by diabetic hyperglycemia, which may contribute to vascular complications. In this chapter, we summarize the current understanding of the regulation of CaV1.2 channels in vascular smooth muscle by different signaling pathways. We place special attention on the regulation of CaV1.2 channel activity in vascular smooth muscle by a newly uncovered AKAP5/P2Y11/AC5/PKA/CaV1.2 axis that is engaged during diabetic hyperglycemia. We further describe the pathophysiological implications of activation of this axis as it relates to myogenic tone and vascular reactivity and propose that this complex may be targeted for developing therapies to treat diabetic vascular complications.
Collapse
Affiliation(s)
| | - Junyoung Hong
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
27
|
Martín-Aragón Baudel M, Flores-Tamez VA, Hong J, Reddy GR, Maillard P, Burns AE, Man KNM, Sasse KC, Ward SM, Catterall WA, Bers DM, Hell JW, Nieves-Cintrón M, Navedo MF. Spatiotemporal Control of Vascular Ca V1.2 by α1 C S1928 Phosphorylation. Circ Res 2022; 131:1018-1033. [PMID: 36345826 PMCID: PMC9722584 DOI: 10.1161/circresaha.122.321479] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND L-type CaV1.2 channels undergo cooperative gating to regulate cell function, although mechanisms are unclear. This study tests the hypothesis that phosphorylation of the CaV1.2 pore-forming subunit α1C at S1928 mediates vascular CaV1.2 cooperativity during diabetic hyperglycemia. METHODS A multiscale approach including patch-clamp electrophysiology, super-resolution nanoscopy, proximity ligation assay, calcium imaging' pressure myography, and Laser Speckle imaging was implemented to examine CaV1.2 cooperativity, α1C clustering, myogenic tone, and blood flow in human and mouse arterial myocytes/vessels. RESULTS CaV1.2 activity and cooperative gating increase in arterial myocytes from patients with type 2 diabetes and type 1 diabetic mice, and in wild-type mouse arterial myocytes after elevating extracellular glucose. These changes were prevented in wild-type cells pre-exposed to a PKA inhibitor or cells from knock-in S1928A but not S1700A mice. In addition, α1C clustering at the surface membrane of wild-type, but not wild-type cells pre-exposed to PKA or P2Y11 inhibitors and S1928A arterial myocytes, was elevated upon hyperglycemia and diabetes. CaV1.2 spatial and gating remodeling correlated with enhanced arterial myocyte Ca2+ influx and contractility and in vivo reduction in arterial diameter and blood flow upon hyperglycemia and diabetes in wild-type but not S1928A cells/mice. CONCLUSIONS These results suggest that PKA-dependent S1928 phosphorylation promotes the spatial reorganization of vascular α1C into "superclusters" upon hyperglycemia and diabetes. This triggers CaV1.2 activity and cooperativity, directly impacting vascular reactivity. The results may lay the foundation for developing therapeutics to correct CaV1.2 and arterial function during diabetic hyperglycemia.
Collapse
Affiliation(s)
- Miguel Martín-Aragón Baudel
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Victor A. Flores-Tamez
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Junyoung Hong
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Gopyreddy R. Reddy
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Pauline Maillard
- Department of Neurology, University of California Davis, Davis, CA (P.M.)
| | - Abby E. Burns
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Kwun Nok Mimi Man
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | | | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, NV (S.M.W.)
| | | | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Johannes W. Hell
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| |
Collapse
|
28
|
Sanderson JL, Freund RK, Castano AM, Benke TA, Dell'Acqua ML. The Ca V1.2 G406R mutation decreases synaptic inhibition and alters L-type Ca 2+ channel-dependent LTP at hippocampal synapses in a mouse model of Timothy Syndrome. Neuropharmacology 2022; 220:109271. [PMID: 36162529 PMCID: PMC9644825 DOI: 10.1016/j.neuropharm.2022.109271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Genetic alterations in autism spectrum disorders (ASD) frequently disrupt balance between synaptic excitation and inhibition and alter plasticity in the hippocampal CA1 region. Individuals with Timothy Syndrome (TS), a genetic disorder caused by CaV1.2 L-type Ca2+ channel (LTCC) gain-of function mutations, such as G406R, exhibit social deficits, repetitive behaviors, and cognitive impairments characteristic of ASD that are phenocopied in TS2-neo mice expressing G406R. Here, we characterized hippocampal CA1 synaptic function in male TS2-neo mice and found basal excitatory transmission was slightly increased and inhibitory transmission strongly decreased. We also found distinct impacts on two LTCC-dependent forms of long-term potentiation (LTP) synaptic plasticity that were not readily consistent with LTCC gain-of-function. LTP induced by high-frequency stimulation (HFS) was strongly impaired in TS2-neo mice, suggesting decreased LTCC function. Yet, CaV1.2 expression, basal phosphorylation, and current density were similar for WT and TS2-neo. However, this HFS-LTP also required GABAA receptor activity, and thus may be impaired in TS2-neo due to decreased inhibitory transmission. In contrast, LTP induced in WT mice by prolonged theta-train (PTT) stimulation in the presence of a β-adrenergic receptor agonist to increase CaV1.2 phosphorylation was partially induced in TS2-neo mice by PTT stimulation alone, consistent with increased LTCC function. Overall, our findings provide insights regarding how altered CaV1.2 channel function disrupts basal transmission and plasticity that could be relevant for neurobehavioral alterations in ASD.
Collapse
Affiliation(s)
- Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Anna M Castano
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Timothy A Benke
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA; Departments of Pediatrics, Neurology, and Otolaryngology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA.
| |
Collapse
|
29
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
30
|
Svec KV, Howe AK. Protein Kinase A in cellular migration-Niche signaling of a ubiquitous kinase. Front Mol Biosci 2022; 9:953093. [PMID: 35959460 PMCID: PMC9361040 DOI: 10.3389/fmolb.2022.953093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 12/28/2022] Open
Abstract
Cell migration requires establishment and maintenance of directional polarity, which in turn requires spatial heterogeneity in the regulation of protrusion, retraction, and adhesion. Thus, the signaling proteins that regulate these various structural processes must also be distinctly regulated in subcellular space. Protein Kinase A (PKA) is a ubiquitous serine/threonine kinase involved in innumerable cellular processes. In the context of cell migration, it has a paradoxical role in that global inhibition or activation of PKA inhibits migration. It follows, then, that the subcellular regulation of PKA is key to bringing its proper permissive and restrictive functions to the correct parts of the cell. Proper subcellular regulation of PKA controls not only when and where it is active but also specifies the targets for that activity, allowing the cell to use a single, promiscuous kinase to exert distinct functions within different subcellular niches to facilitate cell movement. In this way, understanding PKA signaling in migration is a study in context and in the elegant coordination of distinct functions of a single protein in a complex cellular process.
Collapse
Affiliation(s)
- Kathryn V. Svec
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, V T, United States
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| |
Collapse
|
31
|
Thomas R, Hernandez A, Benavides DR, Li W, Tan C, Umfress A, Plattner F, Chakraborti A, Pozzo-Miller L, Taylor SS, Bibb JA. Integrated regulation of PKA by fast and slow neurotransmission in the nucleus accumbens controls plasticity and stress responses. J Biol Chem 2022; 298:102245. [PMID: 35835216 PMCID: PMC9386499 DOI: 10.1016/j.jbc.2022.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cortical glutamate and midbrain dopamine neurotransmission converge to mediate striatum-dependent behaviors, while maladaptations in striatal circuitry contribute to mental disorders. However, the crosstalk between glutamate and dopamine signaling has not been entirely elucidated. Here we uncover a molecular mechanism by which glutamatergic and dopaminergic signaling integrate to regulate cAMP-dependent protein kinase (PKA) via phosphorylation of the PKA regulatory subunit, RIIβ. Using a combination of biochemical, pharmacological, neurophysiological, and behavioral approaches, we find that glutamate-dependent reduction in cyclin-dependent kinase 5 (Cdk5)-dependent RIIβ phosphorylation alters the PKA holoenzyme autoinhibitory state to increase PKA signaling in response to dopamine. Furthermore, we show that disruption of RIIβ phosphorylation by Cdk5 enhances cortico-ventral striatal synaptic plasticity. In addition, we demonstrate that acute and chronic stress in rats inversely modulate RIIβ phosphorylation and ventral striatal infusion of a small interfering peptide that selectively targets RIIβ regulation by Cdk5 improves behavioral response to stress. We propose this new signaling mechanism integrating ventral striatal glutamate and dopamine neurotransmission is important to brain function, may contribute to neuropsychiatric conditions, and serves as a possible target for the development of novel therapeutics for stress-related disorders.
Collapse
Affiliation(s)
- Rachel Thomas
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adan Hernandez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Santiago de Querétaro, Querétaro, México; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R Benavides
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Li
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alan Umfress
- Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ayanabha Chakraborti
- Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - James A Bibb
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA; Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Inferiority complex: why do sensory ion channels multimerize? Biochem Soc Trans 2022; 50:213-222. [PMID: 35166323 PMCID: PMC9022975 DOI: 10.1042/bst20211002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Peripheral somatosensory nerves are equipped with versatile molecular sensors which respond to acute changes in the physical environment. Most of these sensors are ion channels that, when activated, depolarize the sensory nerve terminal causing it to generate action potentials, which is the first step in generation of most somatic sensations, including pain. The activation and inactivation of sensory ion channels is tightly regulated and modulated by a variety of mechanisms. Amongst such mechanisms is the regulation of sensory ion channel activity via direct molecular interactions with other proteins in multi-protein complexes at the plasma membrane of sensory nerve terminals. In this brief review, we will consider several examples of such complexes formed around a prototypic sensory receptor, transient receptor potential vanilloid type 1 (TRPV1). We will also discuss some inherent conceptual difficulties arising from the multitude of reported complexes.
Collapse
|
33
|
Abstract
Each heartbeat is initiated by the action potential, an electrical signal that depolarizes the plasma membrane and activates a cycle of calcium influx via voltage-gated calcium channels, calcium release via ryanodine receptors, and calcium reuptake and efflux via calcium-ATPase pumps and sodium-calcium exchangers. Agonists of the sympathetic nervous system bind to adrenergic receptors in cardiomyocytes, which, via cascading signal transduction pathways and protein kinase A (PKA), increase the heart rate (chronotropy), the strength of myocardial contraction (inotropy), and the rate of myocardial relaxation (lusitropy). These effects correlate with increased intracellular concentration of calcium, which is required for the augmentation of cardiomyocyte contraction. Despite extensive investigations, the molecular mechanisms underlying sympathetic nervous system regulation of calcium influx in cardiomyocytes have remained elusive over the last 40 years. Recent studies have uncovered the mechanisms underlying this fundamental biologic process, namely that PKA phosphorylates a calcium channel inhibitor, Rad, thereby releasing inhibition and increasing calcium influx. Here, we describe an updated model for how signals from adrenergic agonists are transduced to stimulate calcium influx and contractility in the heart.
Collapse
Affiliation(s)
- Arianne Papa
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Li Y, Yang H, He T, Zhang L, Liu C. Post-Translational Modification of Cav1.2 and its Role in Neurodegenerative Diseases. Front Pharmacol 2022; 12:775087. [PMID: 35111050 PMCID: PMC8802068 DOI: 10.3389/fphar.2021.775087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Cav1.2 plays an essential role in learning and memory, drug addiction, and neuronal development. Intracellular calcium homeostasis is disrupted in neurodegenerative diseases because of abnormal Cav1.2 channel activity and modification of downstream Ca2+ signaling pathways. Multiple post-translational modifications of Cav1.2 have been observed and seem to be closely related to the pathogenesis of neurodegenerative diseases. The specific molecular mechanisms by which Cav1.2 channel activity is regulated remain incompletely understood. Dihydropyridines (DHPs), which are commonly used for hypertension and myocardial ischemia, have been repurposed to treat PD and AD and show protective effects. However, further studies are needed to improve delivery strategies and drug selectivity. Better knowledge of channel modulation and more specific methods for altering Cav1.2 channel function may lead to better therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Tianhan He
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Liang Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
35
|
LRRK2 at Striatal Synapses: Cell-Type Specificity and Mechanistic Insights. Cells 2022; 11:cells11010169. [PMID: 35011731 PMCID: PMC8750662 DOI: 10.3390/cells11010169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson’s disease with a similar clinical presentation and progression to idiopathic Parkinson’s disease, and common variation is linked to disease risk. Recapitulation of the genotype in rodent models causes abnormal dopamine release and increases the susceptibility of dopaminergic neurons to insults, making LRRK2 a valuable model for understanding the pathobiology of Parkinson’s disease. It is also a promising druggable target with targeted therapies currently in development. LRRK2 mRNA and protein expression in the brain is highly variable across regions and cellular identities. A growing body of work has demonstrated that pathogenic LRRK2 mutations disrupt striatal synapses before the onset of overt neurodegeneration. Several substrates and interactors of LRRK2 have been identified to potentially mediate these pre-neurodegenerative changes in a cell-type-specific manner. This review discusses the effects of pathogenic LRRK2 mutations in striatal neurons, including cell-type-specific and pathway-specific alterations. It also highlights several LRRK2 effectors that could mediate the alterations to striatal function, including Rabs and protein kinase A. The lessons learned from improving our understanding of the pathogenic effects of LRRK2 mutations in striatal neurons will be applicable to both dissecting the cell-type specificity of LRRK2 function in the transcriptionally diverse subtypes of dopaminergic neurons and also increasing our understanding of basal ganglia development and biology. Finally, it will inform the development of therapeutics for Parkinson’s disease.
Collapse
|
36
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
37
|
Regulation of neuronal excitation-transcription coupling by Kv2.1-induced clustering of somatic L-type Ca 2+ channels at ER-PM junctions. Proc Natl Acad Sci U S A 2021; 118:2110094118. [PMID: 34750263 PMCID: PMC8609631 DOI: 10.1073/pnas.2110094118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
In hippocampal neurons, gene expression is triggered by electrical activity and Ca2+ entry via L-type Cav1.2 channels in a process called excitation–transcription coupling. We identified a domain on the voltage-gated K+ channel Kv2.1 that promotes the clustering of L-type Cav1.2 channels at endoplasmic reticulum–plasma membrane junctions in the soma of neurons. Importantly, we discovered by disrupting this domain that the Kv2.1-mediated clustering of Cav1.2 at this somatic microdomain is critical for depolarization-induced excitation–transcription coupling. In mammalian brain neurons, membrane depolarization leads to voltage-gated Ca2+ channel-mediated Ca2+ influx that triggers diverse cellular responses, including gene expression, in a process termed excitation–transcription coupling. Neuronal L-type Ca2+ channels, which have prominent populations on the soma and distal dendrites of hippocampal neurons, play a privileged role in excitation–transcription coupling. The voltage-gated K+ channel Kv2.1 organizes signaling complexes containing the L-type Ca2+ channel Cav1.2 at somatic endoplasmic reticulum–plasma membrane junctions. This leads to enhanced clustering of Cav1.2 channels, increasing their activity. However, the downstream consequences of the Kv2.1-mediated regulation of Cav1.2 localization and function on excitation–transcription coupling are not known. Here, we have identified a region between residues 478 to 486 of Kv2.1’s C terminus that mediates the Kv2.1-dependent clustering of Cav1.2. By disrupting this Ca2+ channel association domain with either mutations or with a cell-penetrating interfering peptide, we blocked the Kv2.1-mediated clustering of Cav1.2 at endoplasmic reticulum–plasma membrane junctions and the subsequent enhancement of its channel activity and somatic Ca2+ signals without affecting the clustering of Kv2.1. These interventions abolished the depolarization-induced and L-type Ca2+ channel-dependent phosphorylation of the transcription factor CREB and the subsequent expression of c-Fos in hippocampal neurons. Our findings support a model whereby the Kv2.1-Ca2+ channel association domain-mediated clustering of Cav1.2 channels imparts a mechanism to control somatic Ca2+ signals that couple neuronal excitation to gene expression.
Collapse
|
38
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
39
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
40
|
Church TW, Tewatia P, Hannan S, Antunes J, Eriksson O, Smart TG, Hellgren Kotaleski J, Gold MG. AKAP79 enables calcineurin to directly suppress protein kinase A activity. eLife 2021; 10:e68164. [PMID: 34612814 PMCID: PMC8560092 DOI: 10.7554/elife.68164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
Interplay between the second messengers cAMP and Ca2+ is a hallmark of dynamic cellular processes. A common motif is the opposition of the Ca2+-sensitive phosphatase calcineurin and the major cAMP receptor, protein kinase A (PKA). Calcineurin dephosphorylates sites primed by PKA to bring about changes including synaptic long-term depression (LTD). AKAP79 supports signaling of this type by anchoring PKA and calcineurin in tandem. In this study, we discovered that AKAP79 increases the rate of calcineurin dephosphorylation of type II PKA regulatory subunits by an order of magnitude. Fluorescent PKA activity reporter assays, supported by kinetic modeling, show how AKAP79-enhanced calcineurin activity enables suppression of PKA without altering cAMP levels by increasing PKA catalytic subunit capture rate. Experiments with hippocampal neurons indicate that this mechanism contributes toward LTD. This non-canonical mode of PKA regulation may underlie many other cellular processes.
Collapse
Affiliation(s)
- Timothy W Church
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Parul Tewatia
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Saad Hannan
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - João Antunes
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Olivia Eriksson
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Matthew G Gold
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
41
|
Sanderson JL, Freund RK, Gorski JA, Dell'Acqua ML. β-Amyloid disruption of LTP/LTD balance is mediated by AKAP150-anchored PKA and Calcineurin regulation of Ca 2+-permeable AMPA receptors. Cell Rep 2021; 37:109786. [PMID: 34610314 PMCID: PMC8530450 DOI: 10.1016/j.celrep.2021.109786] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 01/28/2023] Open
Abstract
Regulated insertion and removal of postsynaptic AMPA glutamate receptors (AMPARs) mediates hippocampal long-term potentiation (LTP) and long-term depression (LTD) synaptic plasticity underlying learning and memory. In Alzheimer’s disease β-amyloid (Aβ) oligomers may impair learning and memory by altering AMPAR trafficking and LTP/LTD balance. Importantly, Ca2+-permeable AMPARs (CP-AMPARs) assembled from GluA1 subunits are excluded from hippocampal synapses basally but can be recruited rapidly during LTP and LTD to modify synaptic strength and signaling. By employing mouse knockin mutations that disrupt anchoring of the kinase PKA or phosphatase Calcineurin (CaN) to the postsynaptic scaffold protein AKAP150, we find that local AKAP-PKA signaling is required for CP-AMPAR recruitment, which can facilitate LTP but also, paradoxically, prime synapses for Aβ impairment of LTP mediated by local AKAP-CaN LTD signaling that promotes subsequent CP-AMPAR removal. These findings highlight the importance of PKA/CaN signaling balance and CP-AMPARs in normal plasticity and aberrant plasticity linked to disease. In Alzheimer’s disease, Aβ oligomers disrupt hippocampal neuronal plasticity and cognition. Sanderson et al. show how the postsynaptic scaffold protein AKAP150 coordinates PKA and Calcineurin regulation of Ca2+-permeable AMPA-type glutamate receptors to mediate disruption of synaptic plasticity by Aβ oligomers.
Collapse
Affiliation(s)
- Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jessica A Gorski
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
42
|
Isensee J, van Cann M, Despang P, Araldi D, Moeller K, Petersen J, Schmidtko A, Matthes J, Levine JD, Hucho T. Depolarization induces nociceptor sensitization by CaV1.2-mediated PKA-II activation. J Cell Biol 2021; 220:212600. [PMID: 34431981 PMCID: PMC8404467 DOI: 10.1083/jcb.202002083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory neurons rapidly activates protein kinase A type II (PKA-II) in nociceptors by calcium influx through CaV1.2 channels. This effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II phosphorylated Ser1928 in the distal C terminus of CaV1.2, thereby increasing channel gating, whereas dephosphorylation of Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads to calcium- and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo. Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Marianne van Cann
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Patrick Despang
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Dioneia Araldi
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Katharina Moeller
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jonas Petersen
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan Matthes
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jon D Levine
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Yamamoto T, Mulpuri Y, Izraylev M, Li Q, Simonian M, Kramme C, Schmidt BL, Seltzman HH, Spigelman I. Selective targeting of peripheral cannabinoid receptors prevents behavioral symptoms and sensitization of trigeminal neurons in mouse models of migraine and medication overuse headache. Pain 2021; 162:2246-2262. [PMID: 33534356 PMCID: PMC8277668 DOI: 10.1097/j.pain.0000000000002214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Migraine affects ∼15% of the world's population greatly diminishing their quality of life. Current preventative treatments are effective in only a subset of migraine patients, and although cannabinoids seem beneficial in alleviating migraine symptoms, central nervous system side effects limit their widespread use. We developed peripherally restricted cannabinoids (PRCBs) that relieve chronic pain symptoms of cancer and neuropathies, without appreciable central nervous system side effects or tolerance development. Here, we determined PRCB effectiveness in alleviating hypersensitivity symptoms in mouse models of migraine and medication overuse headache. Long-term glyceryl trinitrate (GTN, 10 mg/kg) administration led to increased sensitivity to mechanical stimuli and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment, but not posttreatment, prevented behavioral and biochemical correlates of GTN-induced sensitization. Low pH-activated and allyl isothiocyanate-activated currents in acutely isolated trigeminal neurons were reversibly attenuated by PRCB application. Long-term GTN treatment significantly enhanced these currents. Long-term sumatriptan treatment also led to the development of allodynia to mechanical and cold stimuli that was slowly reversible after sumatriptan discontinuation. Subsequent challenge with a previously ineffective low-dose GTN (0.1-0.3 mg/kg) revealed latent behavioral sensitization and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment prevented all behavioral and biochemical correlates of allodynia and latent sensitization. Importantly, long-term PRCB treatment alone did not produce any behavioral or biochemical signs of sensitization. These data validate peripheral cannabinoid receptors as potential therapeutic targets in migraine and medication overuse headache.
Collapse
Affiliation(s)
- Toru Yamamoto
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Yatendra Mulpuri
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Mikhail Izraylev
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Qianyi Li
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Menooa Simonian
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Christian Kramme
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Brian L. Schmidt
- Department of Oral & Maxillofacial Surgery and Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY
| | - Herbert H. Seltzman
- Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
44
|
Wu L, Lian W, Zhao L. Calcium signaling in cancer progression and therapy. FEBS J 2021; 288:6187-6205. [PMID: 34288422 DOI: 10.1111/febs.16133] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
The old Greek aphorism 'Panta Rhei' ('everything flows') is true for all living things in general. As a dynamic process, calcium signaling plays fundamental roles in cellular activities under both normal and pathological conditions, with recent researches uncovering its involvement in cell proliferation, migration, survival, gene expression, and more. The major question we address here is how calcium signaling affects cancer progression and whether it could be targeted to combine with classic chemotherapeutics or emerging immunotherapies to improve their efficacy.
Collapse
Affiliation(s)
- Ling Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Weidong Lian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
46
|
Local miRNA-Dependent Translational Control of GABA AR Synthesis during Inhibitory Long-Term Potentiation. Cell Rep 2021; 31:107785. [PMID: 32579917 PMCID: PMC7486624 DOI: 10.1016/j.celrep.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
Molecular mechanisms underlying plasticity at brain inhibitory synapses remain poorly characterized. Increased postsynaptic clustering of GABAA receptors (GABAARs) rapidly strengthens inhibition during inhibitory long-term potentiation (iLTP). However, it is unclear how synaptic GABAAR clustering is maintained to sustain iLTP. Here, we identify a role for miR376c in regulating the translation of mRNAs encoding the synaptic α1 and γ2 GABAAR subunits, GABRA1 and GABRG2, respectively. Following iLTP induction, transcriptional repression of miR376c is induced through a calcineurin-NFAT-HDAC signaling pathway and promotes increased translation and clustering of synaptic GABAARs. This pathway is essential for the long-term expression of iLTP and is blocked by miR376c overexpression, specifically impairing inhibitory synaptic strength. Finally, we show that local de novo synthesis of synaptic GABAARs occurs exclusively in dendrites and in a miR376c-dependent manner following iLTP. Together, this work describes a local post-transcriptional mechanism that regulates inhibitory synaptic plasticity via miRNA control of dendritic protein synthesis. Clustering of GABAARs at inhibitory synapses is crucial for synaptic inhibition. Rajgor et al. discover that synaptic GABAAR expression is controlled by their local translation, regulated by miR376c. During inhibitory synaptic potentiation, miR376c is downregulated, relieving its translational repression of GABAAR mRNAs and leading to de novo synthesis of dendritic GABAARs.
Collapse
|
47
|
Di Benedetto G, Iannucci LF, Surdo NC, Zanin S, Conca F, Grisan F, Gerbino A, Lefkimmiatis K. Compartmentalized Signaling in Aging and Neurodegeneration. Cells 2021; 10:464. [PMID: 33671541 PMCID: PMC7926881 DOI: 10.3390/cells10020464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Liliana F. Iannucci
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta C. Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Sofia Zanin
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Filippo Conca
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Francesca Grisan
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy;
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
48
|
AKAP79/150 coordinates leptin-induced PKA signaling to regulate K ATP channel trafficking in pancreatic β-cells. J Biol Chem 2021; 296:100442. [PMID: 33617875 PMCID: PMC8010710 DOI: 10.1016/j.jbc.2021.100442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
The adipocyte hormone leptin regulates glucose homeostasis both centrally and peripherally. A key peripheral target is the pancreatic β-cell, which secretes insulin upon glucose stimulation. Leptin is known to suppress glucose-stimulated insulin secretion by promoting trafficking of KATP channels to the β-cell surface, which increases K+ conductance and causes β-cell hyperpolarization. We have previously shown that leptin-induced KATP channel trafficking requires protein kinase A (PKA)-dependent actin remodeling. However, whether PKA is a downstream effector of leptin signaling or PKA plays a permissive role is unknown. Using FRET-based reporters of PKA activity, we show that leptin increases PKA activity at the cell membrane and that this effect is dependent on N-methyl-D-aspartate receptors, CaMKKβ, and AMPK, which are known to be involved in the leptin signaling pathway. Genetic knockdown and rescue experiments reveal that the increased PKA activity upon leptin stimulation requires the membrane-targeted PKA-anchoring protein AKAP79/150, indicating that PKA activated by leptin is anchored to AKAP79/150. Interestingly, disrupting protein phosphatase 2B (PP2B) anchoring to AKAP79/150, known to elevate basal PKA signaling, leads to increased surface KATP channels even in the absence of leptin stimulation. Our findings uncover a novel role of AKAP79/150 in coordinating leptin and PKA signaling to regulate KATP channel trafficking in β-cells, hence insulin secretion. The study further advances our knowledge of the downstream signaling events that may be targeted to restore insulin secretion regulation in β-cells defective in leptin signaling, such as those from obese individuals with type 2 diabetes.
Collapse
|
49
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|